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Surface term, corner term, and action growth in F(R,.;) gravity theory

Jie Jiang"" and Hongbao Zhang'*"
lDepartment of Physics, Beijing Normal University, Beijing 100875, China
*Theoretische Natuurkunde, Vrije Universiteit Brussel, and The International Solvay Institutes,
Pleinlaan 2, B-1050 Brussels, Belgium

® (Received 17 August 2018; revised manuscript received 9 January 2019; published 8 April 2019)

After reformulating F(Riemann) gravity theory as a second derivative theory by introducing two
auxiliary fields to the bulk action, we derive the surface term as well as the corner term supplemented to the
bulk action for a generic nonsmooth boundary such that the variational principle is well posed. We also
introduce the counterterm to make the boundary term invariant under the reparametrization for the null
segment. Then as a demonstration of the power of our formalism, not only do we apply our expression for
the full action to evaluate the corresponding action growth rate of the Wheeler-DeWitt patch in the
Schwarzchild anti—de Sitter black hole for the F(R) gravity and critical gravity, where the corresponding
late time behavior recovers the previous one derived by other approaches, but also in the asymptotically
anti—de Sitter black hole for the critical Einsteinian cubic gravity, where the late time growth rate vanishes

but still saturates the Lloyd bound.
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I. INTRODUCTION

Generically, in order to make the variational principle
well posed for gravity theories, one is required to add the
surface term to the bulk action. In this way, the Gibbons-
Hawking-York (GHY) surface term is introduced for
the case of Einstein gravity, but is applicable only to a
non-null boundary [1-3]. For a null boundary, the surface
term has also been investigated recently [4-8]. Moreover,
if the boundary is nonsmooth, i.e., the boundary contains
some corners intersected by the segments, the additional
corner term has to be added to the action [9,10]. On the
other hand, although the non-null surface terms have been
developed for other gravitational theories, such as F(R)
gravity [11,12], Gauss-Bonnet gravity [13,14], Lanczos-
Lovelock theory [15-18], and other higher derivative
theories [19-21], the corresponding null surface term has
not been fully explored.

However, for a generic higher order gravitational theory
as usually formulated, due to higher-derivative terms, it is
hard to find an appropriate surface term to make the
variational principle well posed [22]. But at least for
F(Riemann) gravity, this problem can be circumvented
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by introducing two auxiliary fields, because this allows us
to recast the action as a second order gravitational theory,
which is on-shell equivalent to the original action [23].
Furthermore, if the auxiliary fields on the boundary can be
shown by the Hamiltonian analysis to be independent of the
extrinsic curvature,' then for a smooth non-null boundary a
generalized GHY term can be found to establish the well-
posed variational principle. In this paper, we shall focus
exclusively on this situation and formulate the well-posed
variational principle for more general circumstances, where
the boundary is not necessarily required to be non-null or
smooth.

Another motivation to evaluate the full action with a non-
smooth boundary including null segments comes from the
“complexity equals action” (CA) conjecture [25,26]. This
conjecture states that the complexity of a particular state
lw(t;,tg)) on the boundary is given by

()

where [ is the on-shell action in the corresponding
Wheeler-DeWitt (WDW) patch, enclosed by the past and
future light sheets sent into the bulk spacetime from the
boundary time slices #; and #z. As an application of our
formulation of the full action for F(Riemann) gravity, we
shall evaluate the action growth rate of the WDW patch in

"It is noteworthy that Lanczos-Lovelock theory does not
satisfy this requirement and will not be treated in this paper.
Readers are referred to [18,24] for this theory.
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the Schwarzschild anti-de Sitter (SAdS) black hole for both
the F(R) gravity and critical gravity. This thus makes
up the deficiency of the approaches developed in [25,26],
which can only give rise to the late time behavior of the
action growth rate [27,28]. To further demonstrate the
power of our formalism, we also evaluate the action growth
rate of the WDW patch in the asymptotically AdS black
hole for the critical Einsteinian cubic gravity. The resulting
late time growth rate still saturates the Lloyd bound
although vanishes.

