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There are at least three different types of secular effects in the two-point correlation functions in scalar
quantum field theories in de Sitter space-time. The first one is specific to de Sitter massless and tachyonic
minimally coupled scalar fields. The remaining two are generic and are encountered practically in any
nonstationary situation in quantum field theory. Furthermore there are secular effects in the n-point
correlation functions for low enough mass. They are also specific to de Sitter quantum field theory. In this
paper we focus on the differences between the secular effects in two-point functions. We discuss also their
character in different patches of de Sitter space-time—global, expanding and contracting Poincaré patches.
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I. INTRODUCTION

Secular effects in de Sitter (dS) space quantum field
theories have attracted a great deal of attention (see
Refs. [1–72] for an incomplete list of references). Let us
consider for instance the two-point Wightman function

Wð1; 2Þ ¼ hϕðt1; x⃗1Þϕðt2; x⃗2Þi ð1Þ

of a real scalar quantum field on the D-dimensional dS
manifold (we consider here a fixed background, i.e.,
backreaction effects are not taken into account).1 There
are at least the following three types of secular effects:

(i) The secular growth of the first kind appears in the
case of the massless minimally coupled scalars and
also for tachyonic fields [1–9] and [73,74]. It was
first seen in the tree-level correlation function (1)
when t1 ¼ t2 ¼ t and x⃗1 ¼ x⃗2 and then observed in
the loops in the expanding Poincaré patch (EPP)

ds2 ¼ dt2 − e2tdx⃗2

of the D–dimensional dS space of unit radius. In
fact, as t → þ∞ one finds that [1–9]:

Wtreeþloopsð1; 1Þ≡ hϕ2ðt; x⃗Þi ≈ tA0 þ λt3A1 þ � � �
ð2Þ

A0 is the tree–level contribution, A1 is the first
loop contribution which contains integrals of
products of mode functions and λ is the self-
coupling constant of the scalar field theory. The
dependence on x⃗ disappears due to the spatial
homogeneity of the EPP and the chosen initial
state. The effect can also be observed when
x⃗1 ≠ x⃗2 [56–63], where the mass term can be
treated perturbatively.

This secular growth is specific for massless2

minimally coupled scalars in the EPP and violates
dS isometry even at tree-level [1–9]. In fact, in
such a case at each order of perturbation theory
the Wightman propagator is not a function of the
scalar invariant—the so-called hyperbolic distance.

Methods to deal with the secular growth of the
first kind are developed in Refs. [8,9,56–63]. But
they work only in the EPP, for small enough
perturbations over the Bunch–Davies (BD) state
[75,76], i.e., only when the same sort of effects in
higher point functions can be neglected.

We are not going to discuss effects of this type
in detail in the present paper. We have mentioned
them just to stress the difference with respect to
the other secular effects on which we are going to
focus on in this paper.Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
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1In this paper we restrict our attention to real scalar fields, but
similar secular effects appear also in other theories.

2Or to the case when the mass term can be treated
perturbatively.
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(ii) The secular growth of the second kind appears for
scalar fields of arbitrary mass; it is seen in the loops
when jt1 − t2j → ∞. Namely, in the λϕ3 (resp. λϕ4)
theory the one (resp. two) loop corrections to the
Wightman propagator contain contributions of the
following form:

Wloopðt1; t2jpÞ ≈ λ2ðt1 − t2ÞB; ð3Þ

where

Wðt1; t2jpÞ ¼
Z

dD−1x⃗eip⃗ x⃗hϕðt1; x⃗Þϕðt2; 0Þi ð4Þ

is the spatial Fourier transformation of the two-
point Wightman function (note that in this paper
we always discuss spatially homogeneous states).
Wloop denotes the one (resp. two) loop contribution,
B is a constant containing integrals of products of
mode functions whose explicit form will be shown
below. The implications of this effect for dS physics
have been discussed in the literature (see e.g.,
Refs. [47–53]). Usually this effect leads to a mass
renormalization or to a contribution to the imaginary
part of the self-energy. This effect cannot be defi-
nitely attributed to the infrared (IR) contributions. It
also can appear from the ultraviolet (UV) region of
internal loop momenta and even in a stationary
situation.

(iii) The secular growth of the third kind also appears for
scalar fields of arbitrary mass. It shows up in the
loops when t1 þ t2 → ∞ while t1 − t2 ¼ const.
Namely, the one (resp. two) loop corrections to
the Wightman function in the λϕ3 (resp. λϕ4) theory
in the EPP contain contributions of the form:

Wloopðt1; t2jpÞ ≈ λ2ðt1 þ t2ÞC; ð5Þ

where C is a constant containing integrals of
products of mode functions. The calculation of
the one-loop correction for the Wightman function
for the λϕ3 theory with mass m > ðD − 1Þ=2, in
units of dS curvature, has been done in [64] both in
the EPP and in global dS. The extension of this
calculation to the λϕ4 theory and at higher loops has
been done in Refs. [66–69,71]. The extension to
light fields with mass m < ðD − 1Þ=2 in units of the
dS curvature, at one loop was done in Ref. [69] and
at higher loops—in Ref. [70].

(iv) Finally, in the contracting Poincaré patch (CPP) and
in the global dS manifold there is a secular diver-
gence in place of the secular growth of the third
kind [64,68,71]:

Wloopðt1; t2jpÞ ≈ λ2ðt − t0ÞF; ð6Þ

where t ¼ t1þt2
2
, t0 is the initial time (Cauchy surface)

from where the self-interactions are adiabatically
turned on and F is a constant containing integrals of
products of mode functions. We will see that the
secular growth of the third kind in the EPP (5) and
the above secular divergences in the CPP and global
dS are of the same physical origin. But, as we
explain in the present paper, the resummation of the
leading contributions from all loops in the case of
the secular growth (of any kind) and in the case of
the secular divergence in dS space are physically
distinct problems.

The appearance of t0 in the expressions of the
correlation functions means the divergence rather
than just the growth with time. In fact, if one puts
t0 → −∞, the loop corrections to the correlation
functions are infinite (divergent) even if one cuts off
the ultraviolet divergences. It means that in such a
case the initial Cauchy surface cannot be taken to
past infinity (see Ref. [71] for a generic discussion).
This, in its own right, means that in such a situation
correlators are not functions of the scalar invariant,
i.e., dS isometry is violated in the loops by such
secular divergences, even if it is respected at
tree level.

Secular effects of the second and third kinds or the
secular divergence are generic and appear practically in any
nonstationary situation. For example, the secular diver-
gence appears even in flat space quantum field theory in
nonstationary situation—for non-Planckian initial distribu-
tion, as discussed in e.g., Ref. [77]. Moreover, it appears in
presence of a constant electric field [78–80]. It is similar to
the divergence in global dS and in CPP. In the electric pulse
in QED there is also a secular growth instead of the
divergence, which is similar to the one in the EPP.
The secular growth of the third kind in the case of black

hole collapse is discussed in Ref. [81] (see also Ref. [82]).
At the same time the secular growth of the second kind in
the case of black hole collapse was discussed in [83].
Finally, the secular growth of the third kind in the presence
of moving mirrors is discussed [84] (see also Ref. [85]).
The secular growth of the third kind and the correspond-

ing divergence in the loops are the infrared effects. These
two effects are sensitive to the boundary and initial
conditions. As a result it is no wonder that they reveal
themselves in different ways in various patches of the
same dS space. The presence of a secular growth implies
a violation of the applicability of perturbation theory. In
fact, even if λ is very small λ2ðt2 − t1Þ, λ2ðt1 þ t2Þ or
λ2½ðt1 þ t2Þ=2 − t0� can become of order unity as two
arguments t1;2 of the correlation function are taken to
the future infinity.
Hence, to understand the physics even of massive fields

