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After reformulating FðRiemannÞ gravity theory as a second derivative theory by introducing two
auxiliary fields to the bulk action, we derive the surface term as well as the corner term supplemented to the
bulk action for a generic nonsmooth boundary such that the variational principle is well posed. We also
introduce the counterterm to make the boundary term invariant under the reparametrization for the null
segment. Then as a demonstration of the power of our formalism, not only do we apply our expression for
the full action to evaluate the corresponding action growth rate of the Wheeler-DeWitt patch in the
Schwarzchild anti–de Sitter black hole for the FðRÞ gravity and critical gravity, where the corresponding
late time behavior recovers the previous one derived by other approaches, but also in the asymptotically
anti–de Sitter black hole for the critical Einsteinian cubic gravity, where the late time growth rate vanishes
but still saturates the Lloyd bound.
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I. INTRODUCTION

Generically, in order to make the variational principle
well posed for gravity theories, one is required to add the
surface term to the bulk action. In this way, the Gibbons-
Hawking-York (GHY) surface term is introduced for
the case of Einstein gravity, but is applicable only to a
non-null boundary [1–3]. For a null boundary, the surface
term has also been investigated recently [4–8]. Moreover,
if the boundary is nonsmooth, i.e., the boundary contains
some corners intersected by the segments, the additional
corner term has to be added to the action [9,10]. On the
other hand, although the non-null surface terms have been
developed for other gravitational theories, such as FðRÞ
gravity [11,12], Gauss-Bonnet gravity [13,14], Lanczos-
Lovelock theory [15–18], and other higher derivative
theories [19–21], the corresponding null surface term has
not been fully explored.
However, for a generic higher order gravitational theory

as usually formulated, due to higher-derivative terms, it is
hard to find an appropriate surface term to make the
variational principle well posed [22]. But at least for
FðRiemannÞ gravity, this problem can be circumvented

by introducing two auxiliary fields, because this allows us
to recast the action as a second order gravitational theory,
which is on-shell equivalent to the original action [23].
Furthermore, if the auxiliary fields on the boundary can be
shown by the Hamiltonian analysis to be independent of the
extrinsic curvature,1 then for a smooth non-null boundary a
generalized GHY term can be found to establish the well-
posed variational principle. In this paper, we shall focus
exclusively on this situation and formulate the well-posed
variational principle for more general circumstances, where
the boundary is not necessarily required to be non-null or
smooth.
Another motivation to evaluate the full action with a non-

smooth boundary including null segments comes from the
“complexity equals action” (CA) conjecture [25,26]. This
conjecture states that the complexity of a particular state
jψðtL; tRÞi on the boundary is given by

CðjψðtL; tRÞiÞ≡ I
πℏ

; ð1Þ

where I is the on-shell action in the corresponding
Wheeler-DeWitt (WDW) patch, enclosed by the past and
future light sheets sent into the bulk spacetime from the
boundary time slices tL and tR. As an application of our
formulation of the full action for FðRiemannÞ gravity, we
shall evaluate the action growth rate of the WDW patch in
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1It is noteworthy that Lanczos-Lovelock theory does not
satisfy this requirement and will not be treated in this paper.
Readers are referred to [18,24] for this theory.
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the Schwarzschild anti-de Sitter (SAdS) black hole for both
the FðRÞ gravity and critical gravity. This thus makes
up the deficiency of the approaches developed in [25,26],
which can only give rise to the late time behavior of the
action growth rate [27,28]. To further demonstrate the
power of our formalism, we also evaluate the action growth
rate of the WDW patch in the asymptotically AdS black
hole for the critical Einsteinian cubic gravity. The resulting
late time growth rate still saturates the Lloyd bound
although vanishes.
This paper is structured as follows. In Sec. II, we follow

the strategy developed in [23] to introduce the two auxiliary
fields to reformulate the original action and evaluate its
variation. After this, we derive the required boundary term
to make the variational principle well posed for both non-
null segments and null segments of a nonsmooth boundary
in Sec. III and Sec. IV, respectively. As an application of the
resulting full action, Sec. V devotes an explicit calculation
of the action growth rate for the WDW patch in the
SAdS black hole for both FðRÞ gravity and critical gravity,
as well as in the asymptotically AdS black hole for the
critical Einsteinian cubic gravity. We conclude our paper
in Sec. VI.

II. REFORMULATION OF F(Riemann)
GRAVITY THEORY

The conventional bulk action for FðRiemannÞ gravity is
given by

Ibulk ¼
Z
M

ddþ2x
ffiffiffiffiffiffi
−g

p
FðRabcd; gabÞ ð2Þ

with F an arbitrary function of Rabcd and gab. Its variation
can be obtained as

δIbulk ¼
Z
M

ddþ2x
ffiffiffiffiffiffi
−g

p
Eabδgab þ

Z
∂M

--δvadΣa: ð3Þ

Here dΣa is the outward-directed surface element on ∂M,
and

--δvc ¼ 2Pa
bcdδΓa

bd þ 2δgbd∇aPabcd ð4Þ

with Pabcd ¼ ∂F
∂Rabcd

. In addition, the symbol --δ indicates an
infinitesimal quantity which cannot be written as the
variation of any quantity. Obviously, Eab ¼ 0 is simply
the equation of motion. But in order to give rise to a well-
posed variational principle, we must supplement a boun-
dary term Ibdry such that

δIbdry ¼ −
Z
∂M

--δvadΣa þ
Z
∂M

pNδqNdΣ ð5Þ

with qN the intrinsic geometric quantity as well as its
derivatives to the boundary. If the boundary is smooth, the

boundary term involves only the surface term Isurf . On the
other hand, if the boundary is nonsmooth, not only does the
boundary term include the surface term, but also the corner
term Icorner.
However, it is generically difficult to find the corre-

sponding boundary term, if any, for the bulk action (2).
Gratefully this problem can be circumvented by introduc-
ing two auxiliary fields ψabcd and ϕabcd, which allows us
to recast the original bulk action (2) into the following
form [23]

