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A new two-dimensional N ¼ ð0; 2Þ supersymmetric nonlinear sigma model describes the dynamics of
internal moduli of the BPS semilocal vortex string supported in four-dimensional N ¼ 2 supersymmetric
QED. While the core of these strings is very similar to Abrikosov-Nielsen-Olesen vortices, they are defined
with a characteristic size modulus, much like the instanton lump size. This entails that the constituting
fields of the vortex do not decay exponentially, as one goes far away from the core of the string, but as a
rational function. The appearance of an extra scale in the problem also allows for an explicit, analytic,
approximate solution to be written for the BPS equation, surprisingly. Despite the conceptually large
differences between semilocal and non-Abelian vortices, it appears that the moduli structures have one
main common feature, both undergo the same kind of heterotic deformation when a supersymmetry
breaking potential term is added to the spacetime theory, moving fromN ¼ 2 toN ¼ 1. By adding a mass
term for the gauge scalar multiplet, a heterotic deformation develops on the world sheet, which breaks
supersymmetry down to (0, 2) by coupling supertranslational fermionic zero modes to supersize ones. Such
an interaction between zero modes of two different sectors was already hypothesized and subsequently
found for non-Abelian strings, providing a neat way of circumventing accidental supersymmetry
enhancement via Zumino’s theorem. We find that, for small values of the spacetime mass term, an
entirely analogous term develops on the world sheet of semilocal strings.
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I. INTRODUCTION

Vortices with non-Abelian gauge groups [usually
UðNcÞ], as well as extended flavor symmetry, are host
to a wealth of unique and surprising properties [1–10].
Non-Abelian color symmetry leads to non-Abelian strings,
which bear a more complex charge structure than in the
Abelian Higgs model. This is materialized by an internal
degree of freedom, an undetermined modulus that points in
a certain direction in an internal symmetry space, found to
be CPðNc − 1Þ.
As a consequence, quantizing the soliton leads to the

study of fluctuations of these parameters in time and along
the length of the string, i.e., a two-dimensional nonlinear
sigma model which captures the physics of the vortex
string world sheet. Much is known about the maximally

supersymmetric non linear sigma model (NLSM). When
considering a lesser number of supercharges, one finds that
the world sheet theory becomes a particular type of
heterotically deformed, (0, 2) supersymmetric nonlinear
sigma model. Indeed, it is possible to construct non-
Abelian vortices from spacetime field theories with fewer
supersymmetries than N ¼ 2, for instance by adding a
mass term to the scalar multiplet components of the full
gauge supermultiplet, making the spacetime theoryN ¼ 1,
and then to observe the consequences on the world sheet.
It was originally suggested by Shifman andYung [11] that

the resulting NLSM would have at least N ¼ ð1; 1Þ super-
symmetry, with extra fermionic degrees of freedom. In
addition, this process does not spoil the Kähler nature of
the target space at hand and thus would lead to an enhance-
ment back to the full (2, 2) theory. This statement often goes
by the name of Zumino’s theorem [12]. It did not seem very
surprising that these objects benefited from supersymmetric
enhancement, since it had been previously proven that this
exact phenomenon happens on domain walls [13].
This came into tension with a different perspective

offered by Edalati and Tong [14], who, with the help of
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a brane model, suggested that this statement was untrue—
while CPðNc − 1Þ alone can indeed not be deformed in a
way that breaks some but not all of the supersymmetry, the
full target space that the string explores is C × CPðNc − 1Þ.
Indeed, in addition to the internal gauge modulus, there is
an ever-present translational modulus which describes the
position of the string in the transverse directions. This
degree of freedom, and its supersymmetric partners, are
usually completely decoupled from whatever internal
structure the string may also have. Edalati and Tong argued
that, from the world sheet perspective, it is possible to
construct a term that mixes the fermionic sectors in both
components of this target manifold (the supertranslational
and superorientational fermions) in a fully target space
invariant way, without entailing a deformation of the
manifold itself, thus producing an N ¼ ð0; 2Þ theory.1
This hypothesis was then proven explicitly when this

term was derived from the ground up in the spacetime
theory [16]. It was indeed the case that fermionic zero
modes in different sectors have some overlap and do not
decouple when the supersymmetry breaking potential is
turned on, producing exactly the Edalati-Tong heterotic
deformation. Many properties of the world sheet theory
were then investigated [17–19].
It is therefore relevant to observe if this phenomenon

happens for the other type of internal modulus that a
generic vortex string may possess: the size modulus. When
the number of flavors Nf exceeds the number of colors, the
Bogomoln’yi-Prasad-Sommerfeld (BPS) string that occurs
in such a theory is no longer fully local. That is, while in a
usual Abrikosov-Nielsen-Olesen (ANO) string every field
that constitutes the vortex decays exponentially at a certain
distance away from the core, it is found that the fields in a
flavor-enhanced string decay as rational functions, defined
by a characteristic arbitrary-sized modulus [8], in a very
analogous fashion to the size parameter of the instanton
solution [20]. Rather surprisingly, the appearance of this
extra scale, provided it is much larger than the core width,
allows an explicit analytic solution to the BPS equations,
albeit an approximate one, to be written.
Such semilocal strings also present idiosyncratic chal-

lenges to investigate. Because its constitutive fields decay
so slowly, the theory requires an infrared cutoff mechanism
in order for integration over the directions transverse to the
string to regulate it; such integrals are borderline divergent,
logarithmically. However, with this compromise alone, it is
then possible to create a consistent world sheet picture of
the string. It has been argued that this was no obstruction to
further analysis, as any large logarithmic factor can simply
be removed by wave function normalization, so that we
should expect the world sheet picture to make sense in any
case [21,22]. This led to some very fruitful investigations of

the dynamics of these semilocal strings: most recently, it
was found that a non-Abelian semilocal vortex string,
with two colors and four flavors, is conformal and has a full
10D target space, so it is therefore a true critical super-
string [23,24].
In this work, we wish to start by investigating the

possibility of such heterotically deformed world sheets
in the simplest field theory that bears these semilocal
vortices, namely, N ¼ 2 supersymmetric QED (SQED)
with two flavors. Even in this simple setup there is a wealth
of unique phenomena that have become apparent: it was
recently found that these basic semilocal vortices, once
made closed, can have an extra type of internal winding
number, in addition to the usual vortex number, and that
both of them would combine to form a soliton with a
nonzero Hopf index [25,26].
After checking some of the basic building blocks of the

world sheet theory, we turn on a 4D mass deformation μ
and attempt to solve the modified Dirac equations for the
fermion zero modes. At small μ the picture is very clear:
these zero modes become nonholomorphic (in a precise
sense to be explained in time), thus allowing for a nonzero
overlap between supertranslational and supersize modes of
the expected shape:

ζR∂Lρ̄χR þ H:c: ð1:1Þ

This is formally identical to the kind of term derived in the
non-Abelian string case, being naturally constrained by
target-space geometry.

