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We investigate a solution of the exactly renormalized Liouville action to foresee the fate of the two-
dimensional de Sitter space. We work in the semiclassical region with a large matter central charge c.
Instead of de Sitter expansion, it performs a slow-roll inflation with the parameters ϵ ¼ ð1=2Þη ¼ 6=c.
An inflaton field is induced in the effective theory to describe quantum effects of the Liouville theory. The
geometric entropy increases logarithmically with the Hubble radius. We propose that de Sitter entropy is
carried by superhorizon modes of the metric. It can be directly estimated from the partition function as
S ¼ logZ in Liouville gravity. We formulate a gravitational Fokker-Planck equation to elucidate the
Brownian process at the horizon: the superhorizon modes are constantly jolted by newcomers. We show
that such a built-in entropy-generating process diffuses the cosmological constant. We evaluate von
Neumann entropy associated with the distribution function of superhorizon modes. It always increases
under the Fokker-Planck equation in a consistent way with semiclassical estimates. The maximum entropy
principle operates in quantum gravity. An analogous entropy production mechanism at the horizon might
have increased the Hubble radius much beyond the microscopic physics scale in the Universe.
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I. INTRODUCTION

It is often suspected that the cosmological constant
problem is an infrared problem. De Sitter space is unstable
due to some shielding effects or particle productions [1].
In particular, the importance of IR logarithmic effects is
stressed to break de Sitter symmetry [2]. A stochastic
approach is proposed to sum up leading IR logarithms
[3,4]. In order to understand physics in four-dimensional
de Sitter space, two-dimensional exactly solvable models
may be instructive. In this paper, we investigate two-
dimensional de Sitter space in Liouville quantum gravity.
It is realized as a classical solution in the semiclassical
regime with a large matter central charge. By examining
the exact solution, we note that the negative anomalous
dimension of the cosmological constant operator makes
the Hubble parameter time dependent, and it fades away.

The shielding effect of the cosmological constant arises due
to the negative sign of the kinetic term of the conformal
mode. IR logarithmic effects are important to make the
Hubble parameter time dependent. We estimate semiclass-
ical geometric entropy of the two-dimensional de Sitter
space. It grows logarithmically with the inverse Hubble
parameter H like S ∼ logð1=HÞ. We propose that it is
carried by the superhorizon mode of the conformal degrees
of the metric. We investigate its distribution function by
Fokker-Planck equations. We offer evidences that the
von Neumann entropy of the distribution function can
be identified with the geometric entropy of the space.
The presence of event horizons leads us to the thermody-

namics of black holes [5]. Gibbons and Hawking showed
that analogous relations hold in de Sitter space with cosmo-
logical horizons [6]. The area of the cosmological horizon is

A0 ¼ 4πl2; ð1:1Þ

where the surface gravity is κ ¼ 1=l. A short summary of de
Sitter–space thermodynamics is given in the Appendix A.
The metric of de Sitter space in global coordinates is

ds2

l2
¼ −dτ2 þ cosh2ðτÞdΩ2

3; ð1:2Þ
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while it becomes conformally flat in the local Poincaré
patch:

ds2¼−dt2þe2Htðdr2þr2dΩ2
2Þ¼

�
1

−Hτ

�
2

ð−dτ2þdx⃗2Þ:

ð1:3Þ

The metric is periodic under the shift of time into the
imaginary direction by 2πl. The Green’s functions must
have the identical periodicity. This implies that the temper-
ature of the cosmological horizon is

TdS ¼
1

2πl
: ð1:4Þ

We may rotate the de Sitter space in the global coordinates
(1.2) into Euclidean S4 with the metric

ds2

l2
¼ dχ2 þ sin2ðχÞdΩ2

3: ð1:5Þ

The Euclidean action on S4 with the radius 1=H is

Z
d4x

ffiffiffi
g

p 1

8πGN

�
1

2
R − 3H2

�
¼

Z
d4x

ffiffiffi
g

p 3H2

8πGN

¼ 8π2

3H4

3H2

8πGN
: ð1:6Þ

The classical action gives us the entropy of de Sitter space
once we put the solutions in it. In quantum gravity, the size
of the space is a dynamical variable to be integrated over. In
general, the partition function Z must be stationary with
respect to the change of size l or the inverse temperature
β ¼ 2πl of the manifold:

∂
∂β logZ ¼ 0 ⇒ S ¼

�
1 − β

∂
∂β

�
logZ ¼ logZ: ð1:7Þ

At the semiclassical level, the entropy of de Sitter space is
given by

S0 ¼
A0

4GN
¼ π

H2GN
: ð1:8Þ

The Euclidean quantum gravity represents a possible
equilibrium state with the temperature set by the scale of
the event horizon. It may have instability, since the Einstein
action is not bounded below. The kinetic term of the scale
factor of the metric (conformal mode) is of the wrong sign.
There is no fundamental remedy for this problem, and
we mostly work with Lorentz signature. The situation is
better with respect to the superhorizon modes, as the
potential term dominates over the kinetic term. The
thermodynamics of superhorizon modes may be studied
in Euclidean gravity.

Let us start our investigation on 2D quantum gravity
which has de Sitter space as a classical solution at the tree
level. We focus on the dynamics of the conformal degrees
of the metric ϕ by choosing the conformal gauge as
follows:

gμν ¼ eϕĝμν: ð1:9Þ

In this expression, ĝμν denotes the classical background of
the metric. In 2D quantum gravity, we work with the
Liouville action, which is the gift of the conformal
anomaly1:

Q2

4π

Z
d2x

ffiffiffî
g

p �
1

4
ĝμν∂μϕ∂νϕþ 1

2
ϕR̂ −H2eϕ

�
: ð1:10Þ

The equation of motion with respect to constant ϕ is

R̂ ¼ 2H2eϕ: ð1:11Þ

The two-dimensional symmetric space S2 is the solution,
with the scale eϕ ¼ 1=H2. By rotating two-dimensional de
Sitter space into S2, we obtain a semiclassical estimate of
the geometric entropy,

Q2

8π

Z
d2x

ffiffiffî
g

p
ðϕR̂ − R̂Þ ¼ Q2 log

�
1

H2

�
: ð1:12Þ

This should be contrasted with Eq. (1.8) in four dimen-
sions. We note that the inverse Newton’s coupling constant
is replaced by Q2 ¼ ðc − 25Þ=6 in two dimensions.2 The
matter central charge cmust be larger than 25 to correspond
with a positive Newton’s coupling. It implies that the sign
of the kinetic term of the conformal mode is negative.
We work in this semiclassical region. It also depends on
the Hubble parameter H2. Although the entropy increases
if H2 decreases in both cases, its dependence is weak in
two dimensions, logð1=H2Þ, while much stronger in four
dimensions, 1=H2.
Nevertheless, this toy model may reveal to us what

carries the entropy of de Sitter space [7,8]. Furthermore, we
identify a mechanism to create entropy as more and more
degrees of freedom (d.o.f.) are going out of the horizon.
Simultaneously, the cosmological constant is diffused
away. Since we find the common prerequisite between
two- and four-dimensional de Sitter spaces for such a
mechanism to work, the cosmological constant Λmay have
decreased far beyond the scale of the microscopic physics
in an analogous mechanism. Certainly, explaining why the

1A short summary of the derivation of the Liouville action is
given in Appendix A.

2There is a quantum correction to this estimate due to the
anomalous dimension of the cosmological constant operator.
Q2 should be replaced by Q2=γ.
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dimensionless ratioH2GN ∼ 10−120 is so small is a difficult
problem. However, the most important step in solving the
problem is to correctly formulate it. It may be a more
appropriate question to ask why the current Universe has
such a huge entropy. As the above equation (1.8) shows, the
entropy of four-dimensional de Sitter space is inversely
proportional to the Hubble parameter 1=H2. Since the
entropy always increases, the Hubble parameter must
decrease, especially when there are huge entropy creations
in the Universe [9]. Such a simple trend seems to capture
the essence of the history of the Universe.
This concludes our introductory section to this paper. In

Sec. II, we investigate a solution of exactly renormalized
Liouville action. Two-dimensional de Sitter space appears
as a solution of nonrenormalized Liouville action.
Fortunately, the effects of short-distance divergences are
known exactly. In two dimensions, UVand IR divergences
are closely related, since the propagators do not change,
unlike in four dimensions. We can thus predict IR behavior
from the UV behavior. In the semiclassical region with a
large matter central charge c, the scaling dimension γ of the
cosmological constant operator is less than the canonical
γ < 1. In such a case, we show that de Sitter expansion
becomes slow-roll inflation with the slow-roll parameters
inversely proportional to c. In Sec. III, we propose that de
Sitter entropy is the von Neumann entropy of superhorizon
modes. We show that the entropy is generated at the rate
Ṡ ¼ 2H by the stochastic equations, which diffuses the
cosmological constant. We conclude in Sec. IV. Basic
information is summarized in three Appendixes for self-
containedness: Appendix A on de Sitter thermodynamics,
Appendix B on operator renormalization in Liouville
theory, and Appendix D on stochastic equations. In
Appendix C, we point out a dual description for a class
of two-dimensional quantum gravity models.

II. SOLUTIONS OF 2D DE SITTER
QUANTUM GRAVITY

In this section, we investigate the quantum IR effects
in an exactly solvable model: two-dimensional quantum
gravity. We adopt a conformal gauge and parametrize the
metric as

gμν ¼ eϕĝμν; ð2:1Þ

where ĝμν is a background metric. The metric is Lorenzian,
corresponding to real spacetime. The effective action for
the conformal mode ϕ is the Liouville action:

Z ffiffiffiffiffiffi
−ĝ

p
d2x

�
c − 25

96π
ðĝμν∂μϕ∂νϕþ 2ϕR̂Þ − Λeγϕ

�
: ð2:2Þ

Here c denotes the central charge of the matter minimally
coupled to two-dimensional quantum gravity. In the free-
field case, c counts massless scalars and fermionic fields as

c ¼ Ns þ Nf=2. We consider the semiclassical regime:
c > 25, where the sign of the kinetic term for the conformal
mode is negative and hence timelike. The identical feature
occurs with four-dimensional Einstein gravity. In the above
expression, Λ is the cosmological constant, eγϕ is a
renormalized cosmological constant operator, and γ − 1
denotes the anomalous dimension.
The equation of motion with respect to ϕ is given by

Q2

8π
∇2ϕþ Λeϕ ¼ 0; ð2:3Þ

where we set the background scalar curvature R̂ ¼ 0,
anticipating to adopt conformally flat coordinates. Q2 is
the effective inverse Newton’s coupling in two dimensions,
and we also set γ → 1. This is allowed in the large-c limit,
and the classical geometry holds. In contrast, geometry is
quantized when γ < 1.
Furthermore, there is another equation of motion with

respect to the traceless mode of the metric hμν:

Q2

8π

�
ð∇μϕ∇νϕ − 2∇μ∇νϕÞ −

1

2
ĝμνð∇ρϕ∇ρϕ − 2∇2ϕÞ

�

¼ ∇μχ∇νχ −
1

2
ĝμν∇ρχ∇ρχ; ð2:4Þ

where χ denotes a free scalar field, and the presence of the
ϕR̂ term in the Liouville action results in the linear term in
ϕ on the left-hand side.
For the conformally flat metric gμν ¼ eϕημν, the action