in dS space one has to perform a resummation at least of the
leading contributions from all loops. Usually in dS space
quantum field theory this is done only for very specific
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initial states, when the mass term can be treated perturba-
tively. Meanwhile the result of the resummation strongly
depends on the patch and the initial state. The goal of the
present paper is to clarify some of these points.
In first place for the resummation of the large infrared

effects one has to solve the system of the Dyson–Schwinger
equations in some approximation. This system contains
equations for the two-point functions and vertexes. Each of
these unknowns of the system can possess independent
secular contributions. In fact, in D–dimensional dS space,

when m ≤
ffiffi
3

p
4
ðD − 1Þ in units of the dS curvature, higher

point correlation functions also show a secular growth as
one takes all their arguments to the future infinity [70] (see
also Refs. [86–92] for the discussion of the origin of such
an effect). This phenomenon is also specific to dS space
quantum field theory.
In this paper we discuss such situations, when the secular

growth in the higher point functions is not present. Namely,
we mostly discuss scalars from the principal series, m >
ðD − 1Þ=2. We specifically designate which of the loop
contributions provide the leading corrections at each loop
level. It happens that in the case of secular growth and in the
case of secular divergence different types of diagrams
contribute leading corrections in dS quantum field theory.
Hence, e.g., the problems of resummations of leading loop
corrections in the EPP and in global dS are physically
different.
The paper is organized as follows. In Sec. II we establish

the setup and the notations. In Sec. III we explain the origin
of the secular growth of the third kind in the EPP for the BD
state. Section IV deals with the difference between the
secular growth in the EPP for the BD state and the secular
divergences emerging for alpha-vacua in the EPP and for
any state in the CPP and in the global dS.
In Sec. V we investigate the relation between the secular

growth of the second and the third kind for dS invariant
situation. In particular, we find the relation between these
two types of secular effects for the BD initial state in the
EPP in the x–space representation.
In Sec. VI we discuss the problem of the resummation of

the leading secular contributions from all loops. We explic-
itly show which type of diagrams provide the leading
contributions in the case of secular effects of the second
and third kind in the EPP for the initial BD state. Then we
show that in the CPP and in global dS different type of
diagrams provide the leading contributions in the case of
secular divergence.
Section VII contains some conclusions.

II. SETUP

We consider the scalar field theory:

S ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
1

2
gαβ∂αϕ∂βϕ −

1

2
m2ϕ2 −

λ

3!
ϕ3

�
; ð7Þ

where ϕ is real. We restrict our attention to the ϕ3 potential
just to simplify all expressions. The effects that we discuss
here have nothing to do with the runaway instability of the
ϕ3 potential and can be seen also in ϕ4 theory [69].
The background geometry in (7) is given by the

expanding Poincaré patch (EPP):

ds2 ¼ 1

η2
½dη2 − dx⃗2�; η≡ e−t: ð8Þ

Below we also consider the contracting Poinaré patch
(CPP), global de Sitter (dS) metric and so called sandwich
metric—EPP like expansion interpolating between two flat
regions. We set the Hubble constant to one. Only the scalar
field ϕ is dynamical, gravity is fixed.
The expansion of the field operator over the Bunch–

Davies (BD) modes [76] is defined as:

ϕðη; x⃗Þ ¼
Z

dD−1p⃗
ð2πÞD−1 ½ap⃗fpðη; x⃗Þ þ aþp⃗ f

�
pðη; x⃗Þ�; ð9Þ

where the modes satisfy the following equation:

½η2∂2
η þ ð2 − dÞη∂η þm2 − η2Δ�fpðη; x⃗Þ ¼ 0: ð10Þ

Its solutions are

fpðη; x⃗Þ ¼ ηðD−1Þ=2hðpηÞe−ip⃗ x⃗; and

hðpηÞ ¼
ffiffiffi
π

p
2

e−
1
2
πμHð1Þ

iμ ðpηÞ: ð11Þ

In the last expression:

μ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

�
D − 1

2

�
2

s
; and p≡ jp⃗j: ð12Þ

The normalization factor of the modes fixed by the
commutation relations of the field ϕ with its conjugate
momentum and of the creation, aþp⃗ , with the annihilation,
ap⃗, operators.
In this paper we consider the case of m > 0. Below we

discuss the loop IR contributions in the limit, when
pη1;2 ≪ jμj. In such a limit the leading behavior of the
modes is as follows

hðpηÞ ≈ AþðpηÞiμ þ A−ðpηÞ−iμ; ð13Þ

if m> ðD−1Þ=2. Here Aþ¼ 2−iμe−
πμ
2

ffiffi
π

p ð1þcothπμÞ
2Γð1þiμÞ and A−¼

− i2iμe−
πμ
2 ΓðiμÞ

2
ffiffi
π

p . Most of the equations below are written for the

case m > ðD − 1Þ=2 (for the precise expressions see
Ref. [71] for the m > ðD − 1Þ=2 case and Ref. [70] for
them < ðD − 1Þ=2 case). To simplify the discussion below
we show just the leading expressions in appropriate limits
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to reveal the physical meaning of the phenomena that are
discussed in the paper. Otherwise expressions become
humongous.
In nonstationary quantum field theory every field is

described by three propagators (see Refs. [77,93] for an
overview). The retarded and advanced propagators are
proportional to the commutator, whose spatial Fourier
representation at tree-level is equal to:

C0ðpjη1; η2Þ≡ −i
Z

dD−1x⃗e−ip⃗ x⃗½ϕðη1; x⃗Þ;ϕðη2; 0Þ�

¼ 2ðη1η2ÞðD−1Þ=2Im½hðpη1Þh�ðpη2Þ�: ð14Þ

The third relevant two–point correlation function is the
Keldysh propagator. Its tree-level spatially Fourier repre-
sentation is

DK
0 ðpjη1; η2Þ≡ 1

2

Z
dD−1x⃗e−ip⃗ x⃗hfϕðη1; x⃗Þ;ϕðη2; 0Þgi

¼ ðη1η2ÞðD−1Þ=2Re½hðpη1Þh�ðpη2Þ�: ð15Þ

Note that while C0 does not depend on the state, the
Keldysh propagator DK

0 does. Equation (15) is the expres-
sion of the Keldysh propagator for the BD state. The index
“0” of C and DK means that these are the tree-level
expressions of the corresponding two-point functions.
Essentially with the use of the Schwinger–Keldysh

technique one calculates correlation functions rather than

amplitudes, as in the Feynman technique. The result of the
calculation solves a Cauchy problem, where the ground
state plays the role of the initial state. Unlike the Feynman
technique, the Schwinger–Keldysh approach is completely
causal. The point is that within the Schwinger–Keldysh
technique the result of any loop contribution depends only
on the causal past of the arguments of correlation functions.

