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We study a very special class of TJ̄ deformations of conformal field theories in two dimensions. While
the deformations break the Lorentz symmetry, they preserve the twisted Lorentz symmetry. The resulting
theory has right-moving Virasoro as well as left-moving translation and left-moving (chiral) scale
symmetry without left-moving special conformal symmetry (nor left-moving Virasoro symmetry). As in
the original TJ̄ deformations, they may be regarded as an operator dependent nonlocal change of
coordinates. We show concrete examples based on world sheet string theory and discuss how the
nonunitary nature enables us to circumvent various no-go theorems.
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I. INTRODUCTION

Understanding ultraviolet completions of a quantum
field theory is an important issue. In particular, if the
theory under consideration is power-counting nonrenorma-
lizable, the question is nonperturbative in nature and it is
quite challenging. The better understanding of the ultra-
violet completion would lead to deeper understanding of
asymptotic safety scenario or nonperturbative ultraviolet
fixed points proposed in the literature. Recently, there has
been some progress in this direction in two-dimensional
conformal field theories perturbed by integrable nonrenor-
malizable interactions.
The first example is the so-called TT̄ deformations [1] of

conformal field theories. In [2,3], they proposed that the
deformations are integrable with a particular renormaliza-
tion prescription, deriving the universal formula for the
spectrum on the torus. It shows the Hagedorn-like ultra-
violet behavior and the ultraviolet completion would be
nonlocal, but some important features of the local quantum
field theories still remain. More recently there has been a
study in relation to the holography as well as in (little)
string theory [4–11]. Studies of the uniqueness of the
deformed partition function that can be realized in random
geometries are further discussed in [12–17]. The super-
symmetric generalizations can be found in [18,19].
Another class of irrelevant deformations studied in the

literature is the so-called TJ̄ deformations [20]. They break
the Lorentz symmetry, but preserve the chiral or right-
moving Virasoro symmetry. The ultraviolet completion

with the Lorentz breaking may be of interest, for such
theories can be regarded as a toy model of Lorentz breaking
renormalizable completion of nonrenormalizable Lorentz
invariant field theories. There is another interest from the
holography. The TJ̄ deformations are candidates for holo-
graphic duals with Warped AdS space or near horizon limit
of extremal Kerr black holes [21–24].
The way in which the TJ̄ deformations break the Lorentz

symmetry is special because it has a certain remnant of null
directions. This reminds us of the very special relativity
studied in four dimensions. In their pursuit in particle
phenomenology, Cohen and Glashow asked what would be
subgroups of the Poincaré group that preserve a particular
null direction, and they classified the resulting Lorentz
symmetry breaking pattern [25,26]. In particular, they
argued that some subgroups [i.e., HOMð2Þ or SIMð2Þ]
of the Lorentz symmetry are consistent with the constancy
of the speed of light but cannot be realized in local quantum
field theories. In [27,28], we have generalized the classi-
fication by adding the special conformal symmetries.
Furthermore, in [29], we have found a way to circumvent
the no-go argument by Cohen and Glashow to construct the
local field realizations by using the twisted Lorentz
symmetry to present models of HOMð2Þ or SIMð2Þ
invariant very special conformal field theories.
Now we may want to ask the similar question in two

dimensions. Are there any quantum field theories with the
symmetry analogous to the very special conformal sym-
metry? In the language of Virasoro algebra, the question is
if there is any quantum field theory that preserves L̄0, L̄�1,
L0, L1 without L−1, which is similar to the HOMð2Þ or
SIMð2Þ very special conformal symmetry in four dimen-
sions. We, however, have a couple of no-go theorems here.
In a sense, in two dimensions, (chiral) scale invariance
implies conformal invariance, so it is quite nontrivial to find
scale invariant field theories without conformal invariance.
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Our idea is motivated by the above-mentioned construction
in four dimensions. We use the twisted Lorentz symmetry
to obtain such theories. By construction, the theory
becomes nonunitary to implement the twisted Lorentz
algebra, but we show that such theories can arise by very
special TJ̄ deformations of world sheet string theory. This
reveals the fact that we need more than finiteness or scale
invariance to assure the consistency of the world sheet
string theory.
In this paper, we often use the light-cone notations in

two-dimensional field theories. Our convention is

x� ¼ 1ffiffiffi
2

p ðt� xÞ ð1Þ

and we call that the fields only dependent on x− as left-
moving and fields only dependent on xþ as right-moving.
For example, a component of the (traceless) energy-
momentum tensor Tþ

− ¼ −T−− satisfying ∂þTþ
− ¼ 0 is

left-moving. In the Euclidean setup T−− ¼ −Tþ
− is iden-

tified with the holomorphic energy-momentum tensor TðzÞ.

