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We propose a new superintegrable mechanical system on the complex projective space CPN involving a
potential term together with coupling to a constant magnetic fields. This system can be viewed as
a CPN-analog of both the flat singular oscillator and its spherical analog known as the “Rosochatius
system.” We find its constants of motion and calculate their (highly nonlinear) algebra. We also present its
classical and quantum solutions. The system belongs to the class of “Kähler oscillators” admitting SUð2j1Þ
supersymmetric extension. We show that, in the absence of magnetic field and with the special choice of
the characteristic parameters, one can construct N ¼ 4; d ¼ 1 Poincaré supersymmetric extension of the
system considered.
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I. INTRODUCTION

The (D-dimensional) isotropic oscillator and the relevant
Coulomb problem play a pivotal role among other textbook
examples of D-dimensional integrable systems. They are
distinguished by the “maximal superintegrability” property,
which is the existence of 2D − 1 functionally independent
constants of motion [1]. The rational Calogero model with
oscillator potential [2], being a nontrivial generalization of
isotropic oscillator, is also maximally superintegrable [3].
Moreover, the Calogero model with Coulomb potential is
superintegrable too [4]. All these systems, being originally
defined on a plane, admit the maximally superintegrable
deformations to the spheres (see Ref. [5] for the spherical
generalizations of the oscillator and Coulomb problem, and
Ref. [4] for the Calogero-oscillator and Calogero-Coulomb
ones). The integrable spherical generalizations of aniso-
tropic oscillator [6], Stark-Coulomb, and two-center
Coulomb problems [7] are also known.
In contrast to the spherical extensions, the generalizations

to other curved spaces have not attracted much attention so
far. The only exception seems to be the isotropic oscillator on
the complex/quaternionic spaces considered in Ref. [8,9].

These systems reveal an important feature: they remain
superintegrable after coupling to a constant magnetic/
Belavin Polyakov Schwarz Tyupkin (BPST) instanton field,
though cease to bemaximally superintegrable.Onemay pose
a question:
How do we construct the superintegrable generalizations

of Calogero-oscillator and Calogero-Coulomb models on
complex and quaternionic projective spaces?
In this paper we make the first steps toward the answer.

Due to the complexity of theproblemwe restrict our attention
to the simplest particular case. Namely, we construct the
superintegrable CPN-generalization of the N-dimensional
singular oscillator (the simplest rational Calogero-oscillator
model) which is defined by the Hamiltonian

HSW ¼
XN
a¼1

�
p2
a

2
þ g2a
2x2a

þ ω2x2a
2

�
;

fpa; xbg ¼ δab; fpa; pbg ¼ fxa; xbg ¼ 0: ð1Þ

This model is less trivial than it looks at first sight: it has a
variety of hidden constants of motion which form a non-
linear symmetry algebra and endow the system with the
maximal superintegrability property. Its extensive studies
were initiated more than fifty years ago by Smorodinsky
with collaborators [10] and are continuing up to now (see,
e.g., [11] and references therein). Sometimes this model is
referred to as the Smorodinsky-Winternitz system, though it
has been known for many years.
The maximally superintegrable spherical counterpart of

the Smorodinsky-Winternitz system is defined by the
Hamiltonian suggested by Rosochatius in 1877 [12]
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HRos ¼
1

2

XN
a;b¼1

�
δab −

xaxb
r20

�
papbþ

XN
a¼1

�
ω2
ar20
x2a

þω2r20x
2
a

2x20

�
;

x2aþ x20 ¼ r20: ð2Þ

It is a particular case of the integrable systems obtained
by restricting the free particle and oscillator systems to a
sphere. It was studied by many authors from different
viewpoints, including its reinvention as a superintegrable
spherical generalization of Smorodinsky-Winternitz sys-
tem [13–15]. The Rosochatius model, as well as its
hybrid with the Neumann model suggested in 1859 [16],
attract a stable interest for years due to their relevance to
a wide circle of physical and mathematical problems.
Recently, the Rosochatius-Neumann system was encoun-
tered, while studying strings [17], extreme black hole
geodesics [15,18], and the Klein-Gordon equation in
curved backgrounds [19].
In this paper we propose a superintegrable generalization

of Rosochatius (and Smorodinsky-Winternitz) system on
the complex projective space CPN . It is defined by the
Hamiltonian1

HRos ¼
1

r20
ð1þ zz̄Þðδab̄ þ zaz̄bÞπaπ̄b

þ r20ð1þ zz̄Þ
�
ω2
0 þ

XN
a¼1

ω2
a

zaz̄a

�
− r20

XN
i¼0

ω2
i ; ð3Þ

and by the Poisson brackets providing the interaction with a
constant magnetic field of the magnitude B

fπa; zbg ¼ δba; fπ̄a; z̄bg ¼ δb̄ā;

fπa; π̄bg ¼ {Br20

�
δab̄

1þ zz̄
−

z̄azb

ð1þ zz̄Þ2
�
: ð4Þ

We will call it CPN-Rosochatius system.2

Reducing this 2N-dimensional system by the action of N
manifest Uð1Þ symmetries, za → e{κaza; πa → e−{κaπa, we
recover the N-dimensional Rosochatius system (2) (see
Sec. III).
On the other hand, rescaling the coordinates and

momenta as r0za → za; πa=r0 → πa and taking the limit
r0 → ∞;ωa → 0 with r20ωa ¼ ga kept finite, we arrive at
the so-called “CN-Smorodinsky-Winternitz system” [20]