II. BULK THEORY

Our basic four-dimensional model is an N ¼ 2 super-
symmetric Abelian Uð1Þ gauge theory deformed by an
N ¼ 1 mass term μ for the neutral gauge scalar super-
multiplet, in the following way. The N ¼ 2 vector multi-
plet contains the gauge bosons Aμ, two gauginos λα1 and
λα2, and the complex neutral scalar field a, where α is the
spinor index, α ¼ 1, 2. The complex scalar a and one of the
gauginos λ2 form a neutral N ¼ 1 chiral supermultiplet A.
Adding a mass μ to this neutral supermultiplet breaks
N ¼ 2 supersymmetry in the bulk down to N ¼ 1. In the
limit of μ → ∞ the neutral multiplet decouples and the
theory flows to N ¼ 1 SQED.
The model also has the matter sector consisting of

Nf ¼ 2 “electron” matter hypermultiplets charged with
respect to the gauge Uð1Þ. In addition, we will introduce a
Fayet-Iliopoulos D-term for the Uð1Þ gauge field which
triggers the scalar electron condensation.
Let us first discuss the undeformed theory with N ¼ 2.

The superpotential has the form

WN¼2 ¼
1ffiffiffi
2

p
X2
A¼1

Q̃AAQA; ð2:1Þ1For a discussion of general aspects of 2DN ¼ ð0; 2Þ theories,
see, e.g., [15].
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where QA and Q̃A (A ¼ 1, 2) represent two matter hyper-
multiplets. The flavor index is denoted by A.
Next, we add a superpotential,

Wbr ¼
μ

2
A2: ð2:2Þ

Clearly, the mass term (2.2) splits N ¼ 2 supermultiplets,
breaking N ¼ 2 supersymmetry down to N ¼ 1.
Note that in (2.1) we set the electron masses to zero. As

was shown in [11,14] (see also the review [27]), in this case
the deformed theory supports 1=2 BPS-saturated flux-tube
solutions at the classical level. The massive versions of the
deformed N ¼ 2 theory were studied in [28,29].
The bosonic part of our Uð1Þ theory has the form

S ¼
Z

d4x

�
1

4g2
ðFμνÞ2 þ

1

g2
j∂μaj2 þ j∇μqAj2

þ j∇μ
¯̃qAj2 þ VðqA; q̃A; aÞ

�
; ð2:3Þ

where

∇μ ¼ ∂μ −
i
2
Aμ; ð2:4Þ

while g is the gauge coupling constant. Note that we work
in the Euclidean space.
The potential VðqA; q̃A; aÞ in the Lagrangian (2.3) is a

sum of various D and F terms,

VðqA; q̃A;aÞ ¼
g2

8
ðq̄AqA − q̃A ¯̃qA − ξÞ2þ g2

2
jq̃AqA þ

ffiffiffi
2

p
μaj2

þ 1

2

X2
A¼1

jaj2½jqAj2 þ j ¯̃qAj2�; ð2:5Þ

where the sum over repeated flavor indices A is implied. We
also introduced the Fayet-Iliopoulos (FI) D-term for the
Uð1Þ field, with the FI parameter ξ in (2.5). Note that the
Fayet-Iliopoulos term does not break N ¼ 2 supersym-
metry [30,31]. The parameter which does break N ¼ 2

down to N ¼ 1 is μ in (2.2).
Let us review briefly the vacuum structure and the mass

spectrum of perturbative excitations in our bulk model
(2.3); see [27] for details.
The Fayet-Iliopoulos term triggers the spontaneous

breaking of the gauge symmetry. The vacuum expectation
values (VEVs) of the scalar electrons (selectrons) can be
chosen as

hqAi ¼
ffiffiffi
ξ

p �
1

0

�
; h ¯̃qAi ¼ 0; A ¼ 1; 2; ð2:6Þ

while the VEV of the neutral scalar field vanishes,

hai ¼ 0: ð2:7Þ

The choice of vacuum in (2.6) is not unique; our theory
has a Higgs branch, a manifold in the space of VEVs of qA,
q̃A fields where the scalar potential (2.5) vanishes. The
dimension of this noncompact Higgs branch is four. To see
this, note that we have eight real scalars qA, q̃A subject to
three conditions associated with the vanishing of two terms
in the first line in (2.5). Also one phase is gauged. Overall
we have

dimH ¼ 8 − 3 − 1 ¼ 4; ð2:8Þ

which is the dimension of the Higgs branch. Four massless
scalars correspond to the lowest components of one short
hypermultiplet.
A generic vacuum on this Higgs branch does not support

BPS string solutions. The reason is that for a generic
vacuum the mass of the photon is not equal to the mass of
the Higgs field, the condition needed for a string to be BPS.
However, the compact two-dimensional base of the Higgs
defined by the condition

hq̃Ai ¼ 0 ð2:9Þ

does support BPS strings [31,32]. Below in this paper we
restrict ourselves to the base of the Higgs branch and since
all vacua on the base are physically equivalent we take the
vacuum (2.6) as a particular representative.
Since the Uð1Þ gauge group is broken by selectron

condensation, the gauge boson becomes massive. From
(2.3) we get the photon mass

mγ ¼
gffiffiffi
2

p
ffiffiffi
ξ

p
: ð2:10Þ

To get the masses of the scalar bosons we expand the
potential (2.5) near the vacuum (2.6), (2.7) and diagonalize
the corresponding mass matrix. Then, one component of
the eight real scalars qA, q̃A, namely, Imq1, is eaten by the
Higgs mechanism. Another component, namely, Req1,
acquires a mass (2.10), equal to the mass of the photon.
It becomes a scalar component of the massive N ¼ 1
vector Uð1Þ gauge multiplet. This component is the Higgs
field in our theory, since it develops a VEV; see (2.6). The
coincidence of masses ensures the presence of BPS strings
in our vacuum.
Four other real scalar components of the fields q̃1 and a

produce the following states: two states acquire mass,

mþ ¼ gffiffiffi
2

p
ffiffiffiffiffiffiffiffi
ξλþ

p
; ð2:11Þ

while the mass of the other two states is given by
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m− ¼ gffiffiffi
2

p
ffiffiffiffiffiffiffi
ξλ−

p
; ð2:12Þ

where λ� are two roots of the quadratic equation

λ2 − λð2þ ω2Þ þ 1 ¼ 0: ð2:13Þ

Here we introduced the N ¼ 2 supersymmetry breaking
parameter,

ω ¼ g2μ
mγ

: ð2:14Þ

In the large-μ limit, the larger mass mþ becomes

mþ ¼ mγω ¼ g2μ: ð2:15Þ

Clearly, in the limit μ → ∞, this is the mass of the heavy
neutral scalar a. At ω ≫ 1, this field decouples and can be
integrated out.
In this limit, the scalar q̃1 becomes the lowest

component of the chiral multiplet with the lower mass
m−. Equation (2.13) gives for this mass