This paper is structured as follows. In Sec. II, we follow
the strategy developed in [23] to introduce the two auxiliary
fields to reformulate the original action and evaluate its
variation. After this, we derive the required boundary term
to make the variational principle well posed for both non-
null segments and null segments of a nonsmooth boundary
in Sec. IIT and Sec. IV, respectively. As an application of the
resulting full action, Sec. V devotes an explicit calculation
of the action growth rate for the WDW patch in the
SAdS black hole for both F(R) gravity and critical gravity,
as well as in the asymptotically AdS black hole for the
critical Finsteinian cubic gravity. We conclude our paper
in Sec. VL

II. REFORMULATION OF F(Riemann)
GRAVITY THEORY

The conventional bulk action for F(Riemann) gravity is
given by

Ibulk = //Vl dd+2x\/ _gF(Rabcdﬂgah) (2)

with F an arbitrary function of R,;,.; and g,;. Its variation
can be obtained as

5Ibulk :/ dd+2X\/—gEab5.gab +/ 37]‘1(12“. (3)
M oM

Here dZ, is the outward-directed surface element on OM,
and

ot = 2Pabc‘l5F“bd + 25gdeaP“de (4)

with pbed — %. In addition, the symbol & indicates an

infinitesimal quantity which cannot be written as the
variation of any quantity. Obviously, E,, = 0 is simply
the equation of motion. But in order to give rise to a well-
posed variational principle, we must supplement a boun-

dary term Iy4, such that

5Ibdry = —/ 87.)ad2a +/ pN(squZ (5)
oM oM

with ¢V the intrinsic geometric quantity as well as its
derivatives to the boundary. If the boundary is smooth, the

boundary term involves only the surface term /. On the
other hand, if the boundary is nonsmooth, not only does the
boundary term include the surface term, but also the corner
term Jcomer-

However, it is generically difficult to find the corre-
sponding boundary term, if any, for the bulk action (2).
Gratefully this problem can be circumvented by introduc-
ing two auxiliary fields y ;.4 and ¢,p.q4, Which allows us
to recast the original bulk action (2) into the following
form [23]

Touie = / dd+2x\/ -9
M
X [F(d)abcd’ gah) - Wade(¢abcd - Rabcd)]? (6)
where we demand these two auxiliary fields have the same

symmetries as R,;,.,. The variation of this new action can
be expressed as

Olpux = /M dd+2x\/ -9

X (Eabégab + E;lstdéqﬁabcd + Egled&//abcd)

+ / svedy, (7)
oM
with
Eabcd _ aF(¢abcd’ gab) _ l[/ah“l
¢ a¢')abcd
Eg/bcd — Rabcd _ ¢abcd’ (8)
and
8v° = 2u, P g + 26,V Y. )

With the equations of motion Ey’* =0 and Ej*/ =0
satisfied, this new action is equivalent to the original one.
In particular, the corresponding boundary term is identified
by the Hamiltonian analysis in [23] for the smooth non-null
boundary.

In what follows, we shall derive the boundary term for a
more general boundary by requiring this new action have a
well-posed variational principle.

III. NON-NULL SEGMENTS

A. Variation of geometric quantities

We first present the variation of geometric quantities
associated with the segment of the boundary, which is
either spacelike or timelike. To achieve this, we choose the
gauge in which the segment under consideration is fixed
when we perform the variation. With this in mind, we have
the variation of the outward-directed normal vector
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on, = dan, (10)
with da = —£6¢“’n,ny,, where & =n,n*. Whence we
further have

on® = —an” — £ BA“ (11)
with 8A¢ = —eh®,8¢"“n,, where the induced metric is
given by

h*’ = g% — en“n?, (12)

which is tangent to the segment. The variation of the metric
can be further expressed as

5g%’ = —2edann® — A n" — 8A n + sheb,  (13)
whereby it is not hard to show
ha9hb b (N 48g°) = DIShPe — K 8AP — K*? 8Ac  (14)

with K% = h*h?V n, the extrinsic curvature.

Finally, for the later calculations, we would like to
present two expressions for the variation of the extrinsic
curvature. The first one is given by

5K = 5(heht4V .n,)
= ShhbIN ny + WPV
— hhbdp 5T° ) + heehbIV Sn,,
= 8h9° K + ShP° K, + 5aK® — h*hbdn,5T¢ 4.
(15)

and the second one is given by

5K = 8(h*h? ;¥ .n)
= Sh* bV on? + heeSht ;V .n
+ RORP (ST € + hh? ) 5n
= Sh* K, — 5aK — eD* AP + h*h? 46T, on°,
(16)

where we have used 6h’; = 8(6", — en’n,) = —8An,
and D,, as the covariant derivative operator of the induced
metric.

B. Surface term on the boundary

As to the spacelike/timelike segment of the boundary, the
boundary term in the variation of the bulk action (13) can be
written as

/5v“d2a :z?/na ovtdx
b b

=€ / 210,260 g + 218G,V P/ dE.
b
(17)
The first term in (17) can be further evaluated as

2nap oo, = chl//ade5aal 8P, 6% T bid,
=2n.y,(enn,, +h", ) (en" n, + hb1,)
x (enfing+hh 4)T, 4
= —2eW,, (h*h 6T 0 — h*hbe ST yon,)
2009 RV g ST (18)

where we have used the symmetries of the auxiliary field
W apeq and the definition

LI)ab = Wacbdncnd' (19)