HSW ¼
XN
a¼1

�
πaπ̄aþω2

0z
az̄aþ g2a

zaz̄a

�
; fπa; zbg ¼ δba;

fπ̄a; z̄bg ¼ δb̄ā; fπa; π̄bg ¼ {Bδab̄: ð5Þ

Since the reductions of the CPN-Rosochatius system yield
superintegrable systems, it is quite natural that it proves to
be superintegrable on its own.
We will show that CPN-Rosochatius system belongs

to the class of “Kähler oscillators” [8,21] which admit
SUð2j1Þ supersymmetrization (or a “weak N ¼ 4” super-
symmetrization, in the terminology of Smilga [22]). A few
years ago it was found that these systems naturally arise
within the appropriate SUð2j1Þ; d ¼ 1 superspace formal-
ism developed in a series of papers [23]. This research was
partly motivated by the study of the field theories with
curved rigid analogs of Poincaré supersymmetry [24]. In
the absence of the background magnetic field and for the
special choice of the parameters ωi, the CPN-Rosochatius
system admits N ¼ 4; d ¼ 1 Poincaré supersymmetric
extension.
Finally, note that the CN-Smorodinsky-Winternitz sys-

tem (5) can be interpreted as a set of N two-dimensional
ring-shaped oscillators interacting with a constant magnetic
field orthogonal to the plane. As opposed to (5), the
CPN-Rosochatius system does not split into a set of N
two-dimensional decoupled systems. Instead, it can be
interpreted as describing interacting particles with a
position-dependent mass in the two-dimensional quantum
rings (along the lines of ref. [25–27]).
To summarize, theCPN-Rosochatius system suggested is

of interest from many points of view. Its study is the subject
of the remainder of this paper. It is organized as follows.
In Sec. II we review the main properties of the complex

projective space CPN , the simplest related systems like
the CPN-Landau problem and the CPN-oscillator, and
then derive the potential specifying the CPN-Rosochatius
system.
In Sec. III we present the classical CPN-Rosochatius

model in a constant magnetic field and find that, in addition
to N manifest Uð1Þ symmetries, this system possesses
additional 2N − 1 functionally-independent second-order
constants of motion. The latter property implies the (non-
maximal) superintegrability of the model considered. We
present the explicit expressions of the constants of motion
and calculate their algebra. We also show that the reduction
of the CPN-Rosochatius model by manifest Uð1Þ sym-
metries reproduces the original N-dimensional (SN-)
Rosochatius system.
In Sec. IV we separate the variables and find classical

solutions of the CPN-Rosochatius model.
In Sec. V we study the quantum CPN-Rosochatius

system and find its spectrum which depends on N þ 1
quantum numbers, as well as the relevant wavefunctions.

1Hereafter we use the notation zz̄≡P
N
c¼1 z

cz̄c.
2Despite the fact that UðNÞ symmetry is explicitly broken

in (3) (down to Uð1ÞN), hereafter we use the UðNÞ covariant
notation, such that πa and πb̄ transform, respectively, as z̄a and zb
and there are three equivalent forms of the UðNÞ invariant tensor,
δab̄; δ

b
a, and δā

b̄
.
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In Sec. VI we construct N ¼ 4 supersymmetric exten-
sions of the CPN-Rosochatius system.
In Sec. VII we give an account of open problems and

possible generalizations.
In the subsequent consideration we put, for simpli-

city, r0 ¼ 1.

II. PRELIMINARIES: COMPLEX
PROJECTIVE SPACES

In this section we present the basic properties of
complex projective space CPN , briefly describe the
Landau problem and the oscillator on this space, and
construct the CPN-analog of the Rosochatius system.
The N-dimensional complex projective space is a space

of complex rays in the (N þ 1)-dimensional complex
Euclidian space ðCNþ1;

P
N
i¼0 du

idūiÞ, with ui being
homogeneous coordinates of the complex projective space.
Equivalently, it can be defined as the quotient S2Nþ1=Uð1Þ,
where S2Nþ1 is the (2N þ 1)-dimensional sphere
embedded in CNþ1 by the constraint

P
N
i¼1 u

iūi ¼ 1. One
can solve the latter by introducing locally “inhomo-
geneous” coordinates zaðiÞ

zaðiÞ ¼
ua

ui
; with a ≠ i; ui ≠ 0: ð6Þ

Hence, the full complex projective space can be covered by
N þ 1 charts marked by the indices i ¼ 0;…; N, with the
following transition functions on the intersection of ith and
jth charts:

zaðiÞ ¼
zaðjÞ
ziðjÞ

: ð7Þ

Let us endow CNþ1 with the canonical Poisson brackets
fui; ūjg ¼ {δij̄, and define, with respect to them, the
uðN þ 1Þ algebra formed by the generators

hij̄ ¼ ūiuj: ð8Þ

Reducing the manifold CNþ1 by the action of the Uð1Þ
group with the generator h0 ¼

P
N
i¼0 u

iūi, we arrive at
the SUðN þ 1Þ-invariant Kähler structure defined by the
Fubini-Study metrics

XN
a;b¼1

gab̄dz
adz̄b ¼

XN
a;b¼1

∂2 logð1þ zz̄Þ
∂za∂z̄b dzadz̄b

¼
XN
a;b¼1

�
δab̄

1þ zz̄
−

z̄azb

ð1þ zz̄Þ2
�
dzadz̄b: ð9Þ

This metrics is obviously invariant under the passing from
one chart to another. Hence, we can omit the indices

marking charts and assume, without loss of generality, that
we are dealing with 0th chart, so that the indices a, b, c run
from 1 to N.
Being Kähler manifold, the complex projective space is

equipped with the Poisson brackets fz̄a; zbg0 ¼ −{gāb,
where gāb ¼ ð1þ zz̄Þðδāb þ z̄azbÞ is the inverse Fubini-
Study metrics. The suðN þ 1Þ isometry ofCPN is generated
by the holomorphic Hamiltonian vector fields defined as the
following momentum maps (Killing potentials)

hab̄ ¼
z̄azb

1þ zz̄
; ha ¼

2z̄a

1þ zz̄
: ð10Þ

Now, let us introduce, on the cotangent bundle of CNþ1,
the canonical Poisson brackets fpi; ujg ¼ δij, and define
the suðN þ 1Þ algebra with the generators