(2.2) is simplified as

Z
d2x

�
Q2

16π
ðημν∂μϕ∂νϕ − 4H2eϕÞ

�
: ð2:5Þ

The effective Newton’s coupling constant GN becomes
small when c becomes large like 1=Q2 ∼ 6=c. We confine
our investigation of this model to the semiclassical region
c > 25. The kinetic term of the conformal made, ϕ, is
negative, as we can see in Eq. (2.5). This feature is shared
with four-dimensional Einstein gravity. The expansion of
the Universe occurs due to such an instability. For theorists,
the wrong sign of the kinetic term of ϕ looks like a curse
against going beyond semiclassical investigations. On the
contrary, it could be a blessing, as we demonstrate by
investigating a two-dimensional toy model in this paper. It
provides a mechanism to grow the Universe to be vast in
comparison to the microscopic physics scale. Namely, the
cosmological constant is shielded by quantum fluctuations
of the conformal mode ϕ. The shielding occurs as more
entropy is generated at the cosmological horizon, as the
conformal zero mode ϕ0 accumulates at the horizon. The
fluctuations perform Brownian motion, as the superhorizon
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modes are constantly jolted by newcomers. The negative
kinetic term of ϕ is crucial for shielding the cosmological
constant. Note that the Hubble parameter H2 is reduced by
Q2 when we fix the cosmological constant Λ:

H2 ¼ GNΛ ¼ 4π

Q2
Λ: ð2:6Þ

With large c, matter fields reduce H2 by a large factor
as H2 ∼ 24π

c Λ.
The classical solution of this action (2.5) is two-

dimensional de Sitter (dS) space with the metric

ϕc ¼ −2 logð−HτÞ ¼ log a2ðtÞ;

eϕc ¼
�

1

−Hτ

�
2

¼ e2Ht: ð2:7Þ

By adopting the Poincaré coordinate, we obtain the
following metric as a solution of the classical Liouville
theory:

ds2 ¼
�

1

−Hτ

�
2

ð−dτ2 þ dx2Þ ¼ −dt2 þ e2Htdx2: ð2:8Þ

It covers the upper half-triangle of the Penrose diagram of
the global de Sitter manifold. The volume operator is of the
identical form with the metric in accordance with classical
geometry. We identify cosmic time with the classical
solution of the conformal mode, ϕcðtÞ ¼ 2Ht. The distance
of the cosmic horizon from the observer is 1=H. She or he
is situated at the center of the line segment. On the other
hand, if the cosmological constant can be neglected, we
also have a solution with a nontrivial free matter field χ:

ϕc ¼ Aτ; χc ¼ A

ffiffiffiffiffiffi
Q2

8π

r
τ; ð2:9Þ

where A is an arbitrary constant. This is a two-dimensional
Friedmann spacetime. This solution should go over to the
two-dimensional dS-space solution when the cosmological
constant becomes dominant. Another solution is obtained
by adding the gas of massless scalar particles with temper-
ature T to empty de Sitter space. We may solve Eq. (2.4) to
linear order in perturbation ϕc þ ϕ as

Q2

4π
ð∇0ϕc∇0ϕ −∇0∇0ϕÞ ¼ 2h∇0χ∇0χi: ð2:10Þ

Specifically,

Q2

4π

�
2

−τ
∇0ϕ −∇0∇0ϕ

�
¼ π

3
T2 ⇒ ϕ ¼ −

π2

15Q2

T2

H2a2ðtÞ :

ð2:11Þ

Since their energy density decays like T2=a2ðtÞ with the
expansion of the Universe, the contribution of the massless
scalar particles fades away in comparison to the cosmo-
logical constant at a late time. However, their contribution
to entropy remains constant, as can be seen from
Eq. (1.12).3 They contribute c ¼ 1 to the coefficient of
the Liouville Lagrangian. In this way, the massless fields
leave their legacy in reducing the Hubble parameter.
We expand the action around the classical background

ϕc þ ϕ:

Z
d2x

Q2

8π

�
−
1

2
ð1þh00Þ ∂∂τϕc

∂
∂τϕcþh00

∂2

∂τ2ϕc−2H2eϕc

�

þ
Z

d2x
Q2

8π

ffiffiffiffiffiffi
−ĝ

p �
1

2
ĝμν

∂
∂xμϕ

∂
∂xνϕþð1þϕÞR̂−2H2eϕ

�
;

ð2:12Þ

where

ffiffiffiffiffiffi
−ĝ

p
¼ eϕc ;

ffiffiffiffiffiffi
−ĝ

p
R̂ ¼ ∂2

∂τ2 ϕc ¼ 2H2
ffiffiffiffiffiffi
−ĝ

p
: ð2:13Þ

Note that we have recovered the Liouville action on the
de Sitter space [Eq. (2.2)] for quantum fluctuations. We
then renormalize the cosmological constant operator as
we review it briefly in Appendix B. The results of the
investigations from various viewpoints agree that the
cosmological constant operator is renormalized as

eϕ → eγϕ: ð2:14Þ

At the short-distance limit, the volume operator is of the
original form eϕ. It is renormalized to become eγϕ in the IR
limit under the renormalization group equation (B18). It is a
diffusion equation which plays a crucial role in this work.
Both the conformal invariance and renormalization group
arguments show that the scaling dimension satisfies the
following relation:

γ þ γ2

Q2
¼ 1: ð2:15Þ

By solving this equation, the scaling dimension of the
cosmological constant operator is determined to all orders:

γ ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Q2

q ¼ 1 −
1

Q2
þ 2

�
1

Q2

�
2

þ � � � : ð2:16Þ

3This is essentially the entangled entropy. There are important
quantum corrections to this classical formula, which is the subject
of this work.
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The important feature is that γ < 1; namely, it is smaller
than the canonical dimension in the semiclassical region.
Since the cosmological constant operator changes after

the renormalization, we may look for a new classical
solution of the following type of action:

Z
d2x

�
Q2

16π

�
ημν∂μϕ∂νϕ −

4H2

γ
eγϕ

��
: ð2:17Þ

It is apparent from the above action in comparison to
nonrenormalized one [Eq. (2.5)] that a reinterpretation
of ϕ as γϕ may give us a solution of the renormalized
action [Eq. (2.17)].
However, such a candidate cannot satisfy the equation of

motion with respect to h00 [Eq. (2.4)], since it is nonlinear
and does not allow a simple scaling transformation. In order
to circumvent this problem, we introduce an inflaton field f
in such a way that Eq. (2.4) is satisfied. We argue that it is a
standard strategy to enlarge field spaces in order to solve
the highly nonlinear problems.
Let us postulate the following Lagrangian:

Z
d2x

Q2

8π

ffiffiffiffiffiffi
−ĝ

p �
−
1 − γ

2
ĝμν∂μf∂νf

þ 1

2
ðĝμν∂μϕ∂νϕþ 2R̂ϕÞ − 2H2

γ
eϕ−ð1−γÞf

�
: ð2:18Þ

The equations of motion with respect to the inflaton f and
the conformal mode ϕ are

∇2
0γf ¼ 2H2eϕ−ð1−γÞf;

∇2
0γϕ ¼ 2H2eϕ−ð1−γÞf; ð2:19Þ

where we assume R̂ ¼ 0 in a conformally flat gauge.
We can identify f ¼ ϕ, and the inflaton field f adds the
following term on the right-hand side of Eq. (2.4):

Q2

8π
ð1 − γÞ

�
∇μf∇νf −

1

2
ĝμν∇ρf∇ρf

�
: ð2:20Þ

Then both sides of Eq. (2.4) coincide as a result of the
introduction of the inflaton. Furthermore, the cosmological
constant operator becomes

eϕ−ð1−γÞf → eγϕ ¼
�

1

−Hτ

�
2

: ð2:21Þ

This is a (1, 1)-type operator, which is consistent with
conformal invariance. In this way, we obtain a solution
which satisfies all equations of motion and required
symmetries.
After putting the inflaton field under the rug with the

identification f ¼ ϕ, we obtain the following action:

Z
d2x

Q2

8π

ffiffiffiffiffiffi
−ĝ

p �
γ

2
ĝμν∂μϕ∂νϕþ R̂ϕ −

2H2

γ
eγϕ

�
: ð2:22Þ

We regard this theory as an effective field theory equivalent
to the fully quantized Liouville theory. A solution of 2D
quantum gravity is given by a slow-roll inflation. We
should be careful to avoid double counting when we
elucidate the predictions of this theory. For example, the
quantum effects of ϕ on the Hubble parameter are taken
into account by the classical motion of the inflaton f
[Eq. (2.47)] at the weak-coupling or slow-roll limit:

H2ðtÞ ¼ H2e−ð1−γÞfðtÞ ∼H2 exp

�
−

1

Q2
2Ht

�
: ð2:23Þ

After rescaling the fields γϕ → ϕ, our action takes the
following form:

Z
d2x

Q2
I

8π

�
−
1

2

∂
∂τ ϕc

∂
∂τ ϕc − 2H2eϕc

�
ð2:24Þ

þ
Z

d2x
Q2

I

8π

ffiffiffiffiffiffi
−ĝ

p �
1

2
ĝμν

∂
∂xμϕ

∂
∂xνϕþϕR̂−2H2ðeϕ−1Þ

�
:

ð2:25Þ
This is nothing but the nonrenormalized action, and its
solution is the original one [Eq. (2.7)]. The important
difference is that Q2

I ¼ Q2=γ appears in the effective
inverse Newton’s coupling GN . In the end, the solution
of the renormalized action can be obtained from the
nonrenormalized one by a simple scaling ϕc → γϕc. The
geometric objects are defined by new solutions after ϕc is
reinterpreted as γϕc. We confirm that this action explains
the scaling relations between the Newton’s coupling GN

and the Hubble parameter H2 correctly:

ffiffiffiffiffiffi
−ĝ

p
¼eγϕc ;

ffiffiffiffiffiffi
−ĝ

p
R̂¼ ∂2

∂τ2 γϕc¼2H2
ffiffiffiffiffiffi
−ĝ

p
: ð2:26Þ

It is important to recognize that the effective inverse
Newton’s coupling Q2 is replaced by Q2=γ. This fact
implies that the physical scale has changed by the factor
γ. We thus believe that this recycling of an old solution as a
new one is not vacuous, but a scale transformation.
We can read off the scaling relations between the Hubble

parameter and the topological coupling GT in front of
the scalar curvature ϕR̂ term, as we explain below. It is
identical to Newton’s coupling, GT ¼ GN . It has been
useful to consider the response of the action under
ϕc → ϕc − φ and ϕ → ϕþ φ. Of course, the action is
invariant if φ is a local conformal transformation, since we
start with Eq. (2.5). In fact, conformal invariance has been
an effective tool to determine the renormalized Liouville
action [10,11].
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The action (2.25) implies that the semiclassical entropy
of two-dimensional de Sitter space is

Sc ¼
Q2

γ
φ ¼ Q2

γ
log

H2
0

H2ðtÞ ¼
1

GN
log

H2
0

H2ðtÞ ; ð2:27Þ

where H0 denotes an initial value of the Hubble parameter.
The renormalization of the cosmological constant operator
has introduced γ dependence. It depends not only on the
gravitational coupling but also on the Hubble parameter.
We can predict the relative scaling relation between the
Hubble parameter H2 and the effective Newton’s coupling
from Eq. (2.25). Let us assume that the Hubble parameter
changes slowly over cosmic time evolution. We may
postulate

H2ðtÞ ¼ H2
0e

−φ: ð2:28Þ

We consider a constant shift of the quantum field

ϕðxÞ → ϕðxÞ þ φ; ð2:29Þ

Q2

8πγ

Z
d2x

ffiffiffiffiffiffi
−ĝ

p
ðϕR̂ − 2H2ðtÞeϕÞ

→
Q2

8πγ

Z
d2x

ffiffiffiffiffiffi
−ĝ

p
fðϕþ φÞR̂ − 2H2

0e
ϕg: ð2:30Þ

The action changes as

i
Q2

8πγ

Z
dS2

d2x
ffiffiffiffiffiffi
−ĝ

p
φR̂ →

Q2

8πγ

Z
S2
d2x

ffiffiffî
g

p
φR̂ ¼ Q2

γ
φ:

ð2:31Þ

In the last step, we have compactified dS2 into S2.
The coefficient Q2=γ in front of the ϕR̂ term can be

regarded as an effective inverse topological coupling 1=GT .
It is equal to Newton’s coupling, GN ¼ GT . This coupling
plays an important role in our estimation of the semi-
classical entropy of two-dimensional de Sitter space.
As is well known, quantum gravity has conformal

invariance due to the ambiguity in how to separate fields
between the background and fluctuations. Since scale
invariance is a part of the symmetry, it may not be very
surprising to construct a new solution by a scale trans-
formation. To be precise, we have solved the model with an
inflaton at the classical level, which reproduces many
features of the solution of exactly renormalized 2D quan-
tum gravity on de Sitter–type space. The introduction of an
inflaton is necessary to satisfy the equation of motion with
respect to the traceless tensor hμν. We suspect nature also
adopts a similar trick. In fact, the classical motion of an
inflaton reproduces the quantum effects of ϕ in the weak-
coupling limit.