Ibulk ¼
Z
M

ddþ2x
ffiffiffiffiffiffi
−g

p

× ½Fðϕabcd; gabÞ − ψabcdðϕabcd − RabcdÞ�; ð6Þ

where we demand these two auxiliary fields have the same
symmetries as Rabcd. The variation of this new action can
be expressed as

δIbulk ¼
Z
M

ddþ2x
ffiffiffiffiffiffi
−g

p

× ðEabδgab þ Eabcd
ϕ δϕabcd þ Eabcd

ψ δψabcdÞ

þ
Z
∂M

--δvadΣa ð7Þ

with

Eabcd
ϕ ¼ ∂Fðϕabcd; gabÞ

∂ϕabcd
− ψabcd;

Eabcd
ψ ¼ Rabcd − ϕabcd; ð8Þ

and

--δvc ¼ 2ψa
bcdδΓa

bd þ 2δgbd∇aψ
abcd: ð9Þ

With the equations of motion Eabcd
ψ ¼ 0 and Eabcd

ϕ ¼ 0

satisfied, this new action is equivalent to the original one.
In particular, the corresponding boundary term is identified
by the Hamiltonian analysis in [23] for the smooth non-null
boundary.
In what follows, we shall derive the boundary term for a

more general boundary by requiring this new action have a
well-posed variational principle.

III. NON-NULL SEGMENTS

A. Variation of geometric quantities

We first present the variation of geometric quantities
associated with the segment of the boundary, which is
either spacelike or timelike. To achieve this, we choose the
gauge in which the segment under consideration is fixed
when we perform the variation. With this in mind, we have
the variation of the outward-directed normal vector
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δna ¼ δana ð10Þ

with δa ¼ − ε
2
δgabnanb, where ε ¼ nana. Whence we

further have

δna ¼ −δana − ε --δAa ð11Þ

with --δAa ¼ −εhabδgbcnc, where the induced metric is
given by

hab ¼ gab − εnanb; ð12Þ

which is tangent to the segment. The variation of the metric
can be further expressed as

δgab ¼ −2εδananb − --δAanb − --δAbna þ δhab; ð13Þ

whereby it is not hard to show

hadhbehcf∇dδgef ¼ Daδhbc − Kac --δAb − Kab --δAc ð14Þ

with Kab ¼ hachbd∇cnd the extrinsic curvature.
Finally, for the later calculations, we would like to

present two expressions for the variation of the extrinsic
curvature. The first one is given by

δKab ¼ δðhachbd∇cndÞ
¼ δhachbd∇cnd þ hacδhbd∇cnd

− hachbdneδΓe
cd þ hachbd∇cδnd

¼ δhacKb
c þ δhbcKa

c þ δaKab − hachbdneδΓe
cd;

ð15Þ

and the second one is given by

δKab ¼ δðhachbd∇cndÞ
¼ δhachbd∇cnd þ hacδhbd∇cnd

þ hachbdδΓd
cene þ hachbd∇cδnd

¼ δhacKb
c − δaKab − εDa --δAb þ hachbdδΓd

cene;

ð16Þ

where we have used δhbd ¼ δðδbd − εnbndÞ ¼ − --δAbnd
and Da as the covariant derivative operator of the induced
metric.

B. Surface term on the boundary

As to the spacelike/timelike segment of the boundary, the
boundary term in the variation of the bulk action (13) can be
written as

Z
Σ

--δvadΣa ¼ ε

Z
Σ
na --δvadΣ

¼ ε

Z
Σ
½2ncψa

bcdδΓa
bd þ 2ncδgbd∇aψ

abcd�dΣ:

ð17Þ

The first term in (17) can be further evaluated as

2ncψa
bcdδΓa

bd ¼ 2ncψa
bcdδaa1δ

b1
bδ

d1
dδΓa1

b1d1

¼ 2ncψa
bcdðεnana1 þhaa1Þðεnb1nbþhb1bÞ

× ðεnd1ndþhd1dÞδΓa1
b1d1

¼−2εΨabðhbehadδΓd
cenc−hadhbeδΓc

dencÞ
þ2ndhgcheahfbψgedfδΓc

ab; ð18Þ

where we have used the symmetries of the auxiliary field
ψabcd and the definition

Ψab ≡ ψacbdncnd: ð19Þ

Substituting (15) and (16) into the first two terms in (18),
we end up with

− 2εΨabðhbehadδΓd
cenc − hadhbeδΓc

dencÞ
¼ −2εΨabð2δKab − 3Ka

cδhcb þ εDa --δAbÞ; ð20Þ

where the property Ψab ¼ Ψba has been used. For the third
term in (18), we have

2ndhgcheahfbψgedfδΓc
ab

¼ ndheahfbψgedfhgcð∇aδgcb þ∇bδgca −∇cδgabÞ
¼ 2ndψgedfheahfbhgc∇aδgcb

¼ 2ndψgedfðKeg --δAf þ Kef --δAg −DeδhfgÞ
¼ 2ndψcadbðKab --δAc −DaδhbcÞ; ð21Þ

where (14) as well as δgcb ¼ −gcagbdδgab has been used in
the second step. Then (18) reduces to

2ncψa
bcdδΓa

bd ¼ −2εΨabð2δKab − 3Ka
cδhcb þ εDa --δAbÞ

þ 2ndψcadbðKab --δAc −DaδhbcÞ: ð22Þ

On the other hand, the second term in (17) can be
expressed as

2ncδgbd∇aψ
abcd

¼ −2nanb --δAchef∇fψbeac þ 2naδhbc∇eψbeac

¼ −2 --δAaDbΨab þ 2 --δAaψacbdKbcnd þ 2naδhbc∇eψbeac:

ð23Þ
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Plugging (22) and (23) into (17), we have

na --δva ¼ −2εΨabð2δKab − 3Ka
cδhcb þ εDa --δAbÞ

þ 2ndψcadbðKab --δAc −DaδhbcÞ − 2 --δAaDbΨab

þ 2 --δAaψacbdKbcnd þ 2naδhbc∇eψbeac

¼ −4εΨabδKab − 2Dað --δAbΨabÞ
þ ð2na∇eψbeac þ 6εΨabKa

cÞδhbc
− 2ndψcadbDaδhbc: ð24Þ

Now by requiring both δhab and δΨab vanish on the
boundary, we have
Z
Σ

--δvadΣa ¼ −4δ
�Z

Σ
ΨabKabdΣ

�
− 2ε

Z
∂Σ

--δAbΨbadSa:

ð25Þ
If the boundary is smooth, ∂Σ ¼ ∂2M ¼ 0 implies that the
second term vanishes. Accordingly, the bulk action can be
supplemented with the surface term

Isurf ¼ 4

Z
∂M

ΨabKabdΣ ð26Þ

to make the variational principle well posed. However, if
the boundary is nonsmooth, the second term does not
vanish. In this case, to have a well-posed variational
principle, we need add the additional corner term such that

δIcorner ¼ 2
X
s

�
ε

Z
∂Σs

--δAbΨbadSa
�

¼ 2
X
s;s0

Z
Css0

ðεs --δAa
sΨsabdSbs þ εs0 --δAa

s0Ψs0abdSbs0 Þ;

ð27Þ
where the subscripts s, s0 denote the segments of the
boundary and Css0 ¼ ∂Σs ∩ ∂Σs0 denotes the joint inter-
sected by the segments Σs and Σs0 . For simplicity, we would
like to define the corner term ICss0 contributed by the joint
Css0 , which satisfies

δICss0 ¼ 2

Z
Css0

ðεs --δAa
sΨsabdSbs þ εs0 --δAa

s0Ψs0abdSbs0 Þ: ð28Þ

Next, we shall separately derive the explicit expression of
the corner term for all kinds of joints intersected by the
segments of the boundary.

C. Corner term on the boundary

1. Timelike joint

As depicted in Fig. 1, we first consider the timelike joint
C intersected by two timelike segments of the boundary B1

and B2, i:e., C ¼ B1 ∩ B2. Note that the condition
δhabs ¼ 0, we have

δgab ¼ −2δa1na1nb1 − --δAa
1n

b
1 − --δAb

1n
a
1

¼ −2δa2na2nb2 − --δAa
2n

b
2 − --δAb

2n
a
2 ð29Þ

at the joint C. In addition, for each normal vector nsa at the
joint C, there exists another normal vector rsa to the joint,
which points outwards from Bs and satisfies rs · ns ¼ 0.
fnas ; rasg forms a pair of unit normals at the joint C, and the
two pairs can be related to each other by a rotation

na2 ¼ na1 cos θ þ ra1 sin θ;

ra2 ¼ na1 sin θ − ra1 cos θ ð30Þ

for some rotation parameter θ. Substitute (30) into (29) and
make a decomposition --δAa

s ¼ --δAr
sras þ --δÂa

s with --δÂa
s a

tangent vector of the joint C, then we have

− 2δa2na2n
b
2 − --δAr

2r
a
2n

b
2 − --δAr

2r
b
2n

a
2 − --δÂa

2n
b
2 − --δÂb

2n
a
2

¼ −2 cos θðsin θ --δAr
2 þ cos θδa2Þna1nb1

þ ðcos 2θ --δAr
2 − sin 2θδa2Þðna1rb1 þ nb1r

a
1Þ

þ 2 sin θðcos θ --δAr
2 − sin θδa2Þra1rb1

− sin θð --δÂa
2r

b
1 þ --δÂb

2r
a
1Þ − cos θð --δÂa

2n
b
1 þ --δÂb

2n
a
1Þ

¼ −2δa1na1nb1 − δAr
1r

a
1n

b
1 − δAr

1r
b
1n

a
1 − δÂa

1n
b
1 − δÂb

1n
a
1;

ð31Þ

which gives rise to

δa1 ¼ δa2 ≡ δa; ð32Þ
--δAa

s ¼ tan θδaras : ð33Þ

On the other hand, from the transformation (30), we can
obtain

cos θ ¼ n2 · n1; ð34Þ

FIG. 1. The timelike joint is intersected by two timelike
segments B1 and B2.

JIE JIANG and HONGBAO ZHANG PHYS. REV. D 99, 086005 (2019)

086005-4



the variation of which yields

− sin θδθ ¼ −δana2n1a − --δAa
2n1a þ δana2n1a

¼ − tan θδa sin θ: ð35Þ

Whence we have

--δAa
s ¼ δθras : ð36Þ

With the above preparation, the variation of the corner
term can be written as

δIC ¼ 2

Z
C
ð --δAa

1Ψ1abdSb1 þ --δAa
2Ψ2abdSb2Þ

¼ 2

Z
C
ðΨ1ab

--δAa
1r

b
1 þ Ψ2ab

--δAa
2r

b
2ÞdS

¼
Z
C
Ψ̂δθdS; ð37Þ

where Ψ̂ ¼ 4Ψsabras rbs ¼ ψabcdϵabϵcd is the Wald entropy
density with the binormal defined as ϵab ¼ ðns ∧ rsÞab ¼
2n½sarsb�, which does not depend on the choice of
pairs, namely keeps invariant under the above Lorentz
transformation.
The requirements δΨab ¼ 0 and δras ¼ 0 lead to δΨ̂ ¼ 0.

Accordingly, the corner term can be derived as the Wald
entropy density multiplied by the rotation parameter, i.e.,

IC ¼
Z
C
Ψ̂θdS; ð38Þ

which vanishes when θ ¼ 0 as it is expected to be the case.