Substituting (15) and (16) into the first two terms in (18),
we end up with

—26¥;,(hP¢he ;619 ,n¢ — h®hbesTe 4un,)
= —2e¥,, (26K — 3K 6h’ + D 8AY), (20)
where the property ¥,, = ¥;, has been used. For the third
term in (18), we have
2ndhgch€dhfbl//gedf5r‘c‘ab
= ndheahfbl//gedfhgc (Vaégcb + vbégca - vcégab)
= 2nd1//gedfheahfbhgcva5.qcb
=20 joqr (K9 BAT + K/ 8A9 — DSh/Y)
= 2n%r qup (K A — DShP°), (21)

where (14) as well as 69, = —g..95209°° has been used in
the second step. Then (18) reduces to

2n.pbedor®,, = —2e¥,, (26K — 3K .5h’ + eD“ 8A)
+ 20 cuan (K% 8AC — DOSHYC).  (22)

On the other hand, the second term in (17) can be
expressed as

2ncégbdvawab6d

= =2n“n" BAhIN jyppue + 20°ShP VY o,
= —238A“DPY,;, + 28A% 4y K 0 + 20°5hPVoy ), 40
(23)
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Plugging (22) and (23) into (17), we have

N, 80" = —2eW (26K — 3K, 5h + D AP)

+ 20 qa, (K 8AC — DOShP¢) — 28A°DPY,,,
+ 2 8AYY 4epaKPn + 29ROy e

= —4e¥,, 6K — 2D*(8A"Y,,)
+ (2nVYpeqe + 66V, K. )¢
—2n%yr yq DO SHPC. (24)

Now by requiring both 6h* and 6¥,, vanish on the
boundary, we have

/ svedx, = —45( / ‘I‘abK"”dZ) — 2 / SAPW, dSe.
z p )

(25)

If the boundary is smooth, 9% = 9> M = 0 implies that the
second term vanishes. Accordingly, the bulk action can be
supplemented with the surface term

Isurf — 4/ lPabKabdZ (26)
oM

to make the variational principle well posed. However, if
the boundary is nonsmooth, the second term does not
vanish. In this case, to have a well-posed variational
principle, we need add the additional corner term such that

Sl =25 (& / ALY adS“)
25 [ (e BAT S+ e AWy,

(27)

where the subscripts s, s’ denote the segments of the
boundary and C,y = 0X; N Xy denotes the joint inter-
sected by the segments X, and X, . For simplicity, we would
like to define the corner term / , contributed by the joint

C,y, which satisfies
8lg, =2 / (e, BAIY,,,dS? + €9 BAYYW ydSY).  (28)

Next, we shall separately derive the explicit expression of
the corner term for all kinds of joints intersected by the
segments of the boundary.

C. Corner term on the boundary

1. Timelike joint

As depicted in Fig. 1, we first consider the timelike joint
C intersected by two timelike segments of the boundary B,

FIG. 1. The timelike joint is intersected by two timelike
segments B, and B,.

and B,, i.e., C=DB; nB,. Note that the condition
Sh?’ = 0, we have
8g°0 = —28a,nn% — 3A%nt — 3Abn¢
= —238ayn§nh — 8AsnS — 3A5ns (29)

at the joint C. In addition, for each normal vector n,, at the
joint C, there exists another normal vector rg, to the joint,
which points outwards from B, and satisfies r, - n, = 0.
{n¢, r¢} forms a pair of unit normals at the joint C, and the
two pairs can be related to each other by a rotation

n§ = n{cos@ + r{sin0,

r§ = nésin@ — r{ cos 6 (30)
for some rotation parameter 6. Substitute (30) into (29) and
make a decomposition SAY = SA[rd + 5‘21? with 6A§‘ a
tangent vector of the joint C, then we have
— 28a,n8nl — 8ALring — 8A5ring — 8ASnk — 8ASng

= —2cos O(sin @ A} + cos O5a, )n{n’
+ (cos 20 8A5 — sin205a, ) (n§r? + nbry)
+ 2 sin O(cos O A}, — sin O5a, ) rirt
— sin@( 8ASrY + 8A5r%) — cos O( 8ASnb + 8A5n?)

= —26a,nint — SATFInt — SATring — 5AInh — 6A%n,
(31)
which gives rise to
da, = da, = éa, (32)
8A% = tan Oar?. (33)

On the other hand, from the transformation (30), we can
obtain

cos@ = n, - ny, (34)
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the variation of which yields

—sin#o0 = —danin,, — 8A5n,, + danjny,

= —tan 65a sin 0. (35)
Whence we have

BAY = 504, (36)

With the above preparation, the variation of the corner
term can be written as

8l =2 / (AP, dSY + BASY,,,dS5)
C
= 2/ (W1ap BATTY 4 Waap BAGTE)dS
C
= / ¥50ds, (37)
C

where W = 4, r*rb = ybede ¢, is the Wald entropy
density with the binormal defined as €., = (n; A ry),, =
2n(g,rsp), which does not depend on the choice of
pairs, namely keeps invariant under the above Lorentz
transformation.