III. SECULAR GROWTH OF THE THIRD
KIND IN THE EPP

Secular effect of the third kind and the corresponding
divergence are, in our opinion, potentially the most relevant
ones as regards backreaction on the background dS
geometry [70,71]. One of the goals of this paper is to
show exactly this point.
At the leading order the sum of the tree-level and one

loop (see Fig. 1) contributions for the Keldysh propagator
can be expressed as [71]:

DK
0þ1ðpjη1; η2Þ ≈ ηD−1f½1þ 2n1ðpηÞ�Re½hðpη1Þh�ðpη2Þ�

þ hðpη1Þhðpη2Þκ1ðpηÞ
þ h�ðpη1Þh�ðpη2Þκ�1ðpηÞg; ð16Þ

where η ¼ ffiffiffiffiffiffiffiffiffi
η1η2

p
and the modes hðpη1;2Þ should be

approximated by (13). In ϕ3 theory

n1ðpηÞ ∝ λ2 log

�
μ

pη

�ZZ
∞

0

dv
v
dllD−2½jAþj2viμ þ jA−j2v−iμ�½hðl=

ffiffiffi
v

p Þh�ðl ffiffiffi
v

p Þ�2;

κ1ðpηÞ ∝ λ2 log

�
μ

pη

�
AþA−

Z
∞

1

dv
v

Z
∞

0

dllD−2½viμ þ v−iμ�½hðl= ffiffiffi
v

p Þh�ðl ffiffiffi
v

p Þ�2: ð17Þ

Here A� are defined in (13) and κ�1ðpηÞ is just the complex
conjugate of κ1ðpηÞ. These expressions are the leading
contributions in the limit, when p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0 and

η1=η2 ¼ const. The coefficients of proportionality in (17)
can be found in Ref. [71]. Their exact expression is not
necessary for further discussion in this paper. The index 1
in the notation of nðpηÞ and κðpηÞ means that these
expressions are just one loop contributions.3

We discuss the physical origin of such contributions in
the next section. The loop IR corrections to C0 are
discussed below in Sec. V. We will see that in the limit
that we are considering in this section C0 does not receive
any secularly growing contributions.

From the form of (16) it is not hard to recognize
in nðpηÞjhðpηÞj2 the level population, where nðpηÞ×
δðp⃗ − q⃗Þ ¼ haþp⃗ aq⃗ðηÞi, evaluated at second order in λ in
the interaction picture. It is important to note that this
level population is attributed to the comoving volume.
[The volume factor ηD−1 ≡ ðη1η2ÞD−1

2 is the coefficient of
proportionality in (16).]

FIG. 1. In the Schwinger–Keldysh technique there are several
diagrams, of the type that is shown here, which contribute to the
one loop correction to the two-point functions. The Schwinger–
Keldysh diagrammatic technique in the context of cosmology is
reviewed in Ref. [94] (see also Ref. [71]).

3In λϕ4 theory the corresponding expressions are similar [69]
but the secular growth appears in two loop contributions which
follow from the sunset diagrams.
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Similarly κðpηÞh2ðpηÞ is nothing but the anomalous
quantum average κðpηÞδðp⃗þ q⃗Þ ¼ hap⃗aq⃗ðηÞi also evalu-
ated in the interaction picture to the second order
in λ and attributed to the comoving volume. Finally,
κ�ðpηÞδð3Þðp⃗þ q⃗Þ ¼ haþp⃗ aþq⃗ ðηÞi.
Please remember that in this paper we consider spatially

homogeneous quantizations only. Also we are working in
the interaction picture. Hence, when λ ¼ 0 all the above
quantities, n, κ and κ�, are time independent. They start to
evolve, when one turns on self-interactions.
As

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0, i.e.,when ðt1 þ t2Þ=2 → þ∞,we encoun-

ter the secular growth of the third kind. Usually its physical
meaning is that due to the λϕ3 self-interaction, the level
populations of the low laying exact modes in the theory are
changing in time.Also theground state does change due to the
seculargrowthof theanomalousaverages κp andκ�p [71].That
is the usual picture, but in dS space there are peculiarities due
to its symmetry. We discuss them in a moment.
In any case, because λ2ðt1 þ t2Þ≳ 1, for long enough

time of evolution, we encounter here a breakdown of
perturbation theory, which is the usual phenomenon in
nonstationary situations or even in finite temperature sta-
tionary state quantum field theory. This just means that to
understand the physics in dS space one has to do at least a
resummation of leading secular effects from all loops. The
result of the resummation will provide the correct time
dependence of n, κ and κ� rather than just the approximate

linear growth. Consequently, the goal should be to under-
stand which type of contributions are the leading correc-
tions to these quantities at each loop order.
At this point it is important to stress that to perform the

resummation of such contributions one usually has to apply
the kinetic approach [93]. However, in dS space there are
important peculiarities, which aremainly discussed in Sec. V.
These peculiarities appear because the dS space has large
isometry group which plays the same role as the Poincaré
group in Minkowski space. However, it happens that loop
corrections do respect the isometry only for the exact BD
initial state in the exact EPP [65] (see also Ref. [71]).
Meanwhile in the CPP as well as in global dS the

isometry group is broken in the loops by IR divergences for
any initial state [64,66,68] and [71]. For alpha-vacua the dS
isometry is also broken in the loops even in EPP [65,71]. In
the next section we explain the reason for these symmetry
violations.

IV. SECULAR GROWTH VS SECULAR
IR DIVERGENCE

Before discussing the implications of the dS isometry let
us consider the origin of (16) and (17) and the situation in
the CPP as well as in global dS. For a generic spatially
homogeneous background the one loop correction is
similar to (16), but instead of nðpηÞ and κðpηÞ it contains
the following expressions:

n1pðηÞ ∝ λ2
Z

dD−1q1

Z
dD−1q2

Z
η

η0

dη3
ffiffiffiffiffiffiffiffiffiffiffi
gðη3Þ

p Z
η

η0

dη4
ffiffiffiffiffiffiffiffiffiffiffi
gðη4Þ

p
δðp⃗þ q⃗1 þ q⃗2Þ

× f�pðη3Þfpðη4Þf�q1ðη3Þfq1ðη4Þf�q2ðη3Þfq2ðη4Þ;

κ1pðηÞ ∝ λ2
Z

dD−1q1

Z
dD−1q2

Z
η

η0

dη3
ffiffiffiffiffiffiffiffiffiffiffi
gðη3Þ

p Z
η3

η0

dη4
ffiffiffiffiffiffiffiffiffiffiffi
gðη4Þ

p
δðp⃗þ q⃗1 þ q⃗2Þ

× f�pðη3Þf�pðη4Þf�q1ðη3Þfq1ðη4Þf�q2ðη3Þfq2ðη4Þ; ð18Þ

and the complex conjugate expression for κ1�p ðηÞ [71];
upper index 1 indicates that we are discussing here one loop
corrections. Here fpðηÞ is the time dependent part of the
mode functions, which in the case of the EPP is
fpðηÞ ¼ ηðD−1Þ=2hðpηÞ; η0 is the time after which the
self-interaction λ is adiabatically turned on. In dS space
npðηÞ ¼ nðpηÞ and κpðηÞ ¼ κðpηÞ due to the dS isometry
invariance, which both in the EPP and CPP contains the
simultaneous rescalings of η and x⃗.
When the expressions in Eq. (18) are not zero,

they represent the leading contributions in the limit
jη − η0j → ∞, if η is the proper time, or in the limit
η=η0 → ∞, if η is the conformal time.
In the flat space case we have that

ffiffiffiffiffiffiffiffiffi
gðηÞp ¼ 1 and

fpðηÞ ¼ e−iωpη=
ffiffiffiffiffiffiffiffi
2ωp

p
with ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and η is the

proper (Minkowskian) time. As a result, in such a case in

the limit jη − η0j → ∞ one obtains for e.g., np the follow-
ing expression:

n1pðηÞ ∝ λ2ðη − η0Þ
Z

dD−1q1

Z
dD−1q2δðp⃗þ q⃗1 þ q⃗2Þ

× δðωp þ ωq1 þ ωq2Þ: ð19Þ
Hence, in the situation under consideration the density
does not change and remains zero npðηÞ ¼ 0. Thus, there is
not any secular IR divergence of the form λ2ðη − η0Þ due to
the energy-momentum conservation: creation of particles
from the ground state is impossible. Similarly κpðηÞ ¼ 0

and the ground state does not change. These are the core
facts, which are deeply related to the adiabatic theorem (see
e.g., Refs. [95–98] for the situation in nonstationary
systems).
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A. Secular growth in the EPP