2. Spacelike joint

As shown in Fig. 2, now we consider a typical type of
spacelike joint C intersected by a spacelike segment B1 and
a timelike segment B2. In this case, the two pairs of the
normal vector fnas ; rasg can be related to each other by the
boost transformation

na2 ¼ ra1 cosh η − na1 sinh η;

ra2 ¼ na1 cosh η − ra1 sinh η ð39Þ

with η the boost parameter. Substituting this transformation
into the following equality

δgab ¼ 2δa1na1n
b
1 − --δAa

1n
b
1 − --δAb

1n
a
1

¼ −2δa2na2nb2 − --δAa
2n

b
2 − --δAb

2n
a
2 ð40Þ

at the joint C, one can show

δa1 ¼ δa2 ≡ δa; ð41Þ
--δAa

s ¼ coth ηδaras : ð42Þ

Furthermore, by virtue of the variation of sinh η ¼ n1 · n2,
one can obtain

--δAa
s ¼ δηras : ð43Þ

Accordingly, the variation of the corresponding corner term
can be expressed as

δIC ¼ −2
Z
C
ð --δAa

1Ψ1abdSb1 − --δAa
2Ψ2abdSb2Þ

¼ −2
Z
C
ðΨ1ab

--δAa
1r

b
1 þΨ2ab

--δAa
2r

b
2ÞdS

¼ −
Z
C
Ψ̂δηdS; ð44Þ

where we have used dSa1 ¼ ra1dS and dSa2 ¼ −ra2dS due to
the fact that ra1 is spacelike while ra2 is timelike. Whence
one can obtain the corner term as

IC ¼ −
Z
C
Ψ̂ηdS; ð45Þ

where we have required the corner term satisfy the
additivity rule, which will be documented in detail later on.
For the later convenience, we would like to reexpress the

boost parameter η. To this end, as shown in Fig. 2, we
define la to be a null vector as

la ¼ Aðna1 þ ra1Þ
¼ Bðna2 þ ra2Þ: ð46Þ

Substitute the transformation (39) into it, then we have

B ¼ Aðcosh ηþ sinh ηÞ ¼ Aeη; ð47Þ

which leads to a new expression for the boost parameter as

η ¼ lnB − lnA ¼ ln ðl · n2Þ − ln ð−l · n1Þ: ð48ÞFIG. 2. The spacelike joint is intersected by a spacelike seg-
ment B1 and a timelike segment B2.
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By the same token, in terms of another null vector

ka ¼ Cðna1 − ra1Þ
¼ Dð−na2 þ ra2Þ; ð49Þ

the boost parameter can also be written as

η ¼ ln ð−k · n1Þ − ln ð−k · n2Þ: ð50Þ

3. Other joints

The additivity rule is supposed to be valid not only
for the bulk term and surface term, but also for the
corner term. With this in mind, one can derive the corner
term for any other spacelike joint from the previous one.
For instance, regarding the case (a) in Fig. 3, the corre-
sponding corner term can be obtained as a sum of two
corner terms as

ICa ¼ IB∩B1
þ IB∩B2

¼ −
Z
B∩B1

Ψ̂η1dS −
Z
B∩B2

Ψ̂η2dS

¼ −
Z
C
Ψ̂ðη1 þ η2ÞdS

¼ −
Z
C
Ψ̂ηadS; ð51Þ

where we have introduced an auxiliary segment B. Note
that it follows from (48) that

η1 ¼ ln ðl · n1Þ − ln ð−l · nÞ; ð52Þ

η2 ¼ − ln ðl · n2Þ þ ln ð−l · nÞ· ð53Þ

Thus we have

ηa ¼ ln ðl · n1Þ − ln ðl · n2Þ: ð54Þ

Similarly, for the case (b), (c), and (d), the corner term can
be readily expressed as minus the Wald entropy density
multiplied by the boost parameter with

ηb ¼ ln ðl · n1Þ − ln ð−l · n2Þ; ð55Þ

ηc ¼ ln ðl · n1Þ − ln ð−l · n2Þ; ð56Þ

ηd ¼ ln ðl · n2Þ − ln ðl · n1Þ: ð57Þ

IV. NULL SEGMENTS

A. Variation of geometric quantities

We now consider the null segment of the boundary N ,
which is foliated by an outward-directed null geodesic
ka ¼ ð ∂∂λÞa of a cross section S. We further introduce a null
vector field la on N , which is normal to S and satisfies
kala ¼ −1. With this, the metric can be decomposed as

gab ¼ −kalb − kbla þ σab; ð58Þ

where σab is tangent to S.

(a) (b)

(c) (d)

FIG. 3. The corner intersected by B1 and B2 can be regarded as the addition or subtraction of two corners by introducing an auxiliary
segment B.
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In what follows, we shall work with the gauge in which
the location of such a null segment as well as its foliation
structure keeps unchanged under the variation, i.e.,

δka ¼ δαka; δka ¼ 0; ð59Þ

which implies

δla ¼ --δβka; ð60Þ

where δα ¼ δgabkalb and --δβ ¼ 1
2
δgablalb. Furthermore, by

lala ¼ 0 and kala ¼ −1, one can obtain

δla ¼ − --δβka − δαla þ --δla ð61Þ

with --δla tangent to S. Whence the variation of the metric is
given by

δgab ¼ 2 --δβkakb þ δαðkalb þ kblaÞ
− ka --δlb − kb --δla þ δσab: ð62Þ

The geodesic equation reads

ka∇akb ¼ κkb; ð63Þ

where κ measures the failure of λ to be an affine parameter.
Whence we have the following two expressions for the
variation of κ as

