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Many-body systems with chiral fermions exhibit anomalous transport phenomena originated from
quantum anomalies. Based on quantum field theory, we derive the kinetic theory for chiral fermions
interacting with an external electromagnetic field in a background curved geometry. The resultant
framework is U(1) gauge invariant and local Lorentz and diffeomorphism covariant. It is particularly useful
to study the gravitational or noninertial effects for chiral fermions. As the first application, we study the
chiral dynamics in a rotating coordinate and clarify the roles of the Coriolis force and spin-vorticity
coupling in generating the chiral vortical effect. We also show that the chiral vortical effect is an intrinsic
phenomenon of a rotating chiral fluid, and thus independent of the observer’s frame.
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I. INTRODUCTION

Quantum anomaly is a prominent concept in the trans-
port phenomena of chiral fermions. One of its most novel
consequences is the generation of parity-breaking currents,
typified by the chiral magnetic effect (CME) [1,2] and
chiral vortical effect (CVE) [3-6]. A crucial feature of these
anomalous currents is that they are insensitive to the details
of interactions and are thus universal. For this reason, such
phenomena have received a lot of attention in a wide
context of physics ranging from the high-energy nuclear
physics [7-10] and astrophysics [11-13] to condensed
matter physics [14-16].

To study the real-time dynamics of the anomalous
transport phenomena, the chiral kinetic theory (CKT) is
a promising approach which is applicable when the system
is dilute and the external fields are weak [17-24]. In CKT,
the chiral anomaly is encoded through the Berry curvature
[25], which modifies the Boltzmann equation and the
phase space measure. Recently, various aspects of the
CKT were investigated, including the Lorentz covariance
[22,23,26,27], consistent versus covariant anomalies [28,29],
particle collisions [22,27,30,31], etc.

Despite these developments, so far the CKT is restricted
to flat spacetime and thus not conventional to explore the
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anomalous transport phenomena induced by gravitational
or noninertial effects [4,5,32-36]. Although the classical
Boltzmann equation is readily extended to curved space-
time, the formulation of the CKT in curved spacetime is
highly nontrivial. The very few attempts so far [37-39]
considered only a special curved spacetime, that is, the
rotating coordinate,’ and lacked the diffeomorphism
(i.e., the general coordinate transformation) covariance.
The more rigorous derivation should start from quantum
field theory in curved spacetime.

In this paper, we derive the CKT in an arbitrary curved
spacetime and external electromagnetic field, based on the
Wigner function formalism that respects the U(1) gauge
invariance, and the local Lorentz and diffeomorphism
covariance [40-42]. We apply the resultant framework to
a rotating coordinate and examine the frame dependence of
the CVE, which is so far unclear. We show that, depending
on the observer’s frame, the Coriolis force and spin-
vorticity coupling (and the side-jump effect) can be
responsible to the generation of the CVE, but the total
CVE current is always independent of the observer’s frame.

Throughout this paper, we choose the unit c=kg=e=1
(with e the electric charge), but keep 7 explicit; (un)hatted
Greek indices denote local flat (curved) spacetime coordi-
nates; n&ff:diag(l,—l,—l,—l) is the Minkowski metric; V,,
denotes the covariant derivative with respect to the diffeo-
morphism and local Lorentz transformation, e.g., for scalars

'In this paper, the rotating coordinate will be regarded as a
curved spacetime even though its Riemann curvature is zero,
while the term “flat spacetime” is specifically referred to as the
Minkowski spacetime.
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V,.f=20,f, forvectorsV,V, =0,V, - Fﬁu‘/ﬂ, for spinors
V. = (0, +T,)y, where the spin connection is F,f =
—ﬁ'o&/’gpgeg(a”eg +F;j,,eg), with the spin matrix 6%/ =
L, yﬁ], vierbein €4, and the Christoffel symbol I, = I',;
the Levi-Civita symbol is &° = /—g(x)e"??? with
0123 = —£3153 = 1 and g = det(g,, ); the Dirac matrices
satisfy {y#,7*} = 2¢" and y° is defined as y°> = (—i/4!) x
Eupa?" Y VY

II. PHASE SPACE AND HORIZONTAL LIFT

In curved spacetime the definition of the phase space is
subtle because a global notion of momentum is usually not
permitted. This means that for each position x on the
spacetime manifold M, one can introduce a momentum
space P, attached to M. The phase space is then the
collection of (x, P, ), which constitutes a fiber bundle. One
of the natural choices for P, is the tangent or cotangent
space so that the usual momentum space is reproduced in
Minkowski spacetime. In this paper, we employ the latter.
That is, we define the momentum variable p, as a point in
the cotangent space (that is, p,, is a covariant vector on M),
and the corresponding phase space is the cotangent bundle
T*M. Similarly, a point y* in the tangent space Y, (that is,
y* is a contravariant vector on M) is defined as the position
variable canonically conjugate to p,. The set of (x,V,)
builds the tangent bundle TM.