The requirements 6¥,;, = 0 and 6r¢ = 0 lead to s¥ = 0.
Accordingly, the corner term can be derived as the Wald
entropy density multiplied by the rotation parameter, i.e.,

Io = / $o4s, (38)
C
which vanishes when 6 = 0 as it is expected to be the case.

2. Spacelike joint

As shown in Fig. 2, now we consider a typical type of
spacelike joint C intersected by a spacelike segment 3, and
a timelike segment B,. In this case, the two pairs of the
normal vector {n?, r¢} can be related to each other by the
boost transformation

FIG. 2. The spacelike joint is intersected by a spacelike seg-
ment 3, and a timelike segment 5,.

a _ 4,d a o1
n§ = r{ coshn — n{ sinhn,

r§ = n{ coshn — r{ sinhy (39)

with 7 the boost parameter. Substituting this transformation
into the following equality

89 = 26a,nint — 3A{nb — 5ALn¢

= —28a,n4nb — 8Anh — 8A5n4 (40)

at the joint C, one can show
da, = da, = éa, (41)
8A% = cothndar?. (42)

Furthermore, by virtue of the variation of sinhy = n; - n,,
one can obtain

SAY = oyra. (43)

Accordingly, the variation of the corresponding corner term
can be expressed as

5IC — _2/ (SA?T]ade? - 5qu"2abdsg)
c

~ / (W, AL, + Way, BALFL)dS
c

=— / Wsnds, (44)
C

where we have used dS{ = r{dS and dS§ = —r4dS due to
the fact that r{ is spacelike while r§ is timelike. Whence
one can obtain the corner term as

Io=— / ¥nds, (45)
C

where we have required the corner term satisfy the
additivity rule, which will be documented in detail later on.

For the later convenience, we would like to reexpress the
boost parameter 7. To this end, as shown in Fig. 2, we
define [ to be a null vector as

1 = A(n% + r9)
= B(ng + r4). (46)

Substitute the transformation (39) into it, then we have
B = A(coshn + sinhn) = Ae, (47)
which leads to a new expression for the boost parameter as

n=mmB—InA=1In(l-ny)—In(=l-n;). (48)
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FIG. 3.
segment B.

By the same token, in terms of another null vector
ke = C(n§ = rf)
= D(-n3 +13), (49)
the boost parameter can also be written as

n=In(=k-n;)—In(—k-ny). (50)

3. Other joints

The additivity rule is supposed to be valid not only
for the bulk term and surface term, but also for the
corner term. With this in mind, one can derive the corner
term for any other spacelike joint from the previous one.
For instance, regarding the case (a) in Fig. 3, the corre-
sponding corner term can be obtained as a sum of two
corner terms as

Ie, = Ipng, + 1pns,

:—/ ‘i’nldS—/ ¥n,dS
BB, BB,

= —é‘i‘(m +11,)dS
= —/‘i‘nadS, (51)
C

where we have introduced an auxiliary segment 5. Note
that it follows from (48) that

(b)

(d)

The corner intersected by B, and B, can be regarded as the addition or subtraction of two corners by introducing an auxiliary

m=In(l-n)—In(=I-n), (52)
Ny =—In(l-ny)+1In(-1-n)- (53)
Thus we have
Ne=In(l-ny)=1n(l-ny). (54)
Similarly, for the case (b), (c), and (d), the corner term can

be readily expressed as minus the Wald entropy density
multiplied by the boost parameter with

ny=In(l-ny)=1In(=l-n,y), (55)
e =In(l-ny)—In(=I-ny), (56)
ng=In(l-ny)=1In(l-ny). (57)

IV. NULL SEGMENTS

A. Variation of geometric quantities

We now consider the null segment of the boundary N/,
which is foliated by an outward-directed null geodesic
ke = (£) of a cross section S. We further introduce a null
vector field I, on A, which is normal to S and satisfies
k“l, = —1. With this, the metric can be decomposed as

gab — _kalh _ khla + Gah’ (58)

where ¢ is tangent to S.
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In what follows, we shall work with the gauge in which
the location of such a null segment as well as its foliation
structure keeps unchanged under the variation, i.e.,

bk, = Sak,, 6k* =0, (59)
which implies
él, = 8pk,, (60)
where 6a = 5¢"°k,1, and 8f = 35¢4°*1,1,. Furthermore, by
[, =0 and k,[* = —1, one can obtain
6l = = 8pk* — dal® + 8I° (61)

with 3/ tangent to S. Whence the variation of the metric is
given by

5g° = 23pkkb + Sa(keIP + kb1v)
— k81> — kP 81 + 567°. (62)
The geodesic equation reads

KV kb = Kk, (63)
|

. 1
kcl//abcdarabd =7

where k measures the failure of 1 to be an affine parameter.

