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We consider particle production in 1þ 1 dimensional thermal anti–de Sitter space under the influence of
a constant electric field. The vacuum-persistence amplitude is given by a nonrelativistic tunneling instanton
once we interpret the system as being governed by an “equivalent” nonrelativistic Schrödinger equation.
Working in the Wentzel–Kramers–Brillouin approximation, we calculate the tunneling rate in anti–de Sitter
space at finite temperature and observe that the particle production rate is enhanced. Additionally, it is
observed that there is a critical temperature beyond which the production rate is affected by the thermal
environment. We claim this to be a new result for anti–de Sitter space in the semiclassical approximation.
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I. INTRODUCTION

In the “Consequences of Dirac’s theory of positrons” [1],
Heisenberg and Euler suggested that quantum vacuum
fluctuations can be uplifted to a “real” observable pair
of particles if given an external electric field of sufficient
strength. To the leading order, this pair production rate per
unit volume in flat spacetime at zero temperature is

Γ ∼ exp

�
−
πm2

qE

�
; ð1Þ

a result in quantum electrodynamics first computed by
Julian Schwinger [2]. These produced pairs constitute a
current that backreacts to destabilize the otherwise classi-
cally stable background electric field configuration. This
effect named after Schwinger has been studied extensively
in the literature (see Ref. [3] for a review) and active
searches are going on to observe the pair production with
high intensity lasers in laboratories [4]. Schwinger mecha-
nism also plays a key role in the study of quantum fields in
curved spacetime and gains a multitude of features with
gravity acting on the quantum fields in tandem with the
electric field. Such a setting is natural, for example, in the
quasi–de Sitter background during inflation (in the context
of inflationary magnetogenesis, nucleation of strings,

membranes, domain walls, and monopoles) [5,6], and in
pair creation due to charged black holes [7]. The Schwinger
effect has also been studied in anti–de Sitter (AdS) space
[8,9], and recently, forming an indispensable piece in
relating the “cosmic censorship” conjecture with the “weak
gravity” conjecture [10].
The particle production rate can be computed using

different formalisms and each has its own interpretation of
the effect. The one relevant for this work is reducing the
original field-theoretic problem to an equivalent tunneling
problem in point-particle quantum mechanics. The pro-
duction rate is then given by the Euclidean action computed
over the tunneling instanton, or equivalently, a Wentzel–
Kramers–Brillouin (WKB) quantum tunnelling probability
[11–16] to go across a barrier. At zero temperature, this
process is solely dictated by quantum tunneling and the
energy extracted from the background electric field.
However, in considering a thermal Minkowski background,
the effects of finite temperature and thermal fluctuations are
seen to enhance the pair creation process by also extracting
energy from the heat bath [17]. Consequently, there is a
critical temperature Tc where a first order phase transition
takes place such that below Tc the effect is completely
quantum dominated, and for T > Tc thermal fluctuations
enhance the production rate. Anti–de Sitter space presents a
similar case with a critical threshold field, Ec below which
there is no particle production at all due to the confining
nature of the AdS.
In this paper, we consider particle production in (1þ 1)

dimensional “thermal” AdS space under the influence of a
constant electric field. We use the instanton techniques as
described above by mapping the problem to a nonrelativ-
istic quantum tunneling problem. This procedure has been
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adopted in the computation of Schwinger effect in flat
spacetime as well as Hawking effect as described in
Refs. [15,16]. Working in the WKB approximation, we
calculate the tunneling rate in AdS space at finite temper-
ature and observe that the particle production rate is
enhanced similar to what is seen in thermal Minkowski
background with a critical temperature beyond which the
production rate is affected by the thermal environment. As a
precursor, we first illustrate the technique in flat back-
ground in Sec. II before applying it to AdS (Sec. III).