II. EMERGENCE OF CONFORMAL SYMMETRY

The first question we would like to address is what
is the subgroup of (global) conformal symmetry that can
be realized in local quantum field theories. Assuming the
space-time translation (i.e., L1 and L̄1), we may add
the Lorentz symmetry J ¼ L0 − L̄0, scale symmetry
D ¼ L0 þ L̄0, a linear combination thereof or both.
A particularly interesting choice is to consider the chiral
scale transformation L̄0 without L0. This is known as the
chiral scale invariance. Adding the chiral special conformal
transformation L̄−1 further, we are led to the very special
conformal symmetry. The case with L̄0, L̄1, L̄−1, L1

without L0 and L−1 has been studied in the literature
[30]. Our focus in this paper is the case with L̄0, L̄�1, L0, L1

without L−1. Are there any such theories? We actually have
some no-go theorems, which we now review.
In two space-time dimensions, it is typical that the

conformal symmetry emerges in quantum field theories
with smaller space-time symmetries. In order to better
understand the very special TJ̄ deformations of conformal
field theories that do not show such enhancement, which
are examples of very special conformal field theories, we
first review the theoretical origin of the symmetry enhance-
ment. We emphasize that the causality and unitarity
plays a significant role in the emergence of the conformal
symmetry.

A. From scale invariance to conformal invariance

Let us begin with the claim that in Poincaré invariant
field theories scale invariance implies conformal invariance
in two dimensions [31]. We assume that the space-time
symmetry is realized by local conserved current, i.e.,

energy-momentum tensor Tμν in the canonical manner.
The Poincaré invariance together with the scale invariance
demands the conservation of the energy-momentum tensor
and the special properties of its trace:

∂þTþ
− þ ∂−T−

− ¼ 0

∂þTþ
þ þ ∂−T−þ ¼ 0

T−
− þ ∂þsþ þ ∂−s− ¼ 0

Tþ
þ þ ∂þs̃þ þ ∂−s̃− ¼ 0: ð2Þ

The vector fields s� and s̃� play the role of the so-called
Virial current and can be an obstruction for the special
conformal invariance (even with the scale invariance). Here
the energy-momentum tensor can be improved

T−
− → T−

− þ ∂þlþ

Tþ
− → Tþ

− − ∂−lþ

sþ → sþ − lþ

Tþ
þ → Tþ

þ þ ∂−l−

T−þ → T−þ − ∂þl−

s̃− → s̃− − l− ð3Þ

with arbitrary lþ and l−, which does not change the
conservation law (2). With this freedom, sþ and s̃− are
actually arbitrary. In particular we can choose sþ ¼ s̃þ and
s− ¼ s̃− so that the energy-momentum tensor is symmetric
T−
− ¼ Tþ

þ as is known as the Belinfante prescription.
Assuming the energy-momentum tensor Tþ

− has canoni-
cal scaling dimensions, i.e., ðΔ; Δ̄Þ ¼ ð2; 0Þ, we have

hTþ
−ðxÞTþ

−ð0Þi ¼
c

ðx−Þ4 ð4Þ

which means

h∂þTþ
−ðxÞ∂þTþ

−ð0Þi ¼ 0 ð5Þ

up to possible contact terms. This implies ∂þTþ
−ðxÞj0i ¼ 0

acting on the Lorentz invariant vacuum j0i from the
unitarity. Then “the state operator correspondence” valid
in relativistic quantum field theories implies ∂þTþ

−ðxÞ ¼ 0
as an operator identity. With this chiral conservation, we
can construct the left-moving Virasoro generators

L−nþ1 ¼
Z

dxðx−ÞnTþ
− ð6Þ

which is conserved from

∂þððx−ÞnTþ
−ðxÞÞ ¼ 0: ð7Þ
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In particular n ¼ 2 corresponds to the special conformal
transformation.
The same argument also applies to the right-moving

sector:

∂−ððxþÞnT−þðxÞÞ ¼ 0; ð8Þ

resulting in the right-moving Virasoro generator

L̄−nþ1 ¼
Z

dxðxþÞnT−þ: ð9Þ

The conservation of the energy-momentum tensor fur-
ther implies

hT−
−ðxÞT−

−ð0Þi ¼ hTþ
þðxÞTþ

þð0Þi ¼ 0; ð10Þ

which follows taking ∂− derivatives of the left and side of
(10) and comparing it with (5). Then the unitarity requires
that the energy-momentum tensor is traceless. This com-
pletes the argument that scale invariance implies conformal
invariance in Poincaré invariant field theories in two
dimensions.
The assumption to derive the conformal symmetry above

can be further relaxed. For example, in [32] they argued that
the Lorentz symmetry can be replaced by a causality (e.g.,
the commutators of local operators vanish outside of the
certain “light-cone”). On the other hand, in [30], they
replaced the scale symmetryD and the Lorentz symmetry J
by the chiral scale symmetry D − J alone (without Dþ J).

