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A coherent picture of the quantum mechanics of a collapse-formed, evaporating black hole is presented.
In a distant frame, semiclassical theory in the zone describes microscopic dynamics of only the “hard
modes,” the modes that are hard enough to be discriminated in the timescale of Hawking emission. The
thermal nature of these modes arises from microcanonical typicality of the full black hole degrees of
freedom, mostly composed of the “soft modes,” the modes that cannot be discriminated at the semiclassical
level. The hard modes are purified by a combined system of the soft modes and early Hawking radiation but
not by either of them separately. This intrinsically tripartite structure of entanglement is general, regardless
of the age of the black hole. The interior spacetime emerges only at a coarse-grained level. To describe it, an
effective theory can be erected at each time, which applies only to a limited spacetime region determined by
the time at which the theory is erected. The entire interior of the black hole can be described only using
multiple effective theories erected at different times, realizing the idea of complementarity. We analyze the
implications of the entanglement structure described here for various phenomena, including Hawking
evaporation and general information retrieval. For multiple entangled black holes, it implies that
semiclassical objects dropped into different black holes cannot meet in the interior, although each object
smoothly enters the horizon of the black hole to which it is falling. We also discuss physics in Rindler
space, elucidating how it is obtained as a smooth limit of the black hole physics.
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I. INTRODUCTION

A black hole is an object in general relativity from which
nothing can escape. As in any other object, its entropy,
formally defined as the logarithm of the number of
independent states in a fixed energy interval, is infinity
at the classical level Scl ¼ ∞, which would give zero
temperature Tcl ¼ ð∂Scl=∂EÞ−1 ¼ 0. Quantum mechanics,
however, regulate these to give [1–3]

SðMÞ ¼ AðMÞ
4l2P

; TðMÞ ¼ 1

8πMl2P
; ð1Þ

where M and AðMÞ ¼ 16πM2l4P are the mass and horizon
area of a (Schwarzschild) black hole, respectively, lP is
the Planck length, and we have adopted natural units
c ¼ ℏ ¼ 1. A surprising thing is that the entropy is
proportional to the surface area rather than the volume,

which has led to the idea that a fundamental theory of
quantum gravity is formulated holographically in non-
dynamical, lower-dimensional spacetime [4–6].
The fact that a black hole radiates, and so eventually

evaporates, allows us to understand it as a resonance
appearing, e.g., in an intermediate stage of a scattering
process [7,8]. (For an extremal black hole, this requires a
conjectured property of quantum gravity [9].) In fact, the
anti–de Sitter (AdS)/conformal field theory (CFT) corre-
spondence [10–12] strongly suggests that formation and
evaporation of a black hole occurs unitarily, making the
concern of information loss [13] obsolete. The unitary
evolution of a black hole, however, raises another issue of
quantum information cloning [14,15]: If Hawking radiation
contains full information about an object that has fallen into
a black hole earlier, then its simultaneous existence with the
object in the interior spacetime would imply a cloning of
quantum information, which is forbidden by linearity of
quantum mechanics [16]. An interesting idea addressing
this issue is called complementarity [17], which asserts that
information about the interior spacetime is not independent
of that in Hawking radiation. The explicit realization of this
idea, however, has not been clear, and there are even
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arguments that it cannot be implemented consistently with
the usual postulates of semiclassical physics [18–20].
The purpose of this paper is to reanalyze quantum

mechanics of a collapse-formed, evaporating black hole,
given recent developments. We begin with a series of
assumptions that seem reasonable and are consistent with
our latest understanding of the subject and then develop a
coherent picture from them. Essences of the resulting picture
involve those discussed in Refs. [21–23] and Refs. [24–26].
Semiclassical theory in a black hole background describes
only a small subset of the fundamental degrees of freedom
(d.o.f.), which are distributed nonlocally throughout the zone
region [21–23]. The interior spacetime appears after coarse
graining microscopic d.o.f. in a state-dependent manner
[24–26]. The picture also contains an element of Ref. [27] in
that the relevant microscopic d.o.f. involve those of early
Hawking radiation, although the structure of entanglement
we find differs from that considered there.
While some of the concepts used have been developed in

the context of AdS=CFT, we will avoid the language of
holography as much as possible, since the question is mostly
about themicroscopic picture in thebulk.Our focuswill beon
Schwarzschild black holes in four-dimensional asymptoti-
cally flat spacetime (or small black holes in four-dimensional
asymptotically AdS spacetime). However, the restriction on
specific spacetime dimensions or on nonrotating, noncharged
black holes is not essential for our discussion.
In the description based on a distant reference frame, our

picture has the following key features:
(i) In the black hole zone region, semiclassical theory

describes microscopic dynamics of only the hard
modes, the modes that are hard enough to be
discriminated in the timescale of Hawking emission.
These modes comprise only a tiny fraction of the
total black hole d.o.f. The other, soft modes can be
described only statistically.

(ii) The thermal nature of the hard modes arises because
they are in equilibrium with the soft modes, the vast
majority of the black hole d.o.f. In particular, the
canonical nature of the hard (semiclassical) modes
arises from the microcanonical ensemble of the full
black hole d.o.f.

(iii) The spatial distribution of the soft modes can be
defined by interactions with the other modes, and it
is given by the entropy density determined by the
local Hawking temperature TðMÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ml2P=r

p
.

While this distribution is strongly peaked toward the
stretched horizon, there are Oð1Þ numbers of d.o.f.
located around the edge of the zone. Although these
comprise only a tiny portion—fractionally of
Oðl2P=AðMÞÞ—of the full black hole d.o.f., they
play an important role in Hawking emission.

(iv) The hard modes in the zone region are purified
by a combined system of the soft modes and
early Hawking radiation but not by either of them

separately. In particular, the correlation between the
hard modes and either of the soft modes or early
Hawking radiation is essentially classical. This is the
case regardless of the age of the black hole, i.e., if it
is younger or older than the Page time [8].

In the distant frame description, the evolution of a
black hole is unitary, and the interior of the black hole
is absent. In the context of holography, this corresponds to
the description based on boundary time evolution [28].
The interior spacetime emerges only effectively at a

coarse-grained level. The resulting effective theories have
the following features:

(i) An effective theory can be erected at each time (of a
distant description) for the purpose of describing a
small object falling inside the horizon until it hits the
singularity.

(ii) Each effective theory describes only a limited space-
time region determined by the time t� at which the
effective theory is erected. Specifically, the region is
the domain of dependence of the union of the zone
and its mirror regions of a two-sided black hole
obtained from the original black hole at t�.

(iii) The mirror operators needed for an effective theory
act on both the soft mode and early radiation d.o.f. In
particular, neither of the soft modes nor early
radiation alone can play the role of the second
exterior of the effective two-sided description.

(iv) Since the spacetime region described by each
effective theory is limited, the entire interior of a
black hole can be covered only using multiple
effective theories erected at different times, which
are generally not mutually independent. This pro-
vides a specific way in which the idea of comple-
mentarity is implemented. It also provides a simple
solution to the cloning paradox that no duplicate
information occurs in any single description.

The entanglement structure between the hard modes, soft
modes, and early radiation described above is intrinsically
tripartite and, in a sense, is reminiscent of the Greenberger-
Horne-Zeilinger (GHZ) form [29]. It implies, together with
a simple assumption about the dynamics of the black hole,
that manipulating early Hawking radiation alone cannot
destroy a smooth horizon of the black hole. It also implies
that a pair of entangled Schwarzschild (or small AdS) black
holes are not connected causally by a wormhole; namely,
objects dropped into different black holes cannot meet in
the interior spacetime. The situation, therefore, is different
from that in Refs. [30,31], which consider entangled large
AdS black holes in a thermal state.
In addition to analyzing physics of an evaporating black

hole, we also consider the Rindler limit. This elucidates the
relation between Hawking emission/mining [32,33] from a
black hole and Unruh radiation [34–36] seen by an
accelerating observer in Minkowski space. In particular,
it clarifies “information flow” associated with the Unruh
effect.
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A. Relation to other work

The physics of an evaporating black hole has been studied
in a large amount of literature, especially after the work of
Refs. [18–20], some of which overlap with the picture
presented here at conceptual levels. The fact that the d.o.f.
described by semiclassical theory comprise only a tiny
fraction of the entire d.o.f. was emphasized in Ref. [37],
which was later demonstrated in a more convincing form in
Ref. [38].Nonlocality associatedwith theHawkingemission
process was considered in Refs. [39–41], although here we
do not need a deviation from local dynamics at the semi-
classical level. Nonlocality of Hawking emission more
similar to the one discussed here [21–23] was noted in
Refs. [42–45]. State dependence of interior operators
[24–26] was also considered in Refs. [46–50]. Earlier
attempts to avoid firewalls along the lines ofRef. [27] include
Refs. [51–54]. For more recent analyses, see Refs. [55–57].

B. Outline

In Sec. II, we study an evaporating black hole as viewed
from a distant observer. In Sec. II A, we discuss black hole
microstates and introduce the concept of the hard and soft
modes. In Sec. II B, we describe how the thermal nature of
a black hole emerges from a microscopic point of view,
which elucidates what semiclassical theory is. In Sec. II C,
we analyze the Hawking emission process. We discuss how
information is transferred from a black hole to ambient
space, emphasizing that the nonlocal distribution of black
hole information plays an important role. We find that
entanglement between the hard mode, soft mode, and early
radiation d.o.f. takes an intrinsically tripartite form, regard-
less of the age of the black hole.
In Sec. III, we discuss how the picture of the interior

spacetime emerges from the microscopic point of view. In
Sec. III A, we study basic kinematics, emphasizing that the
equivalence principle dictates the dynamics of only a
small object, which is well described by the hard modes.
In Sec. III B, we discuss how the effective two-sided
description may emerge through coarse graining from the
entanglement structure discussed in Sec. II. This allows us to
erect an effective theory of the interior at each time of a
distant description. While each theory erected in this way
covers only a limited portionof the interior spacetime, the full
picture of the interior can be obtained (only)with a collection
of effective theories. We also argue that our framework
provides the “simplest” solution to the cloning paradox: No
duplication of information occurs in any single description,
regardless of whether it can be operationally possessed by an
observer or not.
In Sec. IV, we discuss the Rindler limit, aiming to clarify

the relation between Hawking emission/mining from a
black hole and the Unruh effect in Minkowski space. In
Sec. V, we consider multiple black holes and see that the
situation of entangled Schwarzschild (or small AdS) black
holes is different from that of entangled large AdS black

holes in a thermal state. Finally, we conclude in Sec. VI, in
which we discuss implications for a holographic descrip-
tion and make a few general remarks about the black hole
interior and singularity.

II. BLACK HOLE AND INFORMATION

In this section, we discuss how a collapse-formed,
or single-sided, black hole can be described from the
viewpoint of a distant observer. We discuss the interpre-
tation of the Bekenstein-Hawking entropy and how the
d.o.f. it represents interact with the modes described by
semiclassical theory. We also discuss implications of this
picture for the Hawking emission process, including the
evolution of the entanglement structure during evaporation.
Throughout, we assume that the evolution of a black hole is
unitary in a distant description.

