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A mass parameter for the gauge bosons in gauge-fixed four-dimensional Yang-Mills theory can be
accommodated in a local and manifestly Becchi-Rouet-Stora-Tyutin invariant action. The construction is
based on the Faddeev-Popov method involving a nonlinear gauge-fixing and a background Nakanishi-
Lautrup field. When applied to momentum-dependent masslike deformations, this formalism leads to a full
regularization of the theory which explicitly preserves Becchi-Rouet-Stora-Tyutin symmetry. We deduce a
functional renormalization group equation for the one-particle-irreducible effective action, which has a
one-loop form. The master equation is compatible with it—i.e., Becchi-Rouet-Stora-Tyutin symmetry is
preserved along the flow—and it has a standard regulator-independent Zinn-Justin form. As a first
application, we compute the leading-order gluon wave-function renormalization.
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I. INTRODUCTION

The fact that global symmetries can be implemented
exactly is one of the cornerstones of many qualitative and
quantitative successes of functional continuum methods in
quantum field theory. A prime example is chiral symmetry
which can exactly be accounted for even in the presence of
ultraviolet (UV) and infrared (IR) regularizations as for-
mulated in the framework of the functional renormalization
group (RG) [1–4]. By contrast, local gauge symmetries, as
well as nonlinear or diffeomorphism symmetries, require a
more careful discussion, as a symmetry transformation can
arbitrarily mix modes in momentum space. This seems
naturally in conflict with regularizations that operate locally
in momentum space. An elementary example is given by a
mass term for the gauge boson which would provide for an
IR regularization, but breaks gauge invariance.
In standard continuum formulations, quantization of

gauge theories, such as Faddeev-Popov quantization,
involves a gauge-fixing procedure in order to remove the
large redundancy in the space of field configurations to be

integrated over. This goes along with explicit symmetry-
breaking terms. While gauge-invariant observables are
not affected by the details of the gauge-fixing procedure,
gauge-variant building blocks such as gauge-field correla-
tion functions and vertices do depend on the gauge choice.
The underlying symmetry is still encoded in Ward-
Takahashi identities that relate these correlation functions
also across loop orders. While the computation of gauge-
invariant observables out of gauge-variant building blocks
such as correlation functions thereby remains conceptually
possible, it becomes technically more demanding.
A major simplification arises from Becchi-Rouet-Stora-

Tyutin (BRST) symmetry, a remnant global supersymmetry
that nonlinearly mixes gauge, Faddeev-Popov ghost and
further auxiliary fields [5–7]. BRST symmetry not only
helps identifying the physical Hilbert space of states but also
simplifies the constraint equation for correlation functions in
the form of the Zinn-Justin master equation [8,9]. At the
expense of auxiliary sources, the Zinn-Justin equation
relates correlation functions algebraically; i.e., its resolution
can be approached by algebraic cohomology methods and
does not require the computation of loop terms.
In the presence of a generic momentum-space regulari-

zation, the elegance (and practicality) of the master
equation is no longer present. For functional RG flows,
it has been shown by Ellwanger [10] that gauge invariance
of correlation functions as summarized by the effective
action can still be encoded in a master equation. However,
the regularization procedure which is generically encoded
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on the level of the propagator leads to additional regulator-
dependent terms in the master equation (modified Slavnov-
Taylor identities) which again correspond to loop terms.
Whereas this modified master equation, as well as a
corresponding additional modified Ward-Takahashi iden-
tity [11–14], encodes the constraints imposed by the
symmetries on a conceptually satisfactory level [15,16],
it increases the level of technical complexity for non-
perturbative approximation schemes; cf. [17,18]. Direct
applications of functional RG flows together with a
resolution of the modified master equation beyond pertur-
bation theory have remained rare [17–21], though the
intricacies can simplify in certain gauges such as the
Landau gauge [22,23].
Several schemes have been devised, to tackle this

practical problem. For instance, an alternative approach
has been developed in [24–27] introducing a deformed
BRST symmetry that includes the regulator and reduces
to standard BRST symmetry in the suitable limits. This
formulation indeed encodes gauge invariance even of the
regularized theory in a bilinear master equation but at the
same time makes the nonlocality of gauge symmetry in
momentum space manifest. Along a similar research
direction, a functional regularization which promotes the
usual gauge invariance to a manifest noncommutative
gauge symmetry has been proposed in [28], where the
exploration of the corresponding flow equations for the
Wilsonian as well as the one-particle-irreducible (1PI)
effective actions has also been undertaken. A convenient
scheme to devise nonperturbative approximations relies on
the use of background-field methods [29], where invariance
under background-field transformations can rather straight-
forwardly be obtained. Nevertheless, the true quantum
gauge invariance is again encoded in modified symmetry
identities (Nielsen identities, shift-Ward identity) [15,30–
40], which in practice have been largely treated on an
approximate level [30,31,41–43].
Several further directions have been explored in this

context: a manifestly gauge-invariant RG flow has been
proposed in [44] and further developed in [45–47] which
does not rely on Faddeev-Popov quantization but makes
use of an embedding into an SU(NjN) supergauge
theory. A variety of results has been obtained [48,49]
including a gauge-invariant computation of the two-loop
β function [50–53]. Gauge-invariant RG flows for the
geometric effective action have also been set up within
the Vilkovisky-DeWitt framework [54,55] with applica-
tion in the asymptotic-safety scenario for quantum gravity
[56]. A gauge-invariant RG flow has also recently been
constructed in [57,58] making use of physical gauges and
the freedom to suitably define the macroscopic field and
the effective action. Despite these conceptually successful
implementations of gauge invariance in RG flows, the
most advanced applications to nonperturbative questions
often rely on the standard Faddeev-Popov quantization as

this has remained technically more accessible for sophis-
ticated systematic expansion schemes; cf. [23,59–61].
In the present work, we suggest a novel approach for

the construction of RG flows for gauge systems that
relies on Faddeev-Popov quantization and aims at pre-
serving exact BRST symmetry. The key idea is to treat
the regularization as a contribution to the gauge fixing.
As this is not possible within linear gauges, we consider
a special choice of a nonlinear (quadratic) gauge con-
dition. BRST symmetry in the standard fashion remains
manifest at all stages of the construction. In order to
obtain a conventional regulator term for the gauge field,
we use a Fourier noise field for the Nakanishi-Lautrup
auxiliary field. As a new ingredient, this gives rise to a
background Nakanishi-Lautrup field.
Also the ghost sector is at variance with that of standard

linear gauges while preserving exact BRST invariance.
In particular, new regulator-dependent vertices appear.
Nevertheless, gauge invariance gives rise to a master
equation for the (Legendre) effective action which can
be brought to standard form with the aid of two additional
source fields. This facilitates the resolution of the symmetry
constraints by conventional algebraic cohomology meth-
ods. Most importantly, the resulting functional nonpertur-
bative flow equation for the effective action has a one-loop
structure and is thus amenable to widely used nonpertur-
bative approximation schemes.
The paper is organized as follows. In Sec. II, we set the

stage by recalling basics of gauge-fixed functional inte-
grals in order to introduce our conventions. We introduce
the Nakanishi-Lautrup auxiliary field in Sec. III together
with a convenient choice of a corresponding noise field
which is advantageous for our formalism. Section IV is
devoted to a discussion of constructing a simple nonlinear
gauge that allows us to write down an action with BRST-
invariant mass terms; since this is a rather widely
discussed topic in the literature, this section might be
of interest in its own right. Here, we use it as a motivation
for the construction of a BRST-invariant RG flow. The
latter is presented in Sec. V, where we derive the one-loop
functional RG flow equation. The master equation encod-
ing BRST invariance and its RG flow is discussed in
Sec. VI. Here, we give an explicit proof of the compat-
ibility between the master equation and the flow equation;
i.e., an action that satisfies the master equation at an initial
scale will do so on all scales, provided it also satisfies the
flow equation that links the two scales. The question
concerning the well posedness of the functional regulari-
zation obtained through a nonlinear gauge fixing is
addressed in Sec. VII, where we analyze the mapping
between the effective action and the bare action, and the
choice of RG initial conditions. A simple application of
the functional flow equation to one-loop order is presented
in Sec. VIII. Auxiliary information is presented in three
Appendixes.
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II. CONVENTIONS

In this work, we discuss pure Yang-Mills theory in
d-dimensional Euclidean spacetime, using the gauge field
Aa
μðxÞ in the adjoint representation of the gauge group G

as the local field degree of freedom. For the counting
of canonical dimensions, we implicitly use d ¼ 4 as an
illustration. Other than that, our formalism applies to
general d. The inclusion of charged matter fields is
straightforward. The use of the gauge field entails a
large redundancy manifested by the invariance under local
(infinitesimal) gauge transformations, δAa

μðxÞ¼ðDμωÞaðxÞ
for infinitesimal ωaðxÞ. Here, we use the covariant deriva-
tive in the adjoint representation,

Dab
μ ¼ ∂μδ

ab þ gfabcAc
μ: ð1Þ

We use condensed notation such that color indices replace
also spacetime indices, and the summation convention over
these repeated indices is extended to integration over the
corresponding spacetime points, whenever two identical
indices both refer to field variables. For example, the
covariant derivative then reads

Dab
μ ðxa; xbÞ ¼ ðδab∂μ þ gfabcAc

μðxaÞÞδðxa − xbÞ: ð2Þ

Finite gauge transformations can be written as

Aω
μ ¼ UAμU−1 −

i
g
ð∂μUÞU−1; Aμ ¼ Aa

μTa; ð3Þ

where

UðωÞ ¼ e−igω
aTa ∈ G; ð4Þ

with general finite ωaðxÞ and generators

½Ta; Tb� ¼ ifabcTc: ð5Þ

The field strength reads

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν; ð6Þ

with adjoint indices a; b; c…. In condensed notation, the
Yang-Mills action is given by

SYM½A� ¼
1

4
Fa
μνFaμν: ð7Þ

For quantization, we introduce a gauge-fixing functional
Fa½A�, playing a central role for the Faddeev-Popov
method:

1 ¼
Z

DFaδ½Fa� ¼
Z

dμðωÞδ½Fa½Aω��ΔFP½Aω�; ð8Þ

where dμ is the Haar measure and

ΔFP½Aω� ¼ Det
δFa½Aω�
δωb ð9Þ

is the Faddeev-Popov determinant. The latter is gauge
invariant, so that we can replace Aω with A. This determi-
nant can be written in terms of a local action Sgh by means
of ghost fields:

ΔFP½A� ¼
Z

Dc̄Dce−Sgh½A;c;c̄�: ð10Þ

Imposing a strict gauge-fixing condition is not necessary,
because replacing

δ½Fa½Aω�� → B½Fa½Aω�� ð11Þ

simply changes the 1 on the left-hand side of Eq. (8) into a
constant. The standard textbook example is

B½Fa½A�� ¼ e−Sgf ½A�; ð12Þ

based on a local gauge-fixing contribution to the action,

Sgf ½A� ¼
1

2ξ
Fa½A�Fa½A�; ð13Þ

with gauge parameter ξ.
Baring explicit breakings through the gauge condition,

the global G symmetry remains intact even after gauge
fixing. For example, the ghosts transform under the adjoint
of the global G group, i.e., ω ¼ const:

δca ¼ gfabcωbcc;

δc̄a ¼ gfabcωbc̄c: ð14Þ

We can associate a set of generators to both local gauge and
global color rotations given by

GaðxÞ ¼ Ga
AðxÞ þ Ga

ghðxÞ; ð15Þ

where

Ga
AðxÞ ¼ Dab

μ
δ

δAb
μ
;

Ga
ghðxÞ ¼ −gfabc

�
cc

δ

δcb
þ c̄c

δ

δc̄b

�
: ð16Þ

All functional derivatives in this paper are left derivatives
by default, unless otherwise specified. The gauge action
Sgf þ Sgh emerging from the Faddeev-Popov construction
exhibits an additional global (super)symmetry: BRST
symmetry. Introducing a Grassmannian BRST operator
s acting on the fields, the BRST transforms read
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ðsAÞaμ ¼ Dab
μ cb;

ðscÞa ¼ 1

2
gfabccbcc;

ðsc̄Þa ¼ −
1

ξ
Fa: ð17Þ

As the BRST transform of the gauge potential has the form
of a gauge transformation, any gauge-invariant contribution
to the action is guaranteed to be BRST invariant.
Quantization now proceeds straightforwardly through

the generating functional

Z½J; η; η̄� ¼ eW½J;η;η̄� ¼
Z

DADcDc̄e−Stot ; ð18Þ

with the total action

Stot½A; c; c̄; J; η; η̄� ¼ SYM½A� þ Sgh½A; c; c̄� þ Sgf ½A�
þ Sso½A; c; c̄; J; η; η̄�: ð19Þ

The source terms are summarized in

Sso½A; c; c̄; J; η; η̄� ¼ −ðJaμAa
μ þ η̄aca þ c̄aηaÞ: ð20Þ

By Legendre transformation, the effective action can be
constructed from the Schwinger functional W½J; η; η̄�:

Γ½A; c; c̄� ¼ supJ;η;η̄fJaμAa
μ þ η̄aca þ c̄aηa −W½J; η; η̄�g:

ð21Þ

The effective action is the generating functional for 1PI
proper vertices, being a quantity of central interest in the
following.

III. QUANTIZATION WITH FOURIER NOISE

As the BRST symmetry is a supersymmetry, there is also
an “off-shell” formulation involving an auxiliary field, the
Nakanishi-Lautrup field. The corresponding generalized
construction proceeds via the generating functional

Z ¼
Z

DADcDc̄DbDne−SYM½A�−Sgauge½A;c;c̄;b;n�; ð22Þ

where the generalized gauge-fixing sector is now
encoded in

Sgauge½A; c; c̄; b; n� ¼ Sgf ½A; b� þ Snoise½b; n� þ Sgh½A; c; c̄�;
ð23aÞ

Sgf ½b; A� ¼ baFa½A�; ð23bÞ

Sgh½A; c; c̄� ¼ −c̄aMab½A�cb: ð23cÞ

The gauge-fixing action now is linear in the gauge-fixing
condition Fa as well as in the Nakanishi-Lautrup field ba.
We again encounter the Faddeev-Popov operator

Mab½A� ¼ δFa½A�
δAc

μ

δAωc
μ

δωb

����
ω¼0

¼ δFa½A�
δAc

μ
Dcb

μ ; ð24Þ

and na is a noise field. We already included in the defini-
tion of Z the averaging over the noise, with measure
expf−Snoise½b; n�g. We could equivalently integrate out the
noise and translate this into an action for the Nakanishi-
Lautrup field:

e−SNL½b� ¼
Z

Dne−Snoise½b;n�: ð25Þ

Thus, the generating functional reduces to

Z ¼
Z

DADcDc̄Dbe−S½A;c;c̄;b�; ð26Þ

with

S½A; c; c̄; b� ¼ SYM½A� þ Sgf ½A; b� þ SNL½b� þ Sgh½A; c; c̄�:
ð27Þ

A Gaussian weight for the noise,

Snoise½b; n� ¼
1

2ξ
nana − ibana; ð28Þ

corresponds to a local action for the Nakanishi-Lautrup
field,

SNL½b� ¼
ξ

2
baba; ð29Þ

highlighting its auxiliary-field character. Upon integrating
out the b field, this entails

Sgf ½A� ¼
1

2ξ
Fa½A�Fa½A�; ð30Þ

demonstrating the equivalence to the preceding section. In
the present work, we focus instead on the choice

Snoise½b; n� ¼ iðva − baÞna; ð31Þ

where va is an external vector field. This leads to a Fourier
weight that results in

e−SNL½b� ¼ δ½ba − va�; ð32Þ

which, after integration of b, translates into
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Sgf ½A� ¼ vaFa½A�: ð33Þ

We observe that Sgf remains linear at the expense of
introducing an external field va. Even though we are
interested in a nonlinear gauge-fixing functional Fa,
we choose conventions such that Fa retains its standard
canonical dimension ½Fa� ¼ 2, implying a corresponding
dimension ½v� ¼ 2. The vector va can be interpreted as
an external field, which explicitly breaks the global G
symmetry.
For any SNL, the action of Eq. (27) is invariant under the

following BRST symmetry:

sAa
μ ¼ Dab

μ cb;

sca ¼ g
2
fabccbcc;

sc̄a ¼ ba;

sba ¼ 0: ð34Þ

The BRST operator is nilpotent, i.e., s2 ¼ 0, thanks to the
algebraic property

δDab
μ

δAc
ν
Dcd

ν −
δDad

μ

δAc
ν
Dcb

ν ¼ gfcbdDac
μ : ð35Þ

Alternatively, it is useful to formulate the symmetry trans-
formation with the help of an off-shell BRST generator:

D0 ¼ ðDμcÞa
δ

δAa
μ
þ g
2
fabccbcc

δ

δca
þ ba

δ

δc̄a
; ð36Þ

which is also nilpotent D2
0 ¼ 0. Contrary to standard off-

shell supersymmetry transformations, the BRST symmetry
is not a linear symmetry operation on the fields. This is the
main source of nonlocalities arising in momentum space.
For an approach to a linear version of BRST symmetry,
see [62].
If one chooses a Fourier weight for na, as in Eq. (31),

integrating out b leads to an on-shell action S½A; c; c̄; v� and
its corresponding on-shell BRST transformation, which is
obtained from Eqs. (34) and (36) upon replacement of ba

with va:

sAa
μ ¼ Dμca;

sca ¼ g
2
fabccbcc;

sc̄a ¼ va;

sva ¼ 0: ð37Þ

Thus, again this BRST transformation is nilpotent, as
sva ¼ 0. For any gauge-fixing functional Fa½A�, the bare
action

S½A; c; c̄; v� ¼ SYM½A� þ Sgf ½A; v� þ Sgh½A; c; c̄; v�; ð38Þ

where Sgf and Sgh are given by Eqs. (33) and (23c),
respectively, is invariant under the transformation in
Eq. (37). In fact, as usual, the bare action of Eq. (38)
can be cast in the form

S½A; c; c̄; v� ¼ SYM½A� þ sΨ; ð39aÞ

where

Ψ ¼ c̄aFa½A�: ð39bÞ

Following [8,9], we add sources for both the elementary
fields and their BRST variations to S½A; c; c̄; v�. Defining

S½A; c; c̄; v; K; L� ¼ S½A; c; c̄; v� þ Ka
μðDμcÞa

þ La g
2
fabccbcc; ð40Þ

with Ka
μ being Grassmann-valued, we now obtain the

source part of the action:

Sso ¼ −JμaAa
μ − η̄aca − c̄aηa

þ Ka
μðDμcÞa þ La 1

2
gfabccbcc: ð41Þ

The generating functional then reads

eW½J;η;η̄;v;K;L� ¼
Z

DADcDc̄e−S½A;c;c̄;v�−Sso : ð42Þ

To deduce the master equation, i.e., the Ward identity for
BRST symmetry, we change variables of integration
according to an infinitesimal BRST transform. Based on
BRST invariance of the measure, we obtain

JaμhðDμcÞai − η̄a
�
g
2
fabccbcc

�
þ vaηa ¼ 0: ð43Þ

The sign of the second term in the last equation comes from
commuting the BRST operator s (or a corresponding
Grassmann parameter, say, θ̄) with η̄. In terms of the
Schwinger functional, we get

−Jaμ
δW
δKa

μ
þ η̄a

δW
δLa þ vaηa ¼ 0: ð44Þ

Now let us define the effective action

Γ½A; c; c̄; b; K; L� ¼ supJ;η;η̄fJμaAa
μ þ η̄aca þ c̄aηa

−W½J; η; η̄; K; L�g; ð45Þ

such that the “macroscopic” fields conjugate to the sources
satisfy
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Aμ
a ¼ δW

δJaμ
; ca ¼ δW

δη̄a
; c̄a ¼ −

δW
δηa

¼ W
δ⃖

δηa
: ð46Þ

This implies the quantum equations of motion in terms of
the effective action:

Jaμ ¼
δΓ
δAμ

a
; ηa ¼ δΓ

δc̄a
; η̄a ¼ −

δΓ
δca

¼ Γ
δ⃖

δca
; ð47Þ

and also the relations

δΓ
δKa

μ
¼ −

δW
δKa

μ
;

δΓ
δLa ¼ −

δW
δLa : ð48Þ

Thus, the Zinn-Justin master equation following with these
identities from Eq. (44) reads

δΓ
δAμ

a

δΓ
δKa

μ
þ δΓ
δca

δΓ
δLa þ va

δΓ
δc̄a

¼ 0: ð49Þ

Notice that the BRST invariance of S½A; c; c̄; b�, defined in
Eq. (27), is encoded in the following identity fulfilled by
S½A; c; c̄; v; K; L� of Eq. (40):

δS
δAμ

a

δS
δKa

μ
þ δS
δca

δS
δLa þ va

δS
δc̄a

¼ 0: ð50Þ

Therefore, Γ ¼ S½A; c; c̄; v; K; L� is a special solution of the
master equation (49).