m− ¼ mγ

ω
¼ ξ

2μ
: ð2:16Þ

Furthermore, the four real components q2, q̃2 of the
second flavor are massless and live on the Higgs branch.
In the limit of infinite μ mass, (2.16) tends to zero. This
fact reflects the enhancement of the Higgs branch in
N ¼ 1 SQED.
Below we will also need the fermionic part of the action

of the model (2.3),

Sferm¼
Z

d4x

�
i
g2
λ̄f=̄∂λfþ ψ̄Ai=̄∇ψAþ ψ̃Ai=∇ ¯̃ψA

þ iffiffiffi
2

p ½q̄AfðλfψAÞþðψ̃AλfÞqfA

þðψ̄Aλ̄fÞqfAþ q̄fAðλ̄f ¯̃ψAÞ�

þ iffiffiffi
2

p aðψ̃Aψ
AÞþ iffiffiffi

2
p aðψ̄A

¯̃ψAÞ−μ

2
ðλ2Þ2

�
; ð2:17Þ

where ðψαÞA and ðψ̃αÞA are matter fermions. Contraction of
the spinor indices is assumed inside parentheses. We write
the selectron fields in (2.17) as doublets of the SUð2ÞR
group, which is present in N ¼ 2 theory:

qfA ¼ ðqA; ¯̃qAÞ; ð2:18Þ

where f ¼ 1, 2 is the SUð2ÞR index; this makes manifest
the existence of two sets of supersymmetry operators in the
N ¼ 2 case. Similarly, λαf stands for the gaugino SUð2ÞR
doublet. Note that the last term is theN ¼ 1 deformation in

the fermion sector of the theory induced by the breaking
parameter μ. It involves only the f ¼ 2 component of λ
explicitly breaking the SUð2ÞR invariance.
From (2.17) one can see that fermions of the second

flavor in much the same way as bosons are massless in the
vacuum (2.6). This will be important later.

III. SEMILOCAL STRINGS IN
THE N = 2 THEORY

A. Vortex BPS equations for a static solution

We work in Euclidean space, labeling our coordinates
ðt; x; y; zÞ. We will assume that the string we produce is
aligned in the z direction.
As we explained in the previous section, the potential

(2.5) has an infinite Higgs branch and we restrict ourselves
to its base submanifold with q̃1;2 ¼ 0. The base of the
Higgs branch is then compact and defined by

jq1j2 þ jq2j2 ¼ ξ; ð3:1Þ

where both q1;2 are complex fields, so the base of the Higgs
branch has the structure of CPð1Þ. At spatial infinity, the
vortex configuration is expected to wrap around the
vacuum manifold in a nontrivial way. Thus we expect that
the vortex will behave like the CPð1Þ instanton lump
solution at large distances from the core, while close
to the core it should behave just like a standard ANO
string. The instanton lump is endowed with a dimensionful
modulus, a size parameter ρ, which controls the spreading
of the solution in space2: the vortex should be similarly
spread out away from the core; this is why it is called
semilocal.
Let us introduce a number of profiles for the various

bosonic fields in the theory:

q1A ≡ qA ¼
�

ϕ1ðrÞ
ϕ2ðrÞe−iθ

�
; q2A ≡ −iq̃A ¼ 0

Ai ¼ εij
xj

r2
fðrÞ: ð3:2Þ

Here we assume the boundary conditions

ϕAð0Þ ¼ 0; ϕ1ð∞Þ ¼
ffiffiffi
ξ

p
; ϕ2ð∞Þ ¼ 0;

fð0Þ ¼ 1; fð∞Þ ¼ 0; ð3:3Þ

which ensure that the scalar fields tend at r → ∞ to their
vacuum expectation values (2.6). We have defined this
ansatz in the singular gauge, where Awill be ill defined at 0
but decay at infinity. We will assume that all of the profile

2For details see, e.g., [33].
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functions are positive in order to fix various sign choices
related to supercharges.
From the supersymmetry transformations of our

initial theory, we obtain BPS equations and also we
define which fermionic variations are preserved by our
choices, so as to preserve ϵ12Q12 and ϵ21Q21. The other
two will not leave the solution invariant but generate
supertranslational modes. Firstly we consider the scalar
equations:

r∂rϕ1 ¼ þfϕ1; r∂rϕ2 þ ϕ2 ¼ þfϕ2: ð3:4Þ

They are very similar in nature, differing only in the
linear part, which means they can potentially be related to
each other by the right transformation. It is in fact the
case: if ϕ1 obeys its equation of motion, then we are free to
take

ϕ2 ¼
ρ

r
ϕ1 ≡ ρ

r
ϕ ð3:5Þ

for some unknown constant length scale ρ, to obtain a
solution to the second BPS scalar equation. This new length
scale, the size modulus, defines a new regime for the
spreading of the solutions and is responsible for the
semilocal nature of the vortex. As a consequence of its
appearance, the various fields constituting the vortex will
decay as rational functions of r, ρ. The single undetermined
scalar profile function inside q1 is then relabeled ϕ. We will
see later on in Eq. (3.9) that this parameter is exactly
analogous to the CPð1Þ instanton lump size modulus that
our solution must at some level reproduce, given the
vacuum manifold.
The sign of the right-hand side is fixed by the super-

charges we fixed as well as the requirement that the profiles
introduced in the ansatz be positive. Then, ϕ should be
regular at the origin and reach the vacuum expectation
value at infinity, and ϕ is an increasing function of r; f
being positive in our ansatz confirms this.
In addition, the BPS equations also produce the follow-

ing constraint for the gauge profile f:

−
1

r
∂rf þ g2

�
ϕ2

�
1þ ρρ̄

r2

�
− ξ

�
¼ 0: ð3:6Þ

Immediately, this allows us to write supertranslational
zero modes for the theory. They are generated by ϵ11Q11

and ϵ22Q22, which act nontrivially on the BPS string
solution, enabling us to use the BPS equations to simplify
the zero modes:

δψ̄1
_2
¼ i

ffiffiffi
2

p
=̄D_21q̄Aϵ

11 ¼ −2
ffiffiffi
2

p �
xþ iy
r2

�
fðrÞϕðrÞϵ11;

δψ̄2
_2
¼ i

ffiffiffi
2

p
=̄D_21q̄Aϵ

11

¼ þ2
ffiffiffi
2

p �
xþ iy
r2

�
ð1 − fðrÞÞϕðrÞ ρ̄e

iθ

r
ϵ11;

δ ¯̃ψ1
_1
¼ i

ffiffiffi
2

p
=̄D_12q̄Aϵ

22 ¼ 2
ffiffiffi
2

p �
x − iy
r2

�
ϕðrÞfðrÞϵ22;

δ ¯̃ψ2
_1
¼ i

ffiffiffi
2

p
=̄D_12q̄Aϵ

22

¼ −2
ffiffiffi
2

p �
x − iy
r2

�
ð1 − fðrÞÞϕðrÞ ρe

−iθ

r
ϵ22;