B. From chiral scale invariance to chiral
conformal invariance

In the case of chiral scale invariance, the space-time
translation symmetry and the chiral scale symmetry
demands the conservation of the energy-momentum
tensor as

∂þTþ
− þ ∂−T−

− ¼ 0

∂þTþ
þ þ ∂−T−þ ¼ 0

Tþ
þ þ ∂þsþ þ ∂−s− ¼ 0 ð11Þ

instead of (2). The vector fields s� play the role of the so-
called Virial current and can be an obstruction for the
special conformal invariance (even with the scale invari-
ance). Again s− is arbitrary because the conservation (11) is
not modified under the improvement

Tþ
þ → Tþ

þ þ ∂−l−

T−þ → T−þ − ∂þl−

s− → s− − l− ð12Þ

with arbitrary l−.

By setting s− ¼ 0, and assuming the canonical (chiral)
scaling dimension Δ̄ ¼ 0 of sþ, we have

hsþðxÞsþð0Þi ¼ sðx−Þ; ð13Þ

which depends only on x−. Now taking the derivative with
respect to xþ, one obtains

h∂þsþðxÞ∂þsþð0Þi ¼ 0: ð14Þ

If we assume unitarity and the state operator correspon-
dence,1 we must have ∂þsþðxÞ ¼ 0. From (11) with
s− ¼ 0, we deduce Tþ

þ ¼ 0. The conservation of the
energy-momentum tensor then requires ∂−T−þ ¼ 0.
Therefore, we have the right-moving Virasoro generators

L̄−nþ1 ¼
Z

dxðxþÞnT−þ ð15Þ

from

∂−ððxþÞnT−þðxÞÞ ¼ 0 ð16Þ

including the right-moving special conformal transforma-
tion with n ¼ 2.
Considering the left-mover, the canonical (chiral) scaling

dimension Δ̄ ¼ 0 of Tþ
−ðxÞ demands

hTþ
−ðxÞTþ

−ð0Þi ¼ tðx−Þ ð17Þ

depends only on x−. By taking derivative with respect to
xþ, we have

h∂þTþ
−ðxÞ∂þTþ

−ð0Þi ¼ 0: ð18Þ

If we assume the unitarity and the state operator corre-
spondence, we must have ∂þTþ

−ðxÞ ¼ 0 as an operator
identity. As long as Tþ

− is nonzero, we can now construct
the enhanced left-moving Virasoro generators

L−nþ1 ¼
Z

dxðx−ÞnTþ
− ð19Þ

from

∂þððx−ÞnTþ
−ðxÞÞ ¼ 0: ð20Þ

If Tþ
− ¼ 0, then T−

− must be nonzero because otherwise
there would be no P−. In this case, the conservation
demands ∂−T−

− ¼ 0. Then we can construct the right-
moving current algebra

1One way to assure the state operator correspondence is to
assume the causality by demanding commutators of local
operators vanish outside of a certain “light cone”, and use the
analogue of the Reeh-Schlieder theorem valid here.
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∂−ððxþÞnT−
−ðxÞÞ ¼ 0 ð21Þ

whose zero mode (n ¼ 0) generates the left-moving trans-
lation P−. This completes the argument for the enhance-
ment of symmetries in chiral scale invariant field theories in
two dimensions.

III. GENERAL STRUCTURE OF VERY
SPECIAL TJ̄ DEFORMATIONS

In this section, we propose a general recipe to construct
very special conformal field theories with the right-moving
Virasoro, left-moving translation and left-moving twisted
scale symmetry from the very special TJ̄ deformations. To
appreciate the very special nature, we begin with the
ordinary TJ̄ deformations of conformal field theories.

A. TJ̄ deformed conformal field theories

Let us consider a two-dimensional conformal field theory
with a conserved Uð1Þ current J. The energy-momentum
tensor is taken to be traceless so thatTþ

þ ¼ T−
− ¼ 0. Then the

conservation becomes

∂þTþ
−ðx−Þ ¼ 0

∂−T−þðxþÞ ¼ 0: ð22Þ

The Uð1Þ current conservation is

∂þJþ þ ∂−J− ¼ 0; ð23Þ

but if the theory is unitary and it has a discrete spectrum, it
implies that the left-mover and right-mover are conserved
separately

∂þJþðx−Þ ¼ 0

∂−J−ðxþÞ ¼ 0 ð24Þ

and the current is taken to be purely left-moving ðx−Þ or
right-moving ðxþÞ. We assume this is the case for sim-
plicity. We further assume J− does not vanish, otherwise
we could switch the left-mover and right-mover in the
following.
Let us now deform the conformal field theory by intro-

ducing the irrelevant Lorentz breaking term in the action

δS ¼ μ

Z
dxdtJ−ðxþÞTþ

−ðx−Þ ð25Þ

with an appropriate ultraviolet completion. This is called
the TJ̄ deformation in the literature. Note that the defor-
mation breaks the Lorentz invariance in a manner such that
it preserves a particular null direction xþ.
Treating the deformation as a perturbative series with

respect to μ, the energy-momentum tensor as well as the
current conservation are modified

∂þTþ
− þ ∂−ðμJ−Tþ

−Þ ¼ 0

∂−T−þ ¼ 0

∂−J− ¼ 0

∂þJþ þ ∂−ðμJþJ−Þ ¼ 0 ð26Þ

at the first order in μ. One may therefore observe that
μJ−Tþ

− is identified with the deformed energy-momentum
tensor T−

− so that the left-moving translation is generated by
the energy-momentum tensor with the modified conserva-
tion ∂þTþ