The Wigner function W(x, p) for Dirac fermions that we
will introduce in next section is required to transform
covariantly under the U(l) gauge transformation, local
Lorentz transformation, and the diffeomorphism. The U(1)
covariance is ensured when W(x, p) is suitably constructed
with 0, +iA,/h, instead of J,, see next section and
Ref. [43,44]. Consequently, W(x, p) is transformed as
W(x, p) = S(x)W(x, p)S~!(x), where S is the representa-
tion matrix of the U(1) gauge transformation. In a similar
manner, the local Lorentz covariance can be kept by
introducing the spin connection I', and replacing d, by
the covariant derivative V,,; W(x, p) is thus transformed as
a bispinor, W(x, p) — U(A)W(x, Ap)U~'(A), where A is
the local Lorentz transformation at x and U(A) is its
spinorial representation. The diffeomorphism covariance of
W(x, p) needs more careful treatment. This is because the
diffeomorphism affects functions in TM or T*M in a very
nontrivial way. In fact, the proper covariant derivative on
T*M 1is defined as follows [42,45]:

Dﬂ:V”—i—Fﬁ,,p,la’;, (1)

with 0, = 0/0p,,. The derivation of Eq. (1) based on the
parallel displacement is shown in Appendix A. In differ-
ential geometry, such defined D,, is called the horizontal lift

of V, on M to T*M. Similarly to Eq. (1), the covariant
derivative in TM is defined by D, =V, — "4,y 9.

The implementation of the horizontal lift brings a great
advantage in analysis. That is, we can regard p, and y* as
“x-independent” variables under the parallel transport by
D,, because of

D,p, =D,y =0. (2)

As a result, for an arbitrary function ¥(x) on M, its lifted
image in TM is represented as the function translated by
D,: ¥Y(x,y)=Y(x)+yV,¥(x)+1y"y*V,V,¥(x) 4 =
exp(y-D)¥(x). Furthermore, the Fourier transforma-
tion from TM to T*M is expressed as ¥(x,p)=

Jd*y\/—g(x)exp(=ip - y/h)¥(x.y).

III. QUANTUM TRANSPORT IN
CURVED SPACETIME

With the above preparation, we define the fermionic
Wigner function covariantly under the U(1) gauge, local
Lorentz transformations, and diffeomorphism, as follows:

W(x,p) = / d*y\/—g(x)e P/ p(x, y),

p(x,y) = (W(x,y/2) @ w(x,~y/2)) (3)

with y(x) being the Dirac spinor on M, y(x) =y’ (x)yo,
7 0 =[0y]™y0 for an operator O, y(x,y) = exp(y - D) x
w(x), y(x,y) =g (x)exp(y- D), and [ ® yl,, = Wiy
(a,b = 1-4). Note that D, acting on the Dirac spinor
involves A, to keep the U(1) gauge covariance:

Dy(x,y) = (V, —=Thy" 0, +iA,/h)y(x.y), (4)

where we recall that V,y further involves the spin con-
nection, i.e., V,y = (9, + I, )w. In Minkowski spacetime,
Eq. (3) is reduced to a simple form with the Wilson line
[46]:  p(x.y) = (F(x,) ® Pexp[3 [+ dz - A(z)lw(x_))
with x; = x £ y/2 and P the path ordering symbol. In
this paper, we focus on the collisionless fermions, so the
spinor field obeys the Dirac equation

P

P(Vu +iA, /)y (x) = p(x)(V, —iA, /A" = 0. (5)

Computing D,p(x,y) and dyp(x, y) with the help of the
Dirac equation (5), we derive:
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in . . _
(a3 D)W = i [ty =g 2)

® (—Hu+ G (x.—y/2)
—j(x.5/2)G, ® w(x.=y/2)).
__r oDy
Hﬂll/('x’y) - h ; (I/l—I—l)' Gm/l//(x7y),
L ) y D) n
Guw(x,y) hz TGS
(6)
where C(X)Y = [X, Y] represents a commutator. The details

of the derivation of Eq. (6) can be found in Appendix C;
see also Ref. [42]. We defined G,, = —ih[D,,D,] as the
total curvature tensor on TM or T*M. For instance, we
have Gm/l//(x y) (F/u/ + 4Rﬂyaﬂ6aﬂ - itho‘/wy 6;;)1//()6 y)
where the Riemann tensor is R, = 20 F ,+2r i N

v ple
with X}, Y, = 1(X,Y,-Y,X,). The transport equation (6)
involves the full quantum correction coupled with electro-
magnetic field and curved background. In Minkowski
spacetime, Eq. (6) reproduces the transport equation
derived in Ref. [46].