II. PARTICLE PRODUCTION
IN MINKOWSKI SPACE

A. At zero temperature

In (1þ 1) dimensional Minkowski space fR1;1∶ðT; XÞg,
the electromagnetic field tensor has only one independent
component and is, therefore, proportional to the alternating
tensor: Fμν ¼ −E ffiffiffiffiffiffi−gp

ϵμν, where E > 0 is a constant to be
identified with the electric field acting on the charged
quanta. A suitable choice of gauge potential for such a field
is given by A0 ¼ EX with foresight that the resulting
dynamical equation at the end will be time independent.
We consider a massive charged scalar field propagating on
the flat background coupled to the gauge field given by,

1ffiffiffiffiffiffi−gp ð∂μ − iqAμÞ½
ffiffiffiffiffiffi
−g

p
gμνð∂ν − iqAνÞ�Φ ¼ M2Φ; ð2Þ

where q > 0. Since the metric and the choice of gauge
potential is static in nature, the above equation admits a
solution of the form ΦðX; TÞ ¼ ψðXÞ expð−iωTÞ with
ω ≥ 0 so that we have for ψðXÞ:

−
1

2

d2ψ
dX2

þ 1

2
½M2 − ðωþ qEXÞ2�ψ ¼ 0: ð3Þ

The above equation is exactly a time-independent
Schrödinger equation determining the wave function of a
particle of unit mass moving in the potential,

VþðXÞ ¼
1

2
½M2 − ðωþ qEXÞ2�; ð4Þ

with vanishing energy eigenvalue. Alternatively, we could
have chosen a time-dependent gauge which leads to point-
particle quantum mechanics of a harmonic oscillator with a
time-dependent frequency. In that case, Schwinger pair
creation manifests itself in the overlap of solutions or field
modes in the asymptotic past and future referred to as in
and out states. However, in the case of a time-independent
gauge choice here, particle production occurs due to
transmission of a positively charged mode (identified with
the positron) through the barrier by tunneling. The neg-
atively charged mode (or the electron) also tunnels through
a potential barrier obtained by replacing q → −q to get

V−ðXÞ ¼ VþðXÞjq→−q ¼
1

2
½M2 − ðω − qEXÞ2�: ð5Þ

In this instanton picture, a virtual particle-antiparticle pair is
spontaneously created at a location where VþðXÞ ¼ V−ðXÞ
which is at X ¼ 0 (see Fig. 1) and tunnel through the
respective potentials to become a real pair. The “distance” a
particle has to traverse through the barrier is given by the
turning point of the barrier. For instance, the positron needs
to tunnel a distance X0 ¼ ðM − ωÞ=qE. Considering com-
pletely static solutions to Eq. (2) by taking ω ¼ 0, the
WKB tunneling amplitude for the positron is given by

Aþ ¼ exp

�
−
Z

X0

0

dX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VþðXÞ

p �
¼ exp

�
−
πM2

4qE

�
: ð6Þ

The probability for a positron to tunnel through is
simply the amplitude squared and hence Γþ ¼ jAþj2 ¼
exp ½−πM2=2qE�. For ω ¼ 0, the electron tunnels through
a barrier which is just a mirror image of the positron
potential. We, thus, have Γ− ¼ jA−j2 ¼ exp ½−πM2=2qE�.
Therefore, the total probability of pair creation is just,

X

V±(X)

X

V±(X)

FIG. 1. The tunneling potentials for the (scalar) electron and positron in flat spacetime at zero temperature (left) and finite temperature
(right). We see that in the case of finite temperature, with ω ≠ 0, an asymmetry exists in the potential which shifts it away such that the
point of nucleation ceases to be the point of symmetry.
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Γ ¼ ΓþΓ− ¼ exp

�
−
πM2

qE

�
; ð7Þ

which is the correct leading order rate for zero temperature
Schwinger mechanism apart from the prefactors.

B. At finite temperature

In the presence of a thermal bath, the virtual particle can
borrow a certain amount of energy from the bath and move
up the potential barrier. As a result, it needs to tunnel
through a “smaller” distance as compared to the zero
temperature case. For this we take, 0 < ω < M, where
this assumption ensures that thermal fluctuations never
fully dominate quantum tunneling as the charged quanta
can never acquire energy greater than its rest mass. With the
same potentials as in the previous case, that is, Eq. (4) but
with ω ≠ 0, the WKB tunneling amplitude for the positron
with X0 ¼ ðM − ωÞ=qE is given by

Aþ ¼ exp

�
−
Z

X0

0

dX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VþðXÞ

p �

¼ exp

�
−

M2

2qE
arccos

�
ω

M

�
þ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p

2qE

�
; ð8Þ

and corresponding quantum tunneling probability for the
positron is given by jAþj2. However, there is also another
probability associated with the process that the particle
excitation extracts out the energy “ω” from the bath which
is given by the Boltzmann factor. Therefore, the total
probability which is (quantumþ thermal) for the positron
to tunnel through is given by