− þ ∂−T−
− ¼ 0. At this order, on the other hand,

we see that the right-moving energy-momentum tensor is
intact and the theory preserves the right-moving Virasoro
symmetry from the conservation

∂−ððxþÞnT−þðxÞÞ ¼ 0: ð27Þ

Note that the left-moving (chiral) scale and the left-moving
special conformal transformation are (apparently) broken
because ∂þTþ

− ≠ 0.
There is an alternative look at the TJ̄ deformations as an

operator dependent nonlocal change of coordinates. The
deformation, at the first order in μ is induced by the
operator dependent left-moving coordinate transformation

xþ → xþ

x− → x− − μ

Z
xþ

dx̃þJ−ðx̃þÞ ð28Þ

to the original conformal field theories. In the simple
situation in which the left-moving sector and right-moving
sector effectively decouples, the coordinate transformation
can be performed explicitly and the deformations become
integrable. In relation, [21] observed that the deformed
theory may possess the infinitely many nonlocal charges

L−nþ1 ¼
Z

dx

�
x− − μ

Z
xþ

dx̃þJ−ðx̃þÞ
�

n
ðTþ

− − T−
−Þ

¼
Z

dx

�
x− − μ

Z
xþ

dx̃þJ−ðx̃þÞ
�

n
ð1 − μJ−ÞTþ

−

ð29Þ

which can be understood as the fate of the original left-
moving Virasoro charges after the nonlocal operator
dependent coordinate changes.
One may also regard the TJ̄ deformations as an operator

dependent nonlocal gauge transformations for the sym-
metry generated by the J̄ current. Under the gauge trans-
formations with the parameter μ

R
x− dx̃−Tþ

−ðx̃−Þ, the first
order deformations of the action is given by the TJ̄
deformations. However, the chiral nature of Tþ

−ðx̃−Þ is
lost, unlike J−ðx̃þÞ, at the first order in perturbation, so this
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way of understanding the TJ̄ deformations may not lead to
the integrable structure beyond the first order in μ.
In this paper, we are mostly interested in local charges,

and we do not study the nonlocal charges such as (29) in the
following. Comparing the situation with the claim in [30],
which we have reviewed in the previous section, there is a
small puzzle here because they claim that the local
symmetry must be enhanced. To see the puzzle more
explicitly, let us study the perturbed two-point functions

hTþ
−ðxÞTþ

−ðyÞi ¼
c

ðx− − y−Þ4 þ μ2tðx − yÞ þOðμ3Þ

hT−
−ðxÞT−

−ðyÞi ¼ μ2sðx − yÞ þOðμ3Þ

hJ−ðxÞJ−ðyÞi ¼ kJ
ðxþ − yþÞ2 þOðμÞ: ð30Þ

As we saw, if the chiral scale invariance holds in a strict
sense, tðx − yÞ is a function of x− − y− only and does not
depend on xþ − yþ, so taking derivatives with respect to xþ

and yþ and using the energy-momentum tensor conserva-
tion, we obtain

h∂þTþ
−ðxÞ∂þTþ

−ðyÞi ¼ h∂−T−
−ðxÞ∂−T−

−ðyÞi ¼ 0 ð31Þ

possibly up to contact terms.
On the other hand, the explicit computation gives

hT−
−ðxÞT−

−ðyÞi ¼ μ2hJ−Tþ
−ðxÞJ−Tþ

−ðyÞi

¼ μ2kJc
ðx− − y−Þ4ðxþ − yþÞ2 þOðμ3Þ ð32Þ

at the first nontrivial order in μ. We see that (31) does not
hold unless c or kJ vanishes. To understand what is going
on, we use the conservation law ∂þTþ

− þ ∂−T−
− ¼ 0 in (32)

and integrate twice with respect to xþ and yþ, we obtain

tðx − yÞ ∼ ckJ
logðxþ − yþÞ
ðx− − y−Þ6 ð33Þ

which does depend on xþ − yþ in a logarithmic manner,
and the right-moving scale symmetry is anomalously
broken. The problem arises from the bad ultraviolet
behavior of the perturbative computations of

hTþ
−ðxÞTþ

−ðyÞi ∼ μ2hTþ
−ðxÞTþ

−ðyÞ
Z

d2z1J−ðzþ1 ÞTþ
−ðz−1 Þ

×
Z

d2z2J−ðzþ2 ÞTþ
−ðz−2 Þiμ¼0: ð34Þ

This is badly divergent, but one may take the derivatives ∂þ
to make it finite by using the prescription (with a proper
contour deformation)

∂þ
1

x− − z−
¼ πiδðx − yÞ: ð35Þ

Indeed, this is how the modified conservation is obtained
from the beginning. This however results in the anomalous
violation of the chiral scale symmetry. This subtlety is due to
the (apparent) nonrenormalizability of the TJ̄ deformation,
whichwill not be present in thevery specialTJ̄ deformations.