Now let us return to the case of the EPP. For BD modes
we have that fpðηÞ ∼ hðpηÞ ∼ eipη when pη ≫ μ (η is the
conformal time). Such a behavior of the modes in the EPP
is the consequence of the strong blue shift of every mode
toward past infinity: modes with large physical momenta
do not feel the curvature of the space-time and behave as if
they were in flat space. Because of that in the expression
(18) the secular growth (17) arises only from integrating
over momenta and conformal times for which pη3;4 ≪ μ
(see Ref. [71] for more details).4

From these observations one can make two conclusions.
First, the limits η1;2 → 0 and H → 0 do not commute. Here
H is the Hubble constant, which is set to one in this note.
All the secular growth is gained from the region where
mode’s physical wavelength exceeds the Compton one,
pη < μ. That happens due to the space-time expansion,
when H ≠ 0, and mode functions start to behave as is
shown in Eq. (13). Summarizing, for the BD state in the
EPP we basically have the following situation:

n1ðpηÞ ∼
�
0; pη ≫ μ;

λ2 log pη
μ ; pη ≪ μ

ð20Þ

and similarly for κ1ðpηÞ and its complex conjugate.
Second, for the case of the exact BD state in the exact

EPP one can take η0 to past infinity. In fact, for pη0 > μ the
modes behave as in flat space and one returns to the
situation discussed in the previous subsection. As a result,
in (16) and (17) we obtain the secular growth log ðμ=pηÞ ∼
ðt1 þ t2Þ=2 − log ðp=μÞ rather than the IR divergence
log ðη0=ηÞ ∼ ðt1 þ t2Þ=2 − t0. This fact is crucial for the
absence of secular IR divergence in the case of the exact
initial BD state in the exact EPP. Which, in its own right, is
important for the dS isometry invariance of the loop
integrals in such a situation.

B. Secular IR divergences in various
situations in dS space

In the case of generic alpha-vacua in the EPP the modes
behave as fpðηÞ ∝ Cþeipη þ C−e−ipη, when pη ≫ μ.
Here C� ≠ 0 are complex constants whose values depend
on the choice of the alpha-vacuum and one has to plug this
expression into Eq. (18). It follows that the coefficients of
proportionality of λ2ðη − η0Þ are not zero because the

arguments of the delta-functions in the corresponding
integrals analogous to (19) can be equal to zero. Thus
there is an IR divergence, which is to be ascribed to the
anomalous UV behavior of the alpha-modes (for the BD
state C− ¼ 0, which corresponds to the normal UV
behavior, i.e., the same as in flat space).
It is probably worth stressing here that κ1pðηÞ and its

complex conjugate also possesses the same secular IR
divergence. This means that the system flows to a proper
ground state, which is the BD state for pη > μ, as one may
guess from the proper UV behaviour of the correspond-
ing modes.
In the CPP the situation is as follows. Future infinity

there corresponds to η≡ ffiffiffiffiffiffiffiffiffi
η1η2

p
→ þ∞ and the BD modes

behave as (13) at past infinity of the CPP.5 Then, at the
leading order, when pη0 ≪ μ, the one loop correction to
the Keldysh propagator has the same form as (16), but in
the expressions for n1ðpηÞ and κ1ðpηÞ in (17) one has
log ðμ=pη0Þ instead of log ðμ=pηÞ, if pη > μ. At the same
time in the case when pη < μ and η=η0 → ∞ one obtains
log ðη=η0Þ instead of log ðμ=pηÞ.
Summarizing, for the BD initial state in the CPP, when

pη0 ≪ μ and η=η0 → ∞ we obtain that:

n1ðpηÞ ∼
(
λ2 log η

η0
; pη ≪ μ;

λ2 log μ
pη0

; pη ≫ μ;
ð21Þ

and similarly for κ1ðpηÞ and its complex conjugate. Please
note the essential difference of this situation from the one in
the EPP (20). Namely, while in the EPP the evolution of
nðpηÞ and κðpηÞ’s starts after η ∼ μ=p, their evolution in
the CPP starts right after the initial Cauchy surface η0.
That is due to the difference of the geometries of the EPP
and CPP.
The coefficients of proportionality in (21) are the same as

in (17), if one considers the BD initial state at the initial
Cauchy surface η0. Similar secular IR divergences are also
present for other alpha-states, but with different coeffi-
cients. They are expressed by similar integrals to those in
(17), but with the corresponding mode functions.6

In presence of the IR divergence it is impossible to take
η0 to past infinity (e.g., η0 → 0 in the CPP) because
otherwise even after a UV regularization the loop correc-
tions will remain infinite. But keeping η0 finite violates the
dS isometry, because there are generators of the group that
move η0. In particular, as a result of that, propagators in
x–space representation are not functions of the scalar
invariant.

4It is important for the remaining part of the paper to under-
stand that to obtain (17) from (18) one has to perform the
integration over q2 in (18) and then make the following change of
variables ðq1; η3; η4Þ → ðu ¼ ffiffiffiffiffiffiffiffiffi

η3η4
p

; q1
ffiffiffiffiffiffiffiffiffi
η3η4

p ¼ l; η3=η4 ¼ vÞ.
After that the logarithmic behavior appears as

R
μ=p
η du=u ¼

log ðμ=pηÞ from the region of integration where q1 ≫ p. Note
that while expression ðη − η0Þ appears in (19) as the consequence
of the time translational invariance in Minkowski space, the
expression logðμ=pηÞ appears in (17) due to the conformal time
scale invariance of the EPP metric (8).

5Here we restrict our attention to the spatially homogeneous
states, which are unstable under inhomogeneous perturbations in
the CPP, unlike the case of EPP.

6Note that for other alpha-states there also will be secular
effects coming from the region pη > μ. They are of the same
origin as those effects mentioned in the first paragraph of this
subsection.
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In global dS space the situation is similar to the CPP,
because it contains EPP and CPP simultaneously. To see the
appearance of the IR secular divergence in global dS space
one can represent its metric as follows:

ds2 ¼ 1

η2
½dη2 − dx⃗2�; where η ∈ ð−∞;þ∞Þ: ð22Þ

In such a case the Cauchy surfaces are not compact and the
mode functions will be piecewise defined separately for
CPP η ¼ et− ∈ ½0;þ∞Þ and for EPP η ¼ −e−tþ ∈ ð−∞; 0�.
Such a situation was considered in Refs. [68,71]. Then the
IR divergence appears from the CPP part of the loop
expressions.
In fact, the situation in global dS can be understood from

the following perspective.7 As we already recalled, the
result of a loop calculation within the Schwinger–Keldysh
technique depends only on the causal past of the arguments
of the correlation function. As can be seen from Fig. 2 this
essentially means that the result of a loop calculation in
global dS should be the same as in the CPP. If one chooses a
different contracting patch from the one shown on this
figure, he has to perform a dS isometry transformation,
which shifts the patch.
Another option is to consider compact spatial slicing of

the global dS space-time:

ds2 ¼ dτ2 − ch2ðτÞdΩ2; ð23Þ

where dΩ2 is the metric on the unit (D − 1)–dimensional
sphere.
To keep the discussion as simple as possible let us

explore the 2D global dS space; here the calculations are
quite easy to perform and are similar to those in the EPP
and CPP. The mode expansion in this case is as follows:

ϕðτ;φÞ ¼
Xþ∞

k¼−∞
½akfkðτÞeikφ þ aþk f

�
kðτÞe−ikφ�; ð24Þ

where φ is the angular coordinate on the spatial circle of the
2D global dS space.
The time dependent part of the modes satisfies the

following equation:�
∂2
τ þ thðτÞ∂τ þ

k2

ch2ðτÞ þm2

�
fkðτÞ ¼ 0; ð25Þ

which at past and future infinity, as τ → �∞, becomes
similar to the one in the EPP. Indeed, if one makes a change
of variables τ ¼ − log η, he approximately recovers (at the
future and past infinity) Eq. (10). As a result, in this limit
the modes behave as:

fkðτÞ ≈ f̃ðke−τÞ ≈
ffiffiffiffiffiffiffiffiffi
ke−τ

p
½Aþðke−τÞ−iμ þ A−ðke−τÞiμ�:

ð26Þ
We are interested in the so-called Euclidean modes, which
obey the condition fkð−τÞ ¼ f�kðτÞ and have the normal
UV behavior. These conditions restrict A�, but we do not
need the corresponding explicit form. These modes corre-
spond to the BD waves in the EPP. Namely, tree-level two-
point correlation functions for these two types of modes
coincide with each other.
The leading one loop contribution to the Keldysh

propagator in the limit, when initial time is taken to past
infinity, τ0 → −∞, and the two arguments of the correlation
function are taken to future infinity as ðτ1 þ τ2Þ=2 ¼
τ → þ∞, is closely similar to (16) with:

n1kðτÞ ∝ λ2
Xþ∞

q¼−∞

Z
τ

τ0

dτ3chðτ3Þ
Z

τ

τ0

dτ4chðτ4Þf�kðτ3Þ

× fkðτ4Þf�qðτ3Þfqðτ4Þf�kþqðτ3Þfkþqðτ4Þ: ð27Þ
Similar expressions hold for κ1ðτÞ and its complex
conjugate.
The leading contributions to the last expression come

from the regions of integration where τ3;4 → τ, τ3;4 → τ0
and q ≫ n. By changing the variables as

u ¼ e−ðτ3þτ4Þ=2; l ¼ qe−ðτ3þτ4Þ=2 and v ¼ e−ðτ3−τ4Þ;

ð28Þ
and replacing of the summation over q with an integral, we
get the following expression

n1kðτÞ ∝ λ2ðτ − τ0Þ
ZZþ∞

0

dv
v
dl½jAþj2viμ þ jA−j2v−iμ�

×

�
Aþ

�
lffiffiffi
v

p
�

iμ
þ A−

�
lffiffiffi
v

p
�

−iμ
�
2

× ½Aþðl
ffiffiffi
v

p Þiμ þ A−ðl
ffiffiffi
v

p Þ−iμ�2: ð29Þ
Here, while the contribution proportional to τ comes from
future infinity, i.e., from that part of global dS which is

FIG. 2. Here is depicted the Penrose diagram of the 2D dS
space. We show that the loop calculation in global dS is similar to
the one in the CPP.

7We would like to thank A. Polyakov for communicating to us
this argument.
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similar to the EPP, the contribution proportional to τ0
comes from past infinity, i.e., from that part of global dS
which is similar to the CPP.

V. DS ISOMETRY AND THE RELATION
BETWEEN THE SECULAR GROWTH OF
THE THIRD AND THE SECOND KIND

As we have mentioned above, in the massive scalar
quantum field theory in the EPP there is a dS invariant state,
for which the isometry is respected not only at tree-level,
but also in all loops [65] (see also Ref. [71]). Such a state is
the analogue of the Wightman vacuum in Minkowski space
[86,87]. In fact, in the invariant situation nothing depends
on the choice of a point in dS space-time. But even in such
an invariant situation there is the secular growth of the
second and third kind, but there is no secular divergence.
Here we discuss the properties of the secular growth in the
x–space representation of the correlation functions.
The position space representation of the tree-level BD

Wightman function is as follows:

W0ðZ12Þ ¼ hϕðη1; x⃗1Þϕðη2; x⃗2Þi

¼ ðη1η2ÞD−1
2

Z
dD−1p⃗eip⃗ðx⃗1−x⃗2Þhðpη1Þh�ðpη2Þ

∝ 2F1

�
D − 1

2
þ iμ;

D − 1

2
− iμ;

D
2
;
1þ Z12

2

�
;

ð30Þ

where 2F1½a; b; c; x� is the hypergeometric function and

Z12 ¼ 1þ ðη1−η2Þ2−jx⃗1−x⃗2j2
2η1η2

is the scalar invariant, also called
hyperbolic distance between the points 1 and 2. The fact
that the correlation functions depend on the scalar invariant
reflects the dS invariance of the state under consideration.
The hypergeometric function in (30) is singular on the

light cone, i.e., when Z12 ¼ 1, and is analytic in the
complex Z12–plane with the cut going from Z12 ¼ 1 to
infinity along the positive real axis. These values of Z12

correspond to timelike separated pairs of points. To define
the correlation function in the vicinity of the cut one
has to take the proper boundary value; this is usually
encoded in an ϵ prescription as follows: W0ðZ12Þ →
W0½Z12 þ iϵsignðη2 − η1Þ�.
Given the Wightman function one can construct the

Keldysh propagator DKðZ12Þ, by taking its real part
DKðZ12Þ ¼ ReW½Z12 þ iϵsignðη2 − η1Þ�, and the commu-
tator by taking its imaginary part CðZ12Þ ¼ ImW½Z12 þ
iϵsignðη2 − η1Þ�. These relations are true even beyond
the tree-level. That is why we drop off the index 0 in
the notations of the Keldysh propagator DK and the
commutator C.
Two comments are in order here. The reason why the dS

isometry is respected in the loops for the BD state in the
EPP lays in the above analytic properties of the propagator

(30) as a function of Z12 and in the specific behavior of the
EPP geometry at past infinity (see Ref. [65] and also
Ref. [71]; a proper iϵ prescription is very important here, as
is explained in the latter two papers.) These facts are deeply
related to the absence of the IR divergences in the loops for
the BD ground/initial state in the EPP.
Second, frequently one defines the theory in dS space-

time via analytical continuation from the sphere in the
complex Z–plane (see e.g., Refs. [26–31]). But such an
approach does not allow us to address nonvacuum and
nonstationary situations in dS cosmology, because in the
latter case propagators are not functions of Z anymore. In
particular such an approach does not allow one to address
the issue of the IR divergences in the CPP and global dS,
which are discussed in the previous section.
The limit of interest for us in this paper, p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0 and

η1=η2 ¼ const, corresponds to the case Z12 → −∞, which
is that of the large spatial separation between the points 1
and 2. In such a limit:

W0ðZ12Þ ≈ BþZ
−D−1

2
þiμ

12 þ B−Z
−D−1

2
−iμ

12 ; ð31Þ

where B� are some complex constants. They can be related,
via the inverse Fourier transform of (14), (15), to the
behavior of the modes in Eq. (13). Otherwise one can
obtain Eq. (31) from the asymptotics of the hypergeometric
function for large values of its argument.
The one loop correction to the Wightman function in ϕ3

theory in the x–space representation was calculated in [64].
The sum of the tree-level and one loop contributions is as
follows:

W0þ1ðZ12Þ ≈ ½1þ λ2K log ð−Z12Þ�W0ðZ12Þ;
as Z12 → −∞; ð32Þ

where K is a constant related to the factors multiplying
λ2 log ðμ=pηÞ in (17). Consequently log ð−Z12Þ in (32)
follows from log ðμ=p ffiffiffiffiffiffiffiffiffi