Lij̄¼ {ðpiuj− p̄jūiÞ−
δij̄
N
L0; whereL0¼ {

XN
i¼0

ðpiui− p̄iūiÞ:

ð11Þ

Reducing this phase space by the action of generators L0,
h0¼

P
iu

iūi, and finally fixing their values as L0¼2B;
h0¼1, we arrive at the Poisson brackets (4) (with r0 ¼ 1).
They describe an electrically charged particle on CPN

interacting with a constant magnetic field of the magnitude
B and set the corresponding twisted symplectic structure

Ω0 ¼
XN
a¼1

ðdza ∧dπaþdz̄a ∧ dπ̄aÞþB
XN
a;b¼1

{gab̄dz
a ∧ dz̄b;

ð12Þ

with gab̄ being defined in (9).
The inhomogeneous coordinates and momenta za, πa are

related to the homogeneous ones pi, ui as [28]

za ¼ ua

u0
; πa ¼

XN
b¼1

gab̄

�
pb

ū0
− z̄b

p0

ū0

�
: ð13Þ

The suðN þ 1Þ generators (11) are reduced to the following
ones

Jab̄ ¼ {ðzbπa − π̄bz̄aÞ − B
z̄azb

1þ zz̄
;

Ja ¼ πa þ z̄aðz̄ π̄Þ þ {B
z̄a

1þ zz̄
∶ ð14Þ

fJāb; Jc̄dg ¼ iδādJb̄c − iδc̄bJād;

fJa; J̄bg ¼ −iðJab̄ þ J0δab̄Þ;
fJa; Jbc̄g ¼ iJbδac̄; ð15Þ

where J0 ≡P
N
a¼1 Jaā þ B.
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With these expressions at hand we can now consider
some superintegrable systems on CPN .
CPN-Landau problem. The CPN-Landau problem is

defined by the symplectic structure (12) and the free-
particle Hamiltonian identified with a Casimir of suðNþ1Þ
algebra

H0 ¼
XN
a;b¼1

ð1þ zz̄Þðδab̄ þ zaz̄bÞπaπ̄b ¼
1

2

XN
i;j¼0

Lij̄Ljī −
B2

2

¼
XN
a¼1

JaJ̄a þ
P

N
a;b¼1 Jab̄Jbā þ J20 −B2

2
∶ fH0;Lijg ¼ 0:

ð16Þ

Its quantization was done, e.g., in [29].
CPN-oscillator. The CPN-oscillator is defined by the

symplectic structure (12) and the Hamiltonian [8]

Hosc¼
XN
a;b¼1

ð1þ zz̄Þðδab̄þ zaz̄bÞπaπ̄bþω2
XN
a¼1

zaz̄a: ð17Þ

It respects manifest UðNÞ symmetry with the generators
Jab̄ (14), and additional hidden symmetries given by the
proper analog of “Fradkin tensor”,

Iab̄ ¼ JaJ̄b þ ω2z̄azb: ð18Þ

The full symmetry algebra of this system reads

fJāb; Jc̄dg ¼ {δādJb̄c − {δc̄bJād;

fIab̄; Jcd̄g ¼ {δad̄Icb̄ − {δcb̄Iad̄ ð19Þ

fIab̄; Icd̄g ¼ {ω2δad̄Jcb̄ − {ω2δcb̄Jad̄ − {Icb̄ðJad̄ þ J0δad̄Þ
þ {Iad̄ðJcb̄ þ J0δcb̄Þ; ð20Þ

where J0 ¼ {
P

N
a¼1ðzaπa − π̄az̄aÞ þ B 1

1þzz̄.
The Hamiltonian (17) is expressed via the symmetry

generators as follows

Hosc ¼
XN
a¼1

Iaā þ
1

2

XN
a;b¼1

Jab̄Jbā þ
J20 − B2

2
: ð21Þ

The quantum mechanics associated with this Hamiltonian
was considered in [30]. In the flat limit, the CPN-oscillator
goes over to the CN-oscillator interacting with a constant
magnetic field.
CPN-Rosochatius system. The CPN-oscillator, being a

superintegrable system (for N > 1), has an obvious draw-
back: it lacks covariance under transition from one chart to
another. This noncovariance becomes manifest after
expressing the Hamiltonian (17) via the SUðN þ 1Þ sym-
metry generators and the homogeneous coordinates ui,

Hosc ¼
P

N
i;j¼0 Lij̄Ljī − B2

2
þ ω2

u0ū0
− ω2: ð22Þ

This expression allows one to immediately construct
(N þ 1)-parameter deformation of the CPN-oscillator, such
that it is manifestly form-invariant under passing from one
chart to another accompanied by the appropriate change of
the parameters ωi. The relevant potential is

VRos ¼
XN
i¼0

�
ω2
i

uiūi
− ω2

i

�
; with

XN
i¼0

uiūi ¼ 1: ð23Þ

In the case when all parameters ωi are equal, the system is
globally defined on the complex projective space with the
punctured points ui ¼ 0.
The system with the potential (23) is just the CPN-

Rosochatius system mentioned in Introduction. Now we
turn to its investigation as the main subject of the
present paper.