A. Black hole microstates

Consider a set of states having energies, as measured in
the asymptotic region, between E and Eþ ΔE. Some of
these states can be recognized from the asymptotic region
as those representing multiple particle excitations of masses
mi:

P
imi ≈ E. Such a decomposition is possible if these

particles are distributed with sufficiently large distances
between them. There are, however, states in which this
decomposition cannot be made completely. These include
states having black holes. (They also include states having
coherent excitations.) For simplicity, wewill focus on states
that have a single Schwarzschild black hole.
Let us consider a quantum state representing a black hole

of massM located at some place at rest, where the position
and velocity are measured with respect to a distant reference
frame. Because of the uncertainty principle, such a state
must involve a superposition of energy and momentum
eigenstates. According to the standard Hawking calculation,
a state of a black hole of mass M will evolve after
Schwarzschild time tH ≈OðMl2PÞ into a state representing
a Hawking quantum of energy≈Oð1=Ml2PÞ and a black hole
with the correspondingly smaller mass.1 The fact that these
two states—before and after the emission—are nearly
orthogonal implies that the original state must involve a
superposition of energy eigenstates with a spread, at least, of

ΔE ≈
1

tH
≈O

�
1

Ml2P

�
: ð2Þ

Black hole states within this energy range cannot be
discriminated in the asymptotic region because such a
discrimination would require time longer than tH, the
timescale with which a black hole state changes to another,

1Note that despite the apparent language here, the evolution of
the state is continuous. Specifically, when the state is expanded in
the eigenbasis of Hawking quanta, dominant terms of the state
shift continuously to those with one more Hawking quantum with
the characteristic timescale of OðMl2PÞ.
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orthogonal state. These states, therefore, comprise the
microstates of a black hole of mass M.
What about the spread of momentum Δp, with p

measured in the asymptotic region? Let us assume that
the spatial location of the black hole is identified with
precision comparable to the quantum stretching of the
horizon Δd ≈OðlsÞ, namely, Δr ≈Oðl2s=Ml2PÞ, where d
and r are the proper length and the Schwarzschild radial
coordinate, respectively, and ls is the string (cutoff)
length. This implies that a black hole state must involve
a superposition of momentum eigenstates with spread
Δp ≈ ðls=Ml2PÞð1=ΔdÞ ≈Oð1=Ml2PÞ. Here, the factor
ls=Ml2P in the middle expression is the redshift factor.
This value of Δp corresponds to an uncertainty of the
kinetic energy ΔEkin ≈ ðΔpÞ2=M ≈Oð1=M3l4PÞ, which is
much smaller than ΔE in Eq. (2). The spread of energy,
therefore, comes mostly from a superposition of different
rest masses: ΔE ≈ ΔM.
The number of microstates for a black hole is given by

the Bekenstein-Hawking formula. Specifically, the number
of independent microstates N ðMÞ for a black hole of mass
M is given by

N ðMÞ ¼ exp

�
AðMÞ
4l2P

�
ΔM
M

≡ eSBHðMÞ ΔM
M

; ð3Þ

where

AðMÞ ¼ 16πM2l4P ð4Þ

is the area of the black hole horizon. The width of the mass
range ΔM is given by Eq. (2), although the value of the
Bekenstein-Hawking entropy SBHðMÞ is insensitive to the
precise choice of ΔM, as in usual statistical mechanical
systems.
The discussion above implies that it is not appropriate to

consider that quantum mechanics introduces exponentially
large degeneracies for black hole microstates which did not
exist in a classical black hole. In classical general relativity,
a set of Schwarzschild black holes located at some place at
rest are parametrized by a continuous mass parameter M;
i.e., there are a continuously infinite number of black hole
states in the energy interval between M and M þ ΔM for
anyM and smallΔM. Quantummechanics reduces this to a
finite number ≈eSBHðMÞΔM=M.2 This can also be seen from
the fact that SBHðMÞ is written as AðMÞc3=4ℏl2P when
c and ℏ are restored, which becomes infinite for ℏ → 0with
c and lP fixed. Indeed, this situation is quite standard in the

relation between quantum and classical mechanics. For
example, the number of independent states of a harmonic
oscillator in a fixed energy interval is finite in quantum
mechanics (labeled by a discrete number for the levels),
while it is infinite in classical mechanics (labeled by a
continuous amplitude).

B. Semiclassical description and the
static background approximation

From now on, we will suppress the location of a black
hole and write a quantum state containing a black hole of
mass M as

jΨðMÞi ≈ jψðMÞijϕi; ð5Þ

where jψðMÞi represents the state of the system within
the zone region r ≤ rz ≈ 3Ml2P, while jϕi represents the
state of the far region r > rz. As discussed in the previous
subsection, the mass M is specified with precision
ΔM ≈ 1=Ml2P. The separation of the state as in Eq. (5) is
justified because the d.o.f. associated with the black hole
microstates—represented by the thermal atmosphere of the
black hole in the semiclassical description—are confined in
the region r ≤ rz.

3

When sufficient time is passed after a black hole is
formed by collapse, the state of the entire system is given
by a superposition of terms of the form in Eq. (5) with
different black hole masses and locations. The super-
position necessarily arises because of the backreaction of
Hawking emission [58,59]. The full unitarity of time
evolution is retained only if we keep all these terms.
However, including this effect is straightforward, and it
provides only minor corrections to entropic considerations.
We thus use the form of Eq. (5) in discussing the dynamics
of the black hole.
After being equilibrated, a black hole can be viewed as

static in a timescale shorter than tH ≈Ml2P, at least semi-
classically. How does the black hole state jψðMÞi look
then? For now, we ignore the state jϕi when discussing the
black hole. As we will see in Sec. II C 3, this assumption is
not quite justified, except possibly for some very early time,
but it serves as a good starting point for discussion. Let us
consider that the black hole state is perturbed by excita-
tions, e.g., by an infalling object. Such an object can be well
described using modes whose frequency ω (as measured in
the asymptotic region) is sufficiently larger than the
Hawking temperature

2Of course, quantum mechanics allows for a superposition of
these finite number of independent states, so the number of
possible (not necessarily independent) states is continuously
infinite. The statement here applies to the number of independent
states regarding classical black holes with different M’s as
independent states.

3Strictly speaking, jϕi also depends onM, but we suppress this
argument because it is not important for our purposes. We will
also treat excitations spreading both in the r ≤ rz and r > rz
regions approximately by including them either in jψðMÞi or jϕi.
The precise description of these excitations will require a more
elaborate expression, but we believe this is an inessential
technical subtlety in addressing our problem.
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TH ¼ 1

8πMl2P
; ð6Þ

as we will see more explicitly in Sec. III A. We therefore
separate out these high frequency modes from the rest and
call them the hard modes. Below, we write the condition for
the hard modes as ω ≥ Δ ≫ TH, although Δ is not too
large: Δ ≈Oð10ÞTH ≈Oð1Þ=Ml2P.
We group all the orthonormal black hole microstates (in

some basis) into sets in such a way that states in the same
set have the same configuration for the hard modes. We can
do this approximately, which is enough. By labeling the
sets by the energy E carried by the hard modes and their
members by iE, a black hole microstate can be written as

jψðMÞi ¼
X
E

XN ðM−EÞ

iE¼1

cEiE jEijψ iEðM − EÞi;

X
E

XN ðM−EÞ

iE¼1

jcEiE j2 ¼ 1: ð7Þ

Here, jEi’s are orthonormal states of the hard modes.
jψ iEðM − EÞi for each E are orthonormal states represent-
ing members of the set, and we call the modes associated
with these states the soft modes. N ðM − EÞ is given by
Eq. (3), where we have identified ΔM and Δ; as mentioned
at the end of the paragraph containing Eq. (3), this does not
cause any error in the statistical limit. Note that the Hilbert
spaces for the hard and soft modes, as defined here, do not
factorize because of the energy constraint.
In writing Eq. (7), we have assumed that the number of

independent states for the hard modes is much smaller than
that of the soft modes. We will discuss this in Sec. II C 3;
here we merely point out that we only consider states that
do not yield a significant backreaction on spacetime, which
limits the number of possible hard mode states.4 We also
assume that both types of modes exist only in the region
outside the stretched horizon r ≥ rs, where

rs − 2Ml2P ≈O

�
l2s
Ml2P

�
: ð8Þ

This is motivated by the fact that the spacetime picture
breaks down in the region r < rs due to stringy effects and
that the Bekenstein-Hawking entropy is reproduced by
integrating the entropy density of the thermal atmosphere in
the region rs ≤ r ≤ rz, as we will see below. We note that
for jEi, we include modes on the stretched horizon, e.g., its
vibration modes.

Our central assertion is that it is only the hard modes that
semiclassical theory can describe at the full quantum level.
Here, by semiclassical theory we mean quantum theory
with gravity defined on a curved spacetime background
(see Sec. III A for further discussion). This makes sense
because the other, soft modes cannot be discriminated in
the asymptotic region within a timescale at which the black
hole background can be viewed as static. This implies that
the black hole state at the semiclassical level is obtained
after tracing out these soft modes. This leads to

ρðMÞ ¼
X
E

XN ðM−EÞ

iE¼1

jcEiE j2jEihEj

≃
1P

EN ðM − EÞ
X
E

N ðM − EÞjEihEj

¼ 1P
Ee

− E
TH

X
E

e−
E
TH jEihEj: ð9Þ

To go to the second line, we have assumed that the black
hole state is generic, i.e., the values of jcEiE j2 are sta-
tistically the same,5 and in the last expression, we have
taken the statistical limit E ≪ M, which we will denote by
equality. The expression in Eq. (9) appears as the standard
black hole thermal state describing the region rs ≤ r ≤ rz.
An important point, however, is that the states jEi are
supposed to represent only those of the hard modes—
semiclassical theory does not allow us to describe the
microscopic dynamics of the modes associated with energy
differences smaller than Δ. The consistency of this picture
will be discussed throughout the paper.

C. Hawking emission

In this subsection, we will consider implications of the
above picture for Hawking emission and evaporation. The
discussion below follows initially that of Refs. [21–23],
adjusted to the current context. The arguments toward the
end of Secs. II C 2 and in II C 3 are new.

1. Distribution of microscopic information

In the present picture, semiclassical theory can describe
the microscopic dynamics of only the hard modes—the soft
modes can be characterized only as a thermal bath of
temperature TH (without a hard component), with which
the hard modes interact. It is, however, not only the hard
modes in rs ≤ r ≤ rz that can interact with the soft modes.
Some of the modes described by jϕi in Eq. (5), i.e., the “far
modes” in r > rz, can also interact with (a small fraction of)
the soft modes.

4This implies that the algebra defined on the space of jEi does
not close, the situation that often appears in quantum gravity.
Here we treat the space as a simple Hilbert space; for a
mathematically more rigorous treatment, see, e.g., Ref. [60].

5If we consider the microcanonical ensemble of the black hole
microstates, then we obtain the expression in the second line
directly.

REANALYZING AN EVAPORATING BLACK HOLE PHYS. REV. D 99, 086004 (2019)

086004-5



To understand this, let us discuss the spatial distribution
of the soft modes represented by jψ iEðM − EÞi. The
concept of spatial distribution for the soft modes is mean-
ingful despite the fact that their internal dynamics is not
known. It is defined through interactions with the hard and
far modes, which we will call the “semiclassical modes.”
Since the dynamics of the semiclassical modes are
described by semiclassical theory, there is a well-defined
notion of where these modes are located. The distribution
of the soft modes can then be determined by analyzing
which of the semiclassical modes they mostly interact with.
The expression in Eq. (9) is consistent with the inter-

pretation that the soft and hard modes form an almost
closed system equilibrated at the temperature TH. It is,
therefore, reasonable to assume that from the viewpoint of
the semiclassical modes, the distribution of the soft modes
is given by the thermal entropy density of a system with
temperature TH as measured in the asymptotic region. (The
deviation from it due to the lack of the hard component is
negligible.) Since the black hole microstates comprise the
soft modes of all low-energy species, this implies that
the spatial distribution of black hole information is given by
the entropy density

sðrÞ ¼ cNðrÞT locðrÞ3; T locðrÞ ¼
THffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2Ml2P

r

q ; ð10Þ

where c is a constant of Oð1Þ, T locðrÞ is the local temper-
ature measured at r, and NðrÞ is the number of low-energy
species existing below T locðrÞ. We find that integrating this
density over the region rs ≤ r ≤ rz indeed reproduces the
Bekenstein-Hawking entropy up to an incalculable Oð1Þ
factor

Z
rz

rs

sðrÞ r2drdΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ml2P

r

q ≈ NðrsÞ
M2l4P
l2s

≈ SBHðMÞ; ð11Þ

where we have assumed that the change of NðrÞ is not too
rapid as a function of r and used the relation expected in
any theory of quantum gravity (see, e.g., Ref. [61]):

l2P ≈
l2s

NðrsÞ
: ð12Þ

Note that if we take the lower limit of the integral in
Eq. (11) to be the classical horizon rs → 2Ml2P, then the
integral diverges. This is consistent with the fact that the
entropy of a black hole is infinite at the classical level.
To elucidate the significance of this result in our context,

we go to the tortoise coordinate

r� ¼ rþ 2Ml2P ln
r − 2Ml2P
2Ml2P

; ð13Þ

in which the region outside the Schwarzschild horizon r ∈
ð2Ml2P;∞Þ is mapped into r� ∈ ð−∞;∞Þ. This coordinate
is useful in that the kinetic term of an appropriately
redefined field takes the canonical form so that its propa-
gation can be analyzed as in flat space. In this coordinate,
the stretched horizon located at rs ¼ 2Ml2P þOðl2s=Ml2PÞ
is at

r�s ≃ −4Ml2P ln
Ml2P
ls

≃ −4Ml2P lnðMlPÞ; ð14Þ

where we have taken ls to be not too far from lP. This
implies that there is a large distance between the stretched
horizon and the potential barrier region around the edge of
the zone when measured in r�: Δr� ≃ 4Ml2P lnðMlPÞ ≫
OðMl2PÞ for lnðMlPÞ ≫ 1. On the other hand, a localized
Hawking quantum is represented by a wave packet with
width of OðMl2PÞ in r� since it has an energy of order TH ¼
1=8πMl2P defined in the asymptotic region.
An important point is that the amount of integrated

entropy contained around the edge of the zone is of Oð1Þ:

Z
jr�j≲OðMl2PÞ

sðrðr�ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2Ml2P
rðr�Þ

s
r2ðr�Þdr�dΩ≈Oð1Þ: ð15Þ

While this is a negligibly small fraction of the total black
hole entropy, of order l2P=AðMÞ ≪ 1, it has a significant
implication for the interpretation of the Hawking emission
process. It implies that outgoing field theory modes—
specifically, outgoing modes represented by jϕi in Eq. (5)
and located around r ≈ rz at the relevant time—can extract
black hole information directly from the soft modes at the
edge of the zone, without involving a semiclassical
mode deep in the zone. In other words, from the viewpoint
of the semiclassical modes, microscopic information about
the black hole is delocalized over the entire zone, although
the distribution is strongly peaked toward the stretched
horizon.
While the microscopic dynamics of this information

extraction process cannot be described within semiclassical
theory because it involves soft modes, the flow of energy
and entropy can be investigated using energy-momentum
conservation, thermodynamic considerations, and unitarity.
This is done below in Sec. II C 2, resulting in the following
picture. A Hawking quantum that can be viewed as a
semiclassical mode is emitted at the edge of the zone,
where it extracts Oð1Þ information from the soft modes in
each emission timescale of t ≈OðMl2PÞ. Since Hawking
evaporation is a long process, this small rate is enough for
all the black hole information to be returned to ambient
space in the lifetime of the black hole τBH ≈OðM3l4PÞ.
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2. Information transfer

Let us now amplify the discussion above using a qubit
model. Take the black hole state in Eq. (7). We focus on the
terms with the lowest E

jψðMÞi ≈
XN ðMÞ

i¼1

cijE0ijψ iðMÞi; ð16Þ

because forΔ ≫ TH they statistically dominate the process.
Here, E0 ¼ 0 is the lowest value of E, and Δ is the energy
separating the hard and soft modes. In the timescale of
OðMl2PÞ, this state changes by emitting a Hawking quan-
tum.6 Suppose that the black hole releases one qubit of
information through Hawking emission. The energy of the
emitted quantum is then ΔM ≃ ðln 2Þ=8πMl2P so that
N ðM − ΔMÞ ¼ N ðMÞ=2. We can model this process by
saying that the emitted Hawking quantum is in states jr1i
and jr2i if the index for the soft mode states i is odd and
even, respectively.7 Because of energy-momentum con-
servation, the process is accompanied by the creation of an
ingoing negative energy excitation, which we denote by a
star; namely, jψ�

i ðMÞi represents the states of the soft
modes with the negative energy excitation.
One might naively think that this process simply goes as

jE0ijψ iðMÞijϕi⟶?
� jE0ijψ�

i ðMÞijϕþ r1i if i is odd;
jE0ijψ�

i ðMÞijϕþ r2i if i is even;

ð17Þ

where jϕþ rai (a ¼ 1, 2) is the state in which the outgoing
Hawking quantum in state jrai is added to the far state jϕi
around the edge of the zone (with the appropriate time
evolution). However, this leads to a problem. Remember
that jψ�

i ðMÞi have energy M − ΔM, and we expect that
they will relax into states of the black hole of the decreased
mass M − ΔM:

jψ�
i ðMÞi → jψ i0 ðM − ΔMÞi: ð18Þ

Since i0 runs only over i0 ¼ 1;…;N ðM − ΔMÞ ¼
N ðMÞ=2, however, such a relaxation cannot occur unitar-
ily. Instead, what happens in the emission process must
be like

jE0ijψ iðMÞijϕi →
( jE0ijψ�

iþ1
2

ðMÞijϕþ r1i if i is odd;

jE0ijψ�
i
2

ðMÞijϕþ r2i if i is even;

ð19Þ

i.e., the index for the soft mode states with the negative
energy excitation runs only from 1 toN ðMÞ=2. This allows
for these states to relax unitarily into the unexcited soft
mode states with the decreased mass M − ΔM, as in
Eq. (18). Note that the process in Eq. (19) itself is also
unitary if we consider the whole quantum state, including
both the black hole and far regions.
The above analysis says that a negative energy excitation

over static black hole states, corresponding to the Hartle-
Hawking vacuum [62] at the semiclassical level, carries a
negative entropy. Namely, in the existence of a negative
energy excitation, the range over which the microstate
index i runs is smaller than that without. This shows that the
standard relation between entropy and energy S ∼ E
persists even if these quantities are defined with respect
to a static black hole background. Specifically, the exci-
tation of energy −ΔM carries entropy

ΔS ¼ −8πMΔMl2P ¼ −ΔM
TH

: ð20Þ

Since a negative energy excitation does not relax instanta-
neously, the initial states in Eq. (19) may contain multiple
negative energy excitations created by earlier emissions.
However, we expect that the relaxation time of a negative
energy excitation is not much larger than OðMl2P lnðMlPÞÞ,
the time it takes for an excitation to propagate from the edge
of the zone to the stretched horizon and also the time it
takes for information to be scrambled [63,64]. Thus, the
number of negative energy excitations existing at any
moment is expected to be ≲OðlnðMlPÞÞ, which is expo-
nentially smaller than that of the d.o.f. represented by i.
This implies that negative energy excitations created earlier
lie in regions far from the edge of the zone, and hence their
effects on the process of Eq. (19) can be safely ignored.8

With the microscopic emission process in Eq. (19), a
generic black hole state evolves unitarily as described by
Page [8]; in particular, the entanglement between the black
hole and the emitted Hawking radiation follows the Page
curve. As we have seen, the transfer of information from a
black hole occurs through a negative entropy flux in the
zone carried by ingoing negative energy excitations on a

6Throughout this paper, we assume that the number of species
below TH is small, NðrzÞ ≈Oð1Þ, and we mostly focus on the
case with a single species. Including the effect of multiple species
is straightforward.

7In this model, the qubit that escapes from the black hole is the
odd-even direction of i in the space spanned by jψ iðMÞi. This
corresponds to the statement that the information leaving the
black hole is that associated with the soft mode located around
r ∼ rz.

8We may redefine the semiclassical vacuum by including these
negative energy-entropy excitations. The resulting vacuum will
correspond, very roughly, to the Unruh vacuum [34], and the
associated geometry is that of an evaporating black hole, which is
well described by the advanced/ingoing Vaidya metric near the
horizon [65]. In this picture, the change of the local gravitational
field supplies the energy of the outgoing Hawking quanta created
around r ∼ rz.
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background that can be viewed as static over the timescale
of OðMl2PÞ. This picture is different from that envisioned in
Refs. [18–20], which assumed that information is carried
from the stretched horizon to the edge of the zone by
outgoing modes described within semiclassical theory;
see Fig. 1.
It is important that the transfer of information to

semiclassical modes occurs mostly around the edge of
the zone, not throughout the zone region. ForΔ sufficiently
larger than TH, this condition is guaranteed because
production of semiclassical modes in the bulk of the zone
is suppressed by

ϵ ∼
�
Δ
TH

�
2

e−
Δ
TH ; ð21Þ

where the first factor appears because for higher energies
larger angular-momentum modes can escape the zone. This
might, however, raise the following question. Since the
separation energy Δ between the hard and soft modes is
somewhat arbitrary, what happens if we artificially lower Δ
down to ≈TH? In this case, “hard modes” defined with
respect to the lowered Δ seem to be produced throughout
the zone. However, most of the produced modes cannot
propagate to the edge of the zone. The “mean free path” of
these modes is of OðMl2PÞ in r� so that only the modes
produced around the edge of the zone will escape to
ambient space without being reabsorbed by the bath of
the soft modes. This is a manifestation of the fact that the
modes with frequency ≲TH must be viewed as soft modes,
implying that Δ should be taken sufficiently larger than TH.
We conclude that semiclassical Hawking quanta must

be regarded as emitted at the edge of the zone, where
information stored in the soft modes—spacetime—is trans-
ferred to outgoing semiclassical d.o.f.—Hawking quanta.
In fact, it is natural for such special dynamics to occur in
this particular region, since this is where the near-horizon,
Rindler-like space is “patched” to the asymptotic,
Minkowski-like space in the semiclassical picture.

In the timescale of OðMl2PÞ, the energy of the emitted
Hawking quantum can only be measured with precision of
Oð1=Ml2PÞ. Does this mean that the standard calculation of
the gray-body factor is untrustable? It does not. Since the
rate of Hawking emission is very small, the change of the
black hole mass is very slow. For example, after a very long
time ofOðM2l3PÞ ≫ Ml2P, the fractional change of the black
hole mass is only of Oð1=MlPÞ ≪ 1. We then expect that
the black hole state keeps taking the form of Eq. (7) with
slowly varying M through this long period, and we can
apply the standard calculation for this long time, obtaining
the result with the error of energy only of Oð1=M2l3PÞ ≪
1=MlP. We find that the standard calculation of the gray-
body factor, such as that in Ref. [66], can be trusted with
precision, parametrically, ofOð1=τBHÞ ≈Oð1=M3l4PÞ down
to zero energy in the spectrum. This situation is quite
different from the modes inside the zone, where the modes
with frequency ≲1=Ml2P interact with the thermal bath in
the timescale of OðMl2PÞ; hence, these modes must be
viewed as soft modes, which do not have a structure beyond
thermality at the semiclassical level.

3. Evolution of microscopic entanglement

The Hawking emission process at the microscopic level
in Eq. (19) indicates that a Hawking quantum shortly after
the emission is entangled with the soft mode d.o.f. How
does this entanglement evolve?
To address this question, we first argue that the dimen-

sion of the Hilbert space associated with the hard modes is
exponentially smaller than that associated with the soft
modes. In particular, the coarse-grained—or thermal—
entropy associated with the hard modes is given by either

Shard ≈Oð1Þ
�
AðMÞ
l2P

�
p
; p < 1; ð22Þ

or

FIG. 1. The information transfer from an evaporating black hole occurs through negative energy-entropy excitations created as a
backreaction of Hawking emission occurring around the edge of the zone (left). This can be contrasted with the picture in which
outgoing positive energy-entropy excitations carry information from the stretched horizon to the far region (right).
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Shard ¼ c
AðMÞ
l2P

; c ≪
1

4
: ð23Þ

Here and below, we suppress the argument M from
entropies. In the language of quantum information in
holography, this amounts to saying that the dimension of
the code subspace [38] erected on a black hole background
(and representing the region r ≥ rs) is exponentially
smaller than that of the Hilbert space associated with the
background geometry. We strongly suspect that this is
indeed the case, as anticipated earlier [4,37], but we may
instead take it as an assumption of the framework. Note that
in Refs. [21–23], it was argued that different black hole
microstates must be viewed as different “microscopic
geometries.” This corresponds to the statement that soft
modes cannot be represented as d.o.f. specifying states
within a code subspace in a way that subsystem recovery is
possible; only the hard and far modes can be represented in
such a manner (unless an effective description having the
second boundary is adopted; see Sec. III B). Below, we
assume that Eq. (22) or Eq. (23) is true.
Without any dynamics swapping entanglement in the far

region, the purifiers of the Hawking quanta emitted earlier
keep being the microstates of the black hole. The state of
the combined black hole and Hawking radiation system at a
given time is then

jΨðMÞi ¼
X
E

XN ðM−EÞ

iE¼1

XeSrad
a¼1

cEiEajEijψ iEðM − EÞijrai;

X
E

XN ðM−EÞ

iE¼1

XeSrad
a¼1

jcEiEaj2 ¼ 1; ð24Þ

where jrai’s represent orthonormal states for the radiation,
and Srad is its thermal entropy. The density matrix for the
hard modes is given by

ρHðMÞ ¼
X
E

� XN ðM−EÞ

iE¼1

XeSrad
a¼1

jcEiEaj2
�
jEihEj

≃
1P
Ee

− E
TH

X
E

e−
E
TH jEihEj; ð25Þ

where in the second line, we have used the fact that the size
of jcEiEaj2 is statistically given by9

jcEiEaj2 ∼
1

eSBHþSrad
P

Ee
− E
TH

: ð26Þ

This takes the same form as Eq. (9), so that the physics of
the hard modes is still described by standard semiclassical
theory. The density matrix for the emitted Hawking
radiation, at the time the black hole has mass M, is

ρRðMÞ ¼
XeSrad
a;b¼1

�X
E

XN ðM−EÞ

iE¼1

cEiEac
�
EiEb

�
jraihrbj: ð27Þ

For a quantum chaotic dynamics of the black hole, the von
Neumann entropy of this density matrix follows the Page
curve as the black hole evaporation progresses.
It is instructive to study the structure of tripartite

entanglement in Eq. (24) further. This expression tells us
that the state of the hard modes, ρHðMÞ in Eq. (25), is
purified by the states of the combined system of soft modes
and radiation

jẼi ¼ 1ffiffiffiffiffi
zE

p
XN ðM−EÞ

iE¼1

XeSrad
a¼1

cEiEajψ iEðM − EÞijrai;

zE ¼
XN ðM−EÞ

iE¼1

XeSrad
a¼1

jcEiEaj2: ð28Þ

Suppose that the coarse-grained/thermal entropies of the
three sectors satisfy

Shard ≪ Ssoft ≈ SBH; Srad; ð29Þ

which is expected to be valid throughout the history of
black hole evolution, except possibly in the earliest time
when Srad ≲ Shard (if the black hole equilibrates before Srad
becomes larger than Shard). Let us now perform the Schmidt
decomposition in the space given by the soft mode and
radiation states for each E:

jẼi ¼
XN E

iE¼1

γEiE jψ iEijriEi;
XN E

iE¼1

γ2EiE ¼ 1; ð30Þ

where

N E ¼ minfN ðM − EÞ; eSradg; ð31Þ

and jψ iEi’s without the argumentM − E represent Schmidt
basis states. In the above expression, we have kept each
entropy only at the leading relevant order in expansion in
inverse powers of MlP. By construction, the states of the
soft modes as well as those of the radiation in this basis are
orthonormal for each E:

hψ iE jψ jEi ¼ δiEjE ; hriE jrjEi ¼ δiEjE ; ð32Þ

and all the coefficients in Eq. (31) are real and non-
negative, γEiE ≥ 0.