η1η2
p Þ after the inverse Fourier

transformation along the spatial directions. In fact, making
the ϵ shift,W0þ1ðZ12Þ → W0þ1½Z12 þ iϵsignðη2 − η1Þ�, and
then taking the real part of the obtained expression one gets
the Fourier transformation of (16) and (17) with hðpη1;2Þ
approximated by (13) [64]. Of course these relations are
valid approximately in the limit8 p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0 and η1=η2 ¼

const.
Taking the imaginary part ofW0þ1½Z12þ iϵsignðη2−η1Þ�

gives that

8Let us stress here again that the secular growth of the third
kind is present even in dS invariant situation, when one considers
correlators as analytic functions on the complex Z-plane with the
proper iϵ prescription. Moreover, as we will explain below, it is
related in such a case to the secular growth of the second kind via
dS isometry and analytical continuation in the Z–plane.
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C0þ1ðZ12Þ ≈ ½1þ λ2K log jZ12j�C0ðZ12Þ
þ 2πλ2KθðZ12 − 1ÞDK

0 ðZ12Þ: ð33Þ

Here θ is the Heaviside step function. It appears from the
imaginary part of the logarithm and should be present
here due to the causality properties of the commutator C
(see e.g., Ref. [93]). To write it in this form we recall
that jZ12j → ∞.
Equation (33) exhibits an interesting phenomenon. For

spacelike separated pairs (Z12 < 1) the commutator van-
ishes C0ðZ12Þ ¼ 0, because for these values of Z12 the
Wightman functionW0ðZ12Þ is real. As a result, there is no
secular growth in the retarded and advanced propagators in
the limit p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0 and η1=η2 ¼ const, i.e., when

Z12 → −∞. Thus, only the Keldysh propagator receives
secular IR contributions in the limit that we have consid-
ered above, which is in agreement with the observations of
[71] and, more generally, of [93].
However, for large timelike separations, Z12 → þ∞, we

have that C0ðZ12Þ ≠ 0 and there is a secular growth in
C0þ1ðZ12Þ, as follows from (33). This is in agreement
with the calculation of the secular loop corrections of [53].
In the latter paper it was found that in ϕ3 theory in the limit
η1;2 → 0 and η1=η2 → ∞ all three propagators (Keldysh,
DK , retarded, DR, and advanced, DA) receive the following
one-loop contributions:

DK;R;A
1 ðpjη1;η2Þ ∝ λ2 log

�
η1
η2

�
DK;R;A

0 ðpjη1;η2Þ

× ½jAþj2 − jA−j2�
Z

∞

1

dv
v

Z þ∞

0

dllD−2

× ½viμ − v−iμ�½hðl= ffiffiffi
v

p Þh�ðl ffiffiffi
v

p Þ�2: ð34Þ

This is the secular effect of the second kind,
because logðη1=η2Þ ¼ t2 − t1.
Note that λ2 log ðη1=η2Þ ≈ λ2 logZ12 for the timelike Z12,

when η1=η2 → ∞ and x⃗1 ≈ x⃗2. Thus, in the dS invariant
situation both secular effects of the second and third kinds
are related to each other via the isometry group and the
analytical continuation in Z12.
Below we show that in global dS space and in the CPP

the situation with the two secular effects under discussion
becomes different. In particular, the problems of resum-
mations of the secular effects and of the secular divergence
become physically distinct.

VI. LEADING VS SUBLEADING HIGHER
LOOP SECULAR CORRECTIONS

To perform the resummation of the leading loop secular
effects one has to solve the system of Dyson–Schwinger
equations. This system is imposed on the two-point func-
tions and on the vertices. As we have mentioned in the
Introduction for low enough masses higher-point functions,
i.e., vertices, start to grow, when all their arguments are taken
to future infinity [70]. In such a situation it is not yet clear
how to perform the resummation. Hence, below we restrict
ourselves to high enough masses. Our equations are valid for
m > ðD − 1Þ=2. In such a case, if one takes into account
only the leading corrections in powers of λ and logarithms,
he can put vertices to their tree-level values inside the system
of Dyson–Schwinger equations.
In this section we show that for secular effects of the

second and third kind only the bubble diagrams of the
type shown in Fig. 4 provide the leading contributions
in powers of λ2 logZ. At the same time secular effects
receive subleading corrections from the diagrams depicted
on the Fig. 3. The latter are suppressed by higher powers
of λ.
On the other hand, in the case of the secular divergence

both the diagrams in Figs. 3 and 4 provide corrections of
the same order. As the result, while the resummation of the
secular effects is always a linear problem in powers of the
exact Keldysh propagator, the resummation of the secular
divergences is necessarily nonlinear. The last problem has a
much richer zoo of solutions [70].

A. Exact BD state in the EPP

Let us start with the correction of the type shown on
the Fig. 3. In such a case in the leading IR corrections
one of the propagators in the loops should be represented

FIG. 3. In the Schwinger–Keldysh technique there are several
diagrams, of the type that is shown here, which contribute to the
two loop correction (with bubble inside bubble) to any two-point
function.

FIG. 4. In the Schwinger–Keldysh technique there are several diagrams, of the type that is shown here, which contribute multiple
bubble type two loop correction to any two-point function.
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as (16) and (17). The other propagators should have the
tree-level form. This means that instead of hðqη3Þh�ðqη4Þ
and hðqη3Þhðqη4Þ, as in (14) and (15), one loop cor-
rected propagator will contain such contributions as
λ2 log ðp ffiffiffiffiffiffiffiffiffi

η3η4
p

=μÞhðqη3Þh�ðqη4Þ and λ2 log ðp ffiffiffiffiffiffiffiffiffi
η3η4

p
=μÞ×

hðqη3Þhðqη4Þ in the case of third type of secular growth or

λ2 log ðη3=η4Þhðqη3Þh�ðqη4Þ and λ2 log ðη3=η4Þhðqη3Þ×
hðqη4Þ, in the case of the second type of secular growth.
Consider, first, the limit p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0 and η1=η2 ¼ const,

i.e., the third type of secular effect. Then, in this case the
second loop of Fig. 3 will contribute to e.g., nðpηÞ the
corrections of the following form:

n2ðpηÞ ∝ λ4
Z

μ=p

η

du
u

ZZ
∞

0

dv
v
dllD−2 log

�
μ

l

�
½jAþj2viμ þ jA−j2v−iμ�½hðl=

ffiffiffi
v

p Þh�ðl ffiffiffi
v

p Þ�2

×
ZZ

∞

0

dv0

v0
dl0ðl0ÞD−2½jAþj2ðv0Þiμ þ jA−j2ðv0Þ−iμ�½hðl0=

ffiffiffiffi
v0

p
Þh�ðl0

ffiffiffiffi
v0

p
Þ�2 þ � � � : ð35Þ

The index 2 here designates that we are discussing second
loop corrections, u, l and v and their primed versions are
defined in the footnote (4) above; while v0, l0 are the
integration variables corresponding to the internal loop,
v, l—correspond to the big loop in Fig. 3, and logðμlÞ under
the l integral appears from the one loop corrections (17).
This dl integral is convergent, which is essential for further
discussion.
Ellipses in (35) stand for similar contributions to n2ðpηÞ

coming from κ1ðpηÞ and its complex conjugate. Their
expressions are similar to (35). Moreover, expressions
similar to (35) will also appear for κ2ðpηÞ and its complex
conjugate.