III. CPN-ROSOCHATIUS SYSTEM

We consider the N-parameter deformation of the
CPN- oscillator by the potential (23), in what follows
referred to as the “CPN-Rosochatius system”. It is defined
by the Hamiltonian (3) and Poisson brackets (4) with
r0 ¼ 1. Equivalently, this system can be defined by the
symplectic structure (12) and the Hamiltonian

HRos¼
XN
a;b¼1

gābπ̄aπbþð1þ zz̄Þ
�
ω2
0þ

XN
a¼1

ω2
a

zaz̄a

�
−
XN
i¼0

ω2
i ;

ð24Þ

where gāb ¼ ð1þ zz̄Þðδāb þ z̄azbÞ is the inverse Fubini-
Study metrics.
The model has N manifest (kinematical) Uð1Þ sym-

metries with the generators

Jaā ¼ {πaza − {π̄az̄a − B
zaz̄a

1þ zz̄
∶ fJaā;Hg ¼ 0; ð25Þ

and hidden symmetries with the second-order generators
Iij ¼ ðI0a; IabÞ defined as

I0a ¼ J0aJ̄0ā þ ω2
0z

az̄a þ ω2
a

z̄aza
;

Iab ¼ Jab̄Jbā þ ω2
a
zbz̄b

zaz̄a
þ ω2

b
zaz̄a

zbz̄b
∶ fIij̄;Hg ¼ 0: ð26Þ

In the homogeneous coordinates, the hidden symmetry
generators can be cast in a more succinct form

Iij ¼ Jij̄Jjī þ ω2
i
ujūj

uiūi
þ ω2

j
uiūi

ujūj
: ð27Þ
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The relevant symmetry algebra is given by the brackets

fJaā; Iijg ¼ 0;

fIij; Iklg ¼ δjkTijl þ δikTjkl − δjlTikl − δilTijk; ð28Þ

with

ðTijkÞ2 ¼ 2ðIij−JiīJjj̄ÞðIjk−Jjj̄Jkk̄ÞðIik−JiīJkk̄Þ
þ2IijIikIjkþJ2iīJ

2
jj̄J

2
kk̄

− ðI2jkJ2iīþ I2ijJ
2
kk̄
þ I2ikJ

2
jj̄Þ−4ðω2

kIijðIij−JiīJjj̄Þ
þω2

i IjkðIjk−Jjj̄Jkk̄Þþω2
j IikðIik−JiīJkk̄ÞÞ

þ4ω2
jω

2
kJ

2
iīþ4ω2

iω
2
kJ

2
jj̄þ4ω2

iω
2
jJ

2
kk̄
þ16ω2

iω
2
jω

2
k:

ð29Þ

The Hamiltonian is expressed via these generators as
follows

H ¼ 1

2

XNþ1

i¼1

Iij þ
XN
a¼1

ω2
a þ

J20 − B2

2

¼
XN
a¼1

I0a þ
XN
a;b¼1

Iab
2

þ
XN
a¼1

ω2
a þ

J20 − B2

2
: ð30Þ

This consideration actually proves the superintegrability
of the CPN-Rosochatius system. The number of the func-
tionally independent constants of motion will be counted in
the end of this section.
For sure, the symmetry algebra written above can be

found by a direct calculation of the Poisson brackets
between the symmetry generators. However, there is a
more elegant and simple way to construct it. Namely, one
has to consider the symmetry algebra of the CNþ1-
Smorodinsky-Winternitz system [20] with vanishing mag-
netic field, and to reduce it, by action of the generatorsP

N
i¼0 {ðpiui − p̄iūiÞ,

P
N
i¼0 u

iūi (see the previous section),
to the symmetry algebra of the CPN-Rosochatius system.

A. Reduction to (spherical) Rosochatius system

In order to understand the relationship with the standard
Rosochatius system (defined on the sphere) let us pass to
the real canonical variables ya, φa, pa, pφa

za ¼ yae{φa ;

πa ¼
1

2

�
pa − {

�
pφa

ya
þ Bya
1þ y2

��
e−{φa∶

Ω ¼ dpa ∧ dya þ dpφa
∧ dφa: ð31Þ

In these variables the Hamiltonian (24) is rewritten as

HRos ¼
1

4

�
1þ

XN
c¼1

y2c

�"XN
a;b¼1

ðδab þ yaybÞpapb

þ 4ω̃2
0 þ 4

XN
a¼1

ω̃2
a

y2a

#
− E0; ð32Þ

where

ω̃2
a ¼ ω2

a þ
1

4
p2
φa
; ω̃2

0 ¼ ω2
0 þ

1

4

�
Bþ

XN
a¼1

pφa

�2

;

E0 ¼
B2

4
þ
XN
i¼0

ω2
i : ð33Þ

Then, performing the reduction by cyclic variables φa (i.e.,
by fixing the momenta pa

φ), we arrive at the Rosochatius
system on the sphere with ya ¼ xa=x0, where ðx0; xaÞ are
ambient Cartesian coordinates,

P
N
i¼0 x

2
i ¼ 1:

xa ¼
yaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þP
N
c¼1 y

2
c

p ; x0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þP
N
c¼1 y

2
c

p : ð34Þ

As was already noticed, the SN-Rosochatius system is
maximally superintegrable, i.e., it has 2N − 1 functionally
independent constants of motion. From the above
reduction we conclude that the CPN-Rosochatius system
has 2N − 1þ N ¼ 3N − 1 functionally independent inte-
grals. Hence, it lacks N integrals needed for the maximal
superintegrability.