IV. MASS AND NONLINEAR GAUGE FIXING

In the following, we suggest to introduce mass terms by
means of the gauge-fixing sector. The problem of con-
structing a BRST-invariant RG flow is closely related to
that of a BRST-invariant mass, since a masslike regulari-
zation is in correspondence to a Callan-Symanzik flow. Our
basic idea can thus already be understood on the level of
mass terms for the gluon and ghost fields. In fact, such mass
terms and their (in)compatibility with BRST symmetry
has been widely discussed in the literature [22,63–73].
Recently, the idea has been investigated extensively that
the nonperturbative generation of such masses in the
propagators could effectively cure the shortcomings of
perturbative Faddeev-Popov quantization, most promi-
nently those arising from the Gribov ambiguity [74–80].
In fact, results from simple perturbation theory based on
massive propagators compare rather favorably with lattice
simulations [81–90].
We emphasize, however, that the mass parameters used

in the following are intended to regulate IR divergences;
they are gauge dependent and different from physical
observable masses. In fact, by removing IR divergences,
these mass parameters deform Yang Mills theory by
explicit scale-invariance-breaking terms. Starting in this

way from a fully regularized quantum gauge theory sets the
stage for studying the limiting case of removal of such
parameters (an initial-condition problem from the RG point
of view of the next sections).
Still, we expect that the use of such artificial mass

parameters introduced by hand can also be useful for
studying the dynamical emergence of masslike thresholds
in gauge-fixed propagators or masslike condensates of
gauge and auxiliary fields (or both) [22,23,69,71–73,
76,77,80,83,91] and of the phenomenon of dynamical
breaking of scale invariance, which remains a separate
issue. Whereas we do not associate a direct phenomeno-
logical implication to our mass parameters in the following,
the limit of their removal in a nonperturbative computation
may be linked to dynamical mass-scale generation which
does have phenomenological implications.
Based on the Fourier weight for the noise of Eq. (31),

which results in the gauge-fixing action in Eq. (33), it is
suggestive to accommodate a masslike term in a nonlinear
gauge fixing

Fa½A� ¼ AbμQabc
μν Acν þ Labμ Aaμ: ð51Þ

We assume that the matrix Qabc
μν does not add another

explicit breaking of the global G symmetry beyond the one
already introduced by va. Thus, we assume that it can be
written in terms of the va vector itself. As far as the Lorentz
symmetry is concerned, noncovariant gauges can be easily
embedded into this ansatz, for instance, by choosing either
L or Q or both to depend on a specific spacetime vector.
Yet, in this work we choose to discuss examples corre-
sponding to covariant gauges where this breaking does not
occur. Furthermore, we choose Qabc

μν to be always propor-
tional to δðxa − xbÞδðxb − xcÞ, such that Fa is a local
functional, which depends on A and v at the spacetime
point xa only. To simplify notations in the following, we
always drop these delta functions.
The choice on which we focus in this section to illustrate

the properties of the construction is

Qabc
μν ¼ va

2jvj2
�
m̄2δμν −

1

ξ
∂μ∂ν

�
δbc;

Labμ ¼
�
1þ m̄2

gh

−∂2

�
∂μδ

ab: ð52Þ

This particular example leads to a gluonic sector of the bare
action which is simply a Yang-Mills action with a Lorenz
gauge fixing plus a masslike parameter for both the
longitudinal and the transverse vector bosons:

Sgf ½A� ¼
1

2
m̄2Aa

μAaμ þ 1

2ξ
ð∂μAa

μÞ2 þ va
�
1þ m̄2

gh

−∂2

�
∂μAa

μ:

ð53Þ
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The last term in this expression is an unusual linear shift of
the action which is added to the action of a vector field with
mass m̄,

ðSYM þ SgfÞ½A� ¼ va
�
1þ m̄2

gh

−∂2

�
∂μAa

μ

þ 1

2
Aa
μð−∂2 þ m̄2Þ

�
ΠT þ

1

ξ
ΠL

�
μν

Aa
ν

þOðA3Þ; ð54Þ

where

Πμν
L ¼ ∂μ∂ν

∂2
; Πμν

T ¼ δμν −
∂μ∂ν

∂2
: ð55Þ

The linear shift in Eq. (54) plays the role of an external
source:

Jaμ ¼ ∂μ

�
1þ m̄2

gh

−∂2

�
va: ð56Þ

In particular, if we set the gluon mass m̄ ¼ 0 and take the
ξ → þ∞ limit, the classical equation of motion becomes

Dab
ν Fbνμ ¼ Jaμ; ð57Þ

and the classical gauge symmetry requires

Dab
μ Jbμ ¼ Dab

μ ∂μ

�
1þ m̄2

gh

−∂2

�
vb ¼ 0 ð58Þ

on the equations of motion. Thus, even if the source term
breaks the global color symmetry of the action explicitly,
charge conservation is preserved if va is chosen to fulfill
Eq. (58). At A ¼ 0, or in the Abelian theory, this requires

ð−∂2 þ m̄2
ghÞva ¼ 0; ð59Þ

which is a massive Klein-Gordon equation for each
component of va.
While a nonvanishing va is a source of explicit symmetry

breaking of global color rotations, the action remains of
course form invariant under global G transformations that
include rotations of the va field:

δωAa
μ ¼ −gfabcAb

μω
c;

δωc̄a ¼ −gfabcc̄bωc;

δωca ¼ −gfabccbωc;

δωva ¼ −gfabcvbωc ð60Þ

with ω a constant infinitesimal parameter. This should be
contrasted to the behavior under the BRST symmetry,
which remains a symmetry of the action even in the

presence of a nonvanishing va, simply because it does
not require any change of va.
The ghost action corresponding to Eq. (53) reads

Sgh ¼ −c̄a
�
1þ m̄2

gh

−∂2

�
∂μðDμcÞa

−
va

jvj2 c̄
a

�
m̄2Abμ þ 1

ξ
ð∂νAb

νÞ∂μ

�
ðDμcÞb; ð61Þ

revealing m̄gh to be a ghost mass parameter. An alternative
choice for the gauge-fixing functional, which still leads to
the same gauge-fixing action of Eq. (53), is

Fa½A� ¼ va

2jvj2
�
m̄2Ab

μAbμ þ 1

ξ
ð∂μAbμÞ2

�
þ Labμ Aaμ: ð62Þ

This differs from Eqs. (51) and (52) only by an integration
by parts, but it gives rise to a different ghost action:

Sgh ¼ −c̄a
�
1þ m̄2

gh

−∂2

�
∂μðDμcÞa ð63Þ

−
va

2jvj2 c̄
a

�
2m̄2Abμ þ 1

ξ
ðAb

ν∂ν∂μ þ ∂ν∂μAb
νÞ
�
ðDμcÞb: ð64Þ

In both forms the actions contain higher-derivative inter-
action terms which are accompanied by the external field va

carrying a new scale because of its canonical dimension.
Furthermore, the ghost-mass parameter m̄2

gh introduces a
nonlocal modification of the ghost-gluon vertex. This can
be reinterpreted as a deformation of the conventional
Feynman rules in the Lorenz gauge according to the
following replacement for the momentum of the antighost:

pμ →

�
1þ m̄2

gh

p2

�
pμ: ð65Þ

Thus higher-derivative interactions, a new external field,
and nonlocal vertices are the prices to be payed for
introducing a mass term and thus an IR regularization of
vector and ghost propagators in our approach while
preserving BRST symmetry.
As is well known, nonlinear gauges such as the one

proposed in Eq. (51) go along with quartic ghost terms
[92,93], since the ghost action (64) does not feature shift
symmetry of the antighost [93,94]. Though such terms do
not straightforwardly derive from the Faddeev-Popov
method outlined above, they can be understood as arising
from a generalized gauge-fixing procedure [93,95–97].
They are part of the general solution space [98] of the
Zinn-Justin master equation discussed below and are
required as counterterms in perturbative renormalization
to account for the divergencies arising in the quartic ghost
correlator induced by the quartic ghost-gluon vertices
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contained in Eq. (64). The flow equation derived below
controls the generation and RG running of these terms
automatically.
In addition to the procedure suggested above, there is

another independent possibility for the introduction of a
mass parameter for the ghosts. While Eq. (52) defines m̄gh
as part of the gauge-fixing functional, one might simply add
a massive deformation of Sgh at fixed Sgf . The problem in
this case is preserving BRST symmetry. This can be
achieved in the presence of the background field va. As
an example, we observe that the deformation

Sgh ↦ Sgh þ ðm̄0
ghv

afabccbcc − m̄0
gh

�vafabcc̄bc̄cÞ ð66Þ

is BRST exact. After diagonalization, this term contributes
a positive mass to the propagator of those ghost fields with
adjoint colors perpendicular to v. Further ghost-antighost
bilinears involving also the background field va exist which
form a BRST-exact expression together with a correspond-
ing quartic ghost term mentioned above [93].
As we have introduced the mass terms through the gauge

condition, it is instructive to take a second look at the latter
in terms of transverse and longitudinal components:

vaFa ¼ 1

2
m̄2Aa

TμA
aμ
T þ 1

2
m̄2Aa

LμA
aμ
L þ 1

2ξ
ð∂μAa

LμÞ2

þ va
�
1þ m̄2

gh

−∂2

�
∂μAa

Lμ: ð67Þ

In order to satisfy the gauge condition Fa ¼ 0, a field
configuration must fulfill vaFa ¼ 0. The first three terms in
Eq. (67) are manifestly positive, whereas the last term can
have either sign. While for a vanishing mass parameter the
gauge condition Fa ¼ 0 would correspond to ∂μA

aμ
L ¼ 0 as

usual, the finite-mass version requires a cancellation of the
first three terms against the last one. For any finite gauge
parameter and any transversal field content AT, it is
conceivable that a longitudinal field content AL can be
gauged accordingly. However, in the gauge-parameter limit
ξ → 0, the third term strictly enforces ∂μA

aμ
L ¼ 0, making

it impossible to satisfy the gauge condition for m̄ ≠ 0.
While we have introduced the mass parameter through the
gauge condition, this argument demonstrates that this
condition does not strictly speaking define an ordinary
gauge. The standard Landau-gauge-fixed functional inte-
gral is only recovered in the limit of vanishing masses.
Nevertheless, BRST symmetry is preserved at all stages of
the construction.