B. Very special TJ̄ deformed conformal field theories

Let us now turn to a very special class of the TJ̄
deformations to preserve extra twisted Lorentz symmetry.
The idea is to choose J̄ as a null component of the right-
moving SLð2Þ current algebra so that in the original con-
formal field theory, we had the operator product expansions:

J−ðxÞJ−ðyÞ ¼ 0

J−ðxÞK−ðyÞ ¼ J−ðyÞ
ðxþ − yþÞ ð36Þ

Here K− generates the Cartan part of the SLð2Þ current
algebra, under which J− is charged. Note that in order to
have a null current as in the first line of (36), the theory
must be nonunitary.
Under these extra assumptions, we deform the original

conformal field theories by the twistedmarginal deformations

δS ¼ μ

Z
dxdtJ−ðxþÞTþ

−ðx−Þ: ð37Þ

We call it twisted marginal because the deformations had
ðΔ; Δ̄Þ ¼ ð2; 1Þ, but we may assign the twisted Lorentz
charge Δ̃ ¼ Δ − K−. Then ðΔ̃; Δ̄Þ ¼ ð1; 1Þ because J− is
charged under K− and the deformation can be regarded as
marginal under the twisted scaling.
Treating the deformation as a perturbative series with

respect to μ, the energy-momentum tensor as well as the
current conservation is modified

∂þTþ
− þ ∂−ðμJ−Tþ

−Þ ¼ 0

∂−T−þ ¼ 0

∂−J− ¼ 0

∂þJþ þ ∂−ðμJþJ−Þ ¼ 0 ð38Þ

as before. In addition, since J− is charged under K−, K− is
no longer conserved after the TJ̄ deformation

∂−K− ¼ μJ−Tþ
− : ð39Þ

Our very special TJ̄ deformations can be regarded as a
nonlocal operator dependent change of coordinates as in
the original TJ̄ deformations, so the deformations are
integrable, but it has further interesting features. The point
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here is that the existence of the SLð2Þ current algebra of the
original conformal field theories enable us to construct the
left-moving scale current or twisted Lorentz current from

∂þðx−Tþ
−Þ þ ∂−ðx−T−

− − K−Þ ¼ 0 ð40Þ
with T−

− ¼ μJ−Tþ
− . Therefore our theory still preserves the

“twisted Lorentz symmetry” even after the deformation
unlike the original Lorentz breaking TJ̄ deformations.2

Generically, K− is not a derivative of local operators, so
the theory is not invariant under the left-moving special
conformal transformation. If K− ¼ ∂−Oþ ∂þÕ with a
local operator O, Õ for some reasons, however, then we
may further preserve the left-moving special conformal
transformation

∂þððx−Þ2Tþ
− þ 2ÕÞ þ ∂−ððx−Þ2T−

− − 2x−K− þ 2OÞ ¼ 0:

ð41Þ
Even in this case, there will be no (further enhanced) left-
moving Virasoro symmetry that is realized in a local manner.
Due to the existence of the extra twisted Lorentz

symmetry, the ultraviolet behavior of the perturbation is
improved. Indeed, the conservation of the original SLð2Þ
charge dictates that the two-point functions of the energy-
momentum tensor is not modified

h∂þTþ
−ðxÞ∂þTþ

−ðyÞi ¼ h∂−T−
−ðxÞ∂−T−

−ðyÞi ¼ 0 ð42Þ
in accordance with the argument in [30] which we have
reviewed in the previous section. Note, however, that
because of the lack of the unitarity, one cannot conclude
that ∂þTþ

−ðxÞ ¼ 0. Indeed it is nonzero and the left-moving
special conformal transformation is absent in more general
correlation functions.

IV. EXAMPLES: VERY SPECIAL TJ̄
DEFORMED WORLD SHEET THEORY

In this section, we construct the very special TJ̄
deformed conformal field theories from free fermions.
Since we use the nonunitary timelike fermions, the most
familiar situation is in the world sheet string theory. There
we naturally have a fermion with a timelike kinetic term
and the ghost fermions. The current J̄ is then taken to be a
null target space Lorentz current (possibly with the ghost
directions included).

We begin with a free conformal field theory with three
Majorana fermions

Sc¼1
0 ¼

Z
dxdt

i
2

�
1

2
ðb∂þcþ c∂þbÞ þ ψ∂þψ

þ 1

2
ðb̃∂−c̃þ c̃∂−b̃Þ þ ψ̃∂−ψ̃

�
: ð43Þ

Out of three fermions, one of them has a timelike kinetic
term and we combine one timelike fermion and one
spacelike fermion as a bc ghost system. Here we are going
to choose the energy-momentum tensor so that the bc ghost
system has the Virasoro central charge c ¼ 1. The SLð2Þ,
out of which we construct J− and K− are taken to be “target
space Lorentz transformation” acting on three fermions.
We now consider the very special TJ̄ deformation by

adding

Sc¼1
μ ¼

Z
dxdt

�
μb̃ ψ̃

�
1

2
b∂−cþ

1

2
c∂−bþ ψ∂−ψ

��
:

ð44Þ
Varying the deformed action, we derive the equations of
motion

0 ¼ i
2
∂þbþ μ

�
1

2
∂−ðb̃ ψ̃ bÞ þ 1

2
ðb̃ ψ̃ ∂−bÞ

�

0 ¼ i
2
∂þcþ μ

�
1

2
∂−ðb̃ ψ̃ cÞ þ 1

2
b̃ ψ̃ ∂−c

�

0 ¼ i
2
2∂þψ þ μð∂−ðb̃ ψ̃ ψÞ þ b̃ ψ̃ ∂−ψÞ

0 ¼ i
2
∂−b̃

0 ¼ i
2
∂−c̃þ μψ̃

�
1

2
b∂−cþ

1

2
c∂−bþ ψ∂−ψ

�

0 ¼ i
2
ð2∂−ψ̃Þ − μb̃

�
1

2
b∂−cþ

1

2
c∂−bþ ψ∂−ψ

�
; ð45Þ

some of which can be simplified as

0 ¼ i
2
∂þbþ μb̃ ψ̃ ∂−b

0 ¼ i
2
∂þcþ μb̃ ψ̃ ∂−c

0 ¼ i
2
∂þψ þ μb̃ ψ̃ ∂−ψ

0 ¼ i
2
∂−b̃

0 ¼ i
2
∂−c̃þ μψ̃

�
1

2
b∂−cþ

1

2
c∂−bþ ψ∂−ψ

�

0 ¼ i
2
ð2∂−ψ̃Þ − μb̃

�
1

2
b∂−cþ

1

2
c∂−bþ ψ∂−ψ

�
: ð46Þ

2The conservation equations we used are based on the first order
perturbation in μ. If we could define the deformed theory by the
renormalized action (37), the twisted Lorentz symmetry would be
preserved beyond the first order perturbation. In the original TJ̄
deformation, the deformation is naively nonrenormalizable and the
necessity of the infinite number of counterterms could have spoiled
the expected symmetry. In our very special TJ̄ deformation,
however, the UV behavior may be improved since J̄ is chosen
to be a null current. See the following discussions.
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Due to the translational invariance, we can always
construct the canonical Noether energy-momentum tensor

Tþ
− ¼ ∂L

∂∂þΨi
∂−Ψi

T−
− ¼ ∂L

∂∂−Ψi
∂−Ψi − L

Tþ
þ ¼ ∂L

∂∂þΨi
∂þΨi − L

T−þ ¼ ∂L
∂∂−Ψi

∂þΨi; ð47Þ

where the right derivative is assumed. They are conserved

∂−T−
− þ ∂þTþ

− ¼ 0

∂−T−þ þ ∂þTþ
þ ¼ 0 ð48Þ

by using the equations of motion.
As we have discussed in the previous section, the

currents are still conserved

Jþ ¼ ibψ J− ¼ ib̃ ψ̃ ð49Þ

with

∂þJþ þ ∂−ð2μb̃ ψ̃ bψÞ ¼ 0 ∂−J− ¼ 0: ð50Þ

Note that J− is still purely right-moving. On the other hand,
K− ¼ ib̃ c̃ is broken by the interaction

∂−K− ¼ −2μb̃ ψ̃
�
1

2
ðb∂−cþ c∂−bÞ þ ψ∂−ψ

�
: ð51Þ

Now the canonical energy-momentum tensor reads

T−þ ¼ i
2

�
1

2
ðb̃∂þc̃þ c̃∂þb̃Þ þ ψ̃∂þψ̃

�

þ μb̃ ψ̃

�
1

2
ðb∂þcþ c∂þbÞ þ ψ∂þψ

�

Tþ
− ¼ i

2

�
1

2
ðb∂−cþ c∂−bÞ þ ψ∂−ψ

�

T−
− ¼ −

i
2

�
1

2
ðb∂þcþ c∂þbÞ þ ψ∂þψ

�

Tþ
þ ¼ −

i
2

�
1

2
ðb̃∂−c̃þ c̃∂−b̃Þ þ ψ̃∂−ψ̃

�

− μb̃ ψ̃

�
1

2
ðb∂−cþ c∂−bÞ þ ψ∂−ψ

�
: ð52Þ

By using the equations of motion, we can simplify
them as

T−þ ¼ i
2

�
1

2
ðb̃∂þc̃þ c̃∂þb̃Þ þ ψ̃∂þψ̃

�

Tþ
− ¼ i

2

�
1

2
ðb∂−cþ c∂−bÞ þ ψ∂−ψ

�

T−
− ¼ μb̃ ψ̃

�
1

2
ðb∂−cþ c∂−bÞ þ ψ∂−ψ

�

Tþ
þ ¼ 0: ð53Þ

Due to the chiral conservation ∂−T−þ ¼ 0, the theory has the
right-moving Virasoro symmetry from ∂−ððxþÞnT−þÞ ¼ 0.
In addition, the theory possesses the hidden (or twisted) left-
moving invariance. To see this, we note that upon the use of
the equations of motion