IV. CLASSICAL SOLUTIONS

To obtain the classical solutions of the CPN-Rosochatius
system we introduce the spherical coordinates through the
recursion

yN ¼ rcosθN−1;

yα¼ rsinθN−1uα; with r¼ tanθN;
XN−1

α¼1

u2α¼ 1; ð35Þ

where ya were defined by (31). In terms of these coor-
dinates the Hamiltonian (32) takes the form

HRos ≡ IN − E0

¼ 1

4
ð1þ r2Þ

�
ð1þ r2Þp2

r þ
4IN−1ðθÞ

r2
þ 4ω̃2

0

�
− E0;

Ia ¼
p2
θa

4
þ Ia−1

sin2θa
þ ω̃2

aþ1

cos2θa
; ð36Þ

with E0, ωN ≡ ω̃0 defined in (33), a ¼ 1;…; N and
I0 ¼ 0.
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Thus we singled out the complete set of Liouville
integrals ðHRos;Iα; pφa

Þ, and separated the variables. It
is by no means the unique choice of Liouville integrals and
of the coordinate frame in which the Hamiltonian admits
the separation of variables. However, for our purposes it is
enough to deal with any particular choice.
With the above expressions at hand, we can derive

classical solutions of the system by solving the Hamilton-
Jacobi equation

H
�
pμ ¼

∂S
∂xμ ; x

μ

�
¼ E; with xμ ¼ ðθa;φaÞ;

pμ ¼ ðpa; pφa
Þ: ð37Þ

To this end, we introduce the generating function of the
form

Stot ¼ 2
XN
a¼1

SaðθaÞ þ
XN
a¼1

pφa
φa: ð38Þ

Substituting this ansatz in the Hamilton-Jacobi equation,
we immediately separate the variables and arrive at the set
of ordinary differential equations:

�
dSa
dθa

�
2

þ ca−1
sin2θa

þ ω̃2
aþ1

cos2θa
¼ ca; a ¼ 1;…; N;

cN ≔ Eþ E0; ω̃2
Nþ1 ≔ ω̃2

0: ð39Þ

Solving these equations, we obtain

Sa ¼
Z

dθa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ca −

ca−1
sin2θa

−
ω̃2
aþ1

cos2θa

s
: ð40Þ

Thus we have found the general solution of the Hamilton-
Jacobi equation (i.e., the solution depending on 2N
integration constants ca, pφa

).
In order to get the solutions of the classical equations of

motion, we should differentiate the generating functions
with respect to these integration constants and then equate
the resulting functions to some constants t0, κα, and φa

0 ,

∂Stot
∂E ¼ t− t0;

∂Stot
∂cα ¼ 2

XN
b¼1

∂Sb
∂cα ¼ κα;

α¼ 1;…;N−1;
∂Stot
∂pφa

¼φaþ
XN
b¼1

2
∂Sb
∂pφa

¼φa
0: ð41Þ

Introducing

ξa ≔ sin2θa; Aa ≔
ca þ ca−1 − ω̃2

aþ1

2ca
; ð42Þ

we obtain from (41)

ξN −AN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

N −
cN−1

cN

r
sin 2

ffiffiffiffiffiffi
cN

p ðt − t0Þ; ð43Þ

ξα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

α −
cα−1
cα

r 0
B@sin καðξαþ1Aαþ1 −

cα
cαþ1

Þ þ cos κα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ξ2αþ1 þ 2ξαþ1Aαþ1 −

cα
cαþ1

q
ξαþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cαþ1

cα
A2

αþ1 − 1
q

1
CAþAα; ð44Þ

φa − φa
0 ¼ −

pφa

4ω̃aþ1

arctan
2ω̃aþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ca−1ðξa − 1Þ − ξaðcaðξa − 1Þ þ ω̃2

aþ1Þ
q

−ca−1ðξa − 1Þ þ caðξa − 1Þω̃2
aþ1ðξa þ 1Þ : ð45Þ

Thereby we have derived the explicit classical solutions of
our CPN-Rosochatius system.

V. QUANTIZATION

In order to quantize the CPN-Rosochatius system we
replace the Poisson brackets (4) by the commutators (with
r0 ¼ 1)

½π̂a;zb�¼−{ℏδba; ½π̂a; ˆ̄πb�¼ℏB

�
δab̄

1þzz̄
−

z̄azb

ð1þzz̄Þ2
�
: ð46Þ

The appropriate quantum realization of the momenta
operators reads

π̂a ¼ −{
�
ℏ

∂
∂za þ

B
2

z̄a

1þ zz̄

�
;

ˆ̄πa ¼ −{
�
ℏ

∂
∂z̄a −

B
2

z̄a

1þ zz̄

�
: ð47Þ

Then we define the quantum Hamiltonian
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ĤRos ¼
1

2
gab̄ðπ̂a ˆ̄πb þ ˆ̄πbπ̂aÞ þ ℏ2ð1þ zz̄Þ

�
ω2
0 þ

XN
a¼1

ω2
a

zaz̄a

�

− ℏ2
XN
i¼0

ω2
i : ð48Þ

The kinetic term in this Hamiltonian is written as the
Laplacian on Kähler manifold (coupled to a magnetic field)
defined with respect to the volume element dvCPN ¼
ð1þ zz̄Þ−ð1þNÞ½dzdz̄�, while in the potential term we have
made the replacement ωi → ℏωi.
In terms of the real coordinates za ¼ yae{φa this

Hamiltonian reads [cf. (32)]