δλ11 ¼ þ2D3ðτ3Þ11ϵ11 ¼ −2ig2
�
ϕ2

�
1þ

��� ρ
r

���2	 − ξ
	
ϵ11;

δλ22 ¼ −2D3ðτ3Þ11ϵ22

¼ þ2ig2
�
ϕ2

�
1þ

��� ρ
r

���2	 − ξ
	
ϵ22: ð3:7Þ

All others are identically zero, by satisfaction of the BPS
equations. The fermions ϵ11 and ϵ22 can be turned into
dynamical world sheet variables; we preemptively label
them, respectively, ζL and ζR. They are the fermionic
superpartners on the world sheet of the translational zero
mode of the vortices.
The second set of zero modes are generated by ϵ12 and

ϵ21, which usually act trivially on the string solution.
However, adding slow variations of ρ in ðt; zÞ changes
this: then, we can write zero modes depending on
derivatives of ρ. Computing them requires a bit more
effort, since in this case the fermionic parameters
connect in a nonobvious way to the associated
world sheet dynamical fermions, as opposed to the
previous case. For starters, we need to updated our gauge
ansatz: in order to retain gauge invariance, new compo-
nents of the gauge field are required to be turned on.
For k ¼ ðt; zÞ,

Ak ¼ −iðρ�∂kρ − ρ∂kρ
�ÞγðrÞ; ð3:8Þ

which introduces a new radial profile function γðrÞ,
constrained by the gauge equations of motion.
In the case of non-Abelian vortices, where a similar

analysis was conducted, leading to superorientational
modes, this extra gauge profile function was solved for
explicitly by studying its equation of motion, and an exact
solution was found in terms of the profile ϕ alone. This is
not as easy in the present case; since the ρ modulus
intervenes in every radial profile in the ansatz, the mini-
mization equation is much more complicated. In a previous
work, a complete solution was found in the low energy
limit by sendingmW ¼ g2

ffiffiffi
ξ

p
to infinity, or, more precisely,

by placing oneself sufficiently far from the core whose
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width is defined by ðg2 ffiffiffi
ξ

p Þ−1. Then, the solution takes the
following form [8,21]:

ϕðrÞ ¼
ffiffiffi
ξ

p
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ρ̄ρ
p ; fðrÞ ¼ jρj2

r2 þ jρj2 ;

γðrÞ ¼ 1

2ðr2 þ jρj2Þ : ð3:9Þ

The structure is indeed as predicted very similar to the
CPð1Þ instanton, far away. The semilocal nature of the
vortices is clearly seen at this distance from the core, but it
is only an approximate solution to the various equations at
hand. In particular, it leaves the gauge BPS equation (3.6)
somewhat vacuous: while the matter equation is solved
exactly by this solution, the gauge one is only approx-
imately solved; it is an asymptotic solution. In order to
ensure that we write precise statements and algebraic
relations, we would like to stick to exact, if implicit, profile
solutions.

B. Modulus fluctuations: Holomorphy equations

Surprisingly it is possible to find a great deal of
information about the implicit solutions for γ, so long as
we impose the holomorphy of SUSY variations. Assuming
nothing about the function γ, we can write out the full
SUSY variations of the matter and gauge fermions under
transformations with parameters ϵ12 and ϵ21 when we
assume that ρ is no longer a constant modulus, but actually
has a dependence on ðt; zÞ. The resulting variations are of
course no longer vanishing; in general they are a function of
both ∂ρ and ∂ρ̄.
Constraints on γ then occur when we impose that these

transformations should be holomorphic: after a fermionic
variation, we expect the fermionic zero mode to only
depend on exactly one of ∂ρ and ∂ρ̄, not both. One
may note that this simplification already happens when
using the approximate but explicit solutions detailed
in Eq. (3.9).
The simplest case is the variation of ¯̃ψ2, since it

involves the field q2: it already has a very direct depend-
ence on ρ and not its conjugate, so we expect its variation
should be proportional to ∂ρ only. This gives us a first
constraint on γ: with the sign of At;z chosen above, we
have

∂ jρj2ϕ ¼ −γϕ: ð3:10Þ

We expect ϕ to decrease with ρ since it is a size modulus; it
controls the spreading of the profile in space. This is
consistent with choosing ϕ; γ positive. This assumption
then produces a holomorphic dependence on ∂ρ for ¯̃ψ1,
which is obvious since those two fields were already related
by a previously used BPS equation.

Secondly, let us also observe what additional conditions
are imposed from the gaugino supersize zero mode. We
obtain a second equation for γ:

∂ jρj2f ¼ �r∂rγ; ð3:11Þ

where the sign controls which of the two zero modes
depend on ∂ρ; the other zero mode will depend on the
conjugate. Unlike in the matter case, there is no good
heuristic to determine which needs to be true. As it
happens, however, while we a priori could pick either,
this choice is actually forced on us: indeed, the scalar BPS
equation (3.4) and the scalar holomorphy equation (3.10)
generate this third one, as can be seen by expressing
∂r∂ jρj2ϕ in two different but equal ways.
The choice of sign in previous cases dictates that this

sign should be negative. Furthermore, physically, f is also
expected to increase with ρ, since this gauge field should
vanish for vanishingly small ρ, whereas γ is expected to
decrease with r. Again it can be noted that the explicit
solutions for the profiles satisfy these holomorphy relations
exactly:

∂ jρj2f ¼ −r∂rγ: ð3:12Þ

By differentiating the gaugino BPS equation (3.6) by jρj,
and using the newly generated identities involving γ,
we obtain precisely the equation of motion for this addi-
tional profile, obtained by substituting Ak in the action
directly [21]:

1

r
∂rðr∂rγÞ þ g2

�
−2ϕ2

�
1þ ρρ̄

r2

�
γ þ ϕ2

r2

�
¼ 0: ð3:13Þ

Thus, we have proven that using the above first-order
equations, both the BPS and the holomorphy equations, we
are in principle obtaining a solution to the γ equations of
motion. Again one notices that the explicit solution (3.9)
satisfies this equation only asymptotically.