V. THE FUNCTIONAL RENORMALIZATION
GROUP

A. Regularization and nonlinear gauge fixing

Let us now address simultaneously the task of gauge
fixing and regularizing the functional integral in a

BRST-symmetric manner. Based on the Fourier weight
for the noise of Eq. (31), which results in the gauge-fixing
action in Eq. (33), we still adopt a gauge-fixing functional
of the form in Eq. (51). To regularize not only IR but also
UV divergences, we take inspiration from the massive
gauge fixing of Eq. (52), but now we promote the mass
parameters to arbitrary derivative kernels: m̄2δμν → Rμνð∂Þ
and m̄2

gh → Rghð∂Þ ¼ ð−∂2Þrghð−∂2Þ. In other words, we
suggest a gauge condition of the following form:

Qabc
μν ¼ va

2jvj2Qμνδ
bc;

Labμ ¼ ð1þ rghð−∂2ÞÞ∂μδ
ab; ð68Þ

where

Qμν ¼ Rμνð∂Þ − 1

ξ
∂μ∂ν: ð69aÞ

Here Rμν is a symmetric tensor and an even differential
operator. To be more specific, a possible choice for it reads

Rμνð∂Þ ¼ RLð−∂2ÞΠμν
L þ RTð−∂2ÞΠμν

T : ð69bÞ
The functions Rgh;T;L are regulators in momentum space
known from the construction of the Wetterich equation [1],
being an RG flow equation for an effective action
depending on a regulator scale k. The regulators implement
the momentum-space regularization by providing a mass
gap to modes with momenta p2 ≲ k2, by satisfying
limp2=k2→0Rgh;T;Lðp2Þ > 0. By contrast, the momentum
modes beyond the RG scale k should remain essentially
unmodified, limk2=p2→0Rgh;T;Lðp2Þ ¼ 0. For the scale k
approaching the UV regularization scale k → Λ (possibly
with the limit Λ → ∞), the regulator function should
diverge, thereby suppressing all quantum fluctuations such
that the effective action can be matched with the classical
action to be quantized; for reviews, see [15,16,99–102].
More details on the UV limit are discussed in Sec. VII.
The gauge-fixing and ghost actions corresponding to this

choice of gauge-fixing functional read

Sgf ¼
1

2
Aa
μQμνAa

ν þ vað1þ rghð−∂2ÞÞ∂μAa
μ; ð70aÞ

Sgh ¼ −c̄að1þ rghð−∂2ÞÞð∂μDμcÞa

−
va

2jvj2 c̄
aððQμνAb

νÞðDμcÞb þ Ab
μðQμνDνcÞbÞ: ð70bÞ

In contrast to the standard construction of flow equations,
the regulators now appear also in ghost-gluon vertex
operators. In order to keep the subsequent flow equation
at most on the two-point level, we need two extra sources in
the partition function. For the on-shell case, we thus work
with the generating functional:
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eW½J;η;η̄;v;K;L;M;I� ¼
Z

DADcDc̄e−S½A;c;c̄;v�−Sso ; ð71Þ

where the source terms now read

Sso ¼ −JaμAa
μ − η̄aca − c̄aηa þ Ka

μðDμcÞa þ La g
2
fabccbcc

−
va

jvj2 c̄
aAb

μIbμ −
va

jvj2 c̄
aðDμcÞbMbμ; ð72Þ

and the action S½A; c̄; c; v�, as in Eq. (38), includes the
ghost and gauge-fixing parts displayed in Eq. (70). Notice
that Ibμ and Ka

μ are anticommuting, while La and Mb
μ are

commuting sources. Recall that S½A; c; c̄; v� is invariant
under the BRST transformation of Eq. (37). To highlight
the BRST properties of the composite operators introduced
in Eq. (72), we denote

Ωb
μ ¼

va

jvj2 c̄
aAb

μ; ð73Þ

Ab
μ ¼

va

jvj2 c̄
aðDμcÞb ð74Þ

and define

Sbrstso ¼ Ka
μsAa

μ þ Lasca −Ωb
μIbμ −Ab

μMbμ: ð75Þ

To determine the BRST variation of this additional source
action, we notice the following peculiar structure:

sΩa
μ ¼ Aa

μ −Aa
μ; ð76Þ

sAa
μ ¼ sAa

μ: ð77Þ

Thus A and A are cohomologous to each other, as their
difference is BRSTexact. In other words, they belong to the
same BRST cohomology class.
The encoding of the BRST symmetry of the bare action

in the properties of the effective action and of its RG flow
will be discussed in Sec. VI. Before that, let us deduce,
from the regularization we have provided, an exact RG
equation for the effective action.

B. Flow of the effective average action

To write the flow equation for the 1PI effective action, it
is useful to collect the sources into vectors

J †
i ¼ ðJaμ; η̄a; ηaÞ; J i ¼

0
B@

Jaμ
η̄a

ηa

1
CA; ð78Þ

and correspondingly define collective fields

Φ†i ¼ ðAaμ;−ca; c̄aÞ; Φi ¼

0
B@

Aaμ

ca

−c̄a

1
CA: ð79Þ

It is also convenient to group the sources for composite
operators into vectors

I†
i ¼ ðKa

μ; La;Ma
μ; IaμÞ; I i ¼

0
BBB@

Ka
μ

La

Ma
μ

Iaμ

1
CCCA: ð80Þ

Here and in the following, the Latin letters i; j; k;… are
adopted for collective indices which refer to the compo-
nents of J , I , Φ as well as to their spacetime and/or color
indices and to the spacetime point at which they are
evaluated. From now on, we follow the common conven-
tion used in functional renormalization to denote the
Legendre transform of the regularized Schwinger func-
tionalW as Γ̃, while Γ is reserved for Γ̃ minus the regulator
terms. In formulas, we define the Legendre effective
action as

Γ̃½Φ; v; I � ¼ sup
J i

fJ †
iΦi −W½J ; v; I �g ð81Þ

and the effective average action [1] as

Γ½Φ; v; I � ¼ Γ̃½Φ; v; I � − ΔS½Φ; v�: ð82Þ

In the second definition, we have introduced an abbrevia-
tion for the regulator contribution to the action

ΔS ¼ ΔSgf þ ΔSgh; ð83Þ

where the scale dependence in the functional integral arises
from the regulators

ΔSgf ¼
1

2
Aa
μRμνAa

ν þ varghð−∂2Þ∂μAa
μ; ð84aÞ

ΔSgh ¼ −c̄arghð−∂2Þð∂μDμcÞa

−
va

2jvj2 c̄
aððRμνAb

νÞðDμcÞb þ Ab
μðRμνDνcÞbÞ:

ð84bÞ

We emphasize that the Legendre transform in Eqs. (81) and
(82) is just performed with respect to the sources for the
elementary gauge and ghost fields. In this way, our action
remains on the 1PI level.
The Legendre transform of Eq. (81) translates into

standard formulas connecting derivatives of W to deriva-
tives of Γ̃, such as
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δ

δJ †
i

W ¼ Φi; W
δ⃖

δJ i
¼ Φ†i; ð85aÞ

δ

δΦ†i Γ̃ ¼ J i; Γ̃
δ⃖

δΦi ¼ J †
i : ð85bÞ

Then we can denote

Wð2Þ
J iJ j

¼ δ

δJ †
i

W
δ⃖

δJ j
; ð86aÞ

Γ̃ð2Þ
ΦiΦj ¼ δ

δΦ†i Γ̃
δ⃖

δΦj : ð86bÞ

By differentiating Eq. (85a) with respect to Φ, one deduces

Wð2Þ
J iJ j

Γ̃ð2Þ
ΦjΦk ¼ δik; Γ̃ð2Þ

ΦiΦjW
ð2Þ
J jJ k

¼ δki ; ð87Þ

or in other words

Wð2Þ
JiJj

¼ ðΓ̃ð2Þ−1
ΦΦ Þij ¼ ðΓ̃ð2Þ−1ÞΦiΦj ; ð88Þ

where the second equal sign is nothing but a definition of a
convenient notation used below.
While in position space one can think of the condensed

indices in these formulas as corresponding to a given
coordinate x, more care is needed in momentum space.
There, it is convenient to accompany the † operation
with a reflection of the Fourier momentum. More details
about the Fourier conventions and the representation of
the relevant formulas in momentum space are provided
in Appendix A.
As for the sources of Eq. (80), we have analogously to

Eq. (48)

Wð2Þ
I iI j

¼ δ

δI†
i

W
δ⃖

δI j
¼ −

δ

δI†i Γ̃
δ⃖

δI j
¼ −Γ̃ð2Þ

I iI j
: ð89aÞ

To construct the full matrix of second-order derivatives of
W, in terms of second-order derivatives of Γ̃, we need
expressions for mixed derivatives. These descend from
differentiating Eq. (85a) with respect to I j and accounting
for Eq. (48), yielding

Wð2Þ
J iIk

¼ −ðΓ̃ð2Þ−1
ΦΦ ÞijΓ̃ð2Þ

ΦjIk
; ð89bÞ

Wð2Þ
I iJ k

¼ −Γ̃ð2Þ
I iΦjðΓ̃ð2Þ−1

ΦΦ Þjk: ð89cÞ

Based on these identities, the RG flow equation for Γ̃ follows
analogously to the standard derivation [1–3,15,16,99–102],
as briefly sketched for our purposes in the following: starting
from the partition function Eq. (71),

Z½J ; v; I � ¼ eW½J ;v;I �; ð90Þ

we deduce the flow of Z by differentiating Eq. (71) with
respect to t ¼ log k,

∂tZ ¼ GtZ: ð91Þ

Here, we have introduced the generator of RG transforma-
tions acting on the partition function,

Gt ¼ ð∂trgh∂μδ
abÞ

�
vb

δ

δJaμ
−

δ2

δηbδKa
μ

�

−
1

2
ð∂tRμνδ

abÞ
�

δ2

δJaμδJbν
−

δ2

δMa
μδJbν

−
δ2

δIaμδKb
ν

�
: ð92Þ

Operators acting on δab are meant as differentiation with
respect to xa. According to DeWitt’s condensed notation,
Eq. (92) comprehends functional traces as usual.
Rewriting Eq. (91) in terms of the Schwinger functional

and performing the Legendre transformation to Γ̃½Φ; v; I �
[cf. Eq. (81)], we obtain the RG flow of the Legendre
effective action:

∂tΓ̃ ¼ 1

2
ð∂tRμνδ

abÞ
�
ðΓ̃ð2Þ−1ÞAa

μAb
ν
þ Γ̃ð2Þ

Ma
μΦjðΓ̃ð2Þ−1ÞΦjAb

ν
þ Γ̃ð2Þ

Kb
ν Iaμ

þ δΓ̃
δMa

μ
Abν −

�
δ

δKb
ν
Γ̃
��

Γ̃
δ⃖

δIaμ

��

þ ð∂trgh∂μδ
abÞ

�
Γ̃ð2Þ
Ka

μΦjðΓ̃ð2Þ−1ÞΦjð−c̄bÞ − c̄b
�

δ

δKa
μ
Γ̃
��

þ ∂tΔSgf ; ð93Þ

being an exact equation of (up to) one-loop structure. The
corresponding equation for the effective average action
follows straightforwardly upon substitution of Eq. (82),
yielding a Wetterich-type equation adapted to the present
construction.
Notice that the last term of Eq. (93),

∂tΔSgf ¼ ð∂trgh∂μδ
abÞvbAaμ þ 1

2
ð∂tRμνδ

abÞAaμAbν; ð94Þ

cancels an identical contribution on the left-hand side,
whose presence is required by the master equation, as
argued in the next sections.
A deeper insight into the structure of the remaining terms

can be gained by considering the following class of
truncations:

Γ̃k½Φ; v; I � ¼ Γ̃½Φ; v� þ Sbrstso ½Φ; v; I �: ð95Þ
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Here, we have assumed that the I dependence takes a
simple linear form as in the bare action; see Eq. (75). This
directly translates into a similar truncation for the effective
average action:

Γk½Φ; v; I � ¼ Γ½Φ; v� þ Sbrstso ½Φ; v; I �: ð96Þ

For this family of truncations, one finds

Γ̃ð2Þ
Ka

ν Iaμ
¼ 0; ð97Þ

∂tΔSgh ¼ −ð∂trgh∂μδ
abÞc̄b

�
δ

δKa
μ
Γ̃
�

þ 1

2
ð∂tRμνδ

abÞ
�

δΓ̃
δMa

μ
Abν −

�
δ

δKb
ν
Γ̃
��

Γ̃
δ⃖

δIaμ

��
:

ð98Þ

Thus, according to Eqs. (82) and (83), the flow of the
source-independent part of the effective average action,
within the present truncation, obeys

∂tΓ½Φ; v� ¼ 1

2
ð∂tRμνδ

abÞðΓ̃ð2Þ−1ÞAa
μAb

ν

þ 1

2
ð∂tRμνδ

abÞΓ̃ð2Þ
Ma

μΦjðΓ̃ð2Þ−1ÞΦjAb
ν

þ ð∂trgh∂μδ
abÞΓ̃ð2Þ

Ka
μΦjðΓ̃ð2Þ−1ÞΦjð−c̄bÞ: ð99Þ

These three one-loop terms can be diagrammatically
represented as in Fig. 1. Here, the crossed insertions
represent the regulators: either ∂tRμν or ∂trgh depending
on whether they enter gluon or ghost lines, respectively.
The full circle here represents the v-independent vertex

Γ̃ð2Þ
Ka

μΦj . Later on, we will use full circles to denote also

vertices arising from differentiation of Γ̃ð2Þ
Ka

μΦj with respect to

other copies of Φ. The empty circle represents the v-

dependent vertex Γ̃ð2Þ
Ma

μΦj . Again, in the following, we will

use empty circles also for vertices with more than two legs,
arising from further differentiation with respect to Φ. Wavy
lines correspond to gluons, dashed lines to ghosts, and
wavy-dashed lines to any of these. Let us stress that
Eq. (99) is only an approximation of the exact flow in

Eq. (93), as a nonlinear dependence of Γ̃ on I is generically
expected.

VI. RG FLOW AND THE MASTER EQUATION

Using the standard reasoning outlined in Sec. III, we
derive the master equation from a BRST variation of the
fields under the integral in Eq. (71), assuming BRST
invariance of the measure. We write the master equation as

Σ ¼ 0; ð100Þ

where Σ arises from the BRST variations of the source
terms,

Σ½W� ¼ −Jaμ
δW
δKa

μ
þ η̄a

δW
δLa þ vaηa

−Ma
μ
δW
δKa

μ
þ δW
δJaμ

Iaμ −
δW
δMa

μ
Iaμ: ð101Þ

Here, the functional dependence on W is used only as an
abbreviation for the dependence on all arguments of W.
The last two contributions arise from the BRST variations
of the additional source terms. Now, we can straightfor-
wardly perform the transformation to the Legendre effec-
tive action by using Eqs. (47) and (48) (with Γ → Γ̃) and
the new source relations

δΓ̃
δMa

μ
¼ −

δW
δMa

μ
;

δΓ̃
δIaμ

¼ −
δW
δIaμ

ð102Þ

and arrive at

Σ½Γ̃� ¼ δΓ̃
δAa

μ

δΓ̃
δKaμ þ

δΓ̃
δca

δΓ̃
δLa þ va

δΓ̃
δc̄a

þMa
μ
δΓ̃
δKa

μ
þ Aa

μIaμ þ
δΓ̃
δMa

μ
Iaμ: ð103Þ

Apart for the last two contributions, Eq. (103) together with
Eq. (100) is identical to the Zinn-Justin master equa-
tion (49), representing the standard BRST symmetry
constraint for the (Legendre) effective action as familiar
from a linear gauge fixing. The last two terms are new as
they arise from the additional sources which take care of the
regulator-dependent vertices. Equations (103) and (100)
represent a main result of this work, as they encode the
BRST symmetry of the scale-dependent regularized effec-
tive action on the same algebraic cohomology level as the
conventional Zinn-Justin master equation. In contrast to the
master equation derived in Refs. [10,12,30], Eq. (103)
contains no loop terms and thus may lead to substantial
technical simplifications also for nonperturbative approxi-
mation schemes. In fact, master equations remaining on the
same algebraic level have previously been found in full

FIG. 1. Diagrammatic representation of the flow equation (99),
based on the truncation of linear source terms.
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generality for scale-dependent 2PI effective actions [15];
for a special version of this construction, see [103]. Here,
we obtain this property already on the level of a scale-
dependent 1PI effective action.
We now need to proof the compatibility of the master

equation with the corresponding RG flow. For this, let us
assume that the kernels RL, RT and rgh completely
regularize the theory and introduce the single floating
momentum scale k. The desired compatibility can most
conveniently be shown on the level of the flow of the
partition function Z of Eq. (71). The flow equation for Z
reads [cf. Eq. (91)]

∂tZ ¼ GtZ ð104Þ

with the generator Gt given in Eq. (104). In order to solve
the flow equation (104) independently of the master
equation, it is of key importance to show that the two
equations are compatible, in the sense that the symmetry
condition of Eq. (100) is preserved by the RG flow. Indeed
this is the case since

∂tΣ½Z� ¼ GtΣ½Z�: ð105Þ

In other words, one can define the BRST generator
appropriate for Z or W as

D ¼ −Jaμ
δ

δKa
μ
þ η̄a

δ

δLa þ vaηa

−Mμ
a

δ

δKa
μ
þ Iaμ

δ

δJaμ
− Iμa

δ

δMμ
a
; ð106Þ

such that Σ½Z� ¼ DZ. Since the transformation in Eq. (37)
is nilpotent, one has D2 ¼ 0. Then one can show that D
commutes with Gt:

½D;Gt� ¼ 0: ð107Þ

Details on the proof of this relation are given in
Appendix B. Needless to say, compatibility for Z is
equivalent to compatibility for W or Γ̃. This compatibility
as expressed through Eq. (105) directly implies that a
solution, say, for the Legendre effective action Γ̃k, to the
RG flow (93) satisfies the master equation Σ ¼ 0 on all
scales k, provided its initial condition satisfies the master
equation, say, at an initial scale k ¼ Λ.

VII. RG INITIAL CONDITIONS—THE
RECONSTRUCTION PROBLEM

The solution to the flow equation (93) is equivalent to the
construction of the effective action via the functional
integral, provided the initial conditions are appropriately
related to the bare action entering the functional integral.
The identification of the initial conditions and their relation

to the bare action is known as the reconstruction problem
[104–107].
Let us thus address the behavior of the functional integral

in Eq. (71) when the RG scale k approaches the asymptotic
IR and UV limits. As discussed in Sec. VA, in the IR we
have k → 0, and both kernels Rμν and rgh then vanish.
Thus, the scale-dependent effective action Γ̃ as defined
through the functional integral reduces to the full gauge-
fixed effective action in this limit. Notice that this process
does not reproduce the standard Gaussian implementation
of Lorenz gauge, but the m̄; m̄gh → 0 limit of the nonlinear
gauge described in Sec. IV.
On the other hand, we would like the UV limit to

correspond to the case in which the fields become infinitely
massive, i.e., m̄ → þ∞ and m̄gh → þ∞. In this case, the
UV limit of the action is characterized by a decoupling of
all modes. As stated in Sec. VA, this can either occur when
k → Λ, with Λ being an independent UV cutoff, or when
k → þ∞. We choose the second option, for definiteness,
and we further assume the following behavior:

Rμνð∂Þ ∼
k→þ∞

k2δμν; ð108aÞ

rghð−∂2Þ ∼
k→þ∞

k2

−∂2
: ð108bÞ

This implies that both the gluons and the ghosts acquire the
same mass in the UV limit. While this is not the only
possible scenario, the following arguments can be straight-
forwardly adjusted to different UV asymptotics.
To compute the k → þ∞ limit of the effective action

from the functional integral, we need distinct notations for
the fluctuating fields inside the functional integral and for
the average ones. As the latter have been collectively
grouped in the variable Φ in Sec. V B, we here introduce
the notation φ to indicate the fluctuating fields. Then, we
can write the functional integral of Eq. (71) in terms of the
effective action as

e−Γ̃½Φ;v;I � ¼
Z

Dφie−S½φ;v�−S
brst
so ½φ;v;I �þΓ̃ δ⃖

δΦiðφ−ΦÞi : ð109Þ

Here, S½φ; v� is the action defined in Eq. (38) while
Sbrstso ½φ; v; I � has been introduced in Eq. (75).
As the regulators diverge, the bare action also diverges,

and the functional integral is dominated by stationarity
configurations. We can thus account for the k → þ∞ limit
by a simple saddle-point approximation. Thus, we first look
for the maxima of the Euclidean action inside the functional
integral. Clearly the crucial role is played by the diverging
parts of this action. As such, we need specific preliminary
assumptions to identify these parts. In particular, we are
interested in the possibility that the effective action Γ and its
derivatives, as well as the average fields Φi and the sources
va and I j, stay finite in the UV limit. That Γ should stay
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finite instead of Γ̃ is suggested by the BRST symmetry
itself, i.e., by the master equation, which forces Γ̃ to
comprehend the gauge-fixing and ghost actions. Thus,
the diverging parts of the latter actions, as given in
Eq. (84), must appear both in the bare action S and in
the effective action Γ̃. We therefore inspect the functional
integral representation for Γ descending from Eq. (109),
namely,

e−Γ½Φ;v;I � ¼
Z

Dφi exp

	
−S½φ; v� − Sbrstso ½φ; v; I �

þ ΔS½Φ; v� þ ΔS
δ⃖

δΦi ðφ −ΦÞi

þ Γ
δ⃖

δΦi ðφ −ΦÞi


: ð110Þ

where ΔS has been defined in Eq. (83). In the last
functional integral, the diverging contributions to the
Euclidean action read