Γþ ¼ exp

�
−βω −

M2

qE
arccos

�
ω

M

�
þ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p

qE

�
; ð9Þ

where β ¼ 1=T is the inverse temperature. The counterpart
of this for an electron is the same, that is, Γ− ¼ Γþ by
symmetry arguments. Therefore, the total probability for
the pair creation is given by

Γ ¼ ΓþΓ−

¼ exp

�
−2βω −

2M2

qE
arccos

�
ω

M

�
þ 2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p

qE

�
:

ð10Þ

We need to fix one last thing, that is, how much energy
does the pair extract from the bath? This is given by the
condition that the probability be maximized with respect to
the energy extracted from the bath, that is,

∂Γ
∂ω ¼ 0 ⇒ ω ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2
c

T2

r
; Tc ¼

qE
2M

: ð11Þ

This implies for temperatures T < Tc that the process is
solely dictated by quantum fluctuations and the heat bath
has no effect on the probability. However, for T > Tc, there
is a phase transition in the decay probability and the rate is
given by Eq. (10) along with Eq. (11) such that

ΓT>Tc
¼ exp

�
−
2M
Tc

arcsin
�
T2
c

T2

�
−
M
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2
c

T2

r �
ð12Þ

enhancing the pair production. The pair creation is assisted
by the thermal background, however, the process never
becomes purely thermal even at high temperatures [17].
With this setup in place, we are now in position to replace
flat spacetime with the AdS background.

III. PARTICLE PRODUCTION IN ANTI–DE
SITTER SPACE

We consider anti–de Sitter space in the global, static
coordinate system given by the metric:

ds2 ¼ −ð1þ x2=l2Þdt2 þ dx2

ð1þ x2=l2Þ ð13Þ

which covers the entire manifold with no pathological
issues. We choose to work in the static gauge again with
the potential A0 ¼ Ex and solve Eq. (2) taking an ansatz of
the form

Φðx; tÞ ¼ ψðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=l2

p e−iωt ð14Þ

so that the corresponding equation for the positron is,

−
1

2

d2ψ
dx2

þM2ð1þ x2=l2Þ þ 1=l2 − ðωþ qExÞ2
2ð1þ x2=l2Þ2 ψ ¼ 0:

ð15Þ

This is again equivalent to the time-independent Schrödinger
equation for a point-particle of unit mass with vanishing
energy eigenvalue, tunneling through a potential barrier
given by

VþðxÞ ¼
M2ð1þ x2=l2Þ þ 1=l2 − ðωþ qExÞ2

2ð1þ x2=l2Þ2 ð16Þ

provided 0 ≤ ω < M. The potential barrier for the electron,
V−ðxÞ, is obtained by the usual replacement of q → −q.
As noted previously, the virtual pair is instantaneously
created at the location where V−ðxÞ ¼ VþðxÞ, that is, at
x ¼ 0 following which the particles tunnel through their
respective barriers.
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A. At zero temperature

Keeping the analysis in line with that of previous
section that had flat spacetime, we look at the solutions
with ω ¼ 0 for the AdS background with zero temperature.
Considering first the tunneling of a positron at zero
temperature, we see that the turning point for VþðxÞ is at

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2l2 −M2

p : ð17Þ

With this, the WKB amplitude is given by

Aþ ¼ exp

�
−
Z

x0

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VþðxÞ

p �

¼ exp

�
−
πl
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2l2 þ 1=l2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2l2 −M2

q ��
:

ð18Þ

Again, by virtue of the symmetry in the potentials, that is
VþðxÞ ¼ V−ðxÞ for ω ¼ 0, the total probability for the pair
creation is given by,

Γ ¼ jAþj2jA−j2

¼ exp

�
−2πl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2l2 þ 1=l2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2l2 −M2

q ��

≃ exp

�
−2πl2

�
qE −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2 −M2=l2

q ��

¼ exp

�
−2πl2

�
qE −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2 − q2E2

c

q ��
ð19Þ

where in the penultimate step we assumed q2E2l4 ≫ 1.
The result matches the tunneling probability reported
previously in the literature [9]. The effect of replacing flat
spacetime with AdS brings in a critical electric field
qEc ¼ M=l below which there is no particle production
at all.