9We are not concerned with the logarithmic correction to the
black hole entropy arising from the ΔM=M factor in Eq. (3), so
we will identifyN ðMÞ as eSBH and similarly for other numbers of
microstates.
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In general, soft mode states corresponding to different
E’s are orthogonal

hψ iE jψ jE0 i ¼ 0 for E ≠ E0; ð33Þ
but the same is not necessarily true for radiation states.
However, the inner product of two generic radiation states
is suppressed by the large dimension of the radiation
Hilbert space:

jhriE jrjE0 ij ≈O

�
1

e
1
2
Srad

�
≪ 1 for E ≠ E0: ð34Þ

Here, motivated by the expectation that the dynamics of the
black hole is quantum chaotic, we have assumed that the
distributions of N E states jriEi and N E0 states jrjE0 i are
uncorrelated in the radiation Hilbert space of dimension
eSrad . This allows us to view that the state of the entire
system takes the form

jΨðMÞi ¼
X
E

ffiffiffiffiffi
zE

p XN E

iE¼1

γEiE jEijψ iEijriEi; ð35Þ

with all the jψ iEi’s as well as all the jriEi’s being
(approximately) orthogonal. Here, zE is defined in Eq. (28).
The entanglement structure in Eq. (35) is reminiscent of

the GHZ form [29]. To see the significance of this state-
ment, let us trace out the radiation d.o.f. and obtain the
reduced density matrix describing the hard and soft modes

ρHSðMÞ ¼ TrradjΨðMÞihΨðMÞj

¼
X
E

XN E

iE¼1

zE γ2EiE jEijψ iEihEjhψ iE j

þ
X
E;E0
E≠E0

XN E

iE¼1

XN E0

i0E0¼1

ffiffiffiffiffiffiffiffiffiffi
zEzE0

p
γEiEγE0i0E0

×O

�
1

e
1
2
Srad

�
jEijψ iEihE0jhψ i0E0 j; ð36Þ

where we have assumed generic sizes for the coefficients

jcEiEaj2∼
1

eSBHþSrad
P

Ee
− E
TH

; γ2EiE ∼
1

N E
; zE∼

e−
E
THP

Ee
− E
TH

;

ð37Þ

and ignored the irrelevant factor of eShard . Note that the
phases of the second term in Eq. (36) are random because
of random phases from inner products between different
radiation states. Similarly, we can trace out the soft modes
and obtain the reduced density matrix for the hard modes
and the radiation

ρHRðMÞ ¼ TrsoftjΨðMÞihΨðMÞj

¼
X
E

XN E

iE¼1

zE γ2EiE jEijriEihEjhriE j: ð38Þ

This takes the diagonal form.
The expressions in Eqs. (36) and (38) indicate that the

correlation of the hard modes with either of the soft modes
or radiation is (essentially) classical. For Eq. (38), this is
obvious, and for Eq. (36), it is due to the extra e−Srad=2 factor
in the second term originating from Eq. (34). It is striking
that the hard modes can be purified only when we consider
the combined system of the soft modes and the early
radiation. This is the case regardless of the relative size
between Ssoft and Srad, i.e., whether the age of the black
hole is younger or older than the Page time.
Incidentally, the correlation between the soft modes and

the radiation given by the reduced density matrix

ρSRðMÞ ¼
X
E

zE
XN E

iE;i0E¼1

γEiEγEi0E jψ iEijriEihψ i0E
jhri0E j ð39Þ

is generally quantum mechanical as required for the unitary
evolution of the black hole. This is a feature that makes the
entanglement structure of Eq. (35) different from the true
GHZ form.

III. INTERIOR SPACETIME

In this section, we study what happens to an object
falling into an evaporating black hole. We analyze how the
interior spacetime manifests itself in the microscopic
description of the black hole. We also discuss relations
of this picture with the resolution of the cloning paradox.

A. An object falling into a black hole

We first analyze an object falling into a black hole.
Consider a scalar field φ of mass μ. In the tortoise
coordinates, its action can be written as

I ¼ 1

2

Z
dtdr�dθdϕ

�
1 −

2Ml2P
r

�
r2 sin θ

×

�
1

1 − 2Ml2P
r

��∂φ
∂t
�

2

−
�∂φ
∂r�
�

2
�
−

1

r2

�∂φ
∂θ
�

2

−
1

r2sin2θ

�∂φ
∂ϕ
�

2

− μ2φ2

�
; ð40Þ

where θ and ϕ are angular coordinates, and r is a function
of r� determined by Eq. (13). By rescaling the field and
decomposing into spherical harmonics
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φðt; r�; θ;ϕÞ ¼ 1

r

X
l;m

χlmðt; r�ÞYlmðθ;ϕÞ; ð41Þ

we obtain

I ¼ 1

2

X
l;m

Z
dtdr�

��∂χlm
∂t
�

2

−
�∂χlm
∂r�

�
2

− Vlðr�Þχ2lm
�
;

ð42Þ

where

Vlðr�Þ ¼
�
1 −

2Ml2P
r

��
lðlþ 1Þ

r2
þ 2Ml2P

r3
þ μ2

�
: ð43Þ

The equation of motion for a mode of frequency ω is then

−
∂2χlm
ð∂r�Þ2 þ Vlðr�Þχlm ¼ ω2χlm: ð44Þ

Note that ω is a conserved quantity since the action is
invariant under translation in t. For convenience, we plotffiffiffiffiffiffiffiffiffiffiffiffiffi
Vlðr�Þ

p
in Fig. 2 for some small values of l and μ.

Let us first consider the case with μ ¼ 0. Suppose we
drop a wave packet into a black hole from the outside of the
zone, with rinit ≈OðMl2PÞ > rz. We assume that the char-
acteristic width d of the wave packet in the angular
directions, which we call the transverse directions, is much
smaller than the radius of the black hole: d ≪ R, where
R ¼ 2Ml2P. In this case, uncertainty in the transverse
momentum is of order Δp⊥ ≈ 1=d, and the frequencies
of the modes composing the wave packet have a spread

Δω ≈
1

d
≫

1

Ml2P
: ð45Þ

This implies that the spread of the energy is much larger
than the separation energy between the hard and soft modes

Δω ≈O

�
R
d

�
Δ ≫ Δ: ð46Þ

In terms of angular momentum, the spread is ΔL≈
OðRΔp⊥Þ, giving

Δl ≈O

�
R
d

�
≫ 1: ð47Þ

Note that while the peak of the potential Vlðr�Þ located
around jr�j≲OðMl2PÞ is higher for larger l as Vl;max≃
ð1=27Þðl2=M2l4PÞ, the contributions to the energy in
Eq. (46) allow for the wave packet to enter into the zone
over the potential barrier.
The situation for μ ≠ 0 is similar. In this case, frequen-

cies receive the contribution from the rest mass:

ω2 ¼ μ2 þ p2: ð48Þ

For μ≳ ð1= ffiffiffiffiffi
12

p Þl=Ml2P, the effect of gravitation acting on
the rest mass makes the barrier disappear; otherwise, the
height of the bump is as before, ΔVl ≃ ð1=27Þðl2=M2l4PÞ.
The analysis in the case of μ ¼ 0 applies essentially with ω
replaced by p. In particular, the spreads of various
quantities are

ffiffiffiffiffiffiffiffiffi
Δω2

p
≈

ffiffiffiffiffiffiffiffiffi
Δp2

q
≈O

�
R
d

�
Δ ≫ Δ: ð49Þ

Note that it is the square of the frequency that is relevant for
the dynamics; see Eq. (44). In fact, the term involving the
mass in Vlðr�Þ is negligible compared with T2

H in the region
T locðrÞ ≫ μ. Therefore, any elementary particle for which
μ < ls can be regarded as massless near the stretched
horizon.
As we discussed in Sec. II, modes with frequencies

smaller than Δ cannot be discriminated at the semiclassical
level. The relations in Eqs. (46) and (49), however, show
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FIG. 2. The potential
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vlðr�Þ

p
in units of 1=Ml2P plotted as a function of r�=Ml2P. In the left panel, solid and dashed lines represent the

potential for μ ¼ 0 and 1=Ml2P, respectively; for each value of μ, l ¼ 0, 1, 2 are plotted (from bottom to top). In the right panel, the cases
of μMl2P ¼ 0, 1, 2 are plotted on a different scale (solid, dashed, and dotted, respectively), now for l ¼ 0, 1, 2, 5 for each value of μ (from
bottom to top).
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that the details of a particle, such as the form of the wave
function, can still be described at this level as long as the
particle is localized within the length scale d ≪ R in
the transverse directions. The error coming from neglecting
the soft mode contribution to the wave function is sup-
pressed by d=R, consistent with the equivalence principle.
A similar statement also applies to an object consisting of
many particles, whose size is determined not by the spread
of the wave function but by interactions between the
constituents: As long as its size in the transverse directions
is sufficiently smaller than R, its dynamics can be well
described at the semiclassical level.
This implies that to describe the dynamics of such

“small” objects, it is sufficient to consider operators acting
on the “E space” in Eq. (24):

OjEijψ iEðM − EÞijrai ¼
X
E0

oEE0 jE0ijψ iEðM − EÞijrai;

ð50Þ
where oEE0 are the elements of a matrix defined in the space
spanned by fjEig. In particular, small objects in the zone
rs ≤ r ≤ rz can be described by the thermal density matrix
in Eq. (25) and operators acting on it through

jEi →
X
E0

oEE0 jE0i; ð51Þ

without referring to the state of the soft modes or the early
radiation. In fact, the change of the density matrix of the
hard modes due to Hawking emission, which occurs
through interactions with the soft modes, is sufficiently
slow that the description based on these modes can be used
for a timescale much longer than OðMl2PÞ (where possible
changes occurring through a long time period can be treated
adiabatically). It is this description that we call semi-
classical theory.

B. Emergence of the interior

What happens when a falling object reaches the stretched
horizon? In the viewpoint of a distant observer, the
information about the object will be transferred to the
excitations of the stretched horizon, which will eventually
be resolved into states of the soft modes. However, there is
another, coarse-grained description applicable only to
certain coarse-grained d.o.f. in a certain limited regime.
This leads to the emergence of spacetime inside the
horizon. In fact, this is the only sense in which the concept
of the black hole interior can come out from the micro-
scopic point of view. In this subsection, we study this issue.