In practice, Eq. (6) is a powerful tool for the semi-
classical analysis with the systematic expansion in terms
of 7. Let us adopt the power counting scheme with
Py, = O(1) and y* ~ihd), = O(h). After a lengthy but
straightforward calculation (see Appendix D), the transport
equation for the Wigner function up to O(A?) is written
down, as follows”:

ih ih? ih
]/ﬂ (H’u + ?Aﬂ> W = 3—2]/” <Rﬂl/aﬂ + Eap . Vleaﬂ)

X 05 [W. o), (7)
with
n? n?
I,=p,- (VpFW)a o8 +24R o050 D, +ZRW8;,
2
Au = VM + ( UA +I /1pu)6/1 ( P Iw)apay
h2 p v 0'811 h p v Ao
—ﬁ(VlR ou) 04505 ppp+§R ouw9p05D,,
hz
57 (VaVpFou + 2R? g F 5,) 4 0%0h, (8)

where R, = R”,,, is the Ricci tensor. Further we decom-
pose Eq (7) with the basis of the Clifford algebra:

=IF+PP+rV, +rrA, +16S,]. Then we
obtam

*We actually keep the O(#*) terms, which are necessary to
derive Egs. (9)-(11) at O(A?).

2
AR = (VR AR, (9)
n2
IR :§RW8’;,R”, (10)
h2
BAR, = &y lVRT = =g RO} R, (1)
with R, = (V, + A,)/2 (see Appendix E for the deriva-

tion). The first equation will be the kinetic equation for
right-handed Weyl fermions, while the second and third
serve as constraints. The equations for £, = (V, — A,)/2
are the same, except for a sign change in front of the first
term of Eq. (11).

IV. CHIRAL KINETIC EQUATION AT O(#)

Now we focus on the kinetic equation for R¥(x, p) at
O(h). Equations (9)—(11) are reduced to

A-R=0, (12)
p-R=0, (13)
RALR,| = €4psP"R° =0 (14)

with A, =V, + (=F,; +T%,p,)d,. Thanks to the hori-
zontal-lift prescription, we can solve Egs. (12)-(14) in the
same manner as that in flat spacetime. The general solution

is given by [22,23]

ho
RF = 4ad(p?) |p* = — F*p, + WA, | f + O(1?)
p

(15)

with F* = ¢°F, /2 and f = f(x, p) being the distri-
bution function. The last term is called the side-jump term
[26]; we introduced the spin tensor X’ = &“#p an,/
(2p - n), where n*(x) is an arbitrary vector to satisfy
n-p#0 and n> = 1. This vector field accounts for an
ambiguity in defining the spin for massless particles [27].
Different n*’s correspond to different spin-frames and they
are connected via n'¥ = LV, n* = e&”A&[,e/},,n” with A&ﬁ
being a matrix representation of the local Lorentz
transformation.
Plugging Eq. (15) into Eq. (12), we eventually obtain
P

8(p? — hF ;=) [p A h(""
p-n

h
2

+ AFZZD> A,
E’zzb(v/) v p/lR/l/)ﬂu)alI)?]f:O' (16)

This is the curved-spacetime generalization of the conven-
tional chiral kinetic equation [22,23]. Several comments are
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in order. (I) In the classical limit # — 0 we reproduce
the Einstein-Vlasov equation: &(p?)p*[0, + (—F,, +
I'%,p1)04]f = 0. (II) The spin connection I', is unrelated
to T4¥. Indeed, since R* is a vector, such a connection can
never appear in Eq. (12). (Il[) The Riemann curvature
naively seems to be an O(%?) correction, as Eqgs. (9)—(11)
show. However, once coupled with the side-jump term, it
emerges even at O(#) in Eq. (16). This term represents the
so-called spin-curvature force [47,48] for chiral fermions.
(IV) On the other hand, the curvature does not appear in the
delta function, which designates the on-shell condition.
However, this would not be the case at O(A?). In fact,
from the viewpoint of field theory, the dispersion relation
(without U(1) gauge field) reads p*>—7’>R/4=0 due to
(=ity"V )y ==1*(V,VF+R/4)y =0 [49] (see also
Ref. [50] for a curvature correction to the CVE).