ĤRos ¼
�
1þ

XN
c¼1

y2c

��
−
ℏ2

4

�XN
a;b¼1

ðδab þ yaybÞ
∂2

∂ya∂yb

þ
XN
a¼1

�
ya þ

1

ya

�
∂ya

�
þ ˆ̃ω2

Nþ1 þ
XN
a¼1

ˆ̃ω2
α

4y2a

�
− Ẽ0:

ð49Þ

Here we introduced the operators

ˆ̃ω2
Nþ1¼

�
B
ℏ
þ1

ℏ

XN
a¼1

p̂φa

�
2

þ4ω2
0; ˆ̃ω2

a¼4ω2
aþ

p̂2
φa

ℏ2
ð50Þ

with

p̂φa
¼ Ĵaā ¼ −{ℏ

∂
∂φa Ẽ0 ¼

B2

4
þ ℏ2

XN
i¼0

ω2
i : ð51Þ

Clearly, these operators are quantum analogs of the
classical quantities (33). In the spherical coordinates (35)
the Hamiltonian (49) takes the form

ĤRos¼ ÎN− Ẽ0;

Îa¼−
ℏ2

4

�
ðsinθaÞ1−a

∂
∂θa

�
ðsinθaÞa−1

∂
∂θa

�

þðacotθa− tanθaÞ
∂
∂θa

�
þ Îa−1

sin2θa
þ ℏ2 ˆ̃ω2

aþ1

4cos2θa
; ð52Þ

where a ¼ 1;…; N and Î0 ¼ 0.
This prompts us to consider the spectral problem3

ĴaāΨ ¼ ℏmaΨ; ÎaΨ ¼ ℏ2

4
laðla þ 2aÞΨ; ð53Þ

where la are the appropriate “spin” quantum numbers, and
separate the variables by the choice of the wave function in

such a way that it resolves first N equations in the above
problem,

Ψ¼ 1

ð2πÞN=2

YN
a¼1

ψaðθaÞe{maφa ; ma ¼ 0;�1;�2;… ð54Þ

Then, passing to the variables ξa ¼ sin2θa, we transform
the reduced spectral problem to the system of N ordinary
differential equations

− ξað1− ξaÞψ 00
aþððaþ 1Þξ−aÞψ 0

a

þ 1

4

�
la−1ðla−1þ 2a− 2Þ

ξa
þ ω̃2

aþ1

1− ξa
− laðlaþ 2aÞ

�
ψa ¼ 0:

ð55Þ

These equations can be cast in the form of a hypergeometric
equation through the following substitution

ψðξaÞ ¼ ξ
la−1
2

a ð1 − ξaÞ
ωaþ1

2 fðξaÞ∶ ð56Þ

ξað1−ξaÞf00 þðla−1þa−ξðla−1þaþ ω̃aþ1þ1ÞÞf0

−
1

4
ðla−1þ ω̃aþ1− laÞðla−1þ ω̃aþ1þ laþ2aÞÞf¼0: ð57Þ

The regular solution of this equation is the hypergeometric
function [31]

faðξÞ ¼ C0Fð−na; la−1 þ ω̃aþ1 þ aþ na; la−1 þ a; ξaÞ;
la ¼ 2na þ la−1 þ ω̃aþ1; ð58Þ

with

na ¼ 0; 1; 2… ω̃a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

a þm2
a

q
: ð59Þ

Therefore, lN ¼ P
N
a¼1 ð2na þ ω̃aÞ, so that the energy

spectrum is given by the expressions

En;fmag ¼
ℏ2

4

0
B@2nþN þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
B=ℏþ

XN
a¼1

ma

�
2

þ 4ω2
0

vuut

þ
XN
a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

a þm2
a

q 1
CA

2

−
B2 þ ℏ2N2

4
− ℏ2

XN
i¼0

ω2
i ;

ð60Þ

where n ¼ P
N
a¼1 na ¼ 0; 1;….4

3In the classical limit, ℏ → 0; ma; la → ∞, the eigenvalues
ℏma yield pφa

and ℏla yield
ffiffiffiffiffi
ca

p
.

4For the integer parameters na the hypergeometric function
(58) is reduced to Jacobi polynomials. We thank the referee for
this remark.
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Thus the spectrum of the quantum CPN-Rosochatius
system depends on N þ 1 quantum numbers. This is in full
agreement with the fact that this system has 3N − 1
functionally independent constants of motion (let us recall
that the spectrum of D-dimensional quantum mechanics
with Dþ K independent integrals of motion depends on
D − K quantum numbers. E.g, the spectrum of maximally
superintegrable system depends on the single (principal)
quantum number).
Let us also write down the explicit expressions for the

non-normalized wave functions and the CPN volume
element

Ψfnag;fmag ¼
C0

ð2πÞN=2

YN
a¼1

ξ
la−1
2

a ð1 − ξaÞ
ωaþ1

2 e{maφa

× Fð−na; la−1;þω̃aþ1 þ aþ na; la−1 þ a; ξaÞ

dvCPN ¼ 1

ð1þ y2ÞNþ1

YN
a¼1

yadyadφa; ð61Þ

where

ξa ¼
y2a

y2a þ y2aþ1

: ð62Þ

A. Reduction to quantum (spherical)
Rosochatius system

From the above consideration it is clear that, by
fixing the eigenvalues of Ĵaā ¼ p̂φa

, we can reduce the
Hamiltonians (48) and (49) to those of the quantum
(spherical) Rosochatius system, the classical counterpart
of which is defined by Eq. (32).
However, the quantization of (32) through replacing the

kinetic term by the Laplacian yields a slightly different
expression for the Hamiltonian