δκ ¼ −δðlakb∇bkaÞ ¼ ka∇aδαþ δΓc
ablakbkc; ð64Þ

δκ ¼ −δðlakb∇bkaÞ ¼ −δΓa
bclakbkc; ð65Þ

which give rise to

δΓc
ablakbkc − δΓa

bclakbkc ¼ 2δκ − ka∇aδα: ð66Þ

B. Surface term on the boundary

For the null segment N , the boundary term in the
variation of the bulk action can be expressed as

Z
N

--δvadΣa¼
Z
N
ka --δvadλdS

¼
Z
N
½2kcψa

bcdδΓa
bdþ2kcδgbd∇aψ

abcd�dλdS:

ð67Þ

By insertion of (58), we have

kcψa
bcdδΓa

bd ¼
1

4
Ψ̂ðδΓa

bckakblc − δΓc
abkakblcÞ

þ kaψacdfσ
bcσedσhf∇hδgbe − kakbψbcdflcσedσhf∇hδgae

þ kakbkcψcedfldleσfhð∇hδgab −∇bδgahÞ
þ kakbψbdcfkcldleσfhð∇aδgeh þ∇hδgae − 2∇eδgahÞ
þ kaψadbfkblcσedσhfð∇cδgeh −∇hδgecÞ
þ kakbψbdcflcσedσhfð∇aδgeh −∇hδgeaÞ; ð68Þ

where Ψ̂ ¼ 4ψabcdkalbkcld ¼ ψabcdϵabϵcd with the binormal given by ϵab ¼ ðk ∧ lÞab. Substituting (66) and (62) into the
above expression and make a straightforward but tedious calculation, one can obtain

Z
N

--δvadΣa ¼
Z
N
Ψ̂δκdλdS −

Z
N

d
dλ

��
1

2
Ψ̂δα − 2kakbψacbdlc --δld

�
dS

�
dλ

− 2

Z
N
½D̃eðkakblcσdeψacbdδα − kakbσedψacbd

--δlcÞ�dλdS; ð69Þ

where we have already used the condition δσab ¼ 0with D̃a the covariant derivative operator on S. Below we shall focus on
the case in which ∂S ¼ 0. Then the last term in (69) vanishes, which leads to

Z
N

--δvadΣa ¼ δ

�Z
N
Ψ̂κdλdS

�
−
Z
∂N þ

�
1

2
Ψ̂δα − 2kakbψacbdlc --δld

�
dS

þ
Z
∂N −

�
1

2
Ψ̂δα − 2kakbψacbdlc --δld

�
dS ð70Þ

where we have used δΨ̂ ¼ 0. Thus the surface term from the null segment N is given by

SURFACE TERM, CORNER TERM, AND ACTION GROWTH … PHYS. REV. D 99, 086005 (2019)

086005-7



Isurf ¼ −
Z
N
Ψ̂κdλdS: ð71Þ

On the other hand, if the joint on the boundary is intersected
by one null and another non-null segment, the variation of
the corner term can be obviously expressed as

δIcorner ¼ �
Z
Cs�

�
1

2
Ψ̂δα − 2kakbψacbdlc --δld

�
dS

þ 2

Z
Cs�

ðεs --δAa
sΨsabdSbs Þ: ð72Þ

C. Corner term on the boundary

1. Joint by a null and a spacelike segment

As illustrated in Fig. 4, we first consider the joint which
is intersected by a spacelike segment B and a null segment
N . In this case, there exists a transformation at the joint C,
from the pair of normals fna; rag to the double nulls
fka; lag

ka ¼ eχðna þ raÞ;

la ¼ 1

2
e−χðna − raÞ ð73Þ

with χ a scaling factor. Substituting the inverse of this
transformation into the following variational identity

δgab ¼ 2δananb − --δAanb − --δAbna

¼ 2 --δβkakb þ δαðkalb þ kblaÞ − ka --δlb − kb --δla ð74Þ

at the joint with hab and σab fixed, we can obtain

δgab ¼ 2 --δβkakb þ δαðkalb þ kblaÞ − ka --δlb − kb --δla

¼ e−2χ

2
ðδa − --δArÞkakb þ 2e2χðδaþ --δArÞlalb

þ δaðkbla þ kalbÞ − e−χ

2
ffiffiffi
2

p ðka --δÂb þ kb --δÂaÞ

−
ffiffiffi
2

p
eχðla --δÂb þ lb --δÂaÞ; ð75Þ

which gives

--δAr ¼ −δa; --δÂa ¼ --δla ¼ 0;

δα ¼ δa; --δβ ¼ 1

2
e−2χδa: ð76Þ

Furthermore, by virtue of the variation of eχ ¼ −naka, one
can obtain

δa ¼ δχ ¼ δ ln ð−n · kÞ: ð77Þ

With the above preparation, the variation of the corner
term can be written as

δIC ¼
Z
C
Ψ̂δχdS ð78Þ

which gives the corner term as

IC ¼
Z
C
Ψ̂χdS ð79Þ

with

χ ¼ ln ð−n · kÞ: ð80Þ

2. Joint intersected by double null segments

With the corner term obtained before, one can readily
derive the corner term for any other type of joint by the
additivity rule. As a demonstration and for the later
calculations as well, we would like to derive the corner
term for the joint intersected by double null segments. As
illustrated in the left panel of Fig. 5, we first add an
auxiliary spacelike segment B, which divides the corner
into two parts. Then by the additivity rule, we have

IC ¼
Z
C
Ψ̂ ln ð−n · k1ÞdSþ

Z
C
Ψ̂ ln ð−n · k2ÞdS

¼
Z
C
Ψ̂½ln ð−n · k1Þ þ ln ð−n · k2Þ�dS

¼
Z
C
Ψ̂ ln

�
−
1

2
k1 · k2

�
dS: ð81Þ

Whence one can readily write down the corner term for the
four joints in the right panel of Fig. 5 as