1. Two-sided description

Consider a black hole of massM. We label the states for
the hard modes jEi in terms of the occupation numbers nα
for each mode α:

jEi → jfnαgi: ð52Þ

Here, α collectively denotes the species, frequency, and
angular-momentum quantum numbers of the mode. The
state of the combined system of the black hole and radiation
in Eq. (24) can then be written as

jΨðMÞi¼
X
n

XN ðM−EnÞ

in¼1

X
a

cninajfnαgijψ inðM−EnÞijrai;

X
n

XN ðM−EnÞ

in¼1

X
a

jcninaj2¼ 1; ð53Þ

where n≡ fnαg represents the set of all occupation
numbers, and En is the energy of the state jfnαgi as
measured in the asymptotic region within precision Δ.
Important operators of the form of Eq. (50) are annihilation
and creation operators

bγ ¼ ffiffiffiffiffi
nγ

p jfnα − δαγgihfnαgj ⊗ 1 ⊗ 1; ð54Þ

b†γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jfnα þ δαγgihfnαgj ⊗ 1 ⊗ 1; ð55Þ

where 1 represents the fact that the operators do not act on
soft mode or radiation states. These comprise operators in
the semiclassical theory describing physics in the zone
region rs ≤ r ≤ rz. As we have seen in Sec. III A, a small
object falling toward the horizon can be well described by
the configuration of the hard modes, i.e., these operators
acting on the black hole state.
As we will see explicitly in Sec. III B 2, we can describe

what happens to such a small, falling object without
knowing the detailed states of the soft modes or early
radiation. We can therefore coarse grain these states as

XN ðM−EnÞ

in¼1

X
a

cninajψ inðM − EnÞijrai

→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN ðM−EnÞ

in¼1

X
a

jcninaj2
vuut kfnαg⟫: ð56Þ

Here, we have used the same label as the hard mode state to
specify the coarse-grained state, which we denote by the
double ket symbol, and the coefficient on the right-hand
side arises because we have taken kfnαg⟫ to be a
normalized state. At the coarse-grained level, the detailed
structures of cnina’s are not important, so this coefficient
can be written as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN ðM−EnÞ

in¼1

X
a

hjcninaj2i
vuut ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðM − EnÞP
nN ðM − EnÞ

s

¼ e−4πMEnl2PffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−8πMEnl2P

q ¼ e−
En
2THffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−En
TH

q ; ð57Þ

where

hjcninaj2i ≈
1P

n

P
a N ðM − EnÞ

ð58Þ

is the characteristic size of jcninaj2 obtained from the
normalization condition in Eq. (53). The state in
Eq. (53) can then be written as

kΨðMÞ⟫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ne

−En
TH

q X
n

e−
En
2TH jfnαgikfnαg⟫; ð59Þ

which takes the form of the standard thermofield
double state in the two-sided black hole picture [34,67],
although jfnαgi’s here represent the states only of the hard
modes.10

We can now define the “mirror operators” acting on the
coarse-grained states [24–26]:

b̃γ ¼ 1 ⊗ ffiffiffiffiffi
nγ

p kfnα − δαγg⟫⟪fnαgk; ð60Þ

b̃†γ ¼ 1 ⊗
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p kfnα þ δαγg⟫⟪fnαgk; ð61Þ

where the two factors represent operators acting on
jfnαgi (trivially) and kfnαg⟫ in Eq. (59). Note that, as
emphasized in Refs. [24–26], these operators cannot
be defined in a state-independent manner at the micro-
scopic level; if we want to define operators corresponding
to Eqs. (60) and (61) at the microscopic level, then we
must do so in a way dependent on the microstate of
a black hole. The analysis in Sec. II C indicates that
such state-dependent operators must act on both soft
modes and early radiation, regardless of the age of the
black hole.
In describing a small object falling inside the horizon,

however, we need not explicitly consider microscopic
operators. This is because as long as we restrict our
attention to a certain spacetime region, the dynamics
dictating the infalling object can be described unitarily
in the Fock space given by (not too many) operators in
Eqs. (54), (55), (60), and (61) acting on the state in Eq. (59).
In Sec. III B 2, we will specify what the certain spacetime
region means.
If Hawking radiation emitted earlier interacts with the

environment, it may transfer a part (or all) of its entangle-
ment with the black hole to the environment. The states jrai
in Eq. (53) must then include the environment as well. In
fact, jrai can be viewed in general as full states representing
the region outside the zone.
What happens if a detector collects a large number of

Hawking quanta and then enters into the black hole?
Imagine that early Hawking radiation interacts with a
detector, leading to different pointer states jdIi. By sepa-
rating these states from jrai, the state in Eq. (53) can be
written as

jΨðMÞi ¼
X
n

XN ðM−EnÞ

in¼1

X
I

X
aI

cninIaI jfnαgijψ inðM − EnÞijraIijdIi; ð62Þ

where
P

n

PN ðM−EnÞ
in¼1

P
I

P
aI
jcninIaI j2 ¼ 1. To discuss what the detector finding a particular outcome I will experience

later, we may focus on the particular branch of the wave function

jΨIðMÞi ¼ 1ffiffiffiffi
zI

p
X
n

XN ðM−EnÞ

in¼1

X
aI

cninIaI jfnαgijψ inðM − EnÞijraIijdIi; ð63Þ

where zI ¼
P

n

PN ðM−EnÞ
in¼1

P
aI jcninIaI j2. Generically, this

does not affect the physics of the black hole, since the
structure of Eq. (63) is the same as that of Eq. (53).
However, if the detector is carefully set up, it may be fully
correlated with a particular configuration fn0αg of the hard
modes after the measurement: cninIaI ≈ 0 for n ≠ fn0αg.
This seems to mean that when the detector enters the

10In this picture, negative energy-entropy excitations of Sec. II
C arising as backreaction of Hawking emission appear as
“particles” whose wavelengths are of the order of the black hole
horizon radius or an ambiguity in choosing a vacuum at this scale
resulting from spacetime curvature. We will ignore this effect,
which is not important in discussing physics of a small infalling
object.
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horizon, it would hit a “firewall” because the hard modes
lack entanglement. This, however, need not be the case.
Since the detector can interact with Hawking quanta only

outside the zone, it takes time of order 4Ml2P lnðMlPÞ for it
to reach the stretched horizon. (More generally, it takes
time of order 4Ml2P lnðMlPÞ for the outcome of the
measurement to be communicated to the region near the
stretched horizon.) Therefore, if the equilibrium timescale
between the hard and soft modes is of order

teq ¼ 4Ml2P lnðMlPÞ ð64Þ

or shorter, then the state of the system (without the detector
included) takes the form of Eq. (53) with generic cnina ¼
cninIaI when the detector reaches the stretched horizon. This
implies that the detector sees a smooth horizon when it falls
into the black hole.
The above analysis suggests that an operation acting

only on early Hawking radiation—however complicated—
cannot destroy the smoothness of the horizon. This is a
consequence of the entanglement structure described in
Sec. II C.

2. Effective theories of the interior

Suppose that the state of the entire system at a given
Schwarzschild time t ¼ t� has a black hole of massM with a
small object in the zone falling toward the horizon. To see
what happens to this object, we may adopt the coarse-grained
description given above, in which the state is given by

kΨ0⟫ ∝
YN
i¼1

�X
γ

fi;γb
†
γ

�
kΨðMÞ⟫; ð65Þ

where we have assumed that the object consists of N
particles, and γ collectively denotes frequency as well as
other discrete labels such as those for particle species and
angular momenta. The coefficients fi;γ are the weights
needed to produce particle i by superposing the creation
operators b†γ , and the coarse-grained black hole vacuum state
kΨðMÞ⟫ is given by Eq. (59). Note that we can always
discriminate constituents of a semiclassical object from the
thermal atmosphere since they modulate the thermal density
matrix of Eq. (25) with energies larger than the energy spread
of the black hole vacuum ΔE ≈ 1=Ml2P.
The question is as follows: What does this object

experience when it enters the horizon? To answer this
question, evolving the state in Schwarzschild time t is of no
use. In such a description, the object hits the stretched
horizon and is converted into excitations on the stretched
horizon, which is then resolved into soft modes due to
intrinsically stringy dynamics. In the context of hologra-
phy, this implies that the boundary time evolution cannot be
used to provide the answer since it corresponds to evolution
in Schwarzschild time [28]. To address the question, we

need to “evolve” the state in a way related to the proper
time seen by the object.
Since the coarse-grained black hole vacuum state

kΨðMÞ⟫ takes the standard thermofield double form, the
Fock space built on it can be viewed as representing
excitations on a background of the two-sided black hole
of massM. The question above, therefore, can be answered
by evolving kΨ0⟫ in Eq. (65) with respect to time v in the
non-null Kruskal-Szekeres coordinates:�

u ¼ 1
2
ð−U þ VÞ;

v ¼ 1
2
ðU þ VÞ;

�
U ¼ −Re−τ;
V ¼ Reτ;

ð66Þ

where R and τ are given for r > 2Ml2P by

R ¼ Ml2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

2Ml2P
− 1

r
e

r
4Ml2

P ; τ ¼ t − t�
4Ml2P

: ð67Þ

Specifically, the original annihilation and creation
operators bγ, b

†
γ , b̃γ , and b̃†γ can be related with the new

annihilation and creation operators by

aξ ¼
X
γ

ðαξγbγ þ βξγb
†
γ þ ζξγb̃γ þ ηξγb̃

†
γÞ; ð68Þ

a†ξ ¼
X
γ

ðβ�ξγbγ þ α�ξγb
†
γ þ η�ξγb̃γ þ ζ�ξγb̃

†
γÞ; ð69Þ

where ξ is the label for modes in which the frequency ω
with respect to t is replaced by the frequencyΩwith respect
to v, i.e., ξ ¼ fΩ; l; m;…g, and αξγ , βξγ, ζξγ, and ηξγ are the
Bogoliubov coefficients calculable using the standard
quantum field theory method. The time evolution operator
in v is then given by

Hv ¼
X
ξ

Ωa†ξaξ þHintðaξ; a†ξÞ: ð70Þ

The resulting physics is that of a smooth horizon with
interior spacetime.
We stress that the “thermal radiation” in Eq. (25)

obtained by tracing out soft (and far) modes is very
different from “real radiation” emitted from normal matter,
e.g., a piece of coal, which does not admit a similar
construction.11 In the case of the black hole thermal
atmosphere, the form of the density matrix—or temper-
ature—is universal throughout the species, reflecting the
fact that its thermal nature arises from entanglement
between the hard and soft modes for each species. On
the other hand, in the case of radiation from normal matter,
the structure of the radiation depends on dynamics. For
example, depending on couplings between the constituents
of matter and radiation, it is possible that some species
(e.g., photons) are radiated but not others (e.g., neutrinos).

11I thank Raphael Bousso for asking a question that has led me
to make the comment here.
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The structure of entanglement also depends on the system:
Different configurations of radiation are purified by differ-
ent microscopic configurations of matter. This implies that
hard/far—or semiclassical—modes comprising the radia-
tion are purified by other semiclassical modes; in the
language of holography, the purifier of radiation states
can be found in code subspace d.o.f. that allow for
subsystem recovery. The universality discussed here is
an important ingredient for the purifier to be interpreted
as comprising spacetime, which occurs for the black
hole thermal atmosphere and Unruh radiation (see
Sec. IV B).12

We also emphasize that because of an extremely large
boost between distant and infalling reference frames, the
evolution in the black hole interior generated by Eq. (70)
occurs “instantaneously” from the viewpoint of a distant
frame, i.e., within a cutoff time as measured locally at r ≈ rs
(within ≈Ml2P in Schwarzschild time). This implies that it is
not possible to manipulate soft and far (radiation) modes to
affect a mirror state—the state associated with a given hard
mode state jfnαgi in Eq. (53)—within the timescale
relevant for the effective description. This provides a
further justification for the coarse graining in Eq. (56)
and is a key to understand the apparent uniqueness of the
infalling vacuum, despite the existence of exponentially
many black hole microstates.
There is an important restriction on the applicability of the

effective description discussed above. Since jfnαgi repre-
sents states of the hard modes, i.e., the semiclassical modes
in the zone rs ≤ r ≤ rz, at t ¼ t�, kfnαg⟫ represents states of
their mirror modes, i.e., the semiclassical modes in the
corresponding mirror region in the second exterior of the
two-sided black hole, at the time when the vacuum state
takes the thermofield double form Eq. (59) (which we also
denote by t�). The effective description obtained by the
coarse graining, therefore, is well defined only in the domain
of dependence Dz of the union of the zone and its mirror
regions at t ¼ t� in the two-sided description. This implies
that a given effective theory defined by kΨ0⟫ and Hv may
describe only a part of the history of a falling object.
To illustrate this point, we have depicted in Fig. 3 the

trajectories of an object released from r ¼ 4Ml2P at
ðt − t�Þ=Ml2P ¼ −8;−10;−13;−20 in the u–v plane (from
right to left). The unfilled triangle is the spacetime region in
v ≥ 0 that can be described by this effective theory, which
is determined by the location of the edge of the zone at

t ¼ t�: ðu; vÞ ≃ ð1.5Ml2P; 0Þ. Note that light rays travel at
45° in the u–v plane since

ds2 ¼ 32Ml2P
rðu; vÞ e

−rðu;vÞ
2Ml2

P ð−dv2 þ du2Þ þ rðu; vÞ2dΩ2: ð71Þ

We find that the trajectory of the object released at t ¼
t� − 13Ml2P can be described until it hits the singularity,13

while other trajectories cannot. To fully describe other
trajectories, we need to erect different effective theories
building on states at different times. For example, to
describe the trajectory of the object released from r ¼
4Ml2P at t ¼ t� − 8Ml2P, we can build an effective theory on
the state at t ¼ t� þ 5Ml2P,

jΨi ¼ e−iHð5Ml2PÞjΨðt ¼ t�Þi; ð72Þ

where H is the time evolution operator in Schwarzschild
time t.
The existence of a consistent semiclassical description

based on the v evolution implies that there is a subsector in
the original microscopic theory in which the physics
perceived by an object after it crosses the horizon can
be described unitarily until it hits the singularity or leaves
the spacetime region given by the effective theory. Note that
we can always find an effective theory describing the full
history of an object. As can be seen from Fig. 3, if we erect
an effective theory sufficiently early, the object leavesDz in
the positive u direction before it hits the singularity. On the
other hand, if the time to erect the effective theory is late,
then the object leaves the region in the negative u direction
before reaching the singularity. Since the singularity is
always located in the spacetime region described by an
effective theory, continuity tells us that we can choose a
time to erect the effective theory such that the full trajectory
of the object is described until it hits the singularity.
So far, we have only considered the infrared cutoff of the

effective description provided by the end of the zone: r≲ rz
at t ¼ t�. However, it is also important to consider the
ultraviolet cutoff given by the stretched horizon: r ≥ rs at
t ¼ t�.