Whence we have the following two expressions for the
variation of k as

ok = =8(1°kPVk,) = kV da + oT€ ,, 1k k., (64)

ok = —8(1,kPV k) = =61, 1,k k¢, (65)

which give rise to

ST 19k k, — 8T, 1,kPk¢ = 26k — k*V, 5. (66)

B. Surface term on the boundary

For the null segment A/, the boundary term in the
variation of the bulk action can be expressed as

/ sv9dz, = / k,5v°dAdS
N N

- / [2kcl//ab6d6rabd + 2kcagbdvawab0d]dﬂd‘g'
N
(67)

By insertion of (58), we have

4‘1’(5F“bckak”l” — 1€, k9k"1,)

+ kY acar o7 016" N 18 gpe — kKW eap1°6°16" N 5G40

+ KK kY coqr 116" (V148G = Vi6Gan)

+ kK e k116 (V4 8Gen + Vi8Gae = 2V e8Gan)

+ kW aap k® 1°6°46" (V 8.1, — V1,69,

+ kKW e 1°6°46" (V 18Gen — Vi6Gea) (68)

where W = 4y k“ 12k 1? = yP<de ¢, with the binormal given by €., = (k A [),,. Substituting (66) and (62) into the
above expression and make a straightforward but tedious calculation, one can obtain

/ Bveds, = / WskdAdS — / iK
N N N dA

2

1.
— oo — 2kkby  pal® 8ld> ds} di

-2 / D, (kK 16y opadat — Kk 6y oy 81°)]dAAS, (69)
N

where we have already used the condition §6*> = 0 with D, the covariant derivative operator on S. Below we shall focus on
the case in which OS = 0. Then the last term in (69) vanishes, which leads to

. 1.
/ svds, = 5[ / ‘I‘KdidS] - / (‘I‘(Sa— 2Kk ol 3ld> ds
N N an+ \2

1.4
+ / (5 Poa — 2k kP oyl 51d) ds (70)
-

where we have used 8% = 0. Thus the surface term from the null segment A is given by
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N

FIG. 4. The spacelike joint is interjected by a null segment and
a spacelike segment.

T = — / WkdadsS. (71)
N

On the other hand, if the joint on the boundary is intersected
by one null and another non-null segment, the variation of
the corner term can be obviously expressed as

1.
0l omer = £ / <— Woa — 2k kP e pal® 3ld> ds
Csi 2

+2 / (e, BAY,,,dS?). (72)
Co

C. Corner term on the boundary

1. Joint by a null and a spacelike segment

As illustrated in Fig. 4, we first consider the joint which
is intersected by a spacelike segment 3 and a null segment
N In this case, there exists a transformation at the joint C,
from the pair of normals {n“ r*} to the double nulls
{ke, i}

k® = e (n% 4 r%),
1
1= Ee_)f(n“ -9 (73)

with y a scaling factor. Substituting the inverse of this
transformation into the following variational identity

89" = 28ann® — 8A N’ — 8A’n®
= 28BkkE + Sa(k1b + kP1) — k481" — kP 81° (74)

at the joint with 2%’ and 6%’ fixed, we can obtain

5g* = 28pkk" + Sa (k41> + kP1%) — k@ 81° — kP 81
6_2)( r\rapb 2y r\jajb
:T(éa—éiA)kk + 2e*(6a + 8A")1°l
e X A o
+ 8a(kbl® + keIP) — —— (k 8AY + kP 8A“
( )55 )

—V2e% (19 8AY + 1P 5AY), (75)

which gives

~

SA" = —ba, 0AY = 81" =0,
da = éa, 3p = %6‘21561. (76)
Furthermore, by virtue of the variation of e = —n k%, one
can obtain
da =38y =6In(—n-k). (77)

With the above preparation, the variation of the corner
term can be written as

8lp = / Wsyds (78)
C

which gives the corner term as

I = / Wyds (79)
c
with
y=In(-n-k). (80)

2. Joint intersected by double null segments

With the corner term obtained before, one can readily
derive the corner term for any other type of joint by the
additivity rule. As a demonstration and for the later
calculations as well, we would like to derive the corner
term for the joint intersected by double null segments. As
illustrated in the left panel of Fig. 5, we first add an
auxiliary spacelike segment B, which divides the corner
into two parts. Then by the additivity rule, we have

IC—/@ln(—nkl)dS—i—/‘i’ln(—nkz)dS
C C

= A P[in (—n - k) +In(-n - k,)dS

= /@m(-lk] -k2>dS. (81)
c 2

Whence one can readily write down the corner term for the
four joints in the right panel of Fig. 5 as

Icomer:ICIZ +IC23 +IC34 +IC41

- 1 - 1

:/ q11n<——k1.k2>d5—/ ‘Pln(——kz-k3>dS
Cia 2 Cx 2
A 1 - 1

+/ ‘Pln(——k3k4)d5—/ ‘Pln(——k4kl>d5
Cxy 2 Car 2

(82)
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k,*
M2 2 n K
B
M1
N1

FIG. 5.