T−
− ¼ −

1

2
∂−K−; ð54Þ

we have the additional conservation

∂þðx−Tþ
−Þ þ ∂−

�
x−T−

− þ 1

2
K−

�
¼ 0; ð55Þ

which generates the twisted left-moving scale transforma-
tion. Since K− is not (apparently) a derivative of something
further,3 we do not have the left-moving special conformal
current (nor left-moving Virasoro current).
Indeed the action (44) is invariant under the two chiral

rotations with the charges

QLð∂−;∂þ; b; c;ψ ; b̃; c̃; ψ̃Þ ¼ ð1; 0; 1=2; 1=2; 1=2;−1;1; 0Þ
QRð∂−;∂þ; b; c;ψ ; b̃; c̃; ψ̃Þ ¼ ð0; 1; 0; 0;0; 1=2; 1=2; 1=2Þ;

ð56Þ

which is regarded as the twisted Lorentz transformation.
Note thatQL is unbounded below unlikeQR due to the lack
of unitarity.
Now let us consider the same action with a different

energy-momentum tensor (i.e., c ¼ −26)

Sc¼−26
0 ¼

Z
dxdt

i
2

�
1

2
ð2b∂þc − c∂þbþ ψ∂þψ

þ 2b̃∂−c̃ − c̃∂þb̃þ ψ̃∂−ψ̃

�
: ð57Þ

The action is the same up to the surface term, but the way
we order the fields and derivatives change the canonical
energy-momentum tensor by the improvement terms. Since
we use the different energy-momentum tensor, the TJ̄
deformation is changed accordingly:

3One may try to bosonize the fermions, but the signature of the
fermionic kinetic term makes it nontrivial.
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Sc¼−26
μ ¼

Z
dxdtðμb̃ ψ̃ ð2b∂−c − c∂−bþ ψ∂−ψÞÞ: ð58Þ

Varying the action, we obtain the equations of motion

0 ¼ i
2
∂þbþ μð2∂−ðb̃ ψ̃ bÞ − ðb̃ ψ̃ ∂−bÞÞ

0 ¼ i
2
∂þcþ μð−∂−ðb̃ ψ̃ cÞ þ 2b̃ ψ̃ ∂−cÞ

0 ¼ i
2
2∂þψ þ μð∂−ðb̃ ψ̃ ψÞ þ b̃ ψ̃ ∂−ψÞ

0 ¼ i
2
∂−b̃

0 ¼ i
2
∂−c̃þ μψ̃ð2b∂−c − c∂−bþ ψ∂−ψÞ

0 ¼ i
2
ð2∂−ψ̃Þ − μb̃ð2b∂−c − c∂−bþ ψ∂−ψÞ; ð59Þ

some of which can be simplified as

0 ¼ i
2
∂þbþ μb̃ ψ̃ ∂−b

0 ¼ i
2
∂þcþ μb̃ ψ̃ ∂−c

0 ¼ i
2
∂þψ þ μb̃ ψ̃ ∂−ψ

0 ¼ i
2
∂−b̃

0 ¼ i
2
∂−c̃þ μψ̃ð2b∂−c − c∂−bþ ψ∂−ψÞ

0 ¼ i
2
ð2∂−ψ̃Þ − μb̃ð2b∂−c − c∂−bþ ψ∂−ψÞ: ð60Þ

The canonical energy-momentum tensor can be com-
puted as

T−þ ¼ i
2
ð2b̃∂þc̃ − c̃∂þb̃þ ψ̃∂þψ̃Þ

þ μb̃ ψ̃ð2b∂þc − c∂þbþ ψ∂þψÞ

Tþ
− ¼ i

2
ð2b∂−c − c∂−bþ ψ∂−ψÞ

T−
− ¼ −

i
2
ð2b∂þc − c∂þbþ ψ∂þψÞ

Tþ
þ ¼ −

i
2
ð2b̃∂−c̃ − c̃∂−b̃þ ψ̃∂−ψ̃Þ

− μb̃ ψ̃ð2b∂−c − c∂−bþ ψ∂−ψÞ: ð61Þ

When μ ¼ 0, the energy-momentum tensor of the bc
system is such that Virasoro central charge is c ¼ −26
as in the bc ghost in world sheet string theory.
By using the equations of motion, we can simplify

them as

T−þ ¼ i
2
ð2b̃∂þc̃ − c̃∂þb̃þ ψ̃∂þψ̃Þ

Tþ
− ¼ i

2
ð2b∂−c − c∂−bþ ψ∂−ψÞ

T−
− ¼ μb̃ ψ̃ ð2b∂−c − c∂−bþ ψ∂−ψÞ

Tþ
þ ¼ 3

2
μb̃ ψ̃ ð2b∂−c − c∂−bþ ψ∂−ψÞ: ð62Þ

Due to the interaction K− ¼ ib̃ c̃ is broken

∂−K− ¼ −2μb̃ ψ̃ð2b∂−c − c∂−bþ ψ∂−ψÞ ð63Þ

but the combination (56) is preserved.
One may improve the energy-momentum tensor so that

the right-moving Virasoro symmetry is manifest

T̆þ
þ ¼ Tþ

þ −
3

4
∂−K̃

T̆−þ ¼ T−þ þ 3

4
∂þK̃ ð64Þ

so that T̆þ
þ ¼ 0 and ∂−T̆

−þ ¼ 0. We cannot simultaneously
improve the other component of the energy-momentum
tensor T−