Since the rescaled field γϕc obeys the same equation of
motion, the cosmological constant operator keeps the
identical expression in the Poincaré coordinate:

eγϕc ¼
�

1

−Hτ

�
2

: ð2:32Þ

It is the solution of Eq. (2.19) and the classical part of
Eq. (2.22). It also satisfies the stationary condition—
namely, the coefficient of the linear ϕ term vanishes when
the background satisfies R̂ ¼ 2H2. Although there may
remain subtle issues in constructing the exact solution of
two-dimensional de Sitter quantum gravity, the physical
picture is robust.
The most remarkable quantum effect in our solution is

that the metric is modified and no longer agrees with the
volume operator

eϕc ¼
�

1

−Hτ

�2
γ

; ð2:33Þ

while

ds2 ¼ dt2 þ a2ðtÞdx2; aðtÞ ¼
�
1þ 1 − γ

γ
Ht

� 1
1−γ
:

ð2:34Þ

The Hubble parameter is

HðtÞ ¼ ȧ
a
¼ H

γ

1

1þ 1−γ
γ Ht

: ð2:35Þ

Note that it is no longer constant but it decreases with
time. The renormalization of the cosmological constant
operator with the scaling dimension γ < 1 gives rise to a
remarkable result. The contribution of matter to the coef-
ficient of the kinetic term of the Liouville field reduces the
Hubble parameter by a substantial amount. Nevertheless,
the cosmological constant remains with a definite value.
The anomalous dimension of the cosmological constant
operator has produced a more profound effect. The Hubble
parameter is no longer constant but decreases with time.
Let us estimate the acceleration speed of the Universe:

ḢðtÞ ¼ ∂
∂t

�
ȧ
a

�
¼ ä

a
−
�
ȧ
a

�
2

¼ ä
a
−H2ðtÞ: ð2:36Þ

Here,−ḢðtÞmust be smaller thanH2ðtÞwhen the expansion
of the Universe is accelerating, ä > 0. From Eq. (2.35), these
quantities are
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ḢðtÞ ¼ −H2

�
1 − γ

γ2

��
1

1þ 1−γ
γ Ht

�
2

;

H2ðtÞ ¼
�
H
γ

�
2
�

1

1þ 1−γ
γ Ht

�
2

: ð2:37Þ

We thus find

−ḢðtÞ ¼ ð1 − γÞH2ðtÞ: ð2:38Þ
Since γ < 1 in the semiclassical region where c > 25, the
expansion of this class of universes is accelerating. The
acceleration speed is kept well for weak coupling:

−ḢðtÞ ¼ 1

Q2
H2ðtÞ: ð2:39Þ

Such a universe performs a slow-roll inflation with the
following slow-roll parameters:

ϵ¼−ḢðtÞ
H2ðtÞ ¼

1

Q2
; η¼ ϵ−

1

2

ḦðtÞ
HðtÞḢðtÞ¼

2

Q2
: ð2:40Þ

On the other hand, the acceleration vanishes at the critical
point like

−ḢðtÞ ¼ ð1 −QÞH2ðtÞ: ð2:41Þ
Note that the classical equation of motion still holds,
R̂ ¼ 2H2. This equation appears in the coefficient of the
linear term of ϕR̂ in Eq. (2.25). The action for the classical
field ϕc in Eq. (2.24) also admits such a solution.
More precisely speaking, we have separated the classical

and quantum parts of this action as follows:

Z
d2x

Q2

8π

�
−
γ

2

∂
∂τ ϕc

∂
∂τ ϕc −

2H2

γ
eγϕc

�
ð2:42Þ

þ
Z

d2x
Q2

I

8π

�
1

2
ημν

∂
∂xμϕ

∂
∂xνϕ−2H2eγϕcðeϕ−ϕ−1Þ

�
:

ð2:43Þ
Note that the potential term for the quantum field ϕ is

VðϕÞ ¼ eγϕc2H2

�
Q2

I

8π

�
ðeϕ − ϕ − 1Þ: ð2:44Þ

The linear term in ϕ vanishes due to the equation of motion
for ϕc:Z

d2x
ffiffiffiffiffiffi
−ĝ

p Q2
I

8π
ðR̂ − 2H2Þϕ → R̂ ¼ 2H2: ð2:45Þ

We emphasize that the potential has no flat direction, as it
increases when ϕ → �∞. The lifting of the flat direction
for negatively large ϕ has been achieved by demanding

that the action be stationary with respect to the de Sitter
solution. It originates from the

ffiffiffiffiffiffi
−ĝ

p
ϕR̂ term in the action.

Being topological, there is no renormalization of this term,
while the cosmological constant operator

ffiffiffiffiffiffi−gp
is renor-

malized. We have to pay special attention to keep the
balance of these two terms unless classical solutions are no
longer valid.
We have shown that the anomalous dimension γ < 1

of the renormalized cosmological constant operator
reduces the Hubble parameter H2 ¼ 4πΛγ=Q2 with the
fixed cosmological constant Λ. This is a short-distance
effect of two-dimensional Liouville quantum gravity.
Furthermore, it makes the Hubble parameter ȧ=a time
dependent. In fact, a negative anomalous dimension implies
that it vanishes at a late time. The weak-coupling behavior
to the leading order of 1=Q2 is

HðtÞ ∼H
1

1þ 1
Q2 Ht

¼ H
1

1þ 1
Q2 logaðtÞ : ð2:46Þ

In the perturbation theory, time dependence of the Hubble
parameter occurs through the IR logarithm log aðtÞ:

H2ðtÞ ∼H2heϕi

∼H2

�
1 −

2

Q2
Ht

�

¼ H2

�
1 −

2

Q2
log aðtÞ

�
: ð2:47Þ

It arises because the momentum integral is logarithmically
divergent. In the case of exponential expansion of the
Universe, the one-loop momentum integral behaves as
logaðtÞ as the infrared cutoff goes like L=aðtÞ for a fixed
UV cutoff L. The negative sign of the one-loop correction
is due to the negative sign of the kinetic term of ϕ. The
shielding effect of the cosmological constant does not occur
if the metric is positive. The exact solution is in accord with
the perturbation theory in important issues whose signifi-
cance is still to be explored.
The Hubble parameter HðtÞ decays inversely propor-

tional to log aðtÞ—namely, the e-folding number at a late
time. It decays faster when the effective coupling 1=Q2 is
stronger. We show that there are no other pure IR effects
which diffuse HðtÞ. This important conclusion is obtained
from the investigation of the exactly renormalized
Lagrangian. Since it is a conclusive result on the fate of
the Hubble parameter HðtÞ in two-dimensional Liouville
quantum gravity, we briefly recall its renormalization
procedure in Appendix B.
We have suspected that the inflaton may be a dual

description of quantum effects in gravity. It is encouraging
that this two-dimensional toy model provides us a concrete
example of such an idea. Let us go back to the original action
before eliminating the inflaton by the equation of motion:
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Z
d2x

1

8π

ffiffiffiffiffiffi
−ĝ

p �
Q2

2
ĝμν∂μϕ∂νϕþ 2R̂ϕ

−
1

2
ĝμν∂μf∂νf − 2H2Q2eϕ−ð1−γÞf

�
; ð2:48Þ

where we took the weak-coupling limit. The effective
Hubble parameter is induced by putting the classical solution
of the inflaton into the potential:

H2ðfÞ ¼ H2e
− 1

Q2f ¼ H2e
− 1

Q22Ht
: ð2:49Þ

The slow-roll parameters agree with the estimate of the exact
solution (2.40):

ϵ ¼ Q2

�
V 0

V

�
2

¼ −ḢðtÞ
H2ðtÞ ¼ 1

Q2
;

η ¼ 2Q2
V 00

V
¼ 2ϵþ 2Q2

�
V 0

V

�0
¼ 2

Q2
: ð2:50Þ

At weak coupling, our solution is a slow-roll inflation model
where the inflaton f rolls down the exponential potential

2H2Q2 exp

�
−

1

Q2
f

�
: ð2:51Þ

We find it remarkable that this toy model underwrites a
long-suspected scenario that an inflaton is to provide a dual
description of quantum effects in gravity.
There exist a class of slow-roll inflation models and

Liouville gravity which are connected by a rotation of the
conformal mode and the inflaton [12]. Our proposal is a
duality between Liouville gravity and semiclassical infla-
tion models. In fact, we point out that these formally
identical models are dual to a unique inflation model in
Appendix C. We have introduced an inflaton to solve the
equation of motion with respect to the traceless mode of the
metric hμν in Liouville gravity. Remarkably, the classical
behavior of the inflaton reproduces known quantum effects
in Liouville gravity in the weak-coupling region. In view of
the proliferation of inflation models, it is a very attractive
possibility that a unique inflaton model appears out of
quantum effects of Liouville gravity or even Einstein
gravity.
We regard Eq. (2.48) as a low-energy effective theory

just like pions in QCD. In other words, we investigate this
theory at tree level to avoid double counting of quantum
effects. As an example, we may examine the density
perturbation in this model following the standard prescrip-
tion. The inflaton field may fluctuate around the classical
solution as

fcðtÞ þ f ¼ fcðtþ δtÞ: ð2:52Þ

We pick a comoving gauge to eliminate the fluctuation of
the inflaton,

δt ¼ f

ḟcðtÞ
: ð2:53Þ

It then generates density perturbation,

−dt2 þ e2Hte2ζdx2; ζ ¼ −Hδt ¼ −H
f

ḟcðtÞ
: ð2:54Þ

The spectrum of the density perturbation is

hζk⃗ζk⃗0 i ¼ ð4πÞ2δðk⃗þ k⃗0Þ 1

2k

�
H

ḟc

�
2

: ð2:55Þ

In our case ḟc ¼ H, so there seems to be no enhancement:

hζk⃗ζk⃗0 i ¼ ð4πÞ2δðk⃗þ k⃗0Þ 1

2k
: ð2:56Þ

However, it is enhanced in comparison to the conformal
mode:

hϕk⃗ϕk⃗0 i ¼ −ð4πÞ2δðk⃗þ k⃗0Þ 1

2k
1

Q2
: ð2:57Þ

So the enhancement of the density perturbation over the
gravitational modes by a slow-roll parameter ϵ appears to
hold also in two-dimensional de Sitter space.
The conclusion in this section is that the renormalized

volume operator eγϕ is obtained after integrating short-
distance d.o.f. It is the relevant operator to investigate long-
distance physics. The scaling dimension γ is less than
canonical γ < 1 in the semiclassical region where c > 25.
We have examined a de Sitter–type solution of the
renormalized Liouville action. It shows that the Hubble
parameter becomes not only time dependent but vanishes at
a late time. This effect clearly breaks de Sitter invariance
and is caused by the renormalization of the cosmological
constant operator.