ĤRos ¼ −
ℏ2

4

�
1þ

XN
c¼1

y2c

��XN
a;b¼1

ðδab þ yaybÞ
∂2

∂ya∂yb

þ
XN
a¼1

�
2ya∂ya þ

g2a
y2a

�
þ g20

�
: ð63Þ

This is because the volume element on N-dimensional
sphere is different from that reduced from CPN :

dvSN ¼ 1

ð1þP
N
c¼1 y

2
cÞðNþ1Þ=2

YN
a¼1

dya; ð64Þ

and it gives rise to a different Laplacian as compared to that
directly obtained by reduction of the Laplacian on CPN .
As a result, the relation between wave functions of

the (spherical) Rosochatius system and those of the
CPN-Rosochatius system is as follows,

Ψsph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þP

N
c¼1 y

2
cÞðNþ1ÞQ

N
a¼1 ya

s
Ψ: ð65Þ

So in order to transform the reduced CPN-Rosochatius
Hamiltonian to the spherical one (63), we have to redefine
the wave functions presented in (61) and perform the
respective similarity transformation of the Hamiltonian.

VI. SUPERSYMMETRY

Let us briefly discuss the possibility of supersymmetri-
zation of the CPN-Rosochatius system, postponing the
detailed analysis for a separate study [32]. The CPN-
Rosochatius system belongs to the class of the so-called
“Kähler oscillators” [8,21] (up to a constant shift of the
Hamiltonian), and therefore, admits SUð2j1Þ (or, equiv-
alently, “weak N ¼ 4”) supersymmetric extension.
Namely, its Hamiltonian (24) can be cast in the form

HRos ¼
XN
a;b¼1

gābðπ̄aπb þ jωj2∂ āK∂bKÞ−
����XN
i¼0

ωi

����2

−
XN
i¼0

jωij2; ð66Þ

with

K ¼ logð1þ zz̄Þ − 1

jωj
XN
a¼1

ðωa log za þ ω̄a log z̄aÞ;

ω ¼ ω0 þ
XN
a¼1

ωa: ð67Þ

Here, as opposed to the previous sections, we assume that
ωi are complex numbers, i.e., we replaced

ωi → ωie{νi ; ð68Þ

with νi being arbitrary real constants.
The SUð2j1Þ superextension just mentioned is reduced

to that with N ¼ 4; d ¼ 1 Poincaré supersymmetry under
the conditions5

B ¼ 0; ω ¼
XN
i¼0

ωi ¼ 0: ð69Þ

One could expect that the second constraint corresponds to
the vanishing potential. However, it is not the case: looking
at the explicit expression for the Hamiltonian, one can see
that the parameter ω does not appear in denominators
anymore. Indeed, the second constraint above leads to the

5From the viewpoint of SUð2j1Þ mechanics, B is just the
parameter of contraction to N ¼ 4; d ¼ 1 supersymmetry [23].
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relation jω0j2 ¼ jPN
a¼1 ωaj2, which allows us to represent

the Hamiltonian (24) in the following form

HRos ¼
XN
a;b¼1

gābðπ̄aπb þ ∂ āŪ∂bUÞ −
XN
i¼0

jωij2; ð70Þ

where UðzÞ is the holomorphic function (“superpotential”)

UðzÞ ¼
XN
a¼1

ωa log za: ð71Þ

It is well known that the systems with such a Hamiltonian
admit the N ¼ 4 supersymmetric extension in the absence
of magnetic field (see, e.g., [33]). Explicitly, it amounts to
the following consideration.
Let us consider a ð2N:4NÞC-dimensional phase space

equipped with the symplectic structure (till the end of this
section we assume the summation over repeating indices)

Ω ¼ dπa ∧ dza þ dπ̄a ∧ dz̄a −
1

2
Rab̄cd̄η

c
αη̄

dαdza ∧ dz̄b

þ 1

2
gab̄Dηaα ∧ Dη̄bα; ð72Þ

where Dηaα ¼ dηaα þ Γa
bcη

b
αdzc with Γa

bc; Rab̄cd̄ being,
respectively, the components of connection and curvature
of the Kähler structure associated with the Fubini-Study
metrics (9), ηaα; η̄aα are Grassmann variables with additional
SUð2Þ indices α ¼ 1, 2. The lower- and upper-case SUð2Þ
indices are related by the antisymmetric matrix ϵαβ and its
inverse ϵαβ (ϵ12 ¼ ϵ21 ¼ 1).
The Poisson brackets defined by (72) are given by the

following nonzero relations and their complex conjugates:

fπa; zbg ¼ δba; fπa; ηbαg ¼ −Γb
acη

c
α;

fπa; π̄bg ¼ −Rab̄cd̄η
c
αη̄

dα; fηaα; η̄bβg ¼ gab̄δβα: ð73Þ

Straightforward calculations show that the following super-
charges and Hamiltonian obey the N ¼ 4; d ¼ 1 Poincaré
superalgebra

Qα ¼ πaη
aα þ {Ū;āη̄

aα; Q̄α ¼ π̄aη̄
a
α þ {U;aη

a
α; ð74Þ

HSUSY ¼ HRos −
1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ þ

{
2
U;a;bη

aαηbα

þ {
2
Ū;ā;b̄η̄

aαη̄bα∶ ð75Þ

fQα; Q̄βg¼ δαβ

�
HSUSYþ

XN
i¼0

jωij2
�
;

fQα;Qβg¼fQ̄α; Q̄βg¼fQα;HSUSYg¼fQ̄α;HSUSYg¼ 0;