D. Counterterm on the boundary

Note that the surface term as well as the corner term from
the null segment depends on the parametrization of the null
generator. In order to eliminate this ambiguity, we can
introduce a counterterm

I, =— / O1n (1,0)dAdsS, (83)
N
where 6 =V, (kW) = ﬁ@i(‘i‘ Vo) and © =V k% =

\/%;8,1(\/3) is the expansion scalar of the null generator
with /., an arbitrary length scale. To show this, let us

consider the reparametrization % = ¢7#, which gives

k¢ = efke, k= e’ (k + 0,p),

O =cf0, 6=cro. (84)
As a result, we have
jsurf + 7comer = Isurf + Icomer - /jvlij(alﬁ)dlds

+ / WBdS — / PBdS
ON* ON-
= Isurf + Icomer + / ﬁa/l(li] \/E)‘Mds’
NGO

(85)

and

A O Jpprays
To = I /N Lo, Jayaias. (0

which implies
Isurf + Icorner + Ict (87)

is invariant under the above reparametrization.

The joint is intersected by double null segments can be obtained by the additivity rule.

V. APPLICATION: CASE STUDIES FOR
ACTION GROWTH RATE

A. Case 1: SAdS spacetime

We shall apply our above result to calculate the action
growth rate of the WDW patch in the SAdS spacetime for
F(R) gravity and critical gravity, respectively. The SAdS
metric is obtained originally as a solution to FEinstein
equation with a negative cosmological constant, i.e.,

d+1
Ry, = 7 Yab (88)

with L the AdS curvature radius. Its (d + 2)-dimensional
expression is given by

2 ,  ar 2102
ds* = —f(r)drt +m+r dQy . (89)

where f(r) =5+ k — % is the blackening factor, and
k = {+1,0, -1} denotes the d-dimensional spherical, pla-
nar, and hyperbolic geometry, individually. The horizon
r = ry, lies in the location where f(r,) = 0.

As illustrated in the Penrose diagram of the SAdS
spacetime Fig. 6, I(t;,1g), denoted as the action for the

Ly =0
Ty~ '
| ) il
8|\ 0 |
1 \ j
— j
Lo “
| \){/\m !
\
1
l I
5;1 ! /9 |
1 ’\)v l‘
I 2 l
I \\ I
1 g ‘
i x 1
! 2 [=)) ;
i X “
| o . ‘
1 *\ \
" CL > “,
|
| AN '
]
| 02 ¥ n? ‘,
’ |
A |
r=0

FIG. 6. Wheeler-DeWitt patches of a Schwarzschild-AdS
black hole.
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WDW patch determined by the time slices on the left and
right AdS boundaries, is invariant under the time trans-
lation, i.e., I(t; + 0t,tg — 6t) = I(t7, tg). Thus the action
growth can be computed as 61 = I(ty + 6t,t;) — I(1, t;),
where the time on the right boundary has been fixed. To
regulate the divergence near the AdS boundary, a cutoff
surface r = rp,, is introduced. In addition, we also
introduce a spacelike surface r = r;, to avoid running
into the spacelike singularity inside of the SAdS black hole.
As such, we shall focus on the situation in which the
boundary consists solely of null and spacelike segments
only with spacelike joints. In addition, for simplicity we
shall adopt the affine parameter for the null generator of
null segments such that the surface term vanishes for null
segments. With this in mind, we have

5121/\41 _IM2+IZ+IC1 _IC2+5ICK' (90)
Here M, is bounded by u = t;, u =ty + 6t,v = t, + ot,
and r=rg,. M, is bounded by u=+t, v=rt,

v = vy + ot, and u = t;. The null coordinates are defined
asu=rt+r*(r) and v =t — r*(r) with r*(r) = f%

1. F(R) gravity
For a general F(R) gravity, the equation of motion reads
1 :
F'(R)Rap — EF(R>gah = (ViVy =g VV)F'(R) = 0,

(o1)

and the auxiliary field as well as its decedents can be
expressed as

abed _ <gacgbd _ gadgbc)F/<R),

N =

W
1
Yo, = _EhabF/(R)’
¥ = 2F'(R). (92)
Whence the full on-shell action can be simplified as

I = Ibulk + Isurf + Icomer + Ict

= /M dd+2x\/—_gF(R)—2Z< /B KF’(R)dZ)

s

—2(=1)* / c,F'(R)dS — / O1n (1,®)dAdS.  (93)
C, N
In what follows, we shall consider the special case, in

which there exists an R such that

2R,
d+2

F(Ry) = F'(Ry), (94)

where the prime denotes the derivative with respect to R.