III. ENTROPY PRODUCTION AT THE HORIZON
DIFFUSES THE COSMOLOGICAL CONSTANT

We recall that the semiclassical entropy in four-
dimensional de Sitter space is given by

S0 ¼
A0

4GN
¼ π

H2GN
: ð3:1Þ

It can be compared with our estimate (2.27) in two-
dimensional de Sitter space:

S0 ¼
1

GN
log

H2
0

H2ðtÞ : ð3:2Þ

The semiclassical entropy of the system is given by
Q2=γ ∼ c=6, which plays the role of the inverse Newton’s
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coupling 1=GN . So the increase of entropy by adding
more matter reduces the Hubble parameter. Entropy also
increases if the Hubble parameter decreases. The trend is
in the same direction with four-dimensional de Sitter
space, although the speed of the increase is much slower:
logarithmic, logð1=H2ðtÞÞ, versus power law, 1=H2ðtÞ. In
this section, we investigate IR effects on the Hubble
parameter from an entropic point of view.
Due to the existence of the cosmological horizon, plain

waves constantly accumulate at it. They are called super-
horizon modes and are constant in space. They do change
with time over the cosmic scale. For a static observer
inside, more and more constant modes are accumulating at
the horizon. As they evolve in a stochastic process, it is
expected that entropy is continuously generated there.
Simultaneously, the Hubble parameter is diffused with
the evolution of the Universe. We show that such a dramatic
process takes place in two-dimensional Liouville quantum
gravity. This conclusion follows from the entropy gener-
ation effects associated with the evolution of superhori-
zon modes.
The precursor of the effect is the quantum fluctuation of

the conformal mode

heϕi ¼ heϕcþγϕ̃i ∼ eϕcðtÞþ1
2
γ2hϕ̃2i: ð3:3Þ

Here ϕcðtÞ denotes a classical solution, while

hϕ̃2i ¼ −
4

Q2

Z
Pmax

Pmin

dP
P

¼ −
4

Q2
log aðtÞ: ð3:4Þ

In this integral with respect to physical momentum, we
fix the UV cutoff Pmax ∼ L. We identify the IR cutoff as
Pmin ¼ L=aðtÞ. Here aðtÞ ¼ expðϕcðtÞ=2Þ is the scale
factor of the Universe, and 1=L is the initial size of the
Universe. Since we consider the conformal zero mode ϕ0, it
can only depend on time. Its characteristic timescale is the
Hubble scale.
In this way, the quantum IR fluctuation grows:

hϕ̃2i ∼ −
2

Q2
ϕcðtÞ ⇒ heϕi ∼ e

ð1− γ2

Q2ÞϕcðtÞ: ð3:5Þ

This effect may diminish the effective cosmological con-
stant as the Universe expands [13]:

H2
eff ∼H2e

− γ2

Q2ϕcðtÞ ∼H2aðtÞ−
2γ2

Q2 : ð3:6Þ

The important point here is that the quantum IR effect is
time dependent and hence cannot be subtracted by a dS-
invariant counterterm. We introduce counterterms in accor-
dance with the general coordinate invariance of the action.
If the background de Sitter space is stable, the general
coordinate invariance reduces to the dS invariance.
On the contrary, a nontrivial anomalous dimension of

the cosmological constant operator spoils the dS
invariance. The scale-invariant de Sitter solution in
Eqs. (2.7)–(2.8) is replaced by the inflation-type solution
in Eqs. (2.33)–(2.34). Furthermore, an inflaton field has
emerged out of the necessity to satisfy the equation of
motion (2.4).
In Eq. (3.6), we have only considered the leading-order

IR effect in H2. Note that this one-loop IR effect (3.6) is
consistent to the leading order with the prediction (2.35)
based on the exact scaling dimension γ of the cosmological
constant operator:

H2ðtÞ ¼ H2

γ

�
1þ 1 − γ

γ
Ht

�
−2

∼H2

�
1 − 2

1 − γ

γ
Ht

�

∼H2

�
1 −

1

Q2
2Ht

�
: ð3:7Þ

So, it would be a double counting to take into account both
the scaling due to the anomalous dimension and the IR
logarithm.
Let us examine what creates the entropy to reduce the

Hubble parameter as above. We conjecture that de Sitter
entropy is carried by a conformal zero mode. It performs
a Brownian motion due to the constant disturbance by
newcomers that have just joined it. Such a process can be
investigated by a Fokker-Planck-type equation which
governs the evolution of the distribution function of the
conformal zero mode ρðϕ0Þ. To be more precise, de Sitter
entropy is the von Neumann entropy of ρðϕ0Þ.
We may put this formula (3.7) into the semiclassical

estimate of the de Sitter entropy:

Q2

γ
log

1

H2ðtÞ ¼
Q2

γ
2 log

�
1þ 1 − γ

γ
Ht

�

∼
Q2

γ

1 − γ

γ
2Ht ¼ 2Ht: ð3:8Þ

The speed of entropy generation is given by taking the time
derivative of the above:

2H

ð1þ 1−γ
γ HtÞ ¼ 2γHðtÞ: ð3:9Þ

It is given by the Hubble parameter, and thus it also slows
down with cosmic evolution. This semiclassical estimate
can be compared with that of the von Neumann entropy of
the distribution function ρðϕ0Þ.
The distribution functions of Fokker-Planck equations

are well approximated by the Gaussian for weak coupling.
Equation (3.40) shows that there is a −ð1=2Þ logω term
in the von Neumann entropy. 1=ω is the standard deviation
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of the Gaussian, and the entropy grows as ω decreases.
Equation (3.9) implies

−
1

2

∂
∂t logω ∼ 2H; ð3:10Þ

which is in qualitative agreement with Eq. (3.41), which is
the increasing speed of the von Neumann entropy of ρðϕ0Þ
under the Fokker-Planck equation.
We believe that carrying out the renormalization and

summing IR logarithms by Fokker-Planck equations is
double counting; we should not do them both. We should
only perform the renormalization that is necessary anyway.
We thus conclude that Eq. (3.8) is the correct semiclassical
estimate. The new entropy is generated by the accumu-
lation of conformal zero modes. They manifest as IR
logarithms in perturbation theory, which grows with time.
Fortunately, in two dimensions, we can decipher their
physical effects through renormalization procedures, since
UV and IR effects are closely related.
Geometric entropy of de Sitter space arises since there is

a much wider world outside the cosmological horizon. It is
analogous to the entangled entropy in the sense that both
arise after integrating out the Hilbert space of the outer
world. From the viewpoint of observers inside the cosmo-
logical horizon, they see nothing going out of the horizon.
For them, only conformal zero modes are piling up. So they
must carry the entire de Sitter entropy, and this inves-
tigation supports such a point of view. We are able to verify
that conformal zero modes contribute to shield the Hubble
parameter due to its negative sign for the kinetic energy.
Simultaneously, we can offer various evidences that they
generate de Sitter entropy at a rate in accord with semi-
classical estimates.
We recall here

γ2

4
hϕ2i¼−γ2

1

Q2
loga∼−

1

Q2
γHt¼−

1− γ

γ
Ht: ð3:11Þ

This is because of the relations in Eq. (2.15),

1 − γ

γ
¼ γ

Q2
; ð3:12Þ

and Eq. (2.34),

logaðtÞ ¼ 1

1 − γ
log

�
1þ 1 − γ

γ
Ht

�
: ð3:13Þ

The expectation value of any function of γϕ must be a
function of 1−γ

γ Ht, as the following relation holds:

hðγϕÞ2i ¼ −4 log
�
1þ 1 − γ

γ
Ht

�
: ð3:14Þ

The time dependence of the Hubble parameterHðtÞ implies
that the lower cutoff of the momentum integral is the
inverse of the size of the Universe for the fixed UV cutoff. It
clearly originates from the IR effects. Since this factor
1−γ
γ Ht is the leading log, we need to sum all powers of this
variable. The solutions of the renormalized action are such
functions. In this respect, we believe that the leading IR
logs are already contained in them.
The anomalous dimensions are the short-distance effect.

However, it also predicts a long-distance cutoff dependence
of the operator since the short-distance and long-distance
cutoffs must appear together as the ratio on dimensional
grounds. This is because the propagators of the minimally
coupled scalars are the same in both the UVand IR regions
in two dimensions. We have thus confirmed that the time
dependence of the cosmological constant operator is related
to the anomalous dimension ∶eϕ ≔ eγϕc to the leading
order in 1=Q2, where ∶eϕ∶ denotes the renormalization.
It is reasonable to believe that they also contain all leading
log effects. The exact expression shows that the anomalous
dimension γ − 1 is negative in the semiclassical regime
c > 25. Surprisingly, the short-distance effect alone makes
the Hubble parameter time dependent. Equation (2.35)
further shows that two-dimensional de Sitter space is
doomed, as the Hubble parameter HðtÞ fades away with
γ < 1. In the weak-coupling limit, HðtÞ decays as Q2=t
with cosmic time. Nevertheless, it is important to inves-
tigate if there are other sources of IR logarithms in the
entire Liouville theory.
The loop integral is logarithmically divergent with

respect to the IR cutoff. It is also known that the nth
powers of IR logarithms may appear if the diagram contains
n propagators [14]. Leu us recall that each logarithm
behaves as

1

Q2
log aðtÞ ∼ 1

Q2
Ht: ð3:15Þ

So it becomesOð1Þ if the e-folding number of the Universe
becomes OðQ2Þ. We thus need to sum up all of them at
late times. The leading IR logarithms of these origins
can be summed up by the Langevin and Fokker-Planck
equations. In two dimensions, the effective gravitational
coupling is 1=Q2. It is very large in comparison to four
dimensions, where 1=Q2 is replaced by the notorious
ratio ðH=MPÞ2 ∼ 10−120, where MP is the Planck mass.
Nevertheless, such effects may have a significant impact on
the evolution of the Universe. Fortunately, this problem
turns out to be solvable by renormalizing the cosmological
constant operator exactly.
In order to understand the geometric entropy of the two-

dimensional de Sitter space from superhorizon d.o.f., it is
useful to investigate them in Liouville gravity. Let us recall
the definition of entropy:
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βF ¼ − logZ; S ¼ −
�
1 − β

∂
∂β

�
βF; ð3:16Þ

where β ¼ 1=T. The two-dimensional de Sitter space may
be rotated into S2, and β corresponds to the radius l of S2 as
β ¼ 2πl. If we assume scale invariance, βF cannot depend
on β, since it is dimensionless. Therefore, the conformal
anomaly and Liouville action are the source of the non-
trivial geometric entropy. Since the size of the Universe is
dynamically determined in quantum gravity, −βF ¼ logZ
gives us nothing but entropy. It is stationary with respect to
a change of the geometry of the manifold such as β.
Note that Eq. (2.27) is reminiscent of the entangled

entropy with the central charge c [15,16]:

Sen ¼
c
3
log

b
a
; ð3:17Þ

where a and b denote the short-distance and long-distance
cutoffs of the subsystem, respectively. We may identify
H0=HðtÞ ¼ b=a. In conformal field theory, we cannot
associate any dimensionful parameters with H0 or b, since
there are none.
The geometric entropy may be the quantized version of

the entangled entropy. Entangled entropy is obtained from
the density matrix of the subsystem. It is the entropy of
the mixed state after integrating local d.o.f. belonging to
the outer system. The geometric entropy of de Sitter space
is expected to be constructed in an analogous way. The
density matrix may be obtained by integrating out the
states outside the horizon. The expectation value of
the operators inside the horizon can be evaluated by
the density matrix. In field theory, this may be accom-
plished by evaluating correlation functions in the
Liouville gravity. In the case of conformal zero modes,
their correlators are calculable from the Fokker-Planck-
type distribution function ρðϕ0Þ. Understanding the rela-
tions of these various approaches will shed light on
elucidating this problem.
Let us recall how to estimate the entangled entropy. We

may divide the real line into two sectors: positive and
negative half-lines. We may change coordinates from the
plane to a cylinder, z ¼ ew. The lower half-plane is mapped
to a rectangular region where the lower line segment
corresponds to our section and the upper line section
corresponds to the outer section. We may impose periodic
boundary conditions on the remaining sections. The density
matrix is obtained by integrating out the fields on the outer
segment after we glue two cylinders together.
In this case, the problem is effectively compactified

onto a torus, while geometric entropy of dS2 is often
studied by compactifying it onto S2. After integrating out
the localized states outside the cosmological horizon, we
are left with a half-line of the length 2l. It becomes a
circle if we adopt periodic boundary condition on this

strip. It is natural and may be even the right choice to
compactify dS2 to S2 with the identification of this circle
and the circumference. The density matrix ρðϕ;ϕ0Þ may
be obtained by performing the path integral of the fields
like the conformal mode on S2 with a specified field ϕ;ϕ0
at both sides of the equator. The expectation value of the
fields may be evaluated by inserting them on the equator
and performing the path integral on the whole S2 with a
suitable action like Liouville quantum gravity. The geo-
metric entropy S can be evaluated by simply evaluating
the partition function Z, since it gives the geometric
entropy S ¼ logZ right away in quantum gravity.
Suppose the Hubble parameter changes slowly with
cosmic time. In this case, it may be a good strategy to
change the radius of the corresponding dS2 and S2 as
1=HðtÞ. As far as conformal zero mode is concerned,
there is no problem in Euclidean rotation, since the
potential term dominates the kinetic term.
So far we have assumed that the matter system is at the

critical point—i.e., conformally invariant. In a more generic
situation, the central charge c is known to be a decreasing
function with respect to the IR cutoff and hence time, ϕcðtÞ.
For example, a nonlinear sigma model may develop a mass
gap. In such a situation, the number of massless scalar
fields decreases. This effect may enhance the magnitude of
the anomalous dimension and the screening effect of the
cosmological constant.
The conformal zero mode performs a Brownian motion

with the scale set by 1=Q2. As the Universe expands, plane
waves constantly come out of the horizon to join the
superhorizon mode. They collide with the main body just
like a Brownian process of the strength 1=Q2. It is note-
worthy that the metric of the conformal mode is negative
like Einstein theory in four dimensions, although there
could be an equilibrium distribution for the conformal zero
mode if there is a countereffect to diffusion. However, there
is no such possibility here, since we have no drift force due
to the uniqueness of the classical solution. See Appendix D
for its explanation.
We focus on the dynamics of the superhorizon mode of

the conformal factor of the metric. Its cosmic evolution
in real spacetime can be investigated by a Langevin-type
equation. The ensemble average of a function of fðϕðtÞÞ is
a natural observable in the system governed by a Langevin
equation. The Langevin equation is equivalent to the
Fokker-Planck equation. We define the ensemble average
of a function of fðϕðtÞÞ as

hfðϕðtÞÞi ¼ lim
n→∞

1

n

Xn
i¼1

fðϕiðtÞÞ; ð3:18Þ

where i denotes the observation of the ith member. In this
context, it is natural to introduce a distribution function
ρtðϕÞ in the following way:
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hfðϕðtÞÞi ¼
Z

dϕρtðϕÞfðϕÞ: ð3:19Þ

The probability distribution function ρtðϕÞ obeys the
Fokker-Planck equation. This formalism is close to the
field theory approach, especially with respect to investigat-
ing the superhorizon mode. The system may approach an
equilibrium state at a late time. In that case, ρðϕÞ describes
an equilibrium state whose temperature T is determined by
the strength of the random force. We thus conclude that

ρðϕÞ ¼ e−βVðϕÞÞ
1

Z
; ð3:20Þ

where logZ ¼ −βF. From this formula, we can verify that
the von Neumann entropy of ρ gives us the entropy of this
equilibrium state:Z

dϕð−ρ log ρÞ ¼
Z

dϕðβE − βFÞρ ¼ S: ð3:21Þ

Although our strategy is to investigate IR effects in real
spacetime with Langevin equation, Fokker-Plank equations
relate the problem with thermodynamics. The equilibrium
state is studied very well by Euclidean field theory. We can
estimate the von Neumann entropy of ρt even if it is not
equilibrated. It is the measure of the entropy of the system
which evolves according to the Fokker-Planck or Langevin
equation.
In order to connect the shielding mechanism of the

cosmological constant with entropy generation at the hori-
zon, we employ a stochastic approach [3,4]. The Langevin
equation for the conformal zero mode ϕ0 with respect to the
cosmic time t is derived in Appendix D. The superhorizon
mode of the conformal degree of metric is given by

ϕ0ðxÞ ¼
ffiffiffiffiffiffi
8π

Q2

s Z
dp⃗
2π

θðHaðtÞ − pÞ

×

�
ap⃗

1ffiffiffiffiffiffi
2p

p eip⃗·x⃗ þ a†p⃗
1ffiffiffiffiffiffi
2p

p e−ip⃗·x⃗
�
; ð3:22Þ

where ½ap⃗; a†p⃗0 � ¼ −2πδðp⃗ − p⃗0Þ. Since planewaves become
constant in time, the time dependence is caused by the
step function, which restricts physical momenta P < H.
The Langevin equation is given by

ϕ̇ðxÞ ¼ ϕ̇0ðxÞ; hϕ̇0ðt; x⃗Þϕ̇0ðt0; x⃗Þi ¼ −
4

Q2
Hδðt − t0Þ:

ð3:23Þ

We have dropped the drift term but kept the quantum
fluctuation effect. Our purpose in this investigation is not
to do double counting, as the renormalization of the
cosmological constant operator occurs by identical quantum

fluctuations. It is rather to see to what extent we can
reproduce the features of the exact solutions. By doing
so, we shall be able to examine the consistency of our
understanding on this issue.
If ϕðtÞ obeys the Langevin equation, the Fokker-Planck

equation for the distribution function ρtðϕÞ follows

ρ̇ ¼ −
2

Q2
H

∂
∂ϕ2

ρ: ð3:24Þ

We notice that the right-hand side is of the opposite sign
in comparison to those appearing in the study of unitary
matter systems. Of course, this is due to the negative
metric of the conformal mode. So this equation is
obtained by the time reversal of the former. It appears
that our equation listed so far in this section runs the show
backward in comparison to the standard evolution in the
matter system.
However, there is an important issue we have to address

in quantum gravity. The distribution of conformal zero
modes ϕ must change under the evolution. For this reason,
we may include the renormalization factor ω for the
cosmological constant operator. Note that the linear term
in ϕ cancels in the potential which ensures that the equation
of motion R̂ ¼ 2H2 holds:

V ¼
ffiffiffiffiffiffi
−ĝ

p
H2

Q2

ω
ðeωϕ − ωϕ − 1Þ: ð3:25Þ

We assume under Euclidean rotation

i
4π

Z
d2x

ffiffiffiffiffiffi
−ĝ

p
H2

Q2

ω
ðeωϕ − ωϕ − 1Þ

→
Q2

ω
ðeωϕ − ωϕ − 1Þ ð3:26Þ

when we compactify dS2 into S2 with the radius of 1=H. As
we emphasized in the preceding section, the renormaliza-
tion properties of the operators

ffiffiffiffiffiffi−gp
and

ffiffiffiffiffiffi
−ĝ

p
ϕR̂ are

different, while the de Sitter background is realized by
balancing them. In fact, the eωϕ and ϕ terms in the potential
[Eq. (3.26)] come from the former and latter operators,
respectively.4 It is required to keep the balance of the two
different operators. We need a formalism which lets the
renormalization of operators cancel the effect of the
evolution by the Fokker-Planck equation.
We thus assume the following distribution containing ω:

ρω ¼ Nωe−
Q2

ω ðeωϕ−ωϕ−1Þ ∼

ffiffiffiffiffiffiffiffiffi
Q2ω

2π

r
e−ωQ

21
2
ϕ2

; ð3:27Þ

where Nω is the normalization factor.

4The identity is our normalization convention.
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The readjustment of the background under time evolu-
tion is realized by requiring time independence for the
distribution function:

ρ̇ω ¼ −2H
1

Q2

∂2

∂ϕ2
ρω þ ω̇

∂
∂ωρω ¼ 0: ð3:28Þ

In this way, the background adjusts itself automatically
to cancel the evolution brought by the Fokker-Planck
equation.
The gravitational Fokker-Planck equation is

ω̇
∂
∂ωρω ¼ 2H

1

Q2

∂2

∂ϕ2
ρω: ð3:29Þ

After the dust settles, the sign of the right-hand side turns
back to normal. The time derivative of the distribution
function is specified through its ω dependence.
From this modified Fokker-Planck equation (3.29),

we obtain the following evolution equation for the
background ω:

ω̇ ¼ −4Hω2: ð3:30Þ

The solution is

ωðtÞ ¼ 1

1þ 4Ht
: ð3:31Þ

The initial probability distribution ρ0 is

ρ0 ¼ N0 expf−Q2ðeϕ − ϕ − 1Þg

¼ N0 exp
�
−
4π

H2
Λðeϕ − ϕ − 1Þ

�
: ð3:32Þ

This formula suggests a Euclidean system on S2 with a
radius 1=H. This solution coincides with our original
potential before the effects of IR logarithms become
important—namely, at the beginning of the de Sitter
expansion. In the semiclassical region where Q2 is large,
this potential is well approximated by a Gaussian:

N0

Z
dϕ expf−Q2ðeϕ − ϕ − 1Þg

∼
Qffiffiffiffiffiffi
2π

p
Z

dϕ exp

�
−
Q2

2
ϕ2

�
: ð3:33Þ

We have shown that there is an effect to reduce the
effective cosmological constant [Eq. (3.6)]. As long as this
effect is concerned, we believe that the UV investigation
[Eq. (2.35)] has shown that the Hubble parameter acquires
time dependence, and it eventually vanishes. Since the
propagators are identical in both the UVand IR regions, the
two birds can be dealt with by a single stone. We argue

there are no drift force effects, since the solution of the
theory is unique. There are unstable deformations if they
increase the entropy of the system. As we emphasized, the
system evolves toward the state with maximum entropy in
quantum gravity.
What is the geometric entropy of de Sitter space? We

propose that it is the entropy of the superhorizon conformal
mode which accumulates with cosmic expansion. There are
no other massless modes in two-dimensional Liouville
gravity. Furthermore, the entropy could increase in a
stochastic process. Let us evaluate the von Neumann
entropy of the conformal zero mode with Eq. (3.32):

S0 ¼ −trρ0 log ρ0

¼
Z

dϕρ0

�
Q2ðeϕ − ϕ − 1Þ − logQþ 1

2
logð2πÞ

�

∼
1

2
− logQþ 1

2
logð2πÞ: ð3:34Þ

In our view, the von Neumann entropy of the superhorizon
mode is the identity of the geometric entropy of de Sitter
space. A characteristic feature of this expression is its Q2

dependence. The von Neumann entropy becomes larger
if the effective gravitational coupling 1=Q2 becomes
stronger.5

Let us investigate its Q2 dependence from the two-
dimensional Liouville quantum gravity point of view:

∂
∂Q2

logZ ¼ −hðeϕ − ϕ − 1Þi ¼ −
1

2Q2
: ð3:35Þ

Here Z is the partition function of the superhorizon sector
of two-dimensional Liouville gravity on S2:

Z ¼
Z

dϕe−Q
2ðeϕ−ϕ−1Þ: ð3:36Þ

Note that the potential is bounded below, and the expect-
ation value of the n-point function of the superhorizon
mode is calculable. The potential dominates the kinetic
energy for the superhorizon conformal mode. We can safely
ignore the wrong-signed kinetic term in comparison to the
potential term. The wrong sign problem of the conformal
mode may turn out be a blessing with respect to the
cosmological constant problem. As is explained, logZ
gives us the entropy itself in quantum gravity. So a Q2

dependence of von Neumann entropy is consistent with a
geometric entropy of the superhorizon conformal modes of
Liouville gravity [Eq. (3.35)]. The expectation value of any
function fðϕÞ is well defined unless fðϕÞ grows too rapidly

5We do not exclude the possibility that a constant term like Q2

is missing since it becomes negative for large Q.
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as ϕ → �∞ to spoil the convergence of the integral. The
expectation value of fðϕÞ is real if f is a real function.
We consider the change of von Neumann entropy

in the stochastic process by introducing one parameter
deformation of an initial distribution function by ω. This
factor allows us to renormalize the cosmological constant
operator as

ρω ¼ Nωe−
Q2

ω ðeωϕ−ωϕ−1Þ: ð3:37Þ

In a Gaussian approximation,

Nω ¼ Q
ffiffiffiffi
ω

pffiffiffiffiffiffi
2π

p : ð3:38Þ

We rotate the Minkowski space-time potential of dS2 into
Euclidean S2:

i
4π

Z
d2x

ffiffiffiffiffiffi
−ĝ

p
H2

Q2

ω
ðeωϕ−ωϕ− 1Þ→Q2

ω
ðeωϕ−ωϕ− 1Þ:

ð3:39Þ

The corresponding von Neumann entropy is

Sω ¼ −trρω log ρω

¼
Z

dϕρω

�
Q2

ω
ðeωϕ − ωϕ − 1Þ − logQ

−
1

2
logωþ 1

2
logð2πÞ

�

∼ S0 −
1

2
logω: ð3:40Þ

This expression shows that entropy increases if ω
decreases from the initial point ω ¼ 1. So there might
be an unstable deformation of this configuration. If ω
decreases, the distribution of the superhorizon mode
spreads out. Let us examine a possible instability of this
configuration in the vicinity of ω ∼ 1 under the Fokker-
Planck equation:

ω̇
∂
∂ω Sω ¼ −trω̇

∂
∂ωρω log ρω

¼ −tr
2

Q2
H

∂2

∂ϕ2
ρω log ρω

∼2Hω ¼ −
1

2ω
ω̇: ð3:41Þ

From the inspection of Eq. (3.41), it is clear that the von
Neumann entropy of ρω always increases. In particular, its
growth ΔS ¼ 2Ht as the system evolves away from the
initial distribution with ω ¼ 1.
This result is consistent with semiclassical estimates

of the geometric entropy [Eq. (3.8)] when ω ∼ 1. The exact

solution in the weak-coupling region shows that the entropy
increases as

−
1

2
logω ¼ 2

Q2

γ
log

�
1þ 1 − γ

γ
Ht

�
∼ 2Ht ð3:42Þ

for the weak-coupling or short-time limit. We can verify
that von Neumann entropy increases logarithmically in the
evolution under the Fokker-Planck equation by using the
explicit solution (3.31):

Sω ¼ 1

2
logð1þ 4HtÞ ∼ 2Ht: ð3:43Þ

All approaches agree that entropy grows as 2Ht away
from the initial distribution function. They also agree that
HðtÞ eventually vanishes. The eventual fate of 2D de Sitter
space is not agreed upon. The exact solution predicts
it is Q2 dependent. The slow-roll parameter is given by
ϵ ¼ 1=Q2 ¼ η=2. It also predicts that the acceleration stops
at the critical point Q2 ¼ 0. The Fokker-Planck equation
predicts a more rapid slowdown of the acceleration.
The existence of configurations of higher von Neumann

entropy implies that the potential for the superhorizon
modes of two-dimensional Liouville gravity is modified
also as in a process of evolution:

VðϕÞ ¼ Q2

ω
ðeωϕ − ωϕ − 1Þ: ð3:44Þ

The partition function for the superhorizon sector of
conformal mode evolves as

Zω ¼
Z

dϕe−
Q2

ω ðeωϕ−ωϕ−1Þ: ð3:45Þ

This is because the ϕ field obeys the identical Langevin
equation in two-dimensional gravity. So the potential for
the conformal mode must change according to the Fokker-
Planck equation; it must be identical to that of the
distribution function [Eq. (3.37)]. With this potential, we
can reproduce the ω dependence of von Neumann entropy
from Liouville gravity:

logZω ∼ − logQ −
1

2
logω: ð3:46Þ

So geometric entropy in Liouville gravity in de Sitter space
is consistent with the von Neumann entropy [Eq. (3.40)] of
superhorizon modes. From these considerations, we are
able to obtain consistent pictures of these IR effects on the
Hubble parameter. The Hubble parameter is generically
suppressed by the e-folding number. The inhabitants of
two-dimensional de Sitter space may always wonder why
the Hubble scale is always the size of the Universe.
Let us check universes like those given by Eq. (3.31). ω

is just like the scaling dimension of the cosmological
constant γ. This Universe starts with a slow-roll inflation,
while the slow-roll parameter grows as γ ¼ 1=ð4HtÞ
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decreases. Finally, the accelerated expansion stops as
γ → 0, like arriving at the critical point. This is an
interesting scenario encompassing the exact solutions
altogether. It is remarkable in the first place that UVeffects
predict the IR behavior of the theory. This is specific to two
dimensions, as the propagators of the minimally coupled
scalars are scale invariant. The UV and IR divergences are
closely related, since logðPmax=PminÞ-type large logarithms
are expected in two dimensions. It is very interesting to find
out whether IR effects diminish the scaling dimension
altogether down to nil.
The situation is different in four dimensions, where only

log ðH=PminÞ-type IR logarithms appear. The solutions of
Fokker-Planck equations do not depend on Q2 or contain
all of them. It is a characteristic feature of the one-loop
approximation which takes account of the leading IR
logarithms. On the other hand, the exact solution of the
renormalized action shows explicit Q2 dependence indicat-
ing all loop contributions. The picture we obtain from the
exact solutions is not only more sophisticated but also very
convincing.
Apparently the effective field theory for the exactly

renormalized action contains inflatonlike freedom. Such
freedom seems necessary to describe the solution of
quantum gravity in terms of the effective theory at the
tree level. It is in some sense a dual description of quantum
gravity. Remarkably, its classical behavior reproduces
quantum effects. We wonder whether the inflaton in our
Universe may be such a dual description of quantum
effects.

IV. CONCLUSIONS

We have investigated IR quantum effects in the two-
dimensional de Sitter space from a solution of the exactly
renormalized Liouville action. We work in the semiclass-
ical region where the matter central charge c > 25. In such
a region, the exact scaling dimension γ of the cosmological
constant operator is less than γ < 1. This is due to the
screening effect of the conformal mode with a negative
metric. The two-dimensional de Sitter space is obtained
as a solution of the Liouville action. The solution of the
renormalized action shows that two-dimensional de Sitter
space is doomed. The Hubble parameter is no longer
constant and decreases with time. It does so slowly at
the weak coupling with large c and even stops acceleration
at the critical point c ¼ 25.
In conclusion, we have made a strong case for the

instability of two-dimensional de Sitter space. The exact
solutions show that the negative anomalous dimension of
the cosmological constant operator makes the Hubble
parameter time dependent and vanishes at a late time.
They underscore the importance of IR logarithms which
become shielding effects due to the negative sign of the
kinetic term of the conformal mode. We estimate the
semiclassical entropy of two-dimensional de Sitter space.

It increases logarithmically with the Hubble radius as
logð1=H2ðtÞÞ versus 1=H2ðtÞ in four dimensions. The
cosmological constant is diffused by entropy production
at the horizon. The conformal zero mode generates entropy
in a Brownian diffusion process. We formulate the Fokker-
Planck equation in two-dimensional quantum gravity. We
take account of the change of the conformal zero mode
distribution by the renormalization of the cosmological
constant operator. In this way we can obtain very analogous
equations with unitary matter systems despite the negative
metric of the conformal mode. Nevertheless, we argue
that the drift term is absent due to the uniqueness of the
classical solution.
We propose that the de Sitter entropy is carried by the

conformal zero modes. In order to verify our proposal, we
have evaluated the von Neumann entropy of the distribution
functions for them. Their characteristics are in agreement
with semiclassical estimates. In matter systems, it is known
that the equilibrium state is stable. Since we have only the
quantum fluctuation term, the system is diffused away with
the Hubble parameter to vanish at a late time. In the matter
systems, the free energy F ¼ E − TS is minimized. At low
temperatures, minimizing the energy is important. In a
standard model, we look for the ground state with the
smallest energy. On the other hand, we maximize the
entropy, as there is no energy in de Sitter space. It should be
interesting to understand such an evolution which takes
place in quantum gravity. This perspective may shed new
light on the fine-tuning problem, since the maximum
entropy principle operates in quantum gravity [17,18]. In
fact, the cosmological constant may turn out be such an
example. There are many common features between two-
dimensional and four-dimensional gravity, such as the
negative sign of the kinetic term of the conformal mode.
We hope to investigate the relation between the cosmo-
logical constant and the generation of entropy of the
superhorizon mode in four-dimensional Einstein gravity.
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APPENDIX A: DE SITTER THERMODYNAMICS

Globally, de Sitter space is a hyperboloid,

ds2

l2
¼ −dτ2 þ cosh2ðτÞdΩ2

3: ðA1Þ

The characteristic length l is set by the Hubble parameterH
as l ¼ 1=H. It is related to the cosmological constant Λ as
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l ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p
. Locally in the Poincaré coordinate, it corre-

sponds to an expanding flat universe,

ds2 ¼ −dt2 þ e2Htðdr2 þ r2dΩ2
2Þ

¼
�

1

−Hτ

�
2

ð−dτ2 þ dx⃗2Þ; ðA2Þ

where we can obtain conformally flat parametrization. We
often work in this coordinate, where τ runs from −∞ to 0.
Let us draw an S2 with the radius aðtÞr in this space where
aðtÞ ¼ eHt. The expansion velocity of this space is HaðtÞr.
Since it coincides with the velocity of light at the apparent
horizon, its radius is ρh ¼ 1=H. In the static coordinate
system,

ds2

l2
¼ −VðrÞdt2 þ 1

VðrÞ dr
2 þ r2dΩ2

2; ðA3Þ

where VðrÞ ¼ 1 − r2. It becomes manifest that an observer
at r ¼ 0 is surrounded by a cosmological horizon at r ¼ 1.
The radius of the horizon is ρh ¼ 1=H in agreement with
that in the Poincaré coordinate.
The presence of event horizons leads to thermo-

dynamics [5]. According to Bekenstein and Hawking,
black holes possess finite temperature:

Thor ¼
κ

2π
: ðA4Þ

For a Schwarzschild black hole of mass M, κ ¼ 1=4M.
The first law of thermodynamics is

1

Thor
¼ ∂S

∂M : ðA5Þ

The entropy is given by the area of the event horizon,

Shor ¼
A
4
: ðA6Þ

We list here the relationship among different coordinates
on two-dimensional de Sitter space or its Euclidean
version S2. The metric on S2 is

ds2 ¼ 1

H2
ðdθ2 þ sin2ðθÞdφ2Þ: ðA7Þ

It can be embedded into three Euclidean dimensions:

z20 þ z21 þ z22 ¼
�
1

H

�
2

: ðA8Þ

We rotate it into real spacetime: z0 → iz0,

−z20 þ z21 þ z22 ¼
�
1

H

�
2

: ðA9Þ

We then consider the following coordinate:

z0 ¼
1

H
sinhðHtÞ þ 1

2
HeHtx2;

z2 ¼
1

H
coshðHtÞ − 1

2
HeHtx2;

z1 ¼ eHtx; ðA10Þ

with the line element

ds2 ¼ −dt2 þ e2Htdx2 ¼
�

1

−Hτ

�
2

ð−dτ2 þ dx2Þ; ðA11Þ

which covers the upper half-triangle of the Penrose diagram
of the global de Sitter manifold. The metric on S2 can be
continued to the global de Sitter metric more directly,
θ ¼ π