V. EQUILIBRIUM STATE

To reveal the physical content of Eq. (16), we consider
the equilibrium state. We drop A, for simplicity. At
equilibrium, f is generally written as a function of the
linear combination of the collisional conserved quantities,
i.e., the particle number, the linear momentum, and the
angular momentum. Therefore we have f = f. (g) with
g =a(x)+ p*(x)p, + hy, (x)Z;". Note that the orbital
angular momentum is involved in the second term.
Plugging f.,(g) into Eq. (16) and requiring it to hold
for arbitrary p,, we arrive at the following constraints:

v,uﬂv + vl/ﬂﬂ = g/ll/¢(x)’ (17)
1
V,a=0, Y = EVﬁ;[)’D], (18)

where ¢ is an arbitrary scalar function and L represents the
component perpendicular to n*. In Appendix F we present
the derivation of Eq. (17) and Eq. (18).

We have three comments about the above equations. (I)
Equation (17) is the conformal Killing equation. Choosing a
timelike f#, we define the fluid velocity and temperature via
P = pU* (with U?> = 1) and T = 1/p, respectively. The
physical meaning of ¢ is the expansion rate of the fluid:
¢ = %V - p, which follows from Eq. (17). Thus the fluid is
kept equilibrium under such an expansion. This is under-
stood as the conformal invariance in the massless Dirac
theory. Note that for massive particles ¢» must vanish, as the
expansion can drive the system out of equilibrium. (II) From
Eq. (18), we find that « is a constant scalar. We define the
chemical potential through @ = —fu. (IlI) The equilibrium
distribution is eventually given by f = f.,(g) with

h
9=B=p+p-U)+3EV,(BU,). (19)

The last term expresses the spin-vorticity coupling.

VI. ROTATING COORDINATE

As the first application, we use our framework to revisit
the derivation of the CVE by considering a rotating
coordinate. Let us choose a constant angular velocity @ =
(o', w?, ®*) and hereafter set A, = 0. The corresponding
metric tensor reads

gij = —5ij (20)

with u = (u', u?, u*) = x x @. The nonzero components
of the Christoffel symbol are I}, = —x'@” + (x - @)’ =
(u x @)" and T, = [y = —e7* " (with ¢'* = 1), which
lead to R’;,, = 0. The metric has an infinite red-shift
surface at distance r = 1/|w| away from the rotating axis.
We focus on the spacetime region inside this surface, and
thus ignore the boundary effect of the system. Such an
assumption works as long as the angular velocity is small
enough compared with other characteristic scales of the
system [3,51]. Therefore in the following analysis of the
CVE, we consider the slowly rotating coordinate with
lw| < T or @] < p.

In this case, the metric (20) admits two timelike Killing
vectors; K% = ¢** and K%, = &. Note that the former
(latter) corresponds to the inertial (rotating) observers.’ The
velocities of these two observers are

goo = 1— u?, goi = u',

U, = (1,u), Up = (goo)_%g(;, (21)

m

which are normalized as 4? = 1. From the on-shell con-
dition p* = ¢*p,p, = 0, we obtain

€pEK¢01p”=p0=|p‘+u'p, (22)
Oe R
vp :a—;:p—i_u’ (23)

where v, denotes the group velocity and the three-momentum
is defined as p = —(p;, p», p3). Similarly, we can obtain
e =Kl p, = p° = |p| and vi} = el /Op = p. Thus p is
identified as the momentum observed by the inertial observer.
Note that the second terms in Egs. (22) and (23) correspond
to the rotating energy and velocity shifts, respectively. In the
following, we analyze the CKT with several choices of
n* and U¥.

A. Inertial fluid

First of all, we consider an inertial fluid (i.e., a fluid
at rest in flat spacetime) with a rotating observer. We
set U =n* =U!, and K* = KY. Performing the p,-
integration of Eq. (16), we find (for the particle channel
only; antiparticle channel is similar)

*To be more specific, the rotating (Minkowski) coordinate is
considered as the coordinate chart of the rotating (inertial)
observer.
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0

B 0
E+vp-a+(?xw)'% fltx,p)=0 (24)

with f(z,x.p) = f(t.x,p. py = €,). From the above equa-
tion, we identify x = v, and p = p x x, which reproduce
the Coriolis and centrifugal force: ¥ =2x X w — @ X
(@ x x). From Eq. (15), the particle number current reads

d*p
Ry LY VR
rern= [ am
0
7= [ o=l < ey 26)

with [ = [d’p(27)7> and Q, =p/(2|p|*) being the
Berry curvature. Note that due to V U}, = 0, at equilibrium
all the O(#) corrections disappear in Eq. (26), and thus it is
just the classical Liouville current: J = j;] Vpfeq- Also from
Egs. (15) and (19) for U+ = M’i’n, we can check that the
same is true for arbitrary n*. Therefore, the CVE is never
induced by an inertial fluid, independently of the observer’s
reference frame and the spin-frame choosing vector n*.