As such, (88) with L2 = —% satisfies the above

equation of motion. Accordingly, the SAdS metric can be
regarded as its solution.

With the above preparation, now let us use (90) to
calculate the action growth rate in our F(R) gravity. So we
only need to keep the first order of 6 below for each term
in (90). First, with the (u, r) coordinates, we have

to+ot p(u)
IM] = F(RO)Qd,k/ du/ rddr
) Tmin

F(Ro)Qu
= TR (95)
where r = p(u) is the solution to the equation v(u, r) =
to + ot and r,;, has been set to zero in the end. Similarly,
with the (v, r) coordinates, we have

fo+6t po(v)
IM; = F(RO)Qd,k/ d/lj/ rddr
) ) pi(v)

F(Ry)Qy
= diﬂ(%ﬁ —rither, (96)

where r = py(v) is the solution to the equation u(v, r) =
and r = p(v) is the solution to the equation u(v,r) = t,
with r| the r coordinate of C;. Thus the difference between
1 M, and / M,

F(Ro)Sy,
Ly, — 1y, :#r‘f*l&t. (97)

For the surface term, we have

IZ - —ZFI(Ro)/KdZ
S

= (d+ )F'(Ry)Qq "' ét, (98)

where we have used the expression K = —-L4 (r!\/=f)
for the spacelike surface r = r,;, and let r;, = 0 in
the end.

In order to write down the explicit expression for the
difference between the two corner terms from C; and C,,
we shall choose k;, = V,u and k,, = —V,v. Note that
ky - ky = —%. Then by (82), we can obtain

e, — I, = F'(Ry)Qqx
X [F{f/(ry) +dri f(r) In (—f(ry))]6t, (99)

where we have used
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1
or=r —rzz—if(rl)ét (100)
with r, the r coordinate of C,.

In the SAdS spacetime, the counterterm can be expressed

as

Iy = 2F'(Ry) / OIn(l,0)dids.  (101)
N

By the translation symmetry, there are only two null
segments contributing to the action growth. The first one
comes from the null segment u = #; with r as the affine
parameter, i.e., k{ = (%)“ which gives rise to the expan-
sion ® = ‘;’. As aresult, the corresponding counterterm can
be written as

dl
1LY = 2dQ,  F'(Ry) / drri= 11n< °‘>
r r

=2Q,F'(Ry)
dl dl 1
X [r%ax In (Vm:(> —r4In <r2a> + 7 (rd s — ré’)] )
(102)

Obviously, as to the counterterm from the second null

segment v = f,, we have Iﬁt) = (tl). By (100), the growth

of the counterterm can be written as

Sl = 249y F'(Ro)f (ry)ri- 11n<‘” )& (103)

r
Then summing all the previous terms, we end up with

d+1

,
81 = Qu F'(Ry) {—222 +(d+ 1)

+rdf (r) +dré=' f(r)) In <_f(r]2)d213t)] ot

1

1 d-1 —f(r)d?1l3,
X [l —5—5 <%> f(r)In <7f("r1%) )}&
— oM, [1 +% <ﬁ> e ln< —f(n )dzlg‘ﬂ&,
w ’”1
(104)
where
MF = Qd’kda)d_lF/(Ro)

(105)

is the Arnowitt-Deser-Misner mass [22]. As a result, the
action growth rate is given by

I=oM, {1 +% (%) ) in (M)] (106)

1

which reduces to

1 =2Mp, (107)

in the late time limit with r; — 7. It is noteworthy that this
late time behavior is also obtained by different approaches
in [27-29].

2. Critical gravity

Now let us move onto the critical gravity. The original
bulk action is given by [27,30],

Ly = /M dx /=g

1 d+2
X{R—2A——2<R“”Rab— + R2>], (108)
m

4(d+1)

where m is a dimensionful parameter. Whence the corre-
sponding equation of motion can be obtained as

[8Am? + 8dAm? + 4(d + 1)(R.4R* — m*R)
+(d +2)(4V, VR — R?) — 8(d 4+ 1)V .V R gu
+ 4[Ru,(2(d + 1)m? + (d 4+ 2)R) — 4(d + 1)R,.R¢,]
+4[—(d +2)V,V,R +2(d + 1)V, V R¢,

+2(d + 1)V, V,R°, —=2(d + 1)V.V°R,,] = 0. (109)

and the auxiliary field as well as its decedents reads

R) gc[agb]d

1 1
_ WRG[ng]b _ WRc[bga]d’

1 24+d
¥Y,=—=(1+——5R|h
ab ) < +2(1 + d)m2 ) ab

[Rcdncndgab - Rab - nc(naRbc + anac)]’

2+d

abed _ 1
v ( i 2(1+dym?