We do not need to know the exact expression for n2ðpηÞ
to make the following important conclusion. The form of
Eq. (35) shows that such diagrams as shown in the Fig. 3
(containing loops inside internal propagators) provide
contributions of the form λ4 log ðp ffiffiffiffiffiffiffiffiffi

η1η2
p Þ in the limit

under consideration.
Let us now continue with the consideration of the growth

in the limit η1=η2 → ∞, i.e., the second type of secular
effect. In such a case one of the internal propagators should
have the form (34). As we have discussed at the beginning
of this section the leading correction coming from the
diagram of the Fig. 3 to all three propagators (R,A and K)
will contain contributions as follows:

DK;R;A
2 ðpjη1; η2Þ ∝ λ4½DK;R;A

0 ðpjη1; η2Þ�2½jAþj2 − jA−j2�2
Z

η1

η2

dη
η

Zþ∞

1

dv
v

Zþ∞

0

dllD−2 logðvÞ½viμ − v−iμ�½hðl= ffiffiffi
v

p Þh�ðl ffiffiffi
v

p Þ�2

×
Zþ∞

1

dv0

v0

Zþ∞

0

dl0ðl0ÞD−2½ðv0Þiμ − ðv0Þ−iμ�½hðl0=
ffiffiffiffi
v0

p
Þh�ðl0

ffiffiffiffi
v0

p
Þ�2 þ � � � : ð36Þ

The logðvÞ under the v integral here appears from the first
loop correction (34). Thus, in the limit η1=η2 → ∞ such
diagrams as in Fig. 3 contribute λ4 log ðη1=η2Þ corrections.
At the same time it is quite straightforward exercise to

check that the diagrams from the Fig. 4 lead to the contri-
butions of the form ½λ2 log ðp ffiffiffiffiffiffiffiffiffi

η1η2
p Þ�2 and ½λ2 log ðη1=η2Þ�2

in the case of the third and the second kind of secular effects,
correspondingly. Thus, if one considers the exact BD state in
the exact EPP the diagrams from the Fig. 3 contribute
subleading corrections in comparison with those from the
Fig. 4, if λ is very small and η1;2 → 0. This is a very
important observation for the resummation procedure.

B. Higher loops in the case of the secular
divergence in the CPP and in global dS

Let us continue now with the discussion of secular
effects in the CPP. The secular growth of the second
kind in the CPP has the same properties as in the EPP.

The calculations are practically the same as in the EPP
with the same conclusions that diagrams from Fig. 3
provide subleading corrections in comparison with dia-
grams from Fig. 4.
In the case of the secular divergence, which is present

instead of the secular growth of the third kind, the situation
now is quite different. Because the contribution from the
internal loop of the Fig. 3 comes from the past of the
external time arguments, η1;2, the integration over times in
this loop are bounded as η3, η4 < u. As the result the
contribution in question has the following form

n2ðpηÞ ∝ λ4
Zminðη;μpÞ

η0

du
u
log

�
u
η0

��Z Z
∞

0

dv
v
dllD−2

× ½jAþj2viμ þ jA−j2v−iμ�½hðl=
ffiffiffi
v

p Þh�ðl ffiffiffi
v

p Þ�2
�

2

þ � � � : ð37Þ
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Similar expressions will also appear for κ2ðpηÞ and its
complex conjugate.
Thus, the second loop from the Fig. 3 contributes as

follows:

n2ðpηÞ ∼
( ½λ2 log η

η0
�2; pη ≪ μ;

½λ2 log μ
pη0

�2; pη ≫ μ:
ð38Þ

This means that, for the case of the secular divergence the
diagrams from the Fig. 3 contribute in the same order as
those from the Fig. 4. That has crucial consequences for the
resummation. In particular now the problem of the resum-
mation of the leading IR secular divergences becomes of
the kinetic type: one has to derive a dS space analog of the
Boltzman’s kinetic equation to resum the leading IR
divergences [71]. Meanwhile in the CPP the situation with
the resummation of the secular growth of the second kind
remains of the same type as in the EPP.
Finally, let us stress that the situation in global dS is

again similar to the one in the CPP for the same reason as
was explained in Sec. IV B.

C. Perturbations over the BD state in the EPP

Let us see now what happens if one perturbs the BD state
by a noninvariant initial density. In such a case the initial
form of the Keldysh propagator instead of being as in
Eq. (15) will be represented by (16) with κ ¼ 0 (to have the
proper Hadamard behavior) and some initial distribution
n0p. The retarded and advanced propagators do not depend
on the state at the tree-level.
Please recall at this point that n0p is the comoving density.

Hence, one cannot just put n0p at past infinity of the EPP,
because then the initial physical density will be infinite. To
overcome this problem one has to consider an initial Cauchy
surfaceþ∞>η0>0 and imposen0p there. Let us stress that, if
onekeepsn0p finite, then η0 cannot be taken to the past infinity.
In this sense now the situation in EPP becomes very similar to
the one in the CPP and global dS [71]. Furthermore, the
x–space representation of the tree-level Kledysh propagator
will not be a function ofZ12 anymore. Hence, the dS isometry
will be broken by the initial condition.
However, despite the presence of the IR cutoff η0, the

situation for the secular effect of the second kind does not

change substantially. Namely, from the diagram of the
Fig. 3 it still has the form (34) and (36) with different
coefficients multiplying λ2 log ðη1=η2Þ and λ4 log ðη1=η2Þ.
In other words, for the secular effect of the second kind
diagrams from the Fig. 3 still provide subleading correc-
tions in comparison with those shown on the Fig. 4. The
situation in this case is similar to the one in the CPP.
Furthermore, the calculation of the one loop secular

contribution of the third kind to the propagators (in the limit
p

ffiffiffiffiffiffiffiffiffi
η1η2

p
→ 0 and η1=η2 ¼ const) which follows from the

diagrams of the form shown on the Fig. 1, is also not much
different from the dS invariant case. Namely the retarded
and advanced propagators again do not receive growing
correction in such a limit. At the same time the Keldysh
propagator receives correction of the form (16) with (see
Ref. [71] for the details):

n1pðηÞ ∝ λ2
Zminðη0;μ=pÞ

η

du
u

Z
∞

0

dv
v

Z
dllD−2

× ½jAþj2viμ þ jA−j2v−iμ�h2ðl=
ffiffiffi
v

p Þ½h�ðl ffiffiffi
v

p Þ�2
þ � � � : ð39Þ

This expression is obtained under the assumption that
n0p ≫ n0q for q ≫ p and we extend the limits of integration
over l and v, because these integrals are rapidly converging.
The ellipses in (39) stand for other terms that also describe
the change of the level population and vanish when n0p ¼ 0.
Essentially the right-hand side (RHS) of this expression is
an analog of the collision integral in Boltzman’s kinetic
equation [71]. In the following it is sufficient to realize that
n1pðηÞ ∝ λ2 log ðη0=ηÞIðn0pÞ, where Iðn0pÞ is some kind of
the collision integral evaluated for the initial density n0p.
One obtains a similar contribution for κ0p and its complex
conjugate.
Thus, we obtain that

n1pðηÞ ∝
(
λ2 log η

η0
; p ≪ μ

η0
;