14 If there were no such cutoff, as in the case of the
classical description, then all the matter that fell into the
black hole earlier than t ≃ t� þ 4Ml2P lnðMl2P=lsÞ (the inter-
section of the stretched horizon and the future boundary of
Dz) would appear in the effective description, with the

12This reveals an intriguing relation between ultraviolet and
infrared physics: In order to have spacetime behind the horizon,
dynamics at the stretched horizon—i.e., at the string scale 1=ls—
must be chaotic across all low-energy species. Specifically, it
redistributes the energy of matter falling into the stretched
horizon universally among the species. This provides nontrivial
information about the dynamics at the scale 1=ls. In particular, it
must not have a structure preventing the universal redistribution,
such as an exact global symmetry.

13By an object hitting the singularity, we mean the object
entering the region near r ¼ 0 in which the semi-
classical description of gravity breaks down, specifically the
region in which a curvature invariant exceeds the string scale,
r≲ ðl2s l2PMÞ1=3.

14Note that in the effective two-sided description, this excludes
the region whose proper distance from the bifurcation surface (at
t ¼ t�) is smaller than the string length, i.e., the union of the
region between the mathematical and stretched horizons 2Ml2P ≤
r < rs and its corresponding mirror region in the second exterior.
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trajectories of all the objects that fell earlier than ≈t�
concentrated near v ¼ −u. This would cause large back-
reaction on the spacetime, destroying the validity of the
effective description. The existence of the ultraviolet cutoff,
however, saves the picture.
To see the implications of the ultraviolet cutoff, let us

consider an effective theory erected at t ¼ t� and a process
in which a falling object sends a null signal in the positive u
direction just after passing the horizon. Suppose that the
object is at r ¼ rs at t ¼ t�, the location closest to the
horizon with the ultraviolet cutoff. The signal then leaves
Dz of this effective theory toward positive u, but the same
signal may also appear in another effective theory erected
later at t ¼ t� þ Δt. In order for this to happen, the signal
must be sent when

U < Rze
−t�þΔt

4Ml2
P ; ð73Þ

where U is given by Eq. (66) and

Rz ¼ Ml2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rz

2Ml2P
− 1

r
e

rz
4Ml2

P ≃ 1.5Ml2P: ð74Þ

Now, in order for the object to send a nontrivial signal, a
proper time of order lP must elapse after it passes the
horizon. This is achieved at the smallest U if the object is
dropped at r ¼ rs (at t ¼ t�) with zero initial velocity.
However, this still requires

U > OðlPÞe
− t�
4Ml2

P ð75Þ

for the signal to be sent, where we have taken lP ≈ ls
anticipating the level of precision in the final result. By
requiring consistency between Eqs. (73) and (75), we
obtain

Δt < 4Ml2P½lnðMlPÞ þOð1Þ�: ð76Þ
This implies that the effective theory erected at t cannot
receive any signal sent before≈t − 4Ml2P lnðMlPÞ inside the
horizon.
This strongly suggests that the effective theory erected at

t ¼ t� should not include an object that has reached the
stretched horizon at

t < t� − 4Ml2P½lnðMlPÞ þOð1Þ�: ð77Þ

Note that in the distant description, an object that has
reached the stretched horizon before t� appears as excita-
tions of the stretched horizon modes at t ¼ t�. The
existence of these modes, together with the fact that an
excitation of a hard mode can always be discriminated from
the thermal atmosphere, allows us to avoid the frozen
vacuum argument in Ref. [68]. It is then natural to associate
the cutoff of Eq. (77) with the fact that excitations of the
stretched horizon modes are eventually dissipated into soft
modes. Specifically, the excitations of the stretched horizon
modes caused by an object reached at the stretched horizon
before t� − 4Ml2P lnðMlPÞ have already resolved into the
soft modes by the time the effective theory is erected at t�.
This implies that the timescale for excitations of the
stretched horizon to relax into soft modes is

trel ¼ 4Ml2P lnðMlPÞ; ð78Þ

FIG. 3. Trajectories of an object released from r ¼ 4Ml2P at ðt − t�Þ=Ml2P ¼ −8;−10;−13;−20 depicted in the non-null Kruskal-
Szekeres coordinates ðu; vÞ (solid dark-blue lines, from right to left). The unfilled triangle-shaped region represents the positive v part of
the spacetime described by the effective theory of the interior built on the full microstate at t ¼ t�. The solid red line and dashed green
lines represent the singularity v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þM2l2P

p
and the horizon v ¼ juj, respectively.
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up to terms that are not enhanced by lnðMlPÞ. The agree-
ment between this timescale and that in Eq. (64) is
suggestive.
Incidentally, the condition of Eq. (77) is identical to the

condition that an object must enterDz of an effective theory
before hitting the stretched horizon in order for it to be
described by the effective theory. This coincidence is
comfortable and strengthens our confidence in the validity
of the cutoff given inEq. (77).With this cutoff, a small object
released from r ¼ r0 at t ¼ t0 with r0 − 2Ml2P ≈OðMl2PÞ is
included in the effective theory erected at t� only if

t0 > t� − 8Ml2P½lnðMlPÞ þOð1Þ�: ð79Þ

This implies that only the object that is dropped at suffi-
ciently late time appears in the effective description. This
makes it clear that the issue of large backreaction is avoided.
The discussion above implies that to describe the interior

of a black hole “throughout its history,” one needs to use
multiple effective theories erected at different times (which
are generally not mutually independent). The picture of the
classical interior spacetime in general relativity emerges
only after “patching” descriptions given by these effective
theories; see Fig. 4 for a schematic depiction. This is how
the picture of complementarity [17] is realized in the
present framework. A similar idea was discussed in the
context of multiverse cosmology in Ref. [69].

3. Resolution of the cloning paradox

A potential issue in a theory in which a black hole
evolves unitarily is that of cloning of quantum information

[14,15]. Suppose that an observer falling into a black hole
sends some quantum information along the horizon right
after he/she passes the horizon. Suppose also that another
observer hovering outside the horizon decodes this infor-
mation from Hawking radiation (which is possible if the
black hole evolution is unitary) and then jumps into the
black hole afterward. Now, if the second observer can also
receive the signal directly from the first observer after
passing the horizon, then it would mean that the second
observer has obtained two copies of the same quantum
information, which is prohibited by linearity of quantum
mechanics [16].
It is often said that this problem is avoided because no

one can operationally obtain two copies of information,
either because of the time it takes for a black hole to process
and send back information [15,63] or an exponentially long
time needed for an observer to decode information from
Hawking radiation [53]. The framework discussed here,
however, provides an arguably simpler solution: There is no
duplicate information in any single description, regardless
of whether it can be operationally possessed by an observer
or not. In this section, we describe this picture. A similar
idea has also been discussed in Ref. [70], although the
detailed implementations are different.
First, it is clear that no cloning occurs in the distant

description because there is no interior. The issue, therefore,
is if any effective description of the interior may contain
duplicate information.We now argue that the answer is no. In
order for the paradox to occur, there must be an infalling
object as well as radiation from the black hole that contains
the same information. In the effective description, however,
there is no Hawking radiation emitted from the edge of the
zone since the region outside the zone is not contained in the
region described by the effective theory. The thermal atmos-
phere of the black hole is also absent in this description since
the soft modes are already coarse grained to give the semi-
classical modes in the mirror zone region. There is simply no
way to have information in radiation—or, in fact, radiation
itself—in the effective theory describing the interior.
This only leaves the following possibility for information

duplication. A detector located in the zone retrieves infor-
mation about a fallen object and converts it into information
in semiclassical d.o.f. before an effective theory describing
the falling object in the interior is erected, making both the
object and converted information appear in the effective
theory. This is, however, impossible. As we have seen in
Sec. III B 2, an effective theory erected at t ¼ t� does not
describe an object that has reached the stretched horizon
before entering the spacetime regionDz. This implies that an
object must reach the stretched horizon when

t ≥ t� − 4Ml2P½lnðMlPÞ þOð1Þ�≡ t1 ð80Þ

in order for it to be included in the description.Here,we have
kept explicit only the lnðMlPÞ enhanced piece regarding

FIG. 4. A series of effective theories erected at different times
(depicted by diamonds) covering the interior spacetime. The
double red line and the dashed green line represent the singularity
and the horizon, respectively. The figure is only a sketch; in
particular, the second exterior and the white hole region in each
effective theory do not belong to the original spacetime.
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lnðls=lPÞ ≈Oð1Þ. On the other hand, the argument below
Eq. (77) implies that information about an object fallen after
t1 stays as excitations of the stretched horizonmodes until t�,
making it impossible for a detector to extract it from the
soft modes.
The discussion above is sufficient to argue that no

information duplication occurs in any single description.
One might, however, be more satisfied if the information
about a falling object described by an effective theory can
never reappear in the spacetime region Dz of the effective
theory even when the system is described in a distant
reference frame. Note that in a distant description, a
physical detector may mine information from the black
hole thermal atmosphere if it is held in the zone for a
sufficiently long time; see Sec. IVA.15 This stronger
condition eliminates the possibility that a distant descrip-
tion finds reappearance of the information within Dz while
the effective description does not. Such a discrepancy
between the descriptions is not a contradiction because
the effective theory involves coarse graining and hence may
lead to information loss, precisely as in the usual semi-
classical theory of gravity. Nevertheless, it is aesthetically
appealing if this discrepancy never occurs. Below we derive
a consequence of requiring this aesthetic criterion and see if
it is reasonable to expect that it is satisfied.
The strongest restriction from the requirement arises if an

effective theory is erected such that the object reaches the
stretched horizon at t ¼ t1 given in Eq. (80). The require-
ment that the information about this objects does not
reappear in the zone within Dz implies that it must not
reappear from the black hole before

t2 ¼ t� þ 4Ml2P½lnðMlPÞ þOð1Þ�; ð81Þ

the time at which the entirety of the outside region r > rs
leaves Dz. Since what leaves Dz last is the region near the
stretched horizon r ≈ rs, this condition is equivalent
to saying that the information about the fallen object
should not reappear before t ¼ t2 so that even a detector
located near the stretched horizon may not probe it.
Combining with Eq. (80), we can then conclude that the
black hole must retain information longer than t2 − t1≈
8Ml2P lnðMlPÞ þOðMl2PÞ.
Summarizing, the requirement of no information recov-

ery in Dz implies that the information retention time tI of a
black hole of mass M must satisfy

tI ≥ 8Ml2P lnðMlPÞ ð82Þ

up to terms that are not enhanced by lnðMlPÞ. An intriguing
point is that the coefficient of the log-enhanced term,
i.e., 8, is determined. In terms of the temperature TH and
entropy SBH of the black hole, this can be written as

tI ≥
1

2πTH
ln SBH ¼ 1

λL;max
ln SBH; ð83Þ

where λL;max is the upper bound on a Lyapunov exponent
found in Ref. [72], which a black hole is expected to
saturate. This expression makes it natural to expect that the
condition in Eq. (82) is indeed satisfied, with the inequality
saturated up to non-log-enhanced terms.