Sdiv ¼ ΔS½φ; v� − ΔS½Φ; v� − ΔS½Φ; v� δ⃖

δΦi ðφ −ΦÞi:
ð111Þ

The saddle-point configuration for φ can then be obtained
by solving the condition

Sdiv
δ⃖

δφi ¼ ΔS½φ; v� δ⃖

δφi − ΔS½Φ; v� δ⃖

δΦi ¼ 0: ð112Þ

This admits the solution φi ¼ Φi. In order for the k → þ∞
limit to produce a functional delta δ½φi −Φi�, this con-
figuration must be the unique solution and correspond to a
maximum. Thus we have to check that the operator

δ

δφ†j Sdiv
δ⃖

δφi ¼
δ

δφ†jΔS½φ; v�
δ⃖

δφi ¼ ΔSð2Þji ½φ; v� ð113Þ

is positive definite.
To inspect the explicit component form of Eqs. (112) and

(113), we take advantage of the assumptions in Eq. (108).
Then we can write

1

k2
δΔS
δAaμ ¼ Aa

μ þ
∂μ

∂2
va − ḡfbca

�∂μ

∂2
c̄b
�
cc −

vbc̄b

jvj2 ∂μca;

ð114aÞ
1

k2
δ

δc̄a
ΔS ¼ ca þ ḡfabc

∂μ

∂2
ðAc

μcbÞ −
va

jvj2 A
bμ∂μcb:

ð114bÞ

A similar equation can be obtained for the derivative with
respect to ca, which is not needed for our discussion.

We observe that the second term on the right-hand side of
Eq. (114a) cancels in the difference on the right-hand side
of Eq. (112), such that possible solutions to the stationarity
condition different from φi ¼ Φi must correspond to gluon
configurations which involve the expectation values of the
ghosts. Also, as the mixed derivatives in the fluctuation
operator of Eq. (113) are nonvanishing, assessing the posi-
tiveness of the latter is a nontrivial task. Furthermore, while
the gluon-gluon diagonal block of this matrix is trivially
positive, the ghost-antighost diagonal block is just (the
diverging part of) the Faddeev-Popov operator. Therefore,
possible violations of positivity of the matrix in Eq. (113)
are closely related to the Gribov ambiguity. We comment
more extensively on the latter issue in Sec. IX.
We nevertheless argue that the requested positivity must

hold at least in the perturbative regime of infinitesimal
field amplitudes, i.e., expectation values. In fact, in this case
the nonlinear terms in Eq. (114) can be neglected, such that
the solution φi ¼ Φi becomes unique and Eq. (113)
reduces to a positive mass matrix. Thus, for infinitesimal
field amplitudes we do obtain a rising delta functional
δ½φi −Φi� in the k → þ∞ limit of Eq. (110), provided we
introduce a k-dependent normalization of the functional
measure [106,108,109] to guarantee

lim
k→∞

Z
dμ½φ; v� expð−SdivÞ ¼ δ½φi −Φi�: ð115Þ

In the present case the measure required for Eq. (115) reads

μ½φ; v� ¼ ðDetΔSð2Þ½φ; v�Þ12: ð116Þ

Notice, however, that this measure is field dependent
beyond the limiting case of infinitesimal field amplitudes.
As such, this choice of measure in the functional integral
would bring nontrivial contributions to the flow equation,
which we have not included in Eq. (93). To preserve the
simple form of Eq. (93), we should instead adopt a field-
independent normalization of the functional measure, for
instance, μ½0; v�. In this case the k → þ∞ limit is finite and
nontrivial and reads

lim
k→∞

e−Γ½Φ;v;I� ¼ e−S½Φ;v;I� lim
k→∞

μ½0; v�
μ½Φ; v� : ð117Þ

The correction to the bare action encoded in the ratio of
measures on the right-hand side of the last equation is
expected whenever the regularization of the functional
integral is more than quadratic in the fluctuating fields,
and a field-independent functional measure is adopted.
Indeed the latter has been observed also in a similar
symmetry-preserving functional-renormalization-group for-
mulation of nonlinear sigma models [110]. For a recent
discussion of measure- or normalization-induced terms for
background-field flows, see [111].
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Thus, the task of constructing initial conditions Γk¼Λ
appropriate for the chosen bare action S requires evaluation
of the counterterm action

Sc:t: ¼
1

2
Tr logΔSð2Þ½Φ; v� − 1

2
Tr logΔSð2Þ½0; v� ð118Þ

at the initialization scale k ¼ Λ, such that

Γk¼Λ ¼ Sþ Sc:t:: ð119Þ

The evaluation of the trace in Eq. (118) requires approx-
imations and truncations similar to those employed for
solving the flow equation. In view of our nonlinear gauge-
fixing condition, we expect also quartic ghost terms to
appear as counterterms [93]. The main open question
regarding the trace evaluation is whether this functional
trace is regularized. In fact, while the flow equation
involves the derivative of the regulators with respect to
t ¼ log k, Eq. (118) features only R and rgh at the scale
k ¼ Λ. The requirement that Sc:t: be finite within the chosen
truncation might bring novel constraints on the allowed
regulators. A detailed analysis of these issues is deferred to
future works.

VIII. THE LEADING-ORDER GLUON
WAVE-FUNCTION RENORMALIZATION

We illustrate the new flow equation (93) with the simple
application of computing the gauge-boson wave-function
renormalization. To this end, we use an ansatz for the 1PI
effective action within the family of Eq. (95), i.e., a
functional linear in the sources. It is sufficient to further
specialize also the rest of the effective action to be of the
bare form, but with scale-dependent parameters:

Γ̃k½Φ; v� ¼ ZTSYM½A� þ Γ̃gf ½A� þ Γ̃gh½A; c; c̄; v�: ð120Þ

The gauge-fixing and ghost actions now include ghost and
gluon wave-function renormalizations

Γ̃gf ¼
1

2
Aa
μQμνAa

ν þ vaZghð1þ rghð−∂2ÞÞ∂μAa
μ; ð121aÞ

Γ̃gh ¼ −Zghc̄að1þ rghð−∂2ÞÞð∂μDμcÞa

−
va

2jvj2 c̄
aððQμνAb

νÞðDμcÞb þ Ab
μðQμνDνcÞbÞ:

ð121bÞ

We ignore here the possible generation of quartic ghost
terms, as they do not contribute to the gluon wave-function
renormalization at leading order. By contrast, an inclusion
appears mandatory for an analysis of the ghost propagator.
Furthermore, the quadratic kernelQmust also depend on

the wave-function renormalizations of the longitudinal and

transverse gluons. This can be accounted for by choosing
this kernel as in Eq. (69) and by rescaling ξ → ξ=ZL and
RT → ZTRT, RL → ZLRL. A similar rescaling has to be
performed also in ΔS of Eq. (83). Therefore we can write
the corresponding effective average action as

Γk½Φ; v� ¼ ZTSYM½A� þ Γgf ½A� þ Γgh½A; c; c̄; v�; ð122aÞ

where now

Γgf ¼
ZL

2ξ
ð∂μAa

μÞ2 þ Zghva∂μAa
μ; ð122bÞ

Γgh ¼ −Zghc̄að∂μDμcÞa

þ ZLva

2ξjvj2 c̄
aðð∂μ∂νAb

νÞðDμcÞb þ Ab
μð∂μ∂νDνcÞbÞ:

ð122cÞ

As the truncation of Eq. (120) has the same functional form
as the bare action, it trivially solves the master equation. We
can thus extract the running of the parameters ZT, ZL, Zgh

and ḡ from several different but equivalent operators.
We adopt the Feynman gauge for technical convenience;

namely, we evaluate the right-hand side of the flow
equation by choosing

ξ ¼ 1; ð123aÞ

ZL ¼ ZT ¼ Z; ð123bÞ

RLðp2Þ ¼ RTðp2Þ ¼ Rðp2Þ: ð123cÞ

This results in equal propagators for the longitudinal and
for the transverse gluons. Furthermore, in this work
we limit ourselves to the leading term in a perturbative
expansion about ḡ2 ¼ 0.
The diagrams contributing to the gluon wave-function

renormalization are displayed in Fig. 2. The gluon loop is
universal and evaluates to a standard Feynman-gauge one-
loop result [112]. There is no usual ghost loop contributing
through standard v-independent vertices. This fact can be
understood by observing that, in the absence of the back-
ground field v, a simple rescaling of the ghost fields could
be used to remove the regulator rgh from the ghost sector.
This suggests that all ghost-loop contributions on the right-
hand side of Eq. (93) involve v-dependent vertices. More
details on this cancellation are provided in Appendix C.

FIG. 2. Diagrams contributing to the gluon wave-function
renormalization.
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The only nonvanishing ghost-loop contribution comes
from the second diagram in Fig. 2. Here, the empty
circles represent the v-dependent two-ghosts–one-gluon
vertex proportional to Q, which can be computed from
Eq. (121b). As such, the result of this diagram cannot be
regulator independent, since R defines the gauge fixing and
brings new momentum-dependent vertices. Thus, we must
specialize our discussion to a particular regulator choice.
For reasons of mathematical convenience, we adopt the
piecewise linear regulator [113] for both the gluon and the
ghost propagators. In formulas, we choose

Rðq2Þ ¼ q2rðq2Þ; rghðq2Þ ¼ rðq2Þ; ð124aÞ

and

rðq2Þ ¼
�
k2

q2
− 1

�
θðk2 − q2Þ: ð124bÞ

Let us define dimensionless renormalized fields and cou-
plings in d ¼ 4 as

g2 ¼ ḡ2=Z; ð125aÞ

ṽa ¼ Zghḡ

Zk2
va: ð125bÞ

Let us introduce projectors on the adjoint color subspaces
which are parallel or perpendicular to va

Πab
k ¼ ṽaṽb

jṽj2 ; Πab⊥ ¼ δab −
ṽaṽb

jṽj2 : ð126Þ

We also need to differentiate the wave-function renormal-
izations for colors parallel or perpendicular to v, by adding
corresponding superscripts. The final result for a constant
background field va then reads

∂tZ⊥
T ¼ Z

16π2
g2C2ðGÞ

19

6
; ð127aÞ

∂tZ⊥
L ¼ −

Z
16π2

g2C2ðGÞ
1

2
; ð127bÞ

∂tZ
k
T ¼ Z

16π2
g2
�
C2ðGÞ

19

6
−

1

4jṽj2
�
1

6
þ 1

4

��
; ð127cÞ

∂tZ
k
L ¼ Z

16π2
g2
�
−C2ðGÞ

1

2
−

1

4jṽj2
�
1

2
−
1

4

��
: ð127dÞ

Here, C2ðGÞ is the Casimir in the adjoint representation.
The presence of a background field v, which explicitly
breaks the global symmetry, entails that colors parallel
or perpendicular to v renormalize differently. While
perpendicular colors receive contributions from gluon
loops only, the parallel color is affected by ghosts as well.