2
þ it:

ds2 ¼ 1

H2
ð−dt2 þ cosh2ðtÞdφ2Þ: ðA12Þ

Although we mostly work in the Poincaré coordinate, we
may rotate it into S2 by using these relations if appropriate.
The coordinate transformation can be done by inspection.
For example, we claim the following term is topologically
quantized after Euclidean rotation into S2:

1

8π

Z
dτdx

1

ð−HτÞ2 2H
2

¼ 1

8π

Z
d2x

ffiffiffiffiffiffi
−g

p
R → −i

1

4π

Z
dθdω sin θ ¼ −i:

ðA13Þ

The two-dimensional Liouville gravity may be thought
of a little Einstein gravity descending from four dimensions
to D ¼ 2þ ϵ dimensions:

Q2

4π

Z
dDx

ffiffiffi
g

p �
1

ϵ
R −H2

�

¼ Q2

4π

Z
dDx

ffiffiffiffiffiffi
−ĝ

p �
1

ϵ
e

ϵ
2
ϕR̂ − eϕH2

�
; ðA14Þ

where we explicitly show the constant conformal mode
dependence,

gμν ¼ eϕĝμν: ðA15Þ

The first term with the 1=ϵ pole is
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1

ϵ

Q2

4π

Z
d2x

ffiffiffi
g

p
R ¼ Q2

4π

Z
d2x

ffiffiffî
g

p �
1

ϵ
R̂þ 1

4
ϕĝμν∇μ∇νϕþ 1

2
ĝμν∇μϕ∇νϕþ 1

2
ϕR̂

�

¼ Q2

4π

Z
d2x

ffiffiffî
g

p �
1

ϵ
R̂þ 1

4
ĝμν∇μϕ∇νϕþ 1

2
ϕR̂

�
: ðA16Þ

The leading term with the 1=ϵ pole acts as the counterterm.
We thus obtain

Q2

4π

Z
d2x

ffiffiffî
g

p �
1

4
ĝμν∂μϕ∂νϕþ 1

2
ϕR̂ −H2

�
: ðA17Þ

This is the Liouville action, which is the gift of conformal
anomaly.

APPENDIX B: RENORMALIZATION OF THE
COSMOLOGICAL CONSTANT OPERATOR

To renormalize the cosmological constant operator to the
leading order in 1=Q2, we need to consider the quantum
fluctuation of the cosmological constant operator:

heϕi ¼ heϕcþϕ̃i ∼ eϕcðtÞþ1
2
hϕ̃2i: ðB1Þ

Here ϕcðtÞ denotes a classical solution, while

hϕ̃2i ¼ −
4

Q2

Z
Pmax

Pmin

dP
P

: ðB2Þ

The scalar propagator is both UV and IR divergent in two
dimensions. We recall here that the physical momenta P
depend on the metric

Pmax ¼
pmax

e
1
2
ϕ̃ðxÞ : ðB3Þ

We first consider the UV contribution in a dimensional
regularization. We consider D ¼ 2 − ϵ dimensions, since
the 1=ϵ pole can be identified with the logarithmic UV
divergence. The cosmological constant operator is

e
D
2
ϕ̃ ¼ eð1−ϵ

2
Þϕ̃: ðB4Þ

We evaluate the two-point function as

1

2
hϕ̃2i ¼ −

2

Q2

Z
dpp1−ϵ 1

p2 þm2
μϵe−

1
2
ϵϕ̃

¼ −
1

Q2
Γ
�
ϵ

2

�
m−ϵμϵe−

1
2
ϵϕ̃

∼ −
2

Q2

�
1

ϵ
þ log

μ

m
−
1

2
ϕ̃

�
; ðB5Þ

where μ is the renormalization scale. We set μ ¼ m for
simplicity. One of the difficulties of renormalizing the
operators in quantum gravity is that both the propagators
and the interaction vertices depend on the metric.
To carry over this renormalization process to all orders,

we employ a renormalization group [19,20]. Let us recall
our dimensional regularized Lagrangian,

Z
dDx

Q2

8π

�
1

2
ημνe−

ϵ
2
ϕ ∂
∂xμ ϕ

∂
∂xν ϕ − 2H2eð1−ϵ

2
Þϕ
�
: ðB6Þ

It is always a good idea to canonically normalize the kinetic
term by the change of field variable e−

ϵ
4
ϕ ¼ 1 − ϵ

4
ψ ,

Z
dDx

Q2

8π

�
1

2
ημν

∂
∂xμ ψ

∂
∂xν ψ − 2H2ð1 − ϵ

4
ψÞ−4

ϵð1−ϵ
2
Þ
�
:

ðB7Þ

Now the two-point function is just Eq. (B5) without ψ field
dependence:

1

2
hψ̃2i ∼ −

2

Q2

�
1

ϵ
þ log

μ

m

�
: ðB8Þ

The advantage of this approach is that we need not worry
about the interaction vertices in the kinetic term. Let us
investigate the quantum correction to the cosmological
constant operator next:

�
1 −

ϵ

4
ψ

�
−4
ϵð1−ϵ

2
Þ

¼ exp

�
−
4

ϵ

�
1 −

ϵ

2

�
log

�
1 −

ϵ

4
ψ

��

¼ exp

��
1 −

ϵ

2

�
ðψ þ ϵ

4

1

2
ψ2 þ ϵ2

42
1

3
ψ3 þ � � �

�
: ðB9Þ

The one-loop quantum corrections start with the eψ part of
the operator

ENTROPY GENERATION AT THE HORIZON DIFFUSES … PHYS. REV. D 99, 085015 (2019)

085015-17



�
exp

��
16 −

ϵ

2

�
ψ

��
∼ 1þ

�
1 −

ϵ

2

�
ψ̄ þ 1

2
ð1 − ϵÞhψ2i þ 1

2

�
1 −

3ϵ

2

�
hψ2iψ̄

¼
�
1 − ð1 − ϵÞ 2

Q2

1

ϵ

��
1þ

�
1 −

ϵ

2

�
ψ̄

�
: ðB10Þ

There are additional contributions,

�
ϵ

4

1

2
ψ2

�
þ
�
ϵ

4

1

2
ψ3

�
¼ −

1

2

1

Q2
−
3

2

1

Q2
ψ̄ : ðB11Þ

By a multiplicative renormalization by Z, we obtain the
renormalized operator at the one-loop level:

Z

�
1−ð1−ϵÞ 2

Q2

1

ϵ
−
1

2

1

Q2

��
1þ

�
1−

1

Q2

��
1−

ϵ

2

�
ψ̄

�

¼1þ
�
1−

1

Q2

��
1−

ϵ

2

�
ψ̄ ∼exp

��
1−

1

Q2

��
1−

ϵ

2

�
ψ̄

�
:

ðB12Þ

Let us introduce a trick to determine the UV divergence
of a generic operator. We consider the following integral
weight:

ffiffiffiffiffiffiffiffi
ϵQ2

8π

r Z
dψe−

ϵQ2

8
ψ2

; ðB13Þ

such that the average of the two-point function produces its
1=ϵ pole in 2þ ϵ dimensions:

ffiffiffiffiffiffiffiffi
ϵQ2

8π

r Z
dψe−

ϵQ2

8
ψ2

ψ2 ¼ 4

ϵQ2
: ðB14Þ

We split the field such that ψ → ψc þ ψ and take the
average over the ψ field with this measure first. We can
determine its UV divergences this way.
A generic proof is

�
1

2l!
ðψcþψÞ2l

�
−
¼
�X 1

2m!
ψ2m
c

1

2n!
ψ2n

�
−

¼
X 1

2m!
ψ2m
c

1

n!

�
1

2
hψ2i−

�
n
; ðB15Þ

where the average denoted by hψ2ni− is with respect to the
weight [Eq. (B13)]. It is also clear that

exp
�
−

2

ϵQ2

∂2

∂ψ2

�
FðψÞ ðB16Þ

is the finite operator. This is because

exp

�
−

2

ϵQ2

∂2

∂ψ2
c

�
1

2l!
hðψc þ ψÞ2li−

¼ exp

�
−

2

ϵQ2

∂2

∂ψ2
c

�X 1

2m!
ψ2m
c

1

n!

�
1

2
hψ2i−

�
n

¼
X 1

m!

�
−

2

ϵQ2

�
m 1

n!

�
1

2
hψ2i−

�
n

¼ 1

l!

��
−

2

ϵQ2

�
þ
�

2

ϵQ2

��
l
¼ 0: ðB17Þ

Let us introduce the renormalization scale μ according to
its canonical dimension. In doing so, we have introduced an
arbitrary scale μ in the bare inverse coupling Q2

B ¼ Q2μ−ϵ.
Since the bare coupling cannot depend on how to decom-
pose it, we conclude that Q2 ∼ μϵ. By demanding μ
independence on the bare operator (B16), we can derive
a renormalization group equation for the renormalized
operator

μ
∂
∂μF ¼ −

2

Q2

∂2

∂ψ2
F: ðB18Þ

This equation does not depend on the sign of ϵ. The
operator F diffuses at long distances.
In fact, the solution of this diffusion equation coincides

with the finite cosmological constant operator constructed
by the integral measure [Eq. (B13)]. It is the diffusion
kernel where diffusion time is identified with 1=ϵ ∼ − log μ
in 2þ ϵ dimensions. In the two-dimensional limit, it can be
exactly calculated as follows:

ffiffiffiffiffiffiffiffi
ϵQ2

8π

r Z
dψe−

ϵQ2

8
ψ2

e
4
ϵð1þϵ

2
Þ logf1þϵ

4
ðψcþψÞg

¼
ffiffiffiffiffiffiffiffi
ϵQ2

8π

r Z
dψe−

ϵQ2

8
ðψ−ψcÞ2e4

ϵð1þϵ
2
Þ logð1þϵ

4
ψÞ

¼
ffiffiffiffiffiffiffiffi
ϵQ2

8π

r
4

ϵ

Z
dρe−

2Q2

ϵ ðρ−ϵ
4
ψcÞ2e

4
ϵð1þϵ

2
Þ logð1þρÞ

∼ eQ
2ρ0ψc : ðB19Þ

In the ϵ → 0 limit, ρ0 is determined by the saddle-point
approximation which leads Eq. (2.15), and the scaling
dimension is determined as

Q2ρ0 ¼ γ: ðB20Þ
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The renormalized cosmological constant operator is deter-
mined to be eγϕ, in agreement with the conformal invari-
ance approach [Eq. (2.16)]. The advantage of this approach
is that it demonstrates how the original cosmological
constant operator at short distances evolves toward the
renormalized form at long distances due to quantum
effects [20].
The Fokker-Planck equation is also a diffusion equation,

ρ̇ ¼ 2H
1

Q2

∂2

∂ϕ2
ρ; ðB21Þ

with the identification Ht ¼ μ−ϵ=ϵ ∼ − log μ to relate it to
Eq. (B18). Let us construct the diffusion kernel in the
conjugate variables to ϕ:

K ¼ 1ffiffiffi
2

p e
−t2H 1

Q2p
2

;
∂
∂t K ¼ −2H

1

Q2
p2K: ðB22Þ

The solution in the dual variables is given by

ρðt; pÞ ¼ Kðt; pÞρðpÞ: ðB23Þ

After the Fourier transformation, we obtain

ρt ¼
Z

dϕ0Kðt;ϕ − ϕ0Þρðϕ0Þ

¼
Z

dϕ0 Qffiffiffiffiffiffiffiffiffiffiffi
8Htπ

p e−
Q2ðϕ−ϕ0Þ2

8Ht
Qffiffiffiffiffiffi
2π

p e−
Q2

2
ϕ02

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2

2πð1þ 4HtÞ

s
e−

Q2

2ð1þ4HtÞϕ
2

: ðB24Þ

There is an alternative method to impose the conformal
invariance on the bare operator, as was mentioned before.
In this approach, we construct the bare operator which is
invariant under ϕc → ϕc − φ; ϕ̃ → ϕ̃þ φ [10,11].
The one-loop short-distance divergence is evaluated in a

dimensional regularization [Eq. (B5)]:

heγϕi¼ exp

�
γ2

2
hϕ2i

�
¼ exp

�
−
2γ2

Q2

�
1

ϵ
−
1

2
ϕ̃

��
: ðB25Þ

The bare operator is constructed by subtracting the UV-
cutoff-dependent part,

eϕceγϕZ; Z ¼ exp

�
2γ2

Q2

1

ϵ

�
: ðB26Þ

Under the above transformation, the bare operator
changes as

eγϕZðϕÞ → e
γφþ γ2

Q2φ: ðB27Þ

We find the condition

γ þ γ2

Q2
¼ 1: ðB28Þ

One-loop computation is sufficient to perform the exact
renormalization as the self-consistent solution is obtained.
By solving this equation, the scaling dimension of the
cosmological constant operator is determined to all orders.
It matches with the leading-order renormalization process
we carried out here:

γ ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Q2

q ¼ 1 −
1

Q2
þ 2

�
1

Q2

�
2

þ � � � : ðB29Þ

APPENDIX C: UNIQUENESS OF THE DUALITY

Martinec and Moore considered the following action,
which contains not only timelike but also spacelike
Liouville fields ϕ and φ, respectively [12]:

Z ffiffiffiffiffiffi
−ĝ

p
d2x

�
Q2

16π

�
ĝμν∂μϕ∂νϕþ 2ϕR̂ −

4H2

γ2
eγϕ

�

−
q2

16π
ðĝμν∂μφ∂νφþ 2φR̂Þ

�
; ðC1Þ

where the total central charge must vanish: 6Q2 − 6q2−
cmatt þ 24 ¼ 0. This is the Liouville gravity with the
cosmological constant for the ϕ field, while the φ field
is free in the conformal gauge. The scaling dimension
of the cosmological constant operator γ is determined
by Q2.
The equations of motion with respect to ϕ and φ are

∇2
0ϕ ¼ 1

γ
H2eγϕ; ∇2

0φ ¼ 0; ðC2Þ

whose solutions are given by

ϕc ¼ −
2

γ
logð−HτÞ; φc ¼ 0: ðC3Þ

The timelike and spacelike Liouville fields can be mixed
by a hyperbolic rotation:

Qϕ ¼ Qϕ̃c − qφ̃s; qφ ¼ qφ̃c −Qϕ̃s; ðC4Þ

Q̃ ¼ Qcþ qs; q̃ ¼ qcþQs; ðC5Þ

where c ¼ coshðλÞ; s ¼ sinhðλÞ. This process produces a
class of formally equivalent inflaton models which are
interesting testing grounds for our understanding about
inflation:
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Z ffiffiffiffiffiffi
−ĝ

p
d2x

�
Q2

16π

�
ĝμν∂μϕ̃∂νϕ̃þ 2

Q̃
Q
ϕ̃ R̂−

4H2

γ2
eγðϕ̃c−φ̃

s
QÞ
�

−
1

16π
ðĝμν∂μφ̃∂νφ̃þ 2q̃ φ̃ R̂Þ

�
; ðC6Þ

where φ̃ is normalized as qφ̃ → φ̃ and can be identified as
an inflaton.
The equations of motion with respect to the conformal

mode and the inflaton are

∇2
0γϕ̃ ¼ 2H2ceγðϕ̃c−φ̃

s
QÞ; ∇2

0γφ̃ ¼ 2H2Qseγðϕ̃c−φ̃
s
QÞ:

ðC7Þ

These equations are solved as

ϕ̃c ¼ −
2c
γ
logð−HτÞ; φ̃c ¼ Q

s
c
ϕ̃c: ðC8Þ

We still need to satisfy the equation of motion with
respect to the traceless mode of the metric hμν:

Q2

8π

�
∇μϕ̃∇νϕ̃ − 2

Q̃
Q
∇μ∇νϕ̃

�

¼ 1

8π
ð∇μφ̃∇νφ̃ − 2q̃∇μ∇νφ̃Þ þ∇μχ∇νχ; ðC9Þ

where χ denotes a free scalar field.6 In terms of the
old unrotated variables ϕ and φ, this equation can be
simplified as

Q2

8π
ð∇μϕ∇νϕ − 2∇μ∇νϕÞ ¼ 0; ðC10Þ

where we have substituted the trivial solutions φc ¼ χc ¼ 0
on the right-hand side. It should be noted that if γ < 1,
the left-hand side no longer vanishes for the solution
ϕc ¼ − 2

γ logð−HτÞ. We need to identify something to fill
this gap.
Our proposal is to interpret an inflaton as a quantum

d.o.f. and assign this role to it. Specifically, we introduce a
minimally coupled inflaton f into the action as follows:

Z
d2x

Q2

8π

ffiffiffiffiffiffi
−ĝ

p �
−
1 − γ

2
ĝμν∂μf∂νf

þ 1

2
ðĝμν∂μϕ∂νϕþ 2R̂ϕÞ − 2H2

γ
eϕ−ð1−γÞf

�
; ðC11Þ

where f has no R̂f term, in contrast to φ̃ in Eq. (C6).

The equations of motion with respect to the inflaton f
and the conformal mode ϕ are

∇2
0γf¼2H2eϕ−ð1−γÞf; ∇2

0γϕ¼2H2eϕ−ð1−γÞf; ðC12Þ

whose solutions are given by

f ¼ ϕ ¼ −
2

γ
logð−HτÞ: ðC13Þ

These solutions satisfy the equation of motion with respect
to hμν:

Q2

8π
ð∇μϕ∇νϕ − 2∇μ∇νϕÞ ¼

Q2

8π
ð1 − γÞ∇μf∇νf: ðC14Þ

We can identify f as ϕ by the use of the equations of
motion. We regard this semiclassical theory as a dual
description of quantum Liouville gravity. We do not touch a
spacelike Liouville term even if it is present in the
Lagrangian. The presence of such a term can be felt only
through Q2.
The physical properties of this inflationary universe are

studied in Sec. II. A class of two-dimensional quantum
gravity models which are related by the change of variables
represents a unique model in our effective Lagrangian
approach. We believe this fact supports our interpretation
that an inflaton emerges as a quantum effect in quantum
gravity.

APPENDIX D: NO DRIFT FORCE FOR
CONFORMAL MODE

In de Sitter spaces for superhorizon modes, the effective
viscosity might become large and the ϕ field moves with a
velocity proportional to the potential force:

ϕ → ϕþ 2

Q2

∂
∂ϕVðϕÞ log a ¼ ϕþ 2ðeϕ − 1ÞHt: ðD1Þ

There is no suppression factor by 1=Q2 here, since it is a
tree effect. They cancel between the propagator and the
vertex. We thus obtain an analogous equation to that of the
inflaton in inflation theory:

ϕ̇ ¼ 2Hðeϕ − 1Þ: ðD2Þ

This equation is obtained diagrammatically, but it must
follow from the equation of motion of the conformal
field ϕ.
The equation of motion for the quantum field ϕ is

∂2

∂τ2 ϕ −
∂2

∂x2 ϕ − 2H2eγϕcðeϕ − 1Þ ¼ 0: ðD3Þ
6Strictly speaking, both sides of Eq. (C9) should be made

traceless as in Eq. (2.4). However, such a process is not necessary if
we are concerned only with homogeneous background fields.
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Let us consider ϕ̌ ¼ γϕc þ ϕ, where ϕc is the classical
solution which describes de Sitter space. We find that ϕ̌
satisfies the identical equation with γϕc,

∂2

∂τ2 ϕ̌ −
∂2

∂x2 ϕ̌ − 2H2eϕ̌ ¼ 0: ðD4Þ

Both γϕc and ϕ̌ are the solution of the Liouville theory.
As pointed out before, we have separated the original
field ϕ0 ¼ γϕc þ ϕ. We can consider the transformation
γϕc → γϕc þ φ and ϕ → ϕ − φ, which leaves the theory
invariant as long as φ represents local fluctuations.
However, it is doubtful that there are two different

solutions. In fact, ϕ̌ is the solution only when the second
derivative with respect to time can be neglected, namely
near the origin of the field space ϕ̌ ∼ 0. From the equations
of ϕc and ϕ,

γϕc ¼ 2Ht; ϕ̇ ¼ 2Hðeϕ − 1Þ; ðD5Þ

we obtain

e2HtH ˙̌ϕ ¼ 2H2eϕþ2Ht ¼ 2H2eϕ̌; ðD6Þ

while

e2Ht ̈ϕ̌ ¼ ð2HÞ2eϕþ2Htðeϕ − 1Þ ¼ 2H2eϕ̌ðeϕ − 1Þ: ðD7Þ

In other words, ϕ̌ is not the solution in other regions. We
conclude that there is a unique de Sitter solution γϕc in this
model. The free-field solution without the potential is

1ffiffiffiffiffiffi
2p

p e−ipτþip⃗·x⃗: ðD8Þ

We focus on the superhorizon mode,

ϕ0ðxÞ ¼
ffiffiffiffiffiffi
8π

Q2

s Z
dp⃗
2π

θðHaðtÞ − pÞ

×

�
ap⃗

1ffiffiffiffiffiffi
2p

p eip⃗·x⃗ þ a†p⃗
1ffiffiffiffiffiffi
2p

p e−ip⃗·x⃗
�
; ðD9Þ

where ½ap⃗;a†p⃗0 �¼−2πδðp⃗− p⃗0Þ. Since plane waves become
constant in time, the time dependence is caused by the
step function, which restricts physical momenta P < H.
The Yang-Feldman-type solution is

ϕðxÞ¼ϕ0ðxÞþ i
Z

dτ0
Z

dx⃗0GRðx;x0Þ2H2eγϕcðeϕ−1Þðx0Þ:

ðD10Þ

The retarded propagator may be approximated for the
superhorizon mode:

GRðx; x0Þ ∼ θðt − t0Þ
Z

dp⃗
2π

− iðτ − τ0Þeip⃗·ðx⃗−x⃗0Þ

¼ −i
1

H
θðt − t0Þδðx⃗ − x⃗0Þ

�
1

aðt0Þ −
1

aðtÞ
�
:

ðD11Þ

We thus obtain

ϕðxÞ ¼ ϕ0ðxÞ þ 2H
Z

t
dt0ðeϕðt0;x⃗Þ − 1Þ: ðD12Þ

By differentiating Eq. (D12), we obtain the Langevin
equation:

ϕ̇ðxÞ ¼ ϕ̇0ðxÞ þ 2HðeϕðxÞ − 1Þ;

hϕ̇0ðt; x⃗Þϕ̇0ðt0; x⃗Þi ¼ −
4

Q2
Hδðt − t0Þ: ðD13Þ

However, we believe there are no drift force effects in
Liouville gravity, since there is no acceptable solution
except γϕc. So we are left with random noise effects only:

ϕ̇ðxÞ ¼ ϕ̇0ðxÞ; hϕ̇0ðt; x⃗Þϕ̇0ðt0; x⃗Þi ¼ −
4

Q2
Hδðt − t0Þ:

ðD14Þ
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