Icorner¼ IC12 þIC23 þIC34 þIC41

¼
Z
C12

Ψ̂ln

�
−
1

2
k1 ·k2

�
dS−

Z
C23

Ψ̂ln

�
−
1

2
k2 ·k3

�
dS

þ
Z
C34

Ψ̂ln

�
−
1

2
k3 ·k4

�
dS−

Z
C41

Ψ̂ln

�
−
1

2
k4 ·k1

�
dS:

ð82Þ

FIG. 4. The spacelike joint is interjected by a null segment and
a spacelike segment.
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D. Counterterm on the boundary

Note that the surface term as well as the corner term from
the null segment depends on the parametrization of the null
generator. In order to eliminate this ambiguity, we can
introduce a counterterm

Ict ¼ −
Z
N
Θ̂ ln ðlctΘÞdλdS; ð83Þ

where Θ̂ ¼ ∇aðkaΨ̂Þ ¼ 1ffiffi
σ

p ∂λðΨ̂
ffiffiffi
σ

p Þ and Θ ¼ ∇aka ¼
1ffiffi
σ

p ∂λð
ffiffiffi
σ

p Þ is the expansion scalar of the null generator

with lct an arbitrary length scale. To show this, let us
consider the reparametrization dλ̄

dλ ¼ e−β, which gives

k̄a ¼ eβka; κ̄ ¼ eβðκ þ ∂λβÞ;
Θ̄ ¼ eβΘ; ¯̂Θ ¼ eβΘ̂: ð84Þ

As a result, we have

Īsurf þ Īcorner ¼ Isurf þ Icorner −
Z
N
Ψ̂ð∂λβÞdλdS

þ
Z
∂N þ

Ψ̂βdS −
Z
∂N −

Ψ̂βdS

¼ Isurf þ Icorner þ
Z
N

βffiffiffi
σ

p ∂λðΨ̂
ffiffiffi
σ

p ÞdλdS;

ð85Þ

and

Īct ¼ Ict −
Z
N

βffiffiffi
σ

p ∂λðΨ̂
ffiffiffi
σ

p ÞdλdS; ð86Þ

which implies

Isurf þ Icorner þ Ict ð87Þ

is invariant under the above reparametrization.

V. APPLICATION: CASE STUDIES FOR
ACTION GROWTH RATE

A. Case 1: SAdS spacetime

We shall apply our above result to calculate the action
growth rate of the WDW patch in the SAdS spacetime for
FðRÞ gravity and critical gravity, respectively. The SAdS
metric is obtained originally as a solution to Einstein
equation with a negative cosmological constant, i.e.,

Rab ¼ −
dþ 1

L2
gab ð88Þ

with L the AdS curvature radius. Its (dþ 2)-dimensional
expression is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d;k; ð89Þ

where fðrÞ ¼ r2

L2 þ k − ωd−1

rd−1
is the blackening factor, and

k ¼ fþ1; 0;−1g denotes the d-dimensional spherical, pla-
nar, and hyperbolic geometry, individually. The horizon
r ¼ rh lies in the location where fðrhÞ ¼ 0.
As illustrated in the Penrose diagram of the SAdS

spacetime Fig. 6, IðtL; tRÞ, denoted as the action for the

FIG. 5. The joint is intersected by double null segments can be obtained by the additivity rule.

FIG. 6. Wheeler-DeWitt patches of a Schwarzschild-AdS
black hole.

SURFACE TERM, CORNER TERM, AND ACTION GROWTH … PHYS. REV. D 99, 086005 (2019)

086005-9



WDW patch determined by the time slices on the left and
right AdS boundaries, is invariant under the time trans-
lation, i.e., IðtL þ δt; tR − δtÞ ¼ IðtL; tRÞ. Thus the action
growth can be computed as δI ¼ Iðt0 þ δt; t1Þ − Iðt0; t1Þ,
where the time on the right boundary has been fixed. To
regulate the divergence near the AdS boundary, a cutoff
surface r ¼ rmax is introduced. In addition, we also
introduce a spacelike surface r ¼ rmin to avoid running
into the spacelike singularity inside of the SAdS black hole.
As such, we shall focus on the situation in which the
boundary consists solely of null and spacelike segments
only with spacelike joints. In addition, for simplicity we
shall adopt the affine parameter for the null generator of
null segments such that the surface term vanishes for null
segments. With this in mind, we have

δI ¼ IM1
− IM2

þ IΣ þ IC1 − IC2 þ δIct: ð90Þ

Here M1 is bounded by u ¼ t0, u ¼ t0 þ δt,v ¼ t0 þ δt,
and r ¼ rmin. M2 is bounded by u ¼ t0, v ¼ t0,
v ¼ v0 þ δt, and u ¼ t1. The null coordinates are defined
as u ¼ tþ r�ðrÞ and v ¼ t − r�ðrÞ with r�ðrÞ ¼ R

dr
f .

1. FðRÞ gravity
For a general FðRÞ gravity, the equation of motion reads

F0ðRÞRab −
1

2
FðRÞgab − ð∇a∇b − gab∇c∇cÞF0ðRÞ ¼ 0;

ð91Þ

and the auxiliary field as well as its decedents can be
expressed as

ψabcd ¼ 1

2
ðgacgbd − gadgbcÞF0ðRÞ;

Ψab ¼ −
1

2
habF0ðRÞ;

Ψ̂ ¼ −2F0ðRÞ: ð92Þ

Whence the full on-shell action can be simplified as

I ¼ Ibulk þ Isurf þ Icorner þ Ict

¼
Z
M

ddþ2x
ffiffiffiffiffiffi
−g

p
FðRÞ − 2

X
s

�Z
Bs

KF0ðRÞdΣ
�

− 2ð−1Þλ
Z
Cλ

cλF0ðRÞdS −
Z
N
Θ̂ ln ðlctΘÞdλdS: ð93Þ

In what follows, we shall consider the special case, in
which there exists an R0 such that

FðR0Þ ¼
2R0

dþ 2
F0ðR0Þ; ð94Þ

where the prime denotes the derivative with respect to R.