λ2 log pη
μ ; p ≫ μ

η0

ð40Þ

In the second loop from the diagram of the Fig. 3 instead of
(35) we obtain:

n2pðηÞ ∝ λ4
Zminðη0;μ=pÞ

η

du
u

Z
∞

0

dv
v

Z
∞

0

dllD−2½jAþj2viμ þ jA−j2v−iμ�h2ðl=
ffiffiffi
v

p Þ½h�ðl ffiffiffi
v

p Þ�2

×
Zmin ðη0;μul Þ

u

du0

u0

Z
∞

0

dv0

v0

Z
dl0ðl0ÞD−2½jAþj2ðv0Þiμ þ jA−j2ðv0Þ−iμ�h2ðl0=

ffiffiffiffi
v0

p
Þ½h�ðl0

ffiffiffiffi
v0

p
Þ�2 þ � � � : ð41Þ

The dl integral here can be separated into two regions: l < μu
η0

and l > μu
η0
. The second region contributes an expression

behaving similarly to the Eq. (35) in the limit u → 0. As was shown above, it does not give an additional power of the
logarithm.
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Then we have to estimate only the contribution coming from the region l < μu
η0
:

n2pðηÞ ∝ λ4
Zminðη0;μ=pÞ

η

du
u
log

�
η0
u

�Z
∞

0

dv
v

Z μu
η0

0

dllD−2½jAþj2viμ þ jA−j2v−iμ�½hðl=
ffiffiffi
v

p Þh�ðl ffiffiffi
v

p Þ�2

where the upper limit of integration of the l integral, μu=η0,
appears because the contribution of the order log η

η0
follows

only from this region of momenta, as can be seen from
Eq. (40). When u → 0, the integral over l in the last
expression goes to zero. This indicates that the integral has
a polynomial behavior and does not provide higher power
of the logarithm.
Thus, it is worthwhile to remark that even if one perturbs

the initial BD state in the EPP the resummation of the
secular effects remains essentially the same linear problem
as in the case of the exact BD in the exact EPP.

D. Secular effects in the sandwich space

To check whether resummation of the secular effect (or
divergence) of the third kind is always a linear problem

when there is only expansion (but there is no contraction)
we continue with the consideration of the so called
sandwich space-time proposed in e.g., Ref. [99]:

ds2 ¼
8<
:

	
1þ T2

η2þϵ2



½dη2 − dx⃗2�; η ∈ ð−∞; 0�

T2

ϵ2
½dη2 − dx⃗2�; η ∈ ½0;þ∞Þ;

where T2 ≫ ϵ2 ð42Þ

This metric describes an expansion between two flat
Minkowski spaces at η ≪ −T and η > −ϵ. The expansion
stage is very similar to the EPP.
As is discussed in Ref. [99] free modes in this space can

be approximately represented as:

fpðηÞ ≈

8>>><
>>>:

1ffiffiffiffiffi
ωin

p eiωinη; η ≪ −T

jηjðD−1Þ=2½ApH
ð1Þ
iμ ðpjηjÞ þ BpH

ð2Þ
iμ ðpjηjÞ�; −T ≪ η ≪

−ϵ 1ffiffiffiffiffiffi
ωout

p ðCpeiωoutη þDpe−iωoutηÞ; η ≫ −ϵ

ð43Þ

where ωinðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
and ωoutðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2 T2

ϵ2

q
.

The complex coefficients Ap, Bp, Cp and Dp can be fixed
from the gluing conditions at η ∼ T and η ∼ ϵ.
These modes can be separated into three classes
(i) High energy quanta, for which pjηj ≫ μ for all the

expanding region η ∈ ½−T;−ϵ�. These modes do not
feel any expansion and do not contribute to the
secular growth of interest.

(ii) Intermediate energy quanta, for which pϵ≪μ≪pT.
(iii) Low energy quanta, for which pjηj ≪ μ for all the

expanding region η ∈ ½−T;−ϵ�. These are the modes
of the main interest for us.

As shown in Ref. [99] during the expansion stage the
Keldysh propagator for the low energy and intermediate
modes receives secular corrections in the limit η1;2 > −ϵ
and T=ϵ → ∞. The corrections are as follows:

n1p ∝

(
λ2 log ϵ

T ; lowenergymodes;

λ2 log pϵ
μ ; intermidiatemodes;

ð44Þ

and n1p is of order zero for high energy modes. Similar
situation appears for κ1p and its complex conjugate. In [99]

λϕ4 theory was considered in 2D, but similar situation
appears in λϕ3 theory at one loop and for any D.
Hence, the situation for the sandwich space for the low

energy modes is similar to the CPP and it is not hard to see
that the diagrams from the Figs. 3 and 4 contribute of the
same order.
Interestingly enough, if one excludes either one of

the flat space regions of the entire sandwich space-time
and keeps the other, the situation with the IR loop
corrections becomes similar to the EPP case. Namely, if
one considers space that describes once started from flat
space eternal expansion or nucleation of flat space from
zero volume (eternal EPP towards the past, but expansion
stops at some moment in the future), then the diagrams
from the Fig. 3 contribute subleading corrections in
comparison with those from the Fig. 4.

VII. CONCLUSIONS AND
ACKNOWLEDGEMENTS

In conclusion, one can respect the dS isometry at each
loop level only for massive fields in the EPP with initial BD
state. In such a case there are secular effects of the second
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and third kind and they are related to each other via isometry
transformations and analytical continuation in the complex
plane of the scalar invariant—the hyperbolic distance.
Moreover, in the dS invariant situation the problem of

the resummmation of the leading secular contributions
from all loops reduces to a linear integrodifferential
Dyson–Schwinger equation, because the diagrams in
Fig. 3 provide subleading contributions as compared to
those in Fig. 4.
At the same time the dS isometry is necessarily broken

by loop IR divergnces for any initial state in the CPP and
global dS. In such a case the resummation of the second
type secular contributions still remains to be a linear
integro–differential Dyson–Schwinger equation. However,
the resummation of the leading IR divergences from all
loops now amounts to a nonlinear integrodifferential
Dyson–Schwinger equation because the diagrams in
Fig. 3 contribute at the same order as those in Fig. 4.
The nonlinear Dyson–Schwinger integrodifferential

equation has a much richer zoo of solutions [70]. In
particular, in such a case there is a singular solution that
describes explosion in a finite proper time of the comoving
density. The latter one will result in strong backreaction on
the background of the global dS geometry and may result in
a screening of the cosmological constant (we stress that in
the case under discussion the dS isometry is broken in the
loops and nothing forbids its screening.)
There are alternative approaches to the subject, devel-

oped in Refs. [26–31], which have to be mentioned here.
One of the approaches consists in defining quantum field
theory in dS space via analytical continuation from the
sphere. As we have explained in Sec. V this approach can
be applied only to the BD state which has maximal
analyticity properties; also, it does not allow to address
the issue of the fate of the nonsymmetric density perturba-
tions of the symmetric state while, to address the issue of
the stability of a state, one is more or less obliged to perturb
it. Furthermore, such an approach does not allow to see the
loop infrared divergences in global dS space, which are of
the main interests of the present paper.

To avoid these infrared divergences the authors of
[26–30] propose to fix some distribution at a time t, and
then choose the initial state at t0 such that at time t this fixed
distribution results. In this way, there is no problem sending
t0 → −∞. In fact, the authors of [26–30] show that for late
times the resulting correlation functions at time approach
the BD vacuum correlation functions.
But what if a or the universe had started at another

state? What if the smallness of the cosmological constant in
our universe is the result of the aforementioned screening of
the cosmological constant? In any case one can apply the
approach he or she wishes. When an appropriate experi-
ment will be eventually set up, it will, hopefully, show
which situation is realized at least in our Universe.
All the above results have been shown here for the

case when m > ðD − 1Þ=2 in the units of dS radius. With
some modifications they are also going to work whenffiffi
3

p
4
ðD − 1Þ < m < ðD − 1Þ=2, because in such a case there

is no secular growth in the higher point correlation
functions [71]. In this case one can put the vertices to
their tree-level values in the system of Dyson–Schwinger
equations for the propagators and vertices. (Hence, one has
to deal with only the equations for the two-point functions.)

However, when m ≤
ffiffi
3

p
4
ðD − 1Þ one has to solve the

combined system of Dyson–Schwinger equations for
two-point and higher-point functions together [70,71].
That question remains for the moment unsolved.
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