B. Rotating fluid

In this case we adopt U* = UL, that is, we consider a

fluid at rest in the rotating coordinate. Hereafter let us focus
on the small @ limit to simplify the discussions.
First, we choose n* = Uf;, which leads to the kinetic
equation and the current as the same forms as Eq. (24) and
(26), respectively. However, physical quantities are affected
by quantum corrections. When we take f = feq(g) =
1/(e? + 1) and append the antiparticle contribution (for
which p is replaced with —u), the O(w) terms in Eq. (26)
yield

2 2
U T
Jove = hw <4—”2 =+ E) ) (27)

which is the well-known CVE current. The spin-vorticity
coupling term in Eq. (19) are prominent to induce Jcyg.
Because of this coupling, the first term in Eq. (26) gives
1/3 of Jcyg, while the second yields 2/3 [26,39].
Second, we employ n* = Uk, It is more convenient
to work with a new three-momentum defined as ¢ =
(p'. p%. p?)." whose physical meaning will be explained
later. After the p, integration, the kinetic equation reads

“This is the change of the phase space variables that yields
a nontrivial Jacobian which calls for 0, — 9, + (9, p*)0y.

0

0 N -
(14 2h|q|w - 9‘1)5 + {7, + 2n|q| (¥, - Q)@ } - i

24l x @) - 2| flt.x.q) = 0 (28)

Oq

with the modified velocity ¥, = 0¢,/0q and energy
dispersion

S

& =lal— 54 . (29)

2
The above kinetic equation exhibits an analogy between
magnetism and rotation under two types of the correspon-
dence, i.e., |glw <> B in &, (and so in #,), and 2|q|w < B
elsewhere, reflecting the fact that the Landé g factor is 2 for
spin-1/2 particles. In other words, the spin-vorticity cou-
pling plays a role of the magnetization coupling, and the
Coriolis force can be regarded as a fictitious Lorentz force.
This suggests that ¢ is the momentum observed by the
rotating observer. Indeed, Eq. (29) shows that the classical
dispersion is linear to |g|. For this reason, Eq. (28) are
represented only with quantities in the rotating coordinate.
We note that the factor in front of 0/0¢ in Eq. (28)
represents the quantum modification to the phase space
measure [38,39].
From Eq. (15), we compute the particle number
current as

J= /q 5, + 2hlg|(5, - @, )0)f (.x.q) + O(@?). (30)

which, once substituted with f = f.,(g9) = 1/(e? + 1),
reproduces Eq. (27) again. Note that the first term does
not contribute to the CVE current. In other words, the
Coriolis force is responsible for generating the CVE
whereas the spin-vorticity coupling is not. This explains
why the heuristic replacement B — 2|g|@ works correctly
[17] in computing the CVE current.

Some comments are in order. (I) The above analysis
shows that the origin of the CVE can be interpreted
differently for different n*. For the inertial (rotating)
spin-frame vector n* = U} (Uy,), the CVE is induced
through the spin-vorticity coupling (the Coriolis force).
This is a clear demonstration for the nature of spinning
massless particles: the total angular momentum is frame-
dependently decomposed into the spin and the orbital parts
[27,52,53]. (I) However, in both cases with n* = L{’i’n and
n* = Uk, we derive the same CVE current (27). Indeed,
the choice of n* is superficially irrelevant to the CVE, as it
is compensated by the side-jump effect. This is confirmed
from the fact that for arbitrary r*, the equilibrium current
is derived as a spin-frame-independent form: for f =

Feal9) = £ + 55V B, (dfS) 1dg) + O(R?) with £5) =
flg=—-Ppu+ p-p), Eq. (25) is reduced to
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0 d*p25(p?)
%= | 2P /=507

with # =1e°U,V,U,. At the same time, we note that
Eq. (31) also holds for arbitrary curved spacetime. This
explains why the CVE current (27) is the same as that in
Minkowski coordinate [27,54,55]. The CVE is hence
intrinsic for rotating fluid, of which the velocity configu-
ration satisfies @ # 0.

s d (0)
”_h A ‘ o [ 9
[P f 3 (p U>dg feq

(31)

VII. SUMMARY AND OUTLOOK

We extended the framework of the chiral kinetic
theory (CKT) to curved spacetime, based on quantum
field theory. The CKT in curved spacetime is a primary
tool for nonequilibrium chiral dynamics under the gen-
eral-relativistic effect. This enables us to investigate the
anomalous transport phenomena in various chiral matter
systems with (effective) gravitational field or noninertial
forces, such as supernova or neutron star environment
[56,57], rotating/expanding quark-gluon plasma [58—60],
thermal systems with the temperature gradient [61,62],
and Weyl/Dirac semimetals under strain [63-65] or
possibly torsion [66].