IV. RINDLER LIMIT

In this section, we consider the Rindler limit, aiming to
clarify some confusion in the literature regarding the
relation between Hawking emission and the Unruh effect.
We first discuss black hole mining, which directly corre-
sponds to the Unruh effect in the Rindler limit. We then
discuss how physics in Minkowski space arises in this limit,
especially focusing on the flow of information.

A. Black hole mining

The energy and entropy of a black hole can be extracted
directly by placing a probe material into the zone [32,33].
This process called black hole mining can accelerate the
extraction of black hole energy and entropy compared with
Hawking emission.
An important difference between mining and Hawking

emission processes is the energy cost of angular momentum
relative to the local temperature of the thermal atmosphere
T locðrÞ in Eq. (10). A similar estimate as in Sec. III A tells
us that a particle with angular momentum L2 ¼ lðlþ 1Þ
costs the energy, as measured in the asymptotic region, of

Δω ≈O

�
l
r

�
ð84Þ

so that

Δω
T locðrÞ

≈O

 
l

THr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ml2P
r

r !
≈O

 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Ml2P
r

r !
:

ð85Þ

Therefore, modes up to l ≈Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2P=δ

p
Þ respond to the

thermal atmosphere effectively, where we have taken r ¼
2Ml2P þ δ (δ ≪ OðMl2PÞ). This implies that we can a priori
utilize many modes

Xlmax

l¼0

ð2lþ 1Þ ≈ l2max ≈O

�
Ml2P
δ

�
ð86Þ

15A detector click also occurs in the effective description,
which is associated with an emission of a particle rather than an
absorption of a particle in the thermal bath [71]. This, however,
does not allow for extracting information from the vacuum state
since the description is already coarse grained and hence is
intrinsically semiclassical.
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to extract black hole energy and entropy compared with
Oð1Þ (mostly the s-wave mode) in the case of Hawking
emission. At the stretched horizon, δ ≈ l2s=Ml2P, so that this
number is enormous, ≈OððMl2P=lsÞ2Þ.
In realistic situations, energy conditions applied to the

probe material prevent us from utilizing all the modes in
Eq. (86) for δ≲OðlPÞ; specifically, the null energy con-
dition enforces the number of modes that can be used for
mining to be of OðMlPÞ or smaller, so that the black hole
lifetime cannot be shorter thanOðM2l3PÞ [33]. An important
point here, however, is that the rate of extracting energy and
entropy for each mode is the same as that in Hawking
emission—the acceleration of extraction occurs not
because of a higher rate per mode but because of an
increased number of modes available to the probe
immersed into the zone. This justifies the analysis in
Sec. III B 3, which examines the reappearance of informa-
tion near the stretched horizon to constrain the black hole
information retention time.
As in the case of Hawking emission, backreaction of

mining causes ingoing negative energy-entropy excitations.
A difference is that in the case of mining, these excitations
are generally localized in the angular directions. It is
expected that the excitations are scrambled in the soft
modes at a timescale not much larger thanOðMl2P lnðMlPÞÞ.

B. Semiclassical description in Rindler space

Here we discuss issues associated with the Rindler limit.
We mostly focus on how the semiclassical description of
Rindler space is related with that of a black hole. In Sec. IV
B 3, we extend the comparison beyond the purely semi-
classical regime.

1. Unruh effect

Rindler space is obtained as the limiting case of
Schwarzschild spacetime

M → ∞ and lP; ls∶ fixed ð87Þ

by focusing on the near horizon region r → 2Ml2P, such that
the combinations

ρ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ml2Pðr − 2Ml2PÞ

q
and τ≡ t

4Ml2P
ð88Þ

are kept finite. The metric in this limit is given by the
standard Rindler form

ds2 ¼ −ρ2dτ2 þ dρ2 þ rðρÞ2dΩ2: ð89Þ

There is no direct analogue of Hawking emission in
the Rindler limit since the edge of the zone in the
original Schwarzschild spacetime is now at spatial infinity.
(We implicitly imagine an infrared cutoff ρIR → ∞ so that

ρIR=Ml2P < ∞.) There is, however, an analogue of the
mining process with a physical probe sensing a thermal
bath with temperature

T locðρÞ ¼ lim
M→∞

THffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ml2P

r

q ¼ 1

2πρ
: ð90Þ

This is the well-known Unruh effect [34–36]. In the black
hole case, mining allows us to extract information about a
black hole vacuum. (Recall that a black hole background
appears as a black hole vacuum at the semiclassical level,
although it actually represents a collection of black hole
microstates.) On the other hand, we do not expect to extract
information about the Minkowski vacuum from Unruh
radiation. Is there a fundamental difference between black
hole mining and the Unruh effect, beyond the fact that the
latter requires the limit of Eqs. (87) and (88) to be taken?
There is not. In order for information about a black hole

vacuum to be extracted, more than a half of its entropy must
be mined [8]. The entropy of the Minkowski vacuum,
however, is infinite

SMinkowski ¼ ∞; ð91Þ

as can be seen from the fact that it is obtained by taking the
MlP→∞ limit of Schwarzschild spacetime (or the HlP→0
limit of de Sitter space, where H is the Hubble parameter).
Therefore, no finite size detector can collect more than
a half of the entropy in any finite time. The process of
quickly recovering newly added information considered in
Ref. [63] is not available either because Minkowski space
cannot be maximally entangled with any finite system (and
because the “scrambling time” of Rindler space is infinite;
see Sec. IV B 3). Information about the Minkowski vac-
uum, thus, cannot be mined using the Unruh effect by any
physical detector—detecting Unruh radiation simply cor-
responds to an infinitesimally early portion of the Page
curve.16 This is related to the statement that the Bondi-
Metzner-Sachs [73,74] soft charges, representing micro-
states of the Minkowski vacuum, cannot be measured
by experiments in finite time using a finite-size detector,
whose results are determined by the conventional S
matrix [75,76].
As in the case of mining a young black hole, detecting

Unruh radiation generates entanglement between the detec-
tor and the modes represented by the thermal bath, i.e., the
soft modes, through the creation of localized negative
energy-entropy excitations. This can be understood from
the fact that in a Minkowski frame, the Unruh effect
corresponds to emission of particles from the detector

16The fact that Rindler space corresponds to an infinitely
young black hole implies that the smoothness of Minkowski
space cannot by itself be used to argue against the firewall
phenomenon discussed in Refs. [18–20].
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[71], which generates entanglement between them. The
generated entanglement, however, is finite, so it is infini-
tesimally small compared with the infinite amount of
entropy the soft modes have.

2. Mirror operators

The description of Rindler space is analogous to that of a
black hole in the zone. In particular, semiclassical theory
in Rindler space describes microscopic dynamics of only
the hard modes, whose locally measured energies are
sufficiently larger than T locðρÞ. Following the notation in
Sec. III B 1, we denote the states of these modes by jfnαgi.
The other d.o.f. are regarded as the soft modes, which can
be described only statistically.
There is, however, a notable difference arising from

taking the limit of Eqs. (87) and (88): The state-dependent
nature of constructing the “interior space” (the other side of
the Rindler horizon) becomes irrelevant. We first note that
since there is no early Hawking mode, the mirror space is
constructed purely out of the soft modes. This, however,
does not by itself eliminate the need of state dependence.
A natural microscopic definition of state-independent
mirror operators would be

b̃γ ¼ 1 ⊗ ffiffiffiffiffi
nγ

p XN ðM−EnÞ

i¼1

jψ iðM − En−Þihψ iðM − EnÞj; ð92Þ

b̃†γ ¼ 1 ⊗
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p XN ðM−EnþÞ

i¼1

jψ iðM − EnþÞihψ iðM − EnÞj;

ð93Þ

where jψ iðM − EnÞi are the soft mode states associated
with jfnαgi, and

n− ¼ fnα − δαγg; nþ ¼ fnα þ δαγg: ð94Þ

Here, the unit matrices in Eqs. (92) and (93) represent the
fact that these operators act trivially on the hard modes, and
we have kept the “black hole mass” M, although it is taken
to infinity in the Rindler limit.
A potential problem lies in the creation operators b̃†γ .

Suppose M were finite. The number of independent soft
mode microstates associated with jnþi would then be
smaller than that of jni, which prevents us from defining
a microscopic operator that maps any state in the space
spanned by jψ iðM − EnÞi into a state in the space spanned
by jψ iðM − EnþÞi preserving the appropriate normaliza-
tion. The fractional difference between the number of
independent soft mode states associated with jnþi and
jni, however, vanishes in the limit M → ∞ for fixed
energies. The state-independent operators in Eqs. (92)
and (93) thus serve as valid mirror operators in this limit.

3. Information retrieval

We have seen that the Unruh effect in Rindler space does
not allow us to extract information about the Minkowski
vacuum. Does this mean that information on the other side
of the Rindler horizon, representing a half of Minkowski
space, can never be retrieved in a Rindler description?
As seen in Sec. IV B 1, a detection of Unruh radiation

creates entanglement between the detector and localized
negative energy-entropy excitations of the Rindler soft
modes. From a Minkowski point of view, this is entangle-
ment between the detector and particles emitted from it.
This entanglement can be retrieved in a Rindler description
if we decelerate the detector adiabatically. In other words, if
we slowly decrease the acceleration characterizing the
Rindler description, then the entanglement—information
about the other side of the horizon—can be retrieved in
Rindler space in a way that it can be described by
semiclassical theory. The physical picture is that as the
Rindler horizon recedes due to the deceleration, particles
emitted earlier from the detector (in a Minkowski point of
view) reappear from the horizon, which increases purity of
the system that can be described by semiclassical theory in
Rindler space.
This can be viewed as an analogue of information

retrieval from a black hole. A difference is that since the
entropy of the Minkowski vacuum is infinite, Eq. (91), the
“scrambling time” of Rindler space is infinite

τscr ≈Oðρ ln SMinkowskiÞ → ∞: ð95Þ

In other words, a state having the negative energy-entropy
excitations does not relax into a vacuum state in any finite
time. This is the reason why the system reappearing from
the horizon (particles emitted earlier from the detector) is
not thermalized when it is retrieved.

V. ENTANGLED BLACK HOLES

In this section, we discuss entangled black holes. As in
the earlier sections, we consider Schwarzschild (or small
AdS) black holes. We find that their physics is different
from that of commonly considered entangled large AdS
black holes in a thermal state.

A. A pair of black holes

We first consider a pair of entangled black holes. We are
not concerned about how it is actually formed. It may, for
example, be formed by preparing many Einstein-Podolsky-
Rosen pairs and collapsing them into a black hole in each
side of the pairs. Throughout, we assume that each black
hole has mass M within precision ΔM.

1. Entanglement structure

The most general entanglement structure involving the
two black holes is
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jψðM;MÞi ¼
X
E;F

XN ðM−EÞ

iE¼1

XN ðM−FÞ

jF¼1

X
a

cEiEFjFajEi1jψ iEðM − EÞi1jFi2jψ jFðM − FÞi2jrai; ð96Þ

where
P

E;F

PN ðM−EÞ
iE¼1

PN ðM−FÞ
jF¼1

P
a jcEiEFjFaj2 ¼ 1. The subscripts 1 and 2 in the states indicate that they are states of the

first and second black holes, respectively, and jrai represents states outside the zones of the two black holes, including
Hawking radiation emitted earlier.
Tracing out the second black hole in Eq. (96), we obtain

ρ1RðMÞ ¼ Tr2jψðM;MÞihψðM;MÞj ¼
X
E;E0

XN ðM−EÞ

iE¼1

XN ðM−E0Þ

i0E0¼1

X
a;a0

dEiEaE0i0E0a
0 jEi1jψ iEðM −EÞi1jrai 1hE0j1hψ i0E0 ðM −E0Þjhra0 j;

ð97Þ

where

dEiEaE0i0E0a
0 ¼
X
F

XN ðM−FÞ

jF¼1

cEiEFjFac
�
E0i0E0FjFa

0 : ð98Þ

This is different from the state of the combined system of a nonentangled black hole and radiation in Eq. (24), i.e.,

ρ1RðMÞ ≠ jψðMÞihψðMÞj, unless the system associated with the second black hole decouples, cEiEFjFa ¼ cð1ÞEiEa1
cð2ÞFjFa2

with

jrai → jrð1Þa1 ijrð2Þa2 i. Nevertheless, the reduced density matrix for the hard modes obtained from Eq. (97)