As such, (88) with L2 ¼ − ðdþ1Þðdþ2Þ
R0

satisfies the above
equation of motion. Accordingly, the SAdS metric can be
regarded as its solution.
With the above preparation, now let us use (90) to

calculate the action growth rate in our FðRÞ gravity. So we
only need to keep the first order of δt below for each term
in (90). First, with the ðu; rÞ coordinates, we have

IM1
¼ FðR0ÞΩd;k

Z
t0þδt

t0

du
Z

ρðuÞ

rmin

rddr

¼ FðR0ÞΩd;k

dþ 1
rdþ1
maxδt; ð95Þ

where r ¼ ρðuÞ is the solution to the equation vðu; rÞ ¼
t0 þ δt and rmin has been set to zero in the end. Similarly,
with the ðv; rÞ coordinates, we have

IM2
¼ FðR0ÞΩd;k

Z
t0þδt

t0

dv
Z

ρ0ðvÞ

ρ1ðvÞ
rddr

¼ FðR0ÞΩd;k

dþ 1
ðrdþ1

max − rdþ1
1 Þδt; ð96Þ

where r ¼ ρ0ðvÞ is the solution to the equation uðv; rÞ ¼ t0
and r ¼ ρ1ðvÞ is the solution to the equation uðv; rÞ ¼ t1
with r1 the r coordinate of C1. Thus the difference between
IM1

and IM2

IM1
− IM2

¼ FðR0ÞΩd;k

dþ 1
rdþ1
1 δt: ð97Þ

For the surface term, we have

IΣ ¼ −2F0ðR0Þ
Z
S
KdΣ

¼ ðdþ 1ÞF0ðR0ÞΩd;kω
d−1δt; ð98Þ

where we have used the expression K ¼ − 1
rd

d
dr ðrd

ffiffiffiffiffiffi
−f

p Þ
for the spacelike surface r ¼ rmin and let rmin → 0 in
the end.
In order to write down the explicit expression for the

difference between the two corner terms from C1 and C2,
we shall choose k1a ¼ ∇au and k2a ¼ −∇av. Note that
k1 · k2 ¼ − 2

f. Then by (82), we can obtain

IC1 − IC2 ¼ F0ðR0ÞΩd;k

× ½rd1f0ðr1Þ þ drd−11 fðr1Þ ln ð−fðr1ÞÞ�δt; ð99Þ

where we have used

JIE JIANG and HONGBAO ZHANG PHYS. REV. D 99, 086005 (2019)

086005-10



δr ¼ r1 − r2 ¼ −
1

2
fðr1Þδt ð100Þ

with r2 the r coordinate of C2.
In the SAdS spacetime, the counterterm can be expressed

as

Ict ¼ 2F0ðR0Þ
Z
N
Θ lnðlctΘÞdλdS: ð101Þ

By the translation symmetry, there are only two null
segments contributing to the action growth. The first one
comes from the null segment u ¼ t1 with r as the affine
parameter, i.e., ka1 ¼ ð ∂∂rÞa, which gives rise to the expan-
sion Θ ¼ d

r. As a result, the corresponding counterterm can
be written as

Ið1Þct ¼ 2dΩd;kF0ðR0Þ
Z

rmax

r2

drrd−1 ln

�
dlct
r

�

¼ 2Ωd;kF0ðR0Þ

×

�
rdmax ln

�
dlct
rmax

�
− rd2 ln

�
dlct
r2

�
þ 1

d
ðrdmax − rd2Þ

�
:

ð102Þ

Obviously, as to the counterterm from the second null

segment v ¼ t0, we have I
ð2Þ
ct ¼ Ið1Þct . By (100), the growth

of the counterterm can be written as

δIct ¼ 2dΩd;kF0ðR0Þfðr1Þrd−11 ln

�
dlct
r1

�
δt: ð103Þ

Then summing all the previous terms, we end up with

δI ¼ Ωd;kF0ðR0Þ
�
−2

rdþ1
1

L2
þ ðdþ 1Þωd−1

þrd1f
0ðr1Þ þ drd−11 fðr1Þ ln

�
−fðr1Þd2l2ct

r21

��
δt

¼ 2dΩd;kF0ðR0Þωd−1

×

�
1þ 1

2

�
r1
ω

�
d−1

fðr1Þ ln
�
−fðr1Þd2l2ct

r21

��
δt

¼ 2MF

�
1þ 1

2

�
r1
ω

�
d−1

fðr1Þ ln
�
−fðr1Þd2l2ct

r21

��
δt;

ð104Þ

where

MF ¼ Ωd;kdωd−1F0ðR0Þ ð105Þ

is the Arnowitt-Deser-Misner mass [22]. As a result, the
action growth rate is given by

_I ¼ 2MF

�
1þ 1

2

�
r1
ω

�
d−1

fðr1Þ ln
�
−fðr1Þd2l2ct

r21

��
; ð106Þ

which reduces to

_I ¼ 2MF; ð107Þ

in the late time limit with r1 → rh. It is noteworthy that this
late time behavior is also obtained by different approaches
in [27–29].