−, but it satisfies

T−
− ¼ −

1

2
∂−K− ð65Þ

so the left-moving scale symmetry does exist while there is
no left-moving special conformal nor Virasoro symmetry.
As in μ ¼ 0 case, we now argue that the above two

theories are actually equivalent in the flat space-time. To
see this, the difference between the two action (up to
surface terms) is

ΔS ¼ Sc¼−26
μ − Sc¼1

μ

¼
Z

dxdt

�
μb̃ ψ̃

3

2
∂−ðbcÞ

�
: ð66Þ

This is proportional to the equations of motion, so one
should be able to remove it by a field redefinition. One can
see it explicitly by performing the change of variable

c → cþ 3iψ̃bc ψ → ψ þ 3

2
ib̃bc ð67Þ

and see that the two actions become identical (in flat
space-time).
We now sketch how to solve the equations of motions in

flat space-time. Since the theory is equivalent, we work in
the c ¼ 1 case. A systematic way to solve the equations of
motion goes as follows. We begin with the right-moving
part of b̃, c̃, and ψ̃ by specifying arbitrary functions of xþ
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b̃ ¼ b̃ðxþÞ c̃0 ¼ c̃0ðxþÞ ψ̃0 ¼ ψ̃0ðxþÞ: ð68Þ

They determine the conserved current J̃

J̃ðxþÞ ¼ ib̃ðxþÞψ̃0ðxþÞ: ð69Þ

Now, we may solve

b ¼ b

�
x− þ 2μ

Z
xþ

dx̃þJ̃ðx̃þÞ
�

c ¼ c

�
x− þ 2μ

Z
xþ

dx̃þJ̃ðx̃þÞ
�

ψ ¼ ψ

�
x− þ 2μ

Z
xþ

dx̃þJ̃ðx̃þÞ
�

ð70Þ

with arbitrary functions of b,c, and ψ .
Finally, one may integrate

0 ¼ i
2
ð2∂−ψ̃Þ − μb̃

�
1

2
b∂−cþ

1

2
c∂−bþ ψ∂−ψ

�
; ð71Þ

and then

0 ¼ i
2
∂−c̃þ μψ̃

�
1

2
b∂−cþ

1

2
c∂−bþ ψ∂−ψ

�
ð72Þ

to determine the inhomogeneous part of c̃ and ψ̃ . Note that
the homogeneous part has been already fixed by specifying
c̃0 and ψ̃0 above. The resulting expression is consistent
with our claim that the TJ̄ deformations can be regarded as
the operator dependent change of coordinate

xþ → xþ x− → x− − μ

Z
xþ

dx̃þJ−ðx̃þÞ: ð73Þ

V. DISCUSSIONS

In this paper, we have studied a very special class of
TJ̄ deformations of conformal field theories in two

dimensions, which preserves right-moving Virasoro as well
as left-moving translation and left-moving scale symmetry
without left-moving special conformal symmetry. As in
higher dimensional very special conformal field theories,
unitarity and locality gives a no-go argument for the
existence of such theories, but in this paper, we employed
the twisted Lorentz symmetry to circumvent the argument.
We showed concrete examples in perturbing the world
sheet string theory with the TJ̄ deformations.
There are couple of directions to be pursued in the future.

First of all, it is an interesting question if the similar
construction can be performed in higher dimensions to give
concrete examples of very special (conformal) field theo-
ries whose spectrum is integrable. This should give better
understanding of the nonrenormalizable nature of very
special (conformal) field theories from the view point of the
Lorentz invariant scaling. Another interesting direction is to
study a holographic construction of very special TJ̄
deformations and its stringy embedding. At the superficial
level, the model should be embedded in SLð2Þ × SLð2Þ ×
SLð2Þ Chern-Simons theory, where two of SLð2Þ give the
duals of (original) Virasoro and the other SLð2Þ gives the
current algebra in the very special TJ̄ deformations. Finally,
we have pointed out that the (very special) TJ̄ deformations
admit two interpretations, The one is to regard the defor-
mations as the operator dependent coordinate transforma-
tion, and the other is to regard the deformations as the
operator dependent gauge transformations. The duality of
the two perspectives would lead to a new way to look at the
integrable nature of the TJ̄ deformations.
Finally, implementing TJ̄ deformations on the lattice is a

challenging question because of the chiral nature of the
interaction. It would reveal the nature of the ultraviolet
completion with possibly infinite number of degrees of
freedom.
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