B. At finite temperature

We now consider a thermal anti–de Sitter background
which according to the previous analysis implies that we
need to take 0 < ω < M in the respective tunneling
potentials. With the potential Eq. (16), the quantum
WKB tunneling amplitude for the positron is given by

Aþ ¼ exp ½−Sþ� ¼ exp

�
−
Z

x0

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VþðxÞ

p �

¼ exp

�
−
Z

x0

0

dx
ð1þ x2=l2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð1þ x2=l2Þ þ 1=l2 − ðωþ qExÞ2

q �
: ð20Þ

where the turning point is

x0 ¼
−ωqEl2 þMl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2l2 −M2 þ ω2

p
q2E2l2 −M2

: ð21Þ

It is helpful to define the variables,

a ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M2

l2 þ ω2

l2 þ q2E2

q
− qEω

lðq2E2 − M2

l2 Þ
;

b ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M2

l2 þ ω2

l2 þ q2E2

q
þ qEω

lðq2E2 − M2

l2 Þ
;

γ ¼
ffiffiffi
a
b

r
; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1þ b2

s
;

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ 1Þðb2 þ 1Þ

p
− 1

2ðb2 þ 1Þ

s
; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α − β2

q
I1 ¼ −2 arctanðγÞ;

I2 ¼
1þ α

2σ

�
arctan

�
γ − β

σ

�
þ arctan

�
γ þ β

σ

��
;

I3 ¼
1 − α

4β

�
log

�
γ2 − 2βγ þ α

γ2 þ 2βγ þ α

��
;

to express the result of the integral in Eq. (20):

Sþ ¼ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q2E2 −

M2

l2

�s
½I1 þ I2 þ I3�: ð22Þ

The above result is completely consistent in the sense that
it reproduces (i) Eq. (6) in the limit ω → 0; l → ∞,
(ii) Eq. (10) in the limit ω ≠ 0; l → ∞, and (iii) Eq. (18)
in the limit ω → 0; 0 < l < ∞. Following the analysis in the
previous section, we now introduce the Boltzmann factor to
specify the extracted energy from the heat bath so that the
total tunneling probability for the positron is given by

Γþ ¼ e−βω−2Sþ :

By symmetry of the problem, the electron tunnels with the
same probability so that S− ¼ Sþ. Therefore the total pair
creation probability is given by

Γ ¼ ΓþΓ− ¼ e−2βω−4Sþ ð23Þ

The energy extracted from the heat bath to thermally assist
the process of tunneling is given by the condition that the
above probability be extremal, that is, ∂ωΓ ¼ 0. However, it
turns out that this condition leads to a complicated tran-
scendental equation forωwhich requires numerical analysis.
Therefore, to proceed analytically and in order to gain a
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qualitative insight, we expand the result of Eq. (22) in the
large AdS scale approximation, i.e., we assume that the AdS
scale “l” is larger than any other existing length scale in the
theory. Under such an approximation, we get

Sþ ¼
6M4 arctan

� ffiffiffiffiffiffiffiffi
M−ω
Mþω

q �
þ ωð2ω2 − 5M2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 − ω2

p
24l2q3E3

−

h
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 − ω2

p
− 2M2 arctan

� ffiffiffiffiffiffiffiffi
M−ω
Mþω

q �i
2qE

þO
�
1

l3

�
þ � � � ð24Þ

The above expression in conjunction with the condition
(23) yields

2ξ

qE
þ 2ξ3

3q3E3l2
¼ β; ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ω2

p
: ð25Þ

The above cubic equation has the solution:

ω2¼M2

−
ð ffiffiffi

23
p ðq3E3l2ð3βþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2þ16l2

p
ÞÞ2=3−222=3q2E2l2Þ2

4ðq3E3l2ð3βþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2þ16l2

p
ÞÞ2=3

:

ð26Þ

However, we need to satisfy the condition 0 < ω < M at all
times which gives an additional constraint

T > Tc; Tc ¼
3q3E3l2

2MðM2 þ 3q2E2l2Þ : ð27Þ

This is a new result in anti–de Sitter space in the semi-
classical approximation, and the temperature has an effect
on the particle production only beyond a certain critical
value similar to what we had for flat spacetime. Comparing
this with Eq. (11), we observe that in anti–de Sitter space,
temperature starts affecting the pair production rate at a
lower critical temperature as compared to flat spacetime.
Therefore the effect of curvature is to bring down the
temperature threshold for enhancement of pair production.
The total probability of pair production in hot anti–de Sitter
space is given by the set of Eqs. (22), (23) and (26), with
the condition in (27). In the event that 0 < T < Tc, the
probability is given by Eq. (19).