ð76Þ

Hence, when the constraints (69) are imposed, we can
construct N ¼ 4 supersymmetric extension of the
CPN-Rosochatius system.
An interesting issue is the symmetries of the super-

symmetric system constructed. Writing down the explicit
expressions for the Hamiltonian and supercharges one can
be convinced that they are explicitly invariant under
Uð1Þ-transformations za→ e{κza;πa→ e−{κπa;ηaα→ e{κηaα

which are obviously canonical transformations. Hence,
one can easily construct the “supersymmetric counterpart”
ofUð1Þ generators (25). However, it is still unclear whether
hidden symmetries of the system one started with can be
lifted to its supersymmetric extension. A more detailed
analysis of these questions will be a subject of [32].
Let us emphasize that the restriction ω ¼ 0 can be

graphically represented as a planar polygon with the edges
jωij (see Fig. 1), which leads to the inequality

jωij ≤
X
j≠i

jωjj: ð77Þ

This implies that:
(i) For N ¼ 1 the constraint ω ¼ 0 uniquely fixes the

values of parameters in the case of CP1: ν0 ¼ −ν1
and jω0j ¼ jω1j. The latter property leads to the
appearance of discrete symmetry

z →
1

z
: ð78Þ

FIG. 1. Frequencies for N ¼ 1, 2, 3.
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(ii) For N ¼ 2 the above constraints amount to a
triangle, which fixes the parameters νa as follows

cosðν2 − ν0Þ ¼
jω1j2 − jω0j2 − jω2j2

2jω0jjω2j
;

cosðν1 − ν0Þ ¼
jω2j2 − jω0j2 − jω2j2

2jω0jjω1j
: ð79Þ

(iii) For N > 2 the parameters νa are not uniquely fixed,
so that we obtain a family ofN ¼ 4 supersymmetric
Hamiltonians depending on up to N − 1 parameters.

We observe that for any value of N at least one parameter νi
remains unfixed. But this does not affect our consideration
since such parameter can be absorbed into a redefinition of
fermionic variables.
Finally, note that the constraint

P
N
i¼1 ωi ¼ 0 also

appeared in constructing N ¼ 4 supersymmetric extension
of the SN-Rosochatius system [34], but with ωi being
real numbers. The above trick with complexification of
the parameters ωi is seemingly applicable to the SN-
Rosochatius system as well, hopefully giving rise to a less
restrictive form of the N ¼ 4 superextension of the latter.

VII. CONCLUDING REMARKS

In this paper we proposed the superintegrable CPN-
analog of Rosochatius and Smorodinsky-Winternitz sys-
tems which is specified by the presence of constant
magnetic field and is form-invariant under transition from
one chart of CPN to others accompanied by the appropriate
permutation of the characteristic parameters ωi. We showed
that the system possesses 3N − 1 functionally independent
constants of motion and explicitly constructed its classical
and quantum solutions. In the generic case this model
admits an extension with SUð2j1Þ supersymmetry, which is
reduced, under the special choice of the characteristic
parameters and in the absence of magnetic field, to the
“flat” N ¼ 4; d ¼ 1 Poincaré’ supersymmetry.
When all constants ωi are equal, the system is covariant

under the above transitions between charts and so becomes
globally defined on the whole CPN manifold. This covari-
ance implies N discrete symmetries,

za →
1

za
; zα →

zα

za
; with α ≠ a: ð80Þ

Moreover, in this special case the model always admits (in
the absence of magnetic field) N ¼ 4; d ¼ 1 Poincaré’
supersymmetrization because the inequality (77) is auto-
matically satisfied. The model with equal ωi can be also
interpreted as a model of N interacting particles with an
effective position-dependent mass located in the quantum
ring. This agrees with the property that, in the flat limit, the
model under consideration can be interpreted as an ensem-
ble of N free particles in a single quantum ring interacting

with a constant magnetic field orthogonal to the plane
(cf. [25–27]). Thus the property of the exact solvability/
superintegrability of the suggested model in the presence of
constant magnetic field (equally as of the superextended
model implying the appropriate inclusion of spin) makes it
interesting also from this point of view.
The obvious next tasks are the study of classical and

quantum SUð2j1Þ supersymmetric extension of the CPN

Rosochatius system [32], as well as the construction of its
Lax pair formulation.
Two important possible generalizations of the proposed

system are the following ones:
(i) An analog of the CPN-Rosochatius system on the

quaternionic projective spaceHPN in the presence of
BPST instanton.

Presumably, it can be defined by the Hamiltonian
(3) and the symplectic structure (12), in which πa, za

are replaced by quaternionic variables, and the last
term in (12) by terms responsible for interaction with
BPST instanton [35] (see also [36,37] and [9]). The
phase space of this system is expected to be
T�HPN × CP1, due to the isospin nature of instan-
ton. We can hope that this system is also super-
integrable and that an interaction with BPST
instanton preserves the superintegrability. On this
way we can also expect intriguing links with the
recently explored quaternion-Kähler deformations
of N ¼ 4 mechanics [38]. These models also admit
homogeneous HPN backgrounds.

(ii) CPN-analog of Coulomb problem.
Such an extension could be possible, keeping in

mind the existence of superintegrable spherical
analog of Coulomb problem with additionalP

ig
2
i =x

2
i potential, as well as the observation that

the (spherical) Rosochatius system is a real section
of the CPN-Rosochatius system.

One of the key motivations of the present study was to
derive the superintegrable CPN- and CN- generalizations of
rational Calogero model. Unfortunately, until now we
succeeded in constructing only trivial extensions of such
kind. We still hope to reach the general goal just mentioned
in the future.
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