As an application, we analyzed the CKT in a rotating
coordinate, and clarified the frame-dependent interpreta-
tion for the chiral vortical effect (CVE). Our calculation
showed that although the CVE receives contributions
from both the spin-vorticity coupling and Coriolis force
depending on the choice of the defining frame of spin,
their sum is independent of both the observer’s frame and
the spin-frame. In this paper, we did not discuss about the
relation between the finite-temperature term in the CVE
current and the gravitational anomaly [32]. On the other
hand, it is still left open if such a term is induced by the
global anomaly [33-36]. The CKT in curved spacetime is
an auspicious candidate to lead to a model-independent
answer to this mystery. This will be shown in a future
publication.

ACKNOWLEDGMENTS

We thank Omer Faruk Dayi, Tomoya Hayata, Yoshimasa
Hidaka, Bei-Lok Hu, Kristan Jensen, Jinfeng Liao, Qun Wang,
and Yi Yin, for useful discussions and valuable comments.
This work is supported by the China Postdoctoral Science
Foundation under Grant No. 2017M621345 (K. M.), and the
Young 1000 Talents Program of China, NSFC through Grants
No. 11535012 and No. 11675041 (X.-G. H.).

APPENDIX A: HORIZONTAL LIFT

We derive the proper covariant derivative for functions in
the cotangent bundle T*M from the viewpoint of the
parallel displacement [67]. First, suppose that ®(x, p) is

a scalar function on T*M. Under the infinitesimal diffeo-
morphism x# — x* = x* + dx*, the variation 6® involves
two parts: one comes from the x-dependence of ® and the
other from the p-dependence. That is, we write

50 = 6,® + 0,Pbp,,. (A1)
where 6p,, is the variation of p, under this diffeomorphic
transformation. By definition, we have 6® =0 and
6p, = Tywp,dx*, which leads to

5, @ = -, p,dx". (A2)
Now we define a derivative D, as
D,@dx* = ®(x + dx, p) — [@(x, p) + 6, P(x, p)]. (A3)
Thus we obtain
D,® = (9, + Thp,d)®, (A4)

which is the horizontal lift of 9, to the cotangent bundle for
a scalar field. In the same manner, the covariant derivative
for an arbitrary tensor field in the T*M is derived as
with V, the usual covariant derivative on M. Similarly, we

can define the horizontal lift of V, to the tangent bundle
TM as given in the main text.

APPENDIX B: IDENTITIES OF THE
DIRAC MATRICES

We present some identities of the Dirac matrices
which are useful in the derivation of the chiral kinetic
equations. From the definition {y#,y*} = 2¢" and y° =
(=i/4)) €57 " vy, we find

7/5 o = %gﬂvlmo_f)m (B 1 )
7YY =gvy + gy — ¢y — i€y, (B2)

where o = (i/2)[y*,y"]. From these relations, we can
prove the following useful identities:

yﬂ},b — g;u/ _ io./w’ (B3)
7y o) = —digheg —dotleg. (B4
5.,V VoS 1 vaf
Y'Y= =gty — e oy, (BS)
7Py o) = dip’ gy + 2ierre o, (B6)
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APPENDIX C: TRANSPORT EQUATION —ip
FOR W(x,p) 0= / d*ydu[\/—g(x)e= P> Mp(x, y)]
The Wigner function of Dirac fermions is defined by - lP,l W / 8;y¢p x y) (C4)

W(x, p) = [ p(x,y), p(x,y) =Wy @w_). (C1) In order to calculate the second term, we utilize

Here we have introduced the following notations: fy = Dy (x.y) = e"PDy(x) = Hy(x.y). (C5)
Jdty/=g(x)em P,y = y(x,—y/2) = e PPy (x), ,
and 7, = @(x,y/2) = @(x)e’/2. Note that D, acting Hw(x.y) = Dw(x.y) +2Gw(x.y),  (C6)

on the Dirac spinor involves A, to keep the U(1) gauge

Y _
covariance, that is, -

which are derived from the operator identity e'Xe™
e“VX with C(Y)Z = [Y, Z]. Here H,, are G, are defined as
Dy (x.y) = (V, =Ty 0; +iA,/mw(x.y).  (C2)

iy’ ~=[C(y-D)"
| - M) = =25 PG ey, (@)
with V,y(x) = (9, +T,)w(x) and I, the spin connection. = (n+1)!