Com?
N 1 d+?2
\P —2+ <2R brr —2R bnn _dL—HR>
(110)
It is not hard to show that with
d(d+ 1) (d*>=2d —4L*m?
A= dED —2d =4L70)
8L*m

(88) satisfies the equation of motion. So in this case, the
SAdS metric is also the solution to the critical gravity. With
this solution, one can obtain
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Ibulk =-2

d+1 d?

L2 (1_W>/Mdd+2x 9
1 d?

¥Y,=—(1—-——|h

ab 2( 2L2m2> ab>

A d?
o of1--2 ).
( 2L2m2>

Following the same calculation as F(R) gravity, one can
easily obtain the action growth rate for the critical gravity as

I =2M, [1 +; C;)d_lf(rl) 1%%)], (113)

1

(112)

where

MC = deJ(COd_l <1 (114)

d2
B 2L2m2>
is the Arnowitt-Deser-Misner mass for the critical gravity
[30]. The late time action growth rate is the same as that

obtained in [27] by using the approach developed
in [25,26].

B. Case 2: The asymptotically AdS black
hole for the critical Einsteinian cubic gravity

In this subsection, we consider the 4-dimensional the
critical Einsteinian cubic gravity. The corresponding bulk
action is given by [31]

Touk = /M d*x\/=gF

:/ d*x\/=g(R—2A+AP),  (115)
M

where the cubic invariant polynomial term P of the
Riemann tensor reads

P = 12RacbdRC€deeafb =+ RadeRcdefRefab

— 12R . qRR" + 8R,*R,°R, (116)

with 4 the coupling constant.
In terms of the auxiliary field

1

Yabed = 5 (gacgbd - gadghc) + 64 (RadRhc - RacRbd
+ gbdRaeRce - gadeeRce - gbcRaeRde
+ gacRbeRde - gbdRefRaecf + gbcRefRaedf

+ gadRebeecf - gacRebeedf - 3Raedebecf

1
+ 3Raechbedf + ERabe'chdef) ’ (1 17)

the equation of motion can be expressed as

1
l//acdeRdee - EgabF - zvcvdl//acdb =0. (118)

As shown in [32], when the parameters satisfies the
following critical relation

2 L*
AN=—-——, A=——, 119

L? 24 (119)
the above equation of motion admits a static asymptotically
AdS black hole solution, whose line element can be
written as

d 2
ds? = —f(r)di +——+ r2d03

70 (120)

with the blackening factor
2

1) =13+ k=p. (121)

Then following the exact same procedure, one can obtain

2
1
- _LZ) St.

By using (26), one can further find that the surface term of
% vanishes. In addition, the straightforward calculation
gives rise to the following corner term

IMI _IMZ —492‘](7'1( (122)

72

Icl _ICZ = 4Q2,kr1 X |:<L2

) + 5 (=) .
(123)

At last, the counterterm contribution of the null segments
can be obtained as

21
61Ct = 892kr1f(r])ln< >5t (124)
T
where we have used © = — % By summing all the previous
terms, we end up with
. 4 2
1 =4Q, 7 f(r;)In ( fr) C‘). (125)
r

In the late time limit, the action growth rate apparently
vanishes. However, this late time behavior still saturates the
Lloyd bound because the mass of this black hole also
vanishes [32].
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VI. CONCLUSION

We have presented a complete discussion of the varia-
tional problem for F(Riemann) gravity with a nonsmooth
boundary. In order to give rise to a well-posed variational
principle, we must supplement the surface term and corner
term to the bulk action. Following the method developed in
[7], we obtain a general formula for the boundary term,
where the corner term can be obtained by integrating the
Wald entropy density weighted by a transformation param-
eter between the two intersected segments. When the
involved segment is null, we are also required to add a
counterterm to make the full boundary term invariant under
the reparametrization.

Then motivated by the CA conjecture, we apply the
resulting full action to evaluate the full time action growth
rate of the WDW patch in the SAdS spacetime for the F(R)

gravity and critical gravity, as well as in an asymptotically
AdS black hole for the critical Einsteinian cubic gravity.
For the F(R) and critical gravity, the late time action
growth rate shares exactly the same behavior as those
obtained by other approaches. For the critical Einsteinian
cubic gravity, we find that the late time action growth rate
vanishes but still saturates the Lloyd bound.
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