The v-dependent contribution has been written in a form
that allows for comparison with the standard ghost-loop
contribution in Feynman gauge. In fact, the present ghost
loop differs from the latter in two ways: first, the factor
δabg2C2ðGÞ is replaced by −ṽaṽb=ð4jṽj4Þ; second, the
momentum dependence of the vertices is augmented by
the presence of the regulators. Ignoring the regulator
contribution to the vertices would result in the first number
within parentheses (1=6 and 1=2 for the transverse and
longitudinal modes, respectively), which is the universal
result in the usual Feynman gauge. Thus, the second
number (1=4 and −1=4 for the transverse and longitudinal
modes, respectively) is the contribution due to the presence
of R in the vertices.

IX. CONCLUSIONS

This work addresses the continuum formulation of
quantum Yang-Mills theory in d ¼ 4 Euclidean spacetime
dimensions, within a gauge-fixed functional approach. It
especially focuses on the issue of providing a regularization
of the corresponding quantum field theory in a mass-
dependent RG scheme while preserving the underlying
BRST symmetry. This goal is achieved by means of a
careful implementation of the gauge fixing, in a two-step
process. First, we depart from the most popular choice of
performing a Gaussian average over the noise field that is
used to implement the action for the Nakanishi-Lautrup
field as part of the gauge-fixing sector. Instead, we
introduce a background Nakanishi-Lautrup field va by
means of an imaginary exponential distribution (Fourier
weight) for the noise. This results in a gauge-fixing action
which is linear in the gauge-fixing functional Fa½A�;
cf. Sec. III.
Second, we specialize to the case in which Fa½A� is

nonlinear in A, and, in particular, it comprehends both a
linear and a quadratic part. As discussed in Sec. IV, a
nonvanishing quadratic part of Fa can accommodate a mass
parameter m̄ for the gluons which does not require any
nonlocality and is by construction compatible with BRST
symmetry. On the other hand, the linear part of Fa is
desirable as it provides a quadratic kinetic term for the
ghost fields. For definiteness, we choose it such that it
reproduces the standard ghost action in Lorenz gauge. This
linear term in the gluon sector can then be interpreted as a
source action for ∂μAa

μ, with the field va as the correspond-
ing source. In Sec. IV, we also notice that one can take
advantage of the linear term in Fa to include a ghost mass
parameter m̄gh in the ghost action. Though the latter
appears to provide an IR regularization of the bare ghost
propagator, it has the simultaneous effect of introducing
nonlocal ghost-gluon vertices. This is a direct consequence
of the fact that BRST symmetry, similarly to gauge
symmetry, mixes modes nonlocally in momentum space.
It is thus not clear whether such an m̄gh can be helpful in
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perturbative computations along the lines as suggested in
various phenomenological or conceptual approaches to
gauge theories.
In the present work, we take advantage of this particular

gauge-fixing strategy to construct a manifestly BRST-
invariant functional renormalization group representation
of quantum Yang-Mills theory. For this, we generalize the
gauge fixing to the case of momentum-dependent mass
parameters—cf. Sec. V—also introducing a floating RG
scale k in the bare action. Considering the dependence of
the generating functional on k then leads to an exact RG
flow equation for the partition function and correspond-
ingly for the 1PI effective action. Though the regulator
functions enter the ghost gluon vertices, we observe that it
is possible to put the flow equation into a one-loop form,
involving only second-order derivatives of the 1PI effective
action—analogously to the Wetterich equation. This is
achieved by means of some sources for composite oper-
ators. Two of them representing a-number sources Ka

μ and
La are already familiar from the Zinn-Justin treatment of
the master equation, as they couple to BRST variations of
the fields. We introduce two additional c-number sources,
Iaμ and Ma

μ, for the purpose of simplifying the flow
equation. The final result is presented in Eq. (93).
The BRST symmetry of the bare action leads to a

master equation (103), for the scale-dependent effective
action, which is a standard Zinn-Justin equation, aug-
mented with terms corresponding to the new sources Iaμ
and Ma

μ. It can be solved algebraically with the help of
BRST cohomology. The master equation is compatible
with the flow equation, as explained in Sec. VI and
proved in Appendix B. Therefore, if the effective action
fulfills the master equation at some scale, it does so at all
scales. This is the case also for the standard functional-
RG implementation, resulting in modified Ward-
Takahashi and Slavnov-Taylor identities. However, in
the modified case, the presence of the regulator in the
symmetry identity makes it difficult in practice to
construct approximations which preserve this compati-
bility. This is not so in the present case. Functional
truncations satisfying the master equation can be easily
constructed by imposing manifest BRST symmetry and
then inserted into the flow equation. Compatibility then
entails that these truncations remain BRST symmetric
along the flow.
The fact that the RG flow equation is exact does not

necessarily mean that it usefully encodes the complete scale
dependence (momentum dependence) of correlation func-
tions. The latter point is crucially related to further
important and mutually related requirements: (i) that the
flow is fully regularized and no residual divergences
remain; (ii) that the regularization corresponds to a physical
coarse graining, with well-defined full-decoupling and full-
propagation limits. The second property is easier to assess
in full generality than the first. We have presented

arguments in Sec. VII in support of the second requirement.
In particular, we outline a concrete construction scheme to
address the so-called reconstruction problem of the bare
action from the effective action, i.e., the existence of a
controlled full-decoupling limit.
Addressing the first requirement in a systematic fashion

is more involved. In the present work, we approach this
question by way of example, performing a perturbative
computation of the gluon wave-function renormalization.
No residual divergences appear in this case. On the
contrary, a quite generic mechanism for the cancellation
of possible IR divergences in the ghost sector is unveiled.
At first sight, ghost loops seem to have the tendency to
show IR divergences, as the regularization brought by Rgh
is multiplicative, affecting both kinetic terms and vertices,
therefore naively suggesting the existence of unregularized
diagrams. By contrast, we find that the sum of these
dangerous diagrams vanishes. Our results in Sec. VIII
suggest a general explanation for this fact.
Our formalism requires the inclusion of an external

Nakanishi-Lautrup field va. Taken at face value, this
field—if taken as given and fixed—is a source of explicit
global color symmetry breaking. However, since va is
introduced as part of the gauge-fixing sector, we expect it to
not contribute to any physical observable. Moreover, color
charge conservation is preserved if va satisfies a (regulator-
dependent) equation of motion. In practice, it might be
useful to treat va as a quenched disorder field. For instance,
using a global Gaussian-type disorder with a suitably
adjusted (complex) width, the disorder average of the
results for the universal parts of the gluon wave-function
renormalization corresponds to those of a standard
Feynman gauge fixing.
More extensive computations are needed to further test

the absence or presence of residual divergences and to
explore the properties of the RG flows generated by this
formalism. The full analysis of the RG flow of the simplest
perturbatively renormalizable truncation of Eq. (122) is
subject to future works. For practical applications, gener-
alizations may be useful that include a background
gauge field.
Finally, it is worthwhile mentioning that our approach

may allow for a new perspective onto the Gribov problem,
i.e., the problem of the existence of multiple solutions of
the gauge-fixing condition. Since the scale-dependent
regularization enters the construction via the gauge fixing,
also the relation between different Gribov copies if they
exist assumes a scale-dependent form. In the general case,
also a nonlinear gauge fixing such as ours is expected to
permit the existence of Gribov copies. This is visible, e.g.,
in Eq. (67), where terms of opposite signs occur in the
gauge-fixing condition, allowing for various forms of
cancellations. However, in the limit of vanishing gauge
parameter, we have argued that the gauge-fixing condition
cannot be satisfied for massive modes. Replacing the
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mass parameter by a (strictly non-negative) momentum-
dependent regulator term makes it clear that the regulator
takes influence on the existence of Gribov copies: for
instance, a would-be Gribov copy of a high-momentum
massless transversal mode is pushed away from the
gauge orbit, if it entails low-momentum modes that
cannot satisfy the gauge condition due to the regulators.
In other words, in the limiting case when regulator terms
dominate the gauge-fixing functional, any zero mode of
the Faddeev-Popov operator would be completely
unregularized, a situation which is forbidden at any
nonvanishing floating scale k for a well-posed and
smooth functional IR regularization. This mechanism
could alleviate the Gribov problem in our construction.
On the other hand, it is clear that all Gribov copies, say,
of the Landau gauge, will reappear in the limit k → 0,
when the regulator is removed. A proper discussion of
the Gribov problem in our construction hence requires a
careful analysis of the various limits.
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APPENDIX A: MOMENTUM-SPACE
CONVENTIONS

The Fourier transform of field variables reads

ΦiðxÞ ¼
Z
q
ΦiðqÞeiqx; ðA1Þ

where

Z
q
¼

Z
ddq
ð2πÞd : ðA2Þ

Then Eq. (85a) can be written in momentum space as

δ

δJ †
i ð−pÞ

W ¼ ΦiðpÞ; W
δ⃖

δJ iðpÞ
¼ Φ†ið−pÞ; ðA3Þ

and similarly for Eq. (85b). The second-order derivatives of
Eq. (86) are correspondingly defined as

Wð2Þ
J iJ j

¼ δ

δJ †
i ð−p1Þ

W
δ⃖

δJ jðp2Þ
; ðA4aÞ

Γ̃ð2Þ
ΦiΦj ¼ δ

δΦ†ið−q1Þ
Γ̃

δ⃖

δΦjðq2Þ
: ðA4bÞ

Thus, Φ† or J † are always evaluated at reflected momenta.
This extends to all formulas, for instance, to Eq. (89). In
particular, the momentum-space form of the flow equa-
tion (93) reads