C. Computing supersize zero modes

Once this is done, the supersize zero modes are of the
correct form for interpretation as being proportional to
world sheet fermion zero modes. This is, every fermionic
parameter comes multiplied with one of ∂ρ or ∂ρ̄, which,
using the world sheet SUSY variations, can then be wholly
replaced by a world sheet fermion zero mode; see the
review [27], where a similar procedure was used for
calculating superorientational fermionic zero modes for a
non-Abelian string.
In total, we get the following expressions for the

supersize modes:
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δ ¯̃ψ2
_1
¼ þi

ffiffiffi
2

p
ϵ12

e−iθ

r
ð2ρ̄ργðrÞ − 1ÞϕðrÞð∂0 þ i∂3Þρ;

δψ̄2
_2
¼ −i

ffiffiffi
2

p
ϵ21

eþiθ

r
ð2ρ̄ργðrÞ − 1ÞϕðrÞð∂0 − i∂3Þρ̄;

δ ¯̃ψ1
_1
¼ i

ffiffiffi
2

p
ϵ12ð2γðrÞϕðrÞρ̄Þð∂0 þ i∂3Þρ;

δψ̄1
_2
¼ −i

ffiffiffi
2

p
ϵ21ð2γðrÞϕðrÞρÞð∂0 − i∂3Þρ̄;

δλ11 ¼ þ2
ϵ21ðx − iyÞγðrÞ

r
ρð∂0 − i∂3Þρ̄;

δλ22 ¼ −2
ϵ12ðxþ iyÞγðrÞ

r
ρ̄ð∂0 þ i∂3Þρ: ð3:14Þ

These solutions can then be further simplified by
substituting for the derivatives of ρ using world sheet
supersymmetry: constructing fermionic zero modes on the
world sheet from the variations of ρ. We introduce two
spinor-valued parameters η and ξ to generate two SUSY
transformations:

δχα ¼ i
ffiffiffi
2

p ∂αβρðηβ þ iξβÞ;
δχ̄α ¼ i

ffiffiffi
2

p ∂αβρ̄ðηβ − iξβÞ ð3:15Þ

or in components

δχR ¼ i
ffiffiffi
2

p
ð∂0 þ i∂3Þρðη2 þ iξ2Þ;

δχ̄R ¼ i
ffiffiffi
2

p
ð∂0 þ i∂3Þρ̄ðη2 − iξ2Þ;

δχL ¼ i
ffiffiffi
2

p
ð∂0 − i∂3Þρðη1 þ iξ1Þ;

δχ̄L ¼ i
ffiffiffi
2

p
ð∂0 − i∂3Þρ̄ðη1 − iξ1Þ: ð3:16Þ

This sign convention reflects the fact that we are in
Euclidean space.
Thus, we identify ϵ12 ¼ ðη2 þ iξ2Þ and ϵ21 ¼ ðη1 − iξ1Þ,

enabling us to write the final form of the supersize zero
modes:

δ ¯̃ψ2
_1
¼ þ e−iθ

r
ðð2ρ̄ργðrÞ − 1ÞϕðrÞÞδχR;

δψ̄2
_2
¼ −

eþiθ

r
ðð2ρ̄ργðrÞ − 1ÞϕðrÞÞδχ̄L;

δ ¯̃ψ1
_1
¼ þð2γðrÞϕðrÞρ̄ÞδχR;

δψ̄1
_2
¼ −ð2γðrÞϕðrÞρÞδχ̄L;

δλ11 ¼ −i
ffiffiffi
2

p ðx − iyÞ∂rγðrÞ
r

ρδχ̄L;

δλ22 ¼ þi
ffiffiffi
2

p ðxþ iyÞ∂rγðrÞ
r

ρ̄δχR: ð3:17Þ

Inserting these into the spacetime action, one readily
gets kinetic terms for these fermions, forming a full (2, 2)
sigma model on the world sheet. In order to define
useful normalization constants due to integration over

the transverse spacetime, let us quickly check the form
of this Lagrangian.

D. (2, 2) supersymmetric world sheet elements

First we compute the kinetic term for the size modulus,
which involves integrating over the profiles. We again
come to some simplifications when using the first order
equations (3.10), (3.11), (3.6) and the minimization equa-
tion (3.13). Indeed, we get two terms that contribute to a
kinetic term for ρ: one from the gauge field and one from
the scalars. From the former we have

1

g2
FikFik ¼

4ρ̄ρ

g2
ð∂rγÞ2

¼ −2ρ̄ργ
2

g2

�
1

r
∂rðr∂rγÞ

�
2

þ ðtotal derivativeÞ; ð3:18Þ
and from the latter

ðDqiÞ†ðDqiÞ ¼
ϕ2

r2
þ 4ρ̄ργ

ϕ2

r2
ð−1þ r2γ þ ρ̄ργÞ

¼ ϕ2

r2
þ 2ρ̄ργ

�
2ϕ2γ

�
1þ ρ̄ρ

r2

�
− 2

ϕ2

r2

�
:

ð3:19Þ
We have written both these components conspicuously in
order to make apparent the terms that also appear in
Eq. (3.13). Summing these two and applying the mini-
mization condition, the full integral which produces the ρ
kinetic term simplifies massively and we obtain

Lρ;kin ¼ Ið∂ρ∂ρ̄Þ ¼
�
2π

Z
rdr

�
ϕ2

r2
ð1− 2ρ̄ργÞ

��
ð∂ρ∂ρ̄Þ:
ð3:20Þ

We can check that this produces the right result by inserting
the explicit solution (3.9). The integrals this produces are
divergent; the field profiles do not decay fast enough at
large r. We impose an infrared cutoff. Integrating only up to
a large length LIR in the plane transverse to the string, the
integral produces (cf. [9])

I ¼ 2π

Z
L

0

dr

�
ξr

r2 þ ρ̄ρ

��
1 −

ρ̄ρ

r2 þ ρ̄ρ

�

¼ πξ

�
log

�
1þ L2

IR

ρ̄ρ

�
−

L2
IR

L2
IR þ ρ̄ρ

�

∼ πξ log

�
L2
IR

ρ̄ρ

�
; ð3:21Þ

where we consider the infrared (IR) logarithm
log ðLIR=jρjÞ ≫ 1 as a large parameter. Clearly, the IR
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logarithm here comes from the profile function of the
second massless flavor; see Sec. II.
Note that modes with IR logarithmically divergent

norms are on the border between normalizable and non-
normalizable modes. Usually such modes are considered as
localized on the string, while power non-normalizable
modes are associated with vacuum rather than with a string.
We follow this rule and include the modulus ρ in our
effective world sheet theory on the string; see [9,21].
The metric on ρ is Kählerian, originating from the

following potential:

Kðρ; ρ̄Þ ¼ ρ̄ρ log

�
L2
IR

ρ̄ρ

�
: ð3:22Þ

Note that with logarithmic accuracy we do not differentiate
the IR logarithm.
An entirely analogous computation with the fermionic

supersize modes produces the exact same kinetic normali-
zation for the world sheet fermions, agreeably:

πξ log

�
L2
IR

ρ̄ρ

�
iðχ̄R∂LχR þ χ̄L∂RχLÞ: ð3:23Þ

Note that the IR logarithm here comes from the 1=r tails of
massless fermions ψ2 and ψ̃2 of the second flavor in (3.17),
while massive fermions of the first flavor have faster decay
at infinity and do not produce IR logarithms; see Sec. II.
Thus, theN ¼ ð2; 2Þ supersymmetric world sheet theory

on the string at μ ¼ 0 reads

S2D ¼
Z

d2xπξ

�
log

�
L2
IR

jρj2
�
½j∂kρj2 þ iχ̄R∂LχR þ iχ̄L∂RχL�

þ j∂kxij2 þ iζ̄R∂LζR þ iζ̄L∂RζL

�
ð3:24Þ

with logarithmic accuracy, where k ¼ 0, 3 labels the world
sheet coordinates. Here we included also translational
modes xi, i ¼ 1, 2, and their superpartners ζL and ζR;
see (3.7). We see that translational and size sectors do not
interact. We will see later that this will change once we
switch on μ deformation.

IV. DEFORMING THE SPACETIME THEORY

Now that the world sheet theory has been created, we are
able to observe how it responds to modifications of the
spacetime theory. Specifically, we have enough super-
charges to allow a further partial breaking of supersym-
metry, while still retaining a supersymmetric world sheet as
an end product. Let us see how this happens.
We now add a SUSY breaking superpotential (2.2) to the

spacetime theory to produce anN ¼ 1 Lagrangian. It gives
a mass term to the gauge scalar a and one of the gauginos
λα2, which form a SUSY doublet A. Upon taking the large

μ limit, this decouples the extra adjoint fields and one gets a
theory similar to N ¼ 1 SQED, with extra flavor and
particular charges. This potential preserves ϵ11Q11 and
ϵ21Q21 so that the string solution now only has two
supercharges left, generated by ϵ21Q21 and its conjugate.
However, the other charges still generate fermionic zero

modes, for small μ at least. By general considerations on
index theorems a small deformation of this kind cannot
cause fermion zero modes to drop out of the spectrum.
Though still existent, the fermionic zero modes are

affected by these modifications. Those proportional to
the parameters preserved by the addition of this μ term
do not change. Thus, both in the supertranslational case in
Eq. (3.7) and the supersize case in Eq. (3.17), δψ̄ _2 and δλ

11

(proportional to ϵ11 ¼ ζL or ϵ21 ∝ χ̄L) do not change, while
δ ¯̃ψ _1 and δλ22 (proportional to ϵ22 ¼ ζR or ϵ12 ∝ χ̄R) get
modified profiles that become μ dependent. By analyzing
the Dirac equation, it is possible to find approximate
solutions for these profiles respectively as a perturbation
series in μ for small values thereof.
The modifications of these profiles make the fermion zero

modes overlapping, thus causing interactions between super-
translational and supersize modes and creating a general
N ¼ ð0; 2Þworld sheet theory that does not benefit from any
supersymmetry enhancement. This kind of enhancement is
especially easy to fall into in our case. Indeed, any super-
symmetric NLSMwhose target space is a Kähler manifold is
automaticallyN ¼ ð2; 2Þ, which we referred to as Zumino’s
theorem. Since the target spaces for both of our basic
coordinates, the translational mode (y� iz) and the size
mode ρ, ρ̄, are both complex one-dimensional manifolds,
they are automatically Kähler (the Kähler form is necessarily
closed as it is a top-form). The most sure-fire way to ensure
no enhancement occurs accidentally is then to couple
fermionic variables from both target spaces together, with-
out, of course, changing the structure of the bosonic
coordinates, i.e., deforming the manifold itself.

A. Dirac equations for spacetime fermions

Once the theory is deformed by the potential we added,
fermionic zero modes in the theory will generically not be
holomorphic anymore. That is, they may depend on a world
sheet spinor and on its conjugate, and in different ways at
that. In this spirit we suggest writing the fermionic zero
modes in a generic form, with arbitrary profile functions,
for which the Dirac equation then provides a constraint.
The full Dirac equations are

i
g2
ðDλ̄Þf_αþ i

ffiffiffi
2

p
ðψA

_α q̄
AfþqAfψ̃A

_αÞ−μδf2λ
2
_α¼0;

iðDψ̄Þαþ i
ffiffiffi
2

p
q̄fλαf¼0; iðD ¯̃ψÞαþ i

ffiffiffi
2

p
qfλαf¼0: ð4:1Þ

Convenient parametrizations for the modified profiles
are the following. For the supertranslational modes,
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λ22 ¼ λ0ðrÞζR þ λ1ðrÞ
xþ iy

r
ζ̄R;

¯̃ψ1
_1
¼

�
x − iy
r

ψ1
0ðrÞζR þ ψ1

1ðrÞζ̄R
�
;

¯̃ψ2
_1
¼ ρe−iθ

r

�
x − iy
r

ψ2
0ðrÞζR þ ψ2

1ðrÞζ̄R
�
: ð4:2Þ

This produces the following profile equations:

∂rλ0 − ig2
ffiffiffi
2

p
ϕ

�
ψ1
0 þ

ρ̄ρ

r2
ψ2
0

�
− g2μλ1 ¼ 0;

∂rλ1 þ
λ1
r
− ig2

ffiffiffi
2

p
ϕ

�
ψ1
1 þ

ρ̄ρ

r2
ψ2
1

�
ψ1
1 − g2μλ0 ¼ 0;

∂rψ
1;2
0 þ 1

r
ψ1;2
0 ð1 − fÞ − i

ffiffiffi
2

p
ϕλ0 ¼ 0;

∂rψ
1;2
1 −

f
r
ψ1;2
1 − i

ffiffiffi
2

p
ϕλ1 ¼ 0: ð4:3Þ

For the supersize modes we propose the following
parametrization:

λ22 ¼ xþ iy
r

λþðrÞρ̄χR þ λ−ðrÞρχ̄R;

¯̃ψ1
_1
¼

�
ψ1þðrÞρ̄χR þ x − iy

r
ψ1
−ðrÞρχ̄R

�
;

¯̃ψ2
_1
¼ e−iθ

r
ρ̄ρ

�
ψ2þðrÞχR þ x − iy

r
ψ2
−ðrÞ

ρ

ρ̄
χ̄R

�
; ð4:4Þ

leading to the profile constraints

∂rλþ þ λþ
r
− ig2

ffiffiffi
2

p �
ψ1þ þ ρ̄ρ

r2
ψ2þ

�
ϕ − g2μλ− ¼ 0;

∂rλ− − ig2
ffiffiffi
2

p �
ψ1
− þ ρ̄ρ

r2
ψ2
−

�
ϕ − g2μλþ ¼ 0;

∂rψ
1;2
þ −

f
r
ψ1;2
þ − i

ffiffiffi
2

p
ϕλþ ¼ 0;

∂rψ
1;2
− þ 1

r
ψ1;2
− ð1 − fÞ − i

ffiffiffi
2

p
ϕλ− ¼ 0: ð4:5Þ

These parametrizations were chosen to satisfy several
conditions: (i) they should capture features present when
μ ¼ 0 (particularly complex phases and singularities),
(ii) the matter profiles should be scalars of consistent mass
dimension, and (iii) the profiles should be invariant under
phase rotations affecting ρ and its superpartner.

B. Small μ solutions

The equations obtained at small μ can be solved order by
order. The (þ) and (0) profiles are the only ones that
survive taking μ → 0, so these profiles will only have even
powers of μ, whereas the (−) and (1) profiles will capture

all the odd powers of μ. The Dirac equation then
couples these two together in a consistent, order by order
expansion.
Thus, we can start off by writing the (þ) and (0) profiles

at zeroth order, from which we can compute the others.
This gives us, in the translational case,

λ0 ¼ 2ig2
�
ϕ2

�
1þ ρ̄ρ

r2

�
− ξ

�
; ψ1

0 ¼ 2
ffiffiffi
2

p fϕ
r
;

ψ2
0 ¼ 2

ffiffiffi
2

p ðf − 1Þϕ
r

: ð4:6Þ

By virtue of the BPS equations, these profiles are a solution
to the Dirac equations above for vanishing μ. We then use
these to source the equations for λ1 and ψ1: given the high
degree of similarity between the (0) and (1) equations,
differing only by terms linear in the profile functions, we
try a solution of the form

λ1 ¼ bðrÞλ0; ψ1;2 ¼ bðrÞψ0 ð4:7Þ

for some unknown function b. The equations for the
(1) profiles reduce to two conditions on b, notably

∂rbþ b
r
þ μg2 ¼ 0; ∂rb −

b
r
¼ 0: ð4:8Þ

This is solved by bðrÞ ¼ − μg2r
2
. The (1) profiles are

therefore

λ1 ¼ −iμg4r
�
ϕ2

�
1þ ρ̄ρ

r2

�
− ξ

�
;

ψ1
1 ¼ −

ffiffiffi
2

p
μg2fϕ; ψ2

1 ¼ −
ffiffiffi
2

p
μg2ðf − 1Þϕ: ð4:9Þ

This is entirely analogous to the local non-Abelian case.
For the supersize moduli, the (þ) profiles at zeroth order

are

λþ ¼ i
ffiffiffi
2

p ∂rγ; ψ1þ ¼ 2γϕ; ψ2þ ¼ 2γϕ−
ϕ

ρ̄ρ
: ð4:10Þ

The zeroth order equation for the (þ) profiles reduces to the
extremization equation for γ. Thanks to our parametriza-
tion, we can apply the same kind of trick again to find the
(−) profiles: writing

λ−¼−
μg2r
2

ðλþ− i
ffiffiffi
2

p
cðrÞÞ; ψ1;2

− ¼−
μg2r
2

ψ1;2
þ ; ð4:11Þ

we obtain a solution to the Dirac equation when

c ¼ −
2

r
γ: ð4:12Þ
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This gives the following profiles:

λ− ¼ −
iμg2

ffiffiffi
2

p
r

2

�
∂rγ þ

2

r
γ

�
;

ψ1
− ¼ −μg2rγϕ; ψ2

− ¼ −μg2r
�
γϕ −

ϕ

2ρρ̄

�
: ð4:13Þ

With these profiles, supersize zero modes can be checked
to be nonsingular at zero and normalizable at infinity to the
order OðμÞ by using the explicit solution (3.9), up to a
caveat that we detail in Appendix B.
We can now feed these profiles into the kinetic terms of

the 4d fermions and observe any mixing between world
sheet modes. At this level we can expect three changes to
occur, three coefficients that can depart from their expected
value. The changes affect the ζr and χR world sheet
fermions, so their respective kinetic terms can change
normalization: we label them Iζζ and Iχχ . But also, we
expect a mixing term between these two fields to occur: if
the shape of the interactions persists to be Kählerian, then
Zumino’s theorem will apply and one would observe an
enhancement of the number of supersymmetries.
If μ ¼ 0, this coefficient vanishes, since, for instance, λ0

and λþ have no overlap. One comes multiplied by xþiy
r

while the other does not, and similarly for the matter
fermions.
It is clear that at leading order in μ, the fermion kinetic

constant for ζ does not change from its initial value, which
one can show is the integral of a total derivative by using
the Maxwell equation

Iζζ ¼
Z

rdrdθ

��
1

r
∂rfðrÞ

�
2

þ 1

r
J

�

¼


1

r
fðrÞ∂rfðrÞ

�
∞

0

¼ 1: ð4:14Þ

For precisely the same reasons, at order OðμÞ the χ
normalization does not change either. In that case,
a caveat must be raised, the details of which are given
in Appendix B.
Now, with these solutions, it is the case that zero modes

from the translational and size moduli are able to mix,
leading to the sought-after term on the world sheet:

πg2ξμ log

�
L2
IR

ρ̄ρ

�
ðζRχR∂Lρ̄þ c:c:Þ; ð4:15Þ

where we keep only terms which contain IR logarithms.
Here again the IR logarithm comes from the massless
fermion of the second flavor.
The shape of this resulting term is in fact fixed by

supersymmetry and target space invariance, as we will see
in the next section. In obtaining this expression, we again
used the fact that radial variations of ρ are negligible, since

they occur systematically in comparison to LIR. This
enabled us to justify treating the logarithmic factors in
the kinetic terms as constants and changing normalization
to remove them; here it enables us to write

ρ̄∂ρ ≈ −ρ∂ρ̄; ð4:16Þ

which simplifies the computation to the result quoted
above.
Thus our world sheet theory to the OðμÞ order becomes

S2D ¼
Z

d2xπξ

�
log

�
L2
IR

jρj2
�
½j∂kρj2 þ iχ̄R∂LχR þ iχ̄L∂R χL�

þ iζ̄R∂LζR þ g2μ log

�
L2
IR

jρj2
�
ðζR∂Lρ̄χR þ c:c:Þ

�
;

ð4:17Þ

where we drop translational moduli xi and ζL, which are
sterile.
The mixing term, by its existence, breaks N ¼ 2

supersymmetry, as has been discussed. Absorbing with
logarithmic accuracy square roots of IR logarithms in the
normalization for χR and ρ, we finally arrive at the action

S2D ¼
Z

d2xπξfj∂kρj2 þ iχ̄R∂LχR þ iχ̄L∂R χL

þ iζ̄R∂LζR þ g2μðζR∂Lρ̄χR þ c:c:Þg: ð4:18Þ

We see that the mixing term also does not contain an IR
logarithm and becomes of order g2μ.
As we mentioned, the shape of this term is expected from

supersymmetry: there exists a specific way of combining
(0, 2) superfields in such a way as to generate a mixing term
of this form, but the above result is not the complete
answer: along with this new term, extra four-fermion
interactions are generated due to F terms. In order to
determine the full expression, let us turn to this formalism
to generate the remainder of the Lagrangian.

C. Superspace action

We have found that the world sheet theory develops a
deformation term that breaks (2, 2) supersymmetry. This
term mixes fermions living in different target spaces, while
the bosonic coordinates of the manifolds do not mix.
Evidence of leftover supersymmetry after this breaking
is most easily seen by writing a (0, 2) superfield formu-
lation of the Lagrangian.
We introduce three superfields, whose expansions in

chiral superspace coordinates are

A¼ ρþθ
ffiffiffi
2

p
χL; B¼ χRþ

ffiffiffi
2

p
θFs; C¼ ζRþ

ffiffiffi
2

p
θFt;

ð4:19Þ
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where Ft and Fx are unimportant auxiliaries leading to
four-fermion interactions. We also introduce the Kähler
1-forms Kz and Kz̄, which are arbitrary functions but
complex conjugates of each other. They would derive, in a
(2, 2) setting expressed in (0, 2) notation, from the Kähler
potential by

Kz ¼ ∂zK: ð4:20Þ

We then define the metric of the space by Gzz̄ ¼
∂ z̄Kz ¼ Gz̄z.
The N ¼ ð2; 2Þ Lagrangian, written in this (0, 2)

language, takes the following form, first in a generic
formulation and then in our specific case:

Lð2;2Þ ¼ πξ

Z
d2θðiKz∂RAþ c:c:þ Gzz̄B†BÞ ð4:21Þ

¼ πξ

Z
d2θ

�
i log

�
L2
IR

A†A

�
ðA†∂RA − ∂RA†AÞ

þ log

�
L2
IR

A†A

�
B†B

�
ð4:22Þ

given that the Kähler potential was given in Eq. (3.22).
Then, a term that explicitly breaks (2, 2) supersymmetry
can be found by coupling B and A† directly, without
involving A. The following term is suitable:

Lð0;2Þ ¼ πξμg2
Z

d2θðKz̄BCþ c:c:Þ ð4:23Þ

¼ πξg2μ
Z

d2θ log

�
L2
IR

A†A

�
ðA†BCþ c:c:Þ: ð4:24Þ

This addition to the Lagrangian does indeed produce the
term we suggest in Eq. (4.15),

g2μχRζR∂Lρ̄þ H:c:; ð4:25Þ

along with further quartic fermion couplings from the
F-terms present in the fermionic multiplets. It is clearly
a violation of N ¼ ð2; 2Þ supersymmetry as it involves a
fermionic multiplet which does not have a paired bosonic
multiplet.
In total, and once the rescaling of the kinetic logarithms

has been performed, the Lagrangian we obtain out of
superspace as a result takes the following form:

L ¼ ∂μρ̄∂μρþ iχ̄∂χ þ iζ†R∂LζR þ g2μðζRχR∂Lρ̄þ H:c:Þ
þ g4μ2ðζ†RζRÞðχ†LχLÞ þ g4μ2ðχ†RχRÞðχ†LχLÞ: ð4:26Þ

This is now manifestly (0, 2)-supersymmetric, as required.

V. CONCLUSION

We have investigated properties of supersymmetric
nonlinear sigma models that arise as the Lagrangian for
semilocal strings in SQED. The scalar modulus ρ that
these strings are endowed with seems very different from
the internal color modulus of non-Abelian strings, but we
have shown they are similar in at least one aspect: a
heterotic deformation affects their world sheets in very
similar ways.
When a mass is turned on for the gauge scalar multiplet

in four dimensions, in both cases, a coupling occurs
between fermionic degrees of freedom originally defined
in different target spaces on the world sheet. This breaks
the full (2, 2) supersymmetry in a way that cannot benefit
from any accidental enhancement. For this structural
shape, an explicitly (0, 2) superspace action can be written,
in a way that clearly violates (2, 2) supersymmetry
in turn.
It is nevertheless the case that ρ retains some idiosyn-

cratic features: the asymptotic explicit solution of the field
equations that exists in this case proves to be a powerful
tool to study the properties of semilocal strings. Given that
the modulus jρj intervenes in every asymptotic spatial
profile we wish to write in the theory, the computation to
generate the zero modes and world sheet theory compli-
cates itself quickly, but reduces to the expected result
eventually. We expect it to become even more difficult to
perform, if possible at all, for a large-μ world sheet. This
exercise will be left for future work.
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APPENDIX A: CONVENTIONS

We work in Euclidean space. We pick the following
choices for σ-matrices:

σμαβ ¼
�
1;

�
0 −i
−i 0

�
;

�
0 −1
1 0

�
;

�−i 0

0 i

��
;

σ̄μαβ ¼ ð1;−σiαβÞ: ðA1Þ

SUð2Þ indices, either spinorial or from R-symmetry, are
contracted with the following tensor:

εαβ ¼
�
0 −1
1 0

�
¼ ε _α _β; εαβ ¼ ε _α _β ¼ −εαβ: ðA2Þ
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From our choices in spacetime, the world sheet gamma
matrices necessarily become

γ ¼
��

0 1

1 0

�
;
�

0 i

−i 0

��
: ðA3Þ

APPENDIX B: ASYMPTOTIC EXPANSIONS
ON THE WORLD SHEET

In Sec. IV, we computed corrections to coefficients of
world sheet couplings. This is a nonobvious process
conceptually, namely, because the field χR is only loga-
rithmically normalizable, though arguments have been put
forward that this apparent divergence can be removed
safely through field redefinitions. At order μ, for reasons
explained above, there is no contribution to the normali-
zation. One expects them to arrive at higher order in (even)
powers of μ. However, we are performing perturbation
theory in a setting with an explicit IR cutoff, i.e., a
maximally large but finite length scale L in the problem.
Since μ has dimensions of mass, one expects that terms
dependent on enough powers of μ will come multiplied by
some positive powers of L, generically.
In particular, λ− is constructed from a square-log-

divergent profile times a factor of r, so it decays even
slower at infinity than λþ and thus will lead to a correction
that goes as μ2L2. This is symptomatic of doing perturba-
tion theory in settings with IR cutoffs: the full series cannot
be trusted, since μ cannot be smoothly turned off without
passing by the IR cutoff regime. This phenomenon is
referred to as singular perturbation theory, characteristic of
dynamics on multiple scales. The approach is broadly
contained in asymptotic analysis, rather than perturbation

theory. Hence, we suggest that one should truncate the
order at which our series is meaningful.

APPENDIX C: USEFUL TRANSVERSE
INTEGRATION IDENTITIES

Computing the transverse integrals yielding world sheet
elements, in the case of semilocal strings, can involve a
high number of terms and expressions in the integrand, all
contributing towards a small class of possible terms
allowed by world sheet symmetries. It is useful to keep
at hand a list of frequently used identities for quick
reference.
Integrals are performed over the plane transverse to the

string solution, and systematically involve functions of the
radial coordinate only. Where the integrand can be summed
over the entire plane and produce a finite result, that result
is used, though some may be required to be cut off, for
small r at ρ and for large r at LIR.
The general form of the integrands at hand can usually be

reduced to the following type of integral:

Z
rdr

1

ðr2 þ ρ̄ρÞn ¼
1

n − 1
ðρ̄ρÞ1−n; n > 1: ðC1Þ

When n ¼ 1, the integral requires regularization:

Z
rdr

1

ðr2 þ ρ̄ρÞ ¼
1

2
log

�
L2
IR

ρ̄ρ

�
: ðC2Þ

A combination of both of these two integral types produces
the characteristic Kähler metric of the size modulus. In the
deformed world sheet, at small μ these formulas are enough
to produce the result.
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