IV. DISCUSSION AND SUMMARY

In this paper we considered the issue of charged pair
production in thermal anti–de Sitter space. Though the
mathematical results derived herein are self-explanatory, a
few important comments are in order. To begin with, the
literature is unclear as to how nonrelativistic quantum

mechanics concretely arises from a relativistic theory
(see [18] and references therein). Our approach in this
paper is based on the crucial interpretation that an equiv-
alent Schrödinger equation can be used as a proxy for the
relativistic Klein-Gordon equation. Though conceptually
speculative, the interesting fact is that such an approach
precisely recovers the results for the Schwinger mechanism
in both Minkowski (in the absence/presence of a thermal
bath) as well as in anti–de Sitter space (for zero temper-
ature). Taking this forward we derived a novel result in hot
anti–de Sitter space. However, we would like to state that a
full blown quantum field theory calculation using thermal
field theory in anti–de Sitter space would be a complete
exercise. We reserve this issue for our future work.
Second, in this paper we limited ourselves to a charged

scalar field with a mass such thatM2 > 0. This is partly due
to the fact that in our semi classical approach and in the
limit of large AdS scale, we are concerned with vacuum
instability and production of “real" particles in AdS space
which have a positive mass squared. However, in anti–de
Sitter space, it well known that a scalar field with M2 < 0
albeit satisfying the Breitenlohner-Freedman bound [19] is
a stable solution. At this point it is unclear as to how would
our approach address this. Even in the absence of any
temperature, a charged scalar withM2 < 0 would probably
lead to complications as can be seen from Eq. (23) i.e., a
naive replacement of M2 → −M2 leads to nonsensical
results with probability violation. In fact, even in the
absence of any temperature effects it can easily be seen
that the production rate or the probability of pair production
[Eq. (19)] exponentially diverges as mass squared becomes
negative. This is an artifact of the semiclassical analysis
which misses out an additional −1=4 factor (see Ref. [9]).
In order to address the negative mass-squared fields, one
needs a full quantum field theoretic computation at finite
temperature which we reserve for our future work.
Additionally, we would like to note that mapping a

relativistic field theoretic problem to a tunneling calculation
in nonrelativistic quantum mechanics crucially depends
on the coordinate system being employed. The concerns
about the observer dependence of Schwinger effect are
discussed, for example, in Ref. [20] that investigates how
pair production is seen by different Lorentzian observers. If
we had employed Rindler coordinates (pertaining to a
noninertial observer) instead of global Minkowski ones to
study the effect in flat spacetime, the potential barrier
would have been different. Such a coordinate system also
has pathologies due to the presence of a horizon. It is, at
present, unclear as to how the tunneling approach would
work in such cases. This is another direction that is open for
investigation.
Lastly, by virtue of the AdS=CFT correspondence it

would be interesting to derive our results for anti–de Sitter
space using the boundary CFT. A qualitative picture can be
constructed as follows. Since we restricted ourselves to
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1þ 1 dimensions, the boundary CFTwould have operators
that depend only on the time-coordinate. It is well known
that the dual operator corresponding to a gauge field Aμ in
the bulk anti–de Sitter space is the current J μ in the CFT.
In our case since the CFT operators are purely time-
dependent, the current has the form J μðtÞ. In our present
work we took a gauge potential such that A1 ¼ 0; A0 ¼ Ex.
Therefore, the boundary value of A0 depends on the large
cutoff for the global AdS radial coordinate “x”. The
corresponding CFToperator is then J 0ðtÞ. It is well known
that in any quantum theory which has a time-dependent
nonstatic current/source, particles will be produced with the

probability Γ ∼ e−
R

jJ 0ðωÞj2dω, where J 0ðωÞ is the Fourier

transform of J 0ðtÞ. However, to holographically compute
the