We consider the free Dirac field operators that obey
=~ [C(y-D)]"
ZMG/WW()Q y) (C8)

PH(V, + A, /R (x) = §(x)(V, = iA,/R)y = 0. (C3) C2him (n+2)!
We assume that the surface integral for the Wigner trans- ~ Here G,, = —ia[D,,, D,] is the total curvature tensor on TM
formation vanishes, that is, and T*M, e.g.,
|
G/,wl//(x’ y) = [Hﬂl/ - ihR/)rmvyo—a;h//(xv y)’ (C9)
n
Hy = Fu+ g Ruapo™. F=20,Ay.  Rigy = 20,10, + T, 1) (C10)

with Xyl =1 (x#y” — X*Y*). Then we compute

’ 1 -
[t =3ow+ [ @0 -Gow- +w.G o) - [, ® e D). (c1)
y y y

Contracted with y#, the last term vanishes due to the Dirac equation (C3), and thus we derive

ih . _ _ 5
7" (p,, + EDf‘) W = ihy* K@u ® (-H, +G)y-—w.G, ®w_). (C12)
This is Eq. (6) in the main text.

APPENDIX D: SEMICLASSICAL EXPANSION UP TO O(#%)

Now we perform the semiclassical expansion of the transport equation (C12) [that is, Eq. (6) in the main text] with the
power counting scheme

p,=0(1),  Y~inds = O(h). (D1)
It should be noticed that D, can lead to terms of O(A~") only when acting on y(x, y):
Dalx.y) = O(h™), (D2)

Since (y - D)y(x,y) is the same type function as y(x, y) (i.e., a diffeomorphism scalar, local-Lorentz spinor), we readily
find
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[C(y-D)]"Guw(x.y) = [C(y - D)|"[H,, — ihR 5,y 0w (x, y). (D3)

Then [C(y - D)]"G,w(x,y) is calculated as follows:
C(y : D)G/wl//(x’ y) = [y : D<H/41/ - ithauvyg(‘};) + itho‘;wygDp]l//(x’ y)’ (D4)
[C(y - D)PGuy(x,y) = [(y - D)*Fy + 2ih(y - D)R? 4,y Dy = y*Y R g F ol (x, y) + O(1?). (Ds)

Note that [C(y - D)]"G,w(x,y) for n >3 does not yield any O(A?) contribution. Thus we obtain

i [ ® (-1, + G- = .G, ©w)
y

i = 2 ’ -
= ) [3HW8PW + W8PHW] + 3 [53p . VHM,,GPW - W8p6p . VHW]
ih3 aa/" 0 a o] AV hz P 14 c c lh3 7 12 c c
- K [vavﬂFuyap j2 R rmyFapapap]apW + ?R or/wap(?’X p y p) - Kap VR rmvap(SX P + y /))
in’ n*
+ g R 050552, +W,) + lg—zap VR 4, 0505(12, = W,) + O(h*), (D6)
In the above equation we have defined
¥, = /y”<l/7+ ®dy_), W, = /y"<l/7+<9i ®y_), (D7)
y y
Z,M = /<l/_/+ ® Dyl//—>7 Wﬂ = /<l/_/+5;4 ® l//—> (Dg)
y y

Although each of these are not simple expressions, their combinations are reduced to

in in
xe,=),= —782DpW—ZFlp8f,8;W+0(fl2), Xe,+Y°,=-05p,W, (D9)
2ip,
Z,-W, = _TW+ O(h), Z,+W,=D,W, (D10)

which follow from Eq. (C6). From these relations and Eq. (B2), we eventually derive

ih i
7/” <HM +2A”>W = Zy"@ﬂa/;[W, Gaﬂ] (D]l)
with
h2 h2 h2
I, =p, - T (VpFﬂy)aﬁ,a‘;, + ﬂRp,,ﬂ,,a‘I’,aﬁ,pp —l—ZRWa;, (D12)

n o
By =V + (<Fup 4 Tap ) = 35 (VR 350 = 52 (ViR ) 05050p,

puw
n? h?
+ §RPU”U8§,8‘;Dp +22 (VoVgFy + 2R 0, F ) 040505, (D13)
h? in’
®/mﬁ - ng/aﬁa; + %ap . VRﬂmﬂa’;,. (D14)

They are Egs. (7) and (8) in the main text.
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APPENDIX E: SPINOR DECOMPOSITION

In the last step, we decompose Eq. (D11) with the basis
of the Clifford algebra. The Wigner function W is written as

1 1
W=2|F+rP+y - Viry - A+50%S,|. (El)

The coefficients V, and A, correspond to the vector and
axial currents, respectively: tr[y*W] = V¥ and tr[y*y° W] =
A*. This means that the right- and left-handed currents are
represented as
1 1