2. Critical gravity

Now let us move onto the critical gravity. The original
bulk action is given by [27,30],

Ibulk¼
Z
M
ddþ2x

ffiffiffiffiffiffi
−g

p

×

�
R−2Λ−

1

m2

�
RabRab−

dþ2

4ðdþ1ÞR
2

��
; ð108Þ

where m is a dimensionful parameter. Whence the corre-
sponding equation of motion can be obtained as

½8Λm2 þ 8dΛm2 þ 4ðdþ 1ÞðRcdRcd −m2RÞ
þðdþ 2Þð4∇c∇cR − R2Þ − 8ðdþ 1Þ∇c∇dRcd�gab
þ 4½Rabð2ðdþ 1Þm2 þ ðdþ 2ÞRÞ − 4ðdþ 1ÞRbcRc

a�
þ 4½−ðdþ 2Þ∇a∇bRþ 2ðdþ 1Þ∇a∇cRc

b

þ2ðdþ 1Þ∇b∇cRc
a − 2ðdþ 1Þ∇c∇cRab� ¼ 0; ð109Þ

and the auxiliary field as well as its decedents reads

ψabcd ¼
�
1þ 2þ d

2ð1þ dÞm2
R

�
gc½agb�d

−
1

m2
Ra½cgd�b −

1

m2
Rc½bga�d;

Ψab ¼ −
1

2

�
1þ 2þ d

2ð1þ dÞm2
R

�
hab

−
1

2m2
½Rcdncndgab − Rab − ncðnaRbc þ nbRacÞ�;

Ψ̂ ¼ −2þ 1

m2

�
2Rabrarb − 2Rabnanb −

dþ 2

dþ 1
R

�
:

ð110Þ

It is not hard to show that with

Λ ¼ dðdþ 1Þðd2 − 2d − 4L2m2Þ
8L4m2

; ð111Þ

(88) satisfies the equation of motion. So in this case, the
SAdS metric is also the solution to the critical gravity. With
this solution, one can obtain
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Ibulk ¼ −2
dþ 1

L2

�
1 −

d2

2L2m2

�Z
M

ddþ2x
ffiffiffiffiffiffi
−g

p
;

Ψab ¼ −
1

2

�
1 −

d2

2L2m2

�
hab;

Ψ̂ ¼ −2
�
1 −

d2

2L2m2

�
: ð112Þ

Following the same calculation as FðRÞ gravity, one can
easily obtain the action growth rate for the critical gravity as

_I ¼ 2MC

�
1þ 1

2

�
r1
ω

�
d−1

fðr1Þ ln
�
−fðr1Þd2l2ct

r21

��
; ð113Þ

where

MC ¼ dΩd;kω
d−1

�
1 −

d2

2L2m2

�
ð114Þ

is the Arnowitt-Deser-Misner mass for the critical gravity
[30]. The late time action growth rate is the same as that
obtained in [27] by using the approach developed
in [25,26].

B. Case 2: The asymptotically AdS black
hole for the critical Einsteinian cubic gravity

In this subsection, we consider the 4-dimensional the
critical Einsteinian cubic gravity. The corresponding bulk
action is given by [31]

Ibulk ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p
F

¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2Λþ λPÞ; ð115Þ

where the cubic invariant polynomial term P of the
Riemann tensor reads

P ¼ 12RacbdRcedfRe
a
f
b þ Rab

cdRcd
efRef

ab

− 12RabcdRacRbd þ 8Ra
bRb

cRa
c ð116Þ

with λ the coupling constant.
In terms of the auxiliary field

ψabcd ¼
1

2
ðgacgbd − gadgbcÞ þ 6λ

�
RadRbc − RacRbd

þ gbdRa
eRce − gadRb

eRce − gbcRa
eRde

þ gacRb
eRde − gbdRefRaecf þ gbcRefRaedf

þ gadRefRbecf − gacRefRbedf − 3Ra
e
d
fRbecf

þ 3Ra
e
c
fRbedf þ

1

2
Rab

efRcdef

�
; ð117Þ

the equation of motion can be expressed as

ψacdeRb
cde −

1

2
gabF − 2∇c∇dψacdb ¼ 0: ð118Þ

As shown in [32], when the parameters satisfies the
following critical relation

Λ ¼ −
2

L2
; λ ¼ −

L4

24
; ð119Þ

the above equation of motion admits a static asymptotically
AdS black hole solution, whose line element can be
written as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2;k ð120Þ

with the blackening factor

fðrÞ ¼ r2

L2
þ k − μ: ð121Þ

Then following the exact same procedure, one can obtain

IM1
− IM2

¼ 4Ω2;kr1

�
μ −

r21
L2

�
δt: ð122Þ

By using (26), one can further find that the surface term of
Σ vanishes. In addition, the straightforward calculation
gives rise to the following corner term

IC1 − IC2 ¼ 4Ω2;kr1 ×

��
r21
L2

− μ

�
þ fðr1Þ ln ð−fðr1ÞÞ

�
δt:

ð123Þ

At last, the counterterm contribution of the null segments
can be obtained as

δIct ¼ 8Ω2;kr1fðr1Þ ln
�
2lct
r1

�
δt; ð124Þ

where we have used Θ̂ ¼ − 8
r. By summing all the previous

terms, we end up with

_I ¼ 4Ω2;kr1fðr1Þ ln
�
−
4fðr1Þl2ct

r21

�
: ð125Þ

In the late time limit, the action growth rate apparently
vanishes. However, this late time behavior still saturates the
Lloyd bound because the mass of this black hole also
vanishes [32].
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VI. CONCLUSION

We have presented a complete discussion of the varia-
tional problem for FðRiemannÞ gravity with a nonsmooth
boundary. In order to give rise to a well-posed variational
principle, we must supplement the surface term and corner
term to the bulk action. Following the method developed in
[7], we obtain a general formula for the boundary term,
where the corner term can be obtained by integrating the
Wald entropy density weighted by a transformation param-
eter between the two intersected segments. When the
involved segment is null, we are also required to add a
counterterm to make the full boundary term invariant under
the reparametrization.
Then motivated by the CA conjecture, we apply the

resulting full action to evaluate the full time action growth
rate of the WDW patch in the SAdS spacetime for the FðRÞ

gravity and critical gravity, as well as in an asymptotically
AdS black hole for the critical Einsteinian cubic gravity.
For the FðRÞ and critical gravity, the late time action
growth rate shares exactly the same behavior as those
obtained by other approaches. For the critical Einsteinian
cubic gravity, we find that the late time action growth rate
vanishes but still saturates the Lloyd bound.
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