ρH1
ðMÞ ¼ TrS1Rρ1RðMÞ ¼

X
E

XN ðM−EÞ

iE¼1

X
a

dEiEaEiEajEi1 1hEj ≃
1P
Ee

− E
TH

X
E

e−
E
TH jEi1 1hEj ð99Þ

takes the standard thermal form, as in Eq. (25). Thus, the physics at the semiclassical level is identical between
nonentangled and entangled black holes. Obviously, the same applies to the second black hole as well.
Let us now see the correlation between the hard modes of the two black holes. Tracing out the radiation and soft mode

states, we obtain

ρH1H2
ðM;MÞ ¼ TrS1S2RjψðM;MÞihψðM;MÞj

¼
X
E;F

� XN ðM−EÞ

iE¼1

XN ðM−FÞ

jF¼1

X
a

jcEiEFjFaj2
�
jEi1jFi2 1hEj2hFj

≃
1P

E;Fe
−EþF

TH

�X
E

e−
E
TH jEi1 1hEj

�
⊗
�X

F

e−
F
TH jFi2 2hFj

�
; ð100Þ

where in the last line we have assumed genericity of the coefficients cEiEFjFa. We find that the hard modes of the two black
holes are generically not correlated at the semiclassical level. In fact, the lack of quantum entanglement between these
modes is rather general. To illustrate it, consider the special case that the hard modes of the two black holes are correlated at
the microscopic level: cEiEFjFa ∝ δEF. In this case, the state of the entire system can be written without loss of generality as

jψðM;MÞi ¼
X
E

XN ðM−EÞ

iE¼1

X
a

cEiEajEi1jψ iEðM − EÞi1jEi2jψ iEðM − EÞi2jrai; ð101Þ

where
P

E

PN ðM−EÞ
iE¼1

P
a jcEiEaj2 ¼ 1. When the entanglement between the black holes and environment is negligible,

cEiEa ≈ cEiEca, the two black holes are strongly entangled with each other at the microscopic level; for cEiE’s all having a
similar size, they are maximally entangled statistically. Despite this, the correlation between the hard modes of the two black
holes is given by
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ρH1H2
ðM;MÞ ¼

X
E

� XN ðM−EÞ

iE¼1

X
a

jcEiEaj2
�
jEi1jEi2 1hEj2hEj ≃

1P
Ee

− E
TH

X
E

e−
E
TH jEi1jEi2 1hEj2hEj; ð102Þ

so that their correlation is entirely classical.
The origin of the classical nature of the correlation

between the hard modes is that in our setup, frequencies of
the hard modes, collectively denoted by ω, are larger than
the resolution of energy

ω > ΔM: ð103Þ
Note that this situation is different from that considered in
Refs. [30,31], which discuss entangled large AdS black
holes in a thermal state.

2. Interior spacetime without a wormhole

The fact that the correlation between the hard modes of
two entangled black holes is at most classical implies that

two objects dropped into the two black holes cannot meet
inside. Namely, there is no wormhole in the sense that
objects dropped into different black holes can meet in
interior spacetime. Nevertheless, as we will see below, each
object smoothly enters the horizon of the black hole to
which it is falling.
As in the case of a nonentangled black hole, the fate of a

small object dropped, e.g., into the first black hole, can be
described by an effective theory erected around the time
when the object reaches the stretched horizon. Assuming
that the system is in the state of Eq. (96) at the time the
effective theory is erected, mirror states in the effective
theory are given by

kE⟫1 ¼
1ffiffiffiffiffi
zE

p
XN ðM−EÞ

iE¼1

X
F

XN ðM−FÞ

jF¼1

X
a

cEiEFjFajψ iEðM − EÞi1jFi2jψ jFðM − FÞi2jrai; ð104Þ

where zE ¼PN ðM−EÞ
iE¼1

P
F

PN ðM−FÞ
jF¼1

P
a jcEiEFjFaj2. The (vacuum) state in the effective theory, therefore, takes the form

kψðMÞ⟫1 ¼
X
E

ffiffiffiffiffi
zE

p jEi1kE⟫1 ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Ee

− E
TH

q X
E

e−
E

2TH jEi1kE⟫1; ð105Þ

where genericity of the coefficients cEiEFjFa is assumed in the second line. The object falling into the first black hole can be
described by operators analogous to those in Eqs. (54), (55), (60), and (61) acting on appropriate factors of Eq. (105). The
resulting physics is that of a smooth horizon for the first black hole.
The same is true for an object falling into the second black hole. Its fate is described by an effective theory erected around

the time when the object reaches the stretched horizon of the second black hole, now with the identification

kF⟫2 ¼
1ffiffiffiffiffi
zF

p
X
E

XN ðM−EÞ

iE¼1

XN ðM−FÞ

jF¼1

X
a

cEiEFjFajEi1jψ iEðM − EÞi1jψ jFðM − FÞi2jrai; ð106Þ

where zF ¼PE

PN ðM−EÞ
iE¼1

PN ðM−FÞ
jF¼1

P
a jcEiEFjFaj2. This leads to

kψðMÞ⟫2 ¼
X
F

ffiffiffiffiffi
zF

p jFi2kF⟫2 ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Fe

− F
TH

q X
F

e−
F

2TH jFi2kF⟫2: ð107Þ

The object falling into the second black hole is described by operators analogous to those in Eqs. (54), (55), (60), and (61)
acting on this state, which sees smooth spacetime when entering the horizon.

B. More than two black holes

The analysis described above can be easily generalized to more than two black holes with arbitrary masses. For n black
holes with masses Mα (α ¼ 1;…; n), the general state can be written as
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jψðfMαgÞi ¼
�Yn

α¼1

X
Eα

XN ðMα−EαÞ

iEα¼1

�X
a

cfEαgfiEαga

�Yn
α¼1

jEαiαjψ iEα
ðMα − EαÞiα

�
jrai: ð108Þ

We can trace out various components to see the entanglement structure of the state.
A general feature of these systems is that the correlations between the hard modes of different black holes are at most

classical. In particular, for generic microscopic entanglement, we find

ρHðfMαgÞ ¼ TrSRjψðfMαgÞihψðfMαgÞj

¼
X
Eα

��Yn
α¼1

XN ðMα−EαÞ

iEα¼1

�X
a

jcfEαgfiEαgaj2
��Yn

α¼1

jEiααhEj
�

≃
1P

Eα
e−

ΣαEα
TH

⨂
n

α¼1

�X
Eα

e−
Eα
TH jEiααhEj

�
: ð109Þ

Small semiclassical objects dropped into different black
holes, therefore, cannot meet inside. It is also not possible
to make the wormhole traversable by connecting hard
modes of different black holes through small direct
interactions.17

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have analyzed the quantum mechanics
of an evaporating black hole. A key ingredient is that
semiclassical theory in a distant view (a view based on
Schwarzschild time) describes microscopic dynamics of
only the hard modes: the d.o.f. that are hard enough to be
discriminated within the characteristic timescale of black
hole evolution, tH ≈Ml2P. In an equilibrated black hole,
these d.o.f. must be entangled with the rest of the black hole
d.o.f., which are too soft to be discriminated due to a large
redshift caused by the black hole. This is because the
differences of the energy between different configurations
of the hard modes are compensated by those of the soft
modes in a black hole microstate, whose energy is
determined with precision of order 1=tH. In fact, this
equilibrium between the hard and soft modes is the origin
of the thermodynamic nature of a black hole seen at the
semiclassical level.
Based on intuition coming from comparing usual thermo-

dynamic entropies of matter with the Bekenstein-Hawking
entropy, we expect that the number of the hard mode d.o.f. is
much smaller than that of the soft mode d.o.f. This implies
that the former is much smaller than both the latter and the
number of early Hawking radiation d.o.f.

Shard ≪ Ssoft; Srad ð110Þ

throughout the history of the black hole evolution (except
possibly in the very earliest time). Here, Shard, Ssoft, Srad are
the coarse-grained entropies of the hard modes, soft modes,
and early radiation, respectively. We have seen that this
makes the entanglement between these three types of d.o.f.
intrinsically tripartite

jΨðMÞi ∼
X
E

e−
E

2TH

XN E

iE¼1

1ffiffiffiffiffiffiffiffi
N E

p jEijψ iEijriEi; ð111Þ

whereN E ¼ minfeSsoft;E ; eSradg with Ssoft;E being the coarse-
grained entropy of the soft modes associated with jEi. This
structure resembles that of the GHZ state in that the
correlation between the hard and soft modes as well as that
between the hard modes and early radiation are classical,
although the correlation between the soft modes and early
radiation is generally quantum mechanical as required by
unitarity. This implies that mirror modes needed for a theory
of the interior consist of both soft modes and early radiation.
When viewed from a distance, the physics of an

evaporating black hole is not so mysterious after all.
Scattering of high-energy particles, or gravitational col-
lapse, forms a bound state with a high density of states—a
black hole—which decays into asymptotic Hawking
quanta. While microstates of the bound state at an inter-
mediate stage cannot be resolved from the asymptotic
region due to a large gravitational redshift, the standard
rules of thermodynamics are obeyed [77,78] throughout the
process. A mystery arises (only) if we consider the interior
spacetime. The origin of the mystery is, again, the large
redshift. When viewed from a distance, an observer falling
into a black hole is absorbed into the hot, stretched horizon,
and yet we expect the existence of a description in which
the observer falls smoothly inside the horizon, at least until
it approaches the singularity. We have seen that such a
description can be obtained in an effective theory erected at
a fixed time obtained after coarse graining microscopic
d.o.f. that cannot be discriminated within the timescale of

17We can have standard wormhole phenomena between semi-
classical objects and “objects” that are cleverly composed of hard,
soft, and radiation d.o.f. such that they appear as semiclassical
objects dropped from mirror space.
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tH. This effective theory is intrinsically semiclassical—the
description of a falling object is unitary only until it hits
the singularity (or escapes the spacetime region to which
the effective theory is applicable). This suggests that it is
meaningless to ask what happens to a fallen object “after it
hits the singularity” within the interior picture. The only
fundamental description, which can be unitary for an
arbitrarily long time, is that in a distant frame. In the
context of holography, this corresponds to the holographic,
boundary description of the system.
The results presented in this paper provide a picture of

how the peculiarities of a black hole emerge in a holo-
graphic boundary theory. A black hole in the semiclassical
description corresponds to a high density of states having
energetically and spatially similar profiles in a code sub-
space. As a result of this degeneracy, arising from a large
gravitational redshift, a vast majority of the d.o.f. associated
with these states cannot be represented as those allowing
for subsystem recovery.18 Only a tiny fraction—the hard
modes—allow for such recovery, having direct association
with spacetime. The d.o.f. that do not admit subsystem
recovery—the soft modes—are indistinguishable within a
characteristic timescale for the boundary evolution of these
states; discriminating them requires much longer time in
which the degeneracy is resolved by evolution involving
Hawking evaporation. However, precisely because of this
indistinguishability, we can have a new coarse-grained
description applicable in the characteristic timescale. Such
a description is useful for knowing the fate of a small object
falling into the black hole. Because of the large redshift, the
applicability of this effective description is limited to a
timescale of order the string/cutoff scale (multiplied by a
logarithmic factor) locally near the stretched horizon;
however, due to an extremely large boost, this corresponds
to a macroscopic timescale perceived by the object. The
effective description is possible because after the coarse
graining, collective excitations of the soft modes (and the

d.o.f. entangling with them, including early Hawking
radiation) appear as the mirror of the hard modes, with
the entanglement between the mirror and the original hard
modes taking a thermofield double form. This allows for
reinterpreting these collective modes as representing d.o.f.
that admit subsystem recovery in a code subspace erected
on the extended, second boundary, which is isomorphic to
the original boundary renormalized down to the edge of the
zone, à la Ref. [28]. In the bulk, this gives the two-sided
black hole picture applicable within the domain of depend-
ence of the union of the zone and its mirror regions.
The physics of a black hole has a parallel in Minkowski

space: an accelerating detector measuring Unruh radiation.
As in the case of a young black hole, this introduces
entanglement between the detector and radiation d.o.f.
From the point of view of an inertial observer, this is
entanglement between the detector and particles emitted
from it. This entanglement can be retrieved in Rindler space
if we decelerate the detector adiabatically. This can be
viewed as an analogue of information retrieval from a
black hole, although the retrieved information in this case is
not thermalized because of the infinite entropy of the
Minkowski vacuum.
The discussion described above suggests that we may

view the black hole interior as a sort of “compactified (half)
Minkowski space.” As viewed from the exterior, the
finiteness of the system leads to thermalization/scrambling
of information retrieved from a black hole. From the
viewpoint of the interior, it is reflected in the fact that
the description is fundamentally nonunitary, a manifesta-
tion of which is the existence of the singularity. It would be
interesting to see if other singularities in general relativity
could be understood in similar manners.
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