R, = i(V,, +A,). L, = E(V" -A,). (E2)
Due to the masslessness in Eq. (D11), the vector and axial
channels are decoupled from the scalar, pseudoscalar, and

tensor ones. Focusing on the vector and axial channels, we
find

i

}"A(V‘V+}’SJ"A):4

V"Ouaply -V + 7y - A o),
(E3)

where we have introduced the shorthand notation

A, =TI, + (in/2)A,. By inserting Eqs. (B3)~(B6) into

Eq. (E3) and extracting three parts proportional to 1, y> and
o, respectively, we obtain

(Av - Gﬂﬂu)vv = 0’ (E4)
(A, —©,) A" =0, (ES)
AV = Oy VP = 28,0 (AP AT — @7 A) = 0. (E6)

2

Note that, by contracting (i/2)e" 5 with the third equation,
we obtain the same equation with the replacement
W <> A#. Separating the real and imaginary parts, we
finally derive

n? B
AR =220, VR, HR, (E7)
hZ
MR = Ry O R, (ES)
h2
AR, — €4yl VR = —EeW,Raﬂﬂ”agRﬁ, (E9)

where we used 2R;),,)p = —Rgp,, Which follows from the
Bianchi identity for the Riemann curvature. These are
Egs. (9)—(11) in the main text.

APPENDIX F: EQUILIBRIUM DISTRIBUTION

In this Appendix, we derive the general form of
the equilibrium distribution in the absence of the

electromagnetic field, that is, A, = 0. The kinetic equation
at O(h) reads

v h v
s(p*)|p-D+n(D,Z)D, - EZZ PR, | f =0.
(F1)

At equilibrium, the distribution f should be a function of
the linear combination of the collisional conserved quan-
tities, namely, the particle number, the linear momentum,
and the angular momentum. Therefore, we parametrize the
equilibrium distribution as

f= feq(g),

with a(x) = ao(x) + ey (x). B (x) = fa(x) + AP (x), and
7" (x) = vy (x) + Ayl"(x) and O(A?*) terms omitted. Note
that n,y** = n,y* = 0. Then the kinetic equation yields

g=oalx)+p(x) p+h/(x)x,.  (F2)

8(p*)(p - Vay + p*p*V,po,) =0, (F3)

and

5(p*)|p - Vay + p*p*V,py, + (D,E) (Vg + p*V, po,)

v 1
+ P D(YS Z,Zl/) - Ezﬁ Ripm/pﬂﬂg =0. (F4)
From Eq. (F3), we find
v/ﬂo =0, v/uﬁ()u + vvﬁOﬂ = ¢0 (x)guw (FS)

where ¢ is an arbitrary scalar function. Combining these
constraints, the third term in Eq. (F4) is calculated as

8(p*)(D,Z0") (Vg + p*V,pos)

= 5(172)[1);4(2’:;[”#] V.Bos) = 20 Avﬂv[uﬂoﬂ]
= 5(0%) |30 DSV, o) + 55 R '
(F6)
where we have used p,€,,5 + Pu€poiu T PpEoiw +
Po€iup + Pikupe = 05 VuViBoy = =BERayuwr = 9ui Vi do

2Rapip = —Rop» and ¥Ry, = 0.  Therefore,
Eq. (F4) is reduced to

s(p*)lp - Va, + p*p*V,p1, + p-D(EM,,)] =0,
(F7)

where M, = 70, — %Viﬂoy] with L here representing the

component perpendicular to n# and we have used the fact
that £V, o, = =" Vi po,. Therefore, we have
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v = X
p-Vay + p'p"V, B, + p- D(EWM,,) = Z@ (P,
=1

(F8)

where ¢; with [ > 1 are arbitrary functions. Making a scale
transformation, p, — ip,, and comparing different powers
of A, we obtain

vﬂﬁly + vyﬂly = ¢1 (x)g;tw (F9)
(F10)
p-Va,+p-DE'M,,) =0. (F11)

To proceed, we decompose p,, with respect to n,, as follows,
Py = Py + pjr. Substituting into Eq. (F11) we find that
the following conditions

V,a; =0, M, =0 (F12)
fulfill Eq. (F11) for arbitrary pf;. However, in case that n, is
a constant, V,n, = 0, the conditions to fulfill Eq. (F11) is

n-Va, =0, ViM,, =0,

Via; + %%wyn”n -VMPre =0,
which nevertheless contains constraint (F12) as a special
case. Collecting Eq. (F5), Eq. (F9), and Eq. (F12), we
obtain the equilibrium condition as given in Eq. (17) and
Eq. (18) in the main text up to O(%). We also notice that in
the case of V,n, = 0, the equilibrium state can maintain a

(F13)

difference between y,, and the thermal vorticity % Vi Poy if
a finite gradient of the chemical potential is present, as
shown in the third equation in Eq. (F13), whose physical
consequence deserves a more careful exploration in future.
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