∂tΓ̃ ¼ 1

2

Z
q1;q2

∂tRμνðq2Þδðq1 − q2Þ
�

δΓ̃
δMa

μðq1Þ
Aaνðq2Þ −

�
δ

δKa
νð−q2Þ

Γ̃
��

Γ̃
δ⃖

δIaμðq1Þ
�
þ Γ̃ð2Þ

Ka
ν ð−q2ÞIaμðq1Þ

þ ðΓ̃ð2Þ−1ÞAa
μð−q2ÞAa

ν ðq1Þ þ
Z
s
Γ̃ð2Þ
Ma

μðq1ÞΦjðsÞðΓ̃ð2Þ−1ÞΦjð−sÞAa
νð−q2Þ

�

þ
Z
q1;q2

∂trghðq22Þiq2μδðq1 − q2Þ
�
−c̄að−q1Þ

�
δ

δKa
μð−q2Þ

Γ̃
�
þ
Z
s
Γ̃ð2Þ
Ka

μð−p2ÞΦjðsÞðΓ̃ð2Þ−1ÞΦjð−sÞð−c̄aðq1ÞÞ

�
þ ∂tΔSgf ;

ðA5Þ

and

∂tΔSgf ¼
Z
q1;q2

∂trghðq22Þiq2μδðq1 − q2Þvað−q1ÞAaμðq2Þ

þ 1

2

Z
q1;q2

∂tRμνðq2Þδðq1 − q2ÞAaμð−q1ÞAaνðq2Þ:

ðA6Þ

APPENDIX B: COMPATIBILITY PROOF

In this Appendix, we provide more details of the proof
of Eq. (107), forming the core of the compatibility proof.
This requires the cancellation of a few nontrivial terms,
which appear when commuting D, as defined in Eq. (106),
with the single functional derivatives which additively
contribute to Gt; see Eq. (92).
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Let us start with the ghost loop, i.e., with the derivatives
contributing to the functional trace which is regularized by
∂trgh. When applied to D, they give

vb
δ

δJaμ
D ¼ −vb

δ

δKa
μ
þDvb

δ

δJaμ
; ðB1aÞ

δ

δηb
δ

δKa
μ
D ¼ −

δ

δηb
D

δ

δKa
μ
¼ −vb

δ

δKa
μ
þD

δ

δηb
δ

δKa
μ
:

ðB1bÞ
As the operator Gt involves the difference of these two
differential operators, the nontrivial terms (i.e., the first
terms) on the right-hand sides cancel.
Next, we address the gluon loop corresponding to the

second line of Eq. (92). The latter involves three second-
order functional derivatives. Commuting each of them with
D gives

δ

δJaμ

δ

δJbν
D ¼ δ

δJaμ

�
−

δ

δKb
ν
þD

δ

δJbν

�

¼ −
δ

δJaμ

δ

δKb
ν
−

δ

δKa
μ

δ

δJbν
þD

δ

δJaμ

δ

δJbν
; ðB2aÞ

δ

δMa
μ

δ

δJbν
D ¼ δ

δMa
μ

�
−

δ

δKb
ν
þD

δ

δJbν

�

¼ −
δ

δMa
μ

δ

δKb
ν
−

δ

δKa
μ

δ

δJbν
þD

δ

δMa
μ

δ

δJbν
; ðB2bÞ

δ

δIaμ

δ

δKb
ν
D ¼ −

δ

δIaμ
D

δ

δKb
ν

¼ −
δ

δJaμ

δ

δKb
ν
þ δ

δMa
μ

δ

δKb
ν
þD

δ

δIaμ

δ

δKb
ν
: ðB2cÞ

Taking Eq. (B2a) minus Eq. (B2b) minus Eq. (B2c), which
is the linear combination appearing in Eq. (92), results in
the cancellation of the nontrivial commutator terms. In
summary, this verifies Eq. (107). Notice that this proof of
compatibility does not require the regulators to be diagonal
in color indices, as we have assumed throughout this work
for reasons of convenience. Also, the tensor structure of Rμν

is left unconstrained by the proof.

APPENDIX C: COMPUTATION OF THE GLUON
WAVE-FUNCTION RENORMALIZATION

The computation of the gluon wave-function renormal-
ization proceeds by differentiating the reduced flow equa-
tion Eq. (99) with respect to Aaμðp1Þ and Abνð−p2Þ and
then setting all fields to zero. This produces a result which
is proportional to δðp1 − p2Þ. We thus set p1 ¼ p2 ¼ p.
The gluon loop, i.e., the first diagram in Fig. 2, arises from
the first line in Eq. (99). This loop comes in two copies
which differ by the propagator carrying the regulator
insertion. The sum of both reads

∂tΓ
ð2Þ
AaμAbν jgluon

¼ δabδðp1 −p2Þ
Z
q

∂tðZRðq2ÞÞ
Pðq2Þ2PððqþpÞ2Þ

× ḡ2C2ðGÞδαβδλρΓ̂ð3Þ
λμαð−q−p;p;qÞΓ̂ð3Þ

βνρð−q;−p;pþ qÞ:
ðC1Þ

Here P denotes the regularized inverse gluon propagator

Pðq2Þ ¼ q2 þ Rðq2Þ ¼ q2ð1þ rðq2ÞÞ; ðC2Þ
and Γ̂ð3Þ is the spacetime tensor structure of the standard
three-gluon vertex

Γ̂ð3Þ
λμαðs; p; qÞ ¼ δλμðs − pÞα þ δμαðp − qÞλ þ δαλðq − sÞμ:

ðC3Þ
To extract the correction to the wave-function renormaliza-
tion, we need to expand Eq. (C1) in a Taylor series around
p ¼ 0 and collect the terms of order p2. These come into two
forms, proportional to either p2δμν or pμpν, and can be
organized in contributions to the transverse or longitudinal
modes. Furthermore, we focus on the Oðḡ2Þ contribution and
therefore neglect ∂tZ on the right-hand side. To evaluate the
loop integral, we must choose an explicit regulator Rðq2Þ.
Notice however that the final result, being a one-loop
dimensionless counterterm, is universal, i.e., regulator inde-
pendent. To analytically perform the integrals we adopt the
piecewise linear regulator of Eq. (124b).
The result for the gluon-loop contribution to the gluon

anomalous dimension is

∂tZ⊥
T jgluon ¼ ∂tZ

k
Tjgluon ¼ Zg2C2ðGÞ

19

96π2
; ðC4aÞ

∂tZ⊥
L jgluon ¼ ∂tZ

k
Ljgluon ¼ −Zg2C2ðGÞ

1

32π2
: ðC4bÞ

This is indeed the universal result for Feynman gauge,
which can be computed also, for instance, through dimen-
sional regularization [112]. The second line in Eq. (99)
cannot contribute, as Γð2Þ

MΦ contains ghost fields. Let us then
address the ghost contributions to the gluon wave-function
renormalization, i.e., the term arising from differentiation
of the third line in Eq. (99). The second-order derivative can
be cast in the following form:

δ

δAaμ

δ

δAbν ½Γ̃
ð2Þ
Ke

λΦ
jðΓ̃ð2Þ−1ÞΦjð−c̄dÞ�

¼
	
½Γ̃ð3Þ

Kc
λA

aμΦj − Γ̃ð2Þ
Ke

λΦ
lðΓ̃ð2Þ−1ÞΦlΦm Γ̃ð3Þ

ΦmAaμΦj �

×
δ

δAbν ðΓ̃ð2Þ−1ÞΦjð−c̄dÞ þ
��

a

μ

�
↔

�
b

ν

��


− Γ̃ð2Þ
Kc

λΦ
jðΓ̃ð2Þ−1ÞΦjΦi Γ̃ð4Þ

ΦiAa
μAb

νΦkðΓ̃ð2Þ−1ÞΦkð−c̄dÞ: ðC5Þ
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As we must evaluate such derivatives at vanishing fields, all
the Φ’s in this expression have to be either ghosts or
antighosts. Let us first inspect the v-independent contri-
bution. In this case the last line of Eq. (C5) vanishes, as the
usual Lorenz-gauge ghost action contains no two-ghosts–
two-gluons vertex. The remaining terms correspond to the
diagrams in Fig. 3. As they carry opposite signs, they sum
up to zero. In fact, the v-independent terms arising from
the square brackets in the second line of Eq. (C5), once
contracted with δed, reduce to ḡfejaðq2δλμ − qλqμÞ=q2,
where q is the momentum of Ka

λð−qÞ. As this expression
must be contracted with ∂tðZghrghðq2ÞÞiqλ, it drops out of
the flow equation.
The v-dependent contributions to the gluon wave-

function renormalization come in four different forms.
Three of them, corresponding to the diagrams in Fig. 4,
are vanishing. In fact, they show no quadratic term in a
Taylor expansion around p ¼ 0. The only nonvanishing
diagram is the second one in Fig. 2. This evaluates to

∂tΓ
ð2Þ
AaμAbν jghost ¼

vavb

2Z2jvj4
Z
q

∂tRghðq2Þðqþ pÞαqβ
Pghðq2Þ2Pghððqþ pÞ2Þ

× ðRαμðpÞRβνðpÞ þRαμðpÞRβνðqÞ
þRαμðqþ pÞRβνðpÞ þ Rαμðqþ pÞRβνðqÞÞ;

ðC6Þ

where

Rghðp2Þ ¼ p2rghðp2Þ; ðC7Þ

Pghðq2Þ ¼ q2 þ Rghðq2Þ: ðC8Þ

Therefore,

∂tZ⊥
T jghost ¼ 0; ðC9Þ

∂tZ⊥
L jghost ¼ 0: ðC10Þ

Notice that Eq. (C6) has already been multiplied by a factor
2, to account for the two diagrams with the regulator
insertion on different ghost propagators. To extract the

ghost-loop contribution to ∂tZ
k
T=L from Eq. (C6) we first

strip away the factor Πab
k . We next expand Eq. (C6) in a

Taylor series about p ¼ 0 and collect the terms of order p2,
which can be organized in transverse and longitudinal
parts. Finally we adopt the piecewise linear regulator for
both the gluon and the ghost sector, as in Eq. (124). Setting
p ¼ 0 in the second and third lines of Eq. (C6) gives the
standard Feynman-gauge result. Expanding these very
same terms to second order in p provides the corrections
due to the regulator-dependent vertices; see Eq. (127) and
the subsequent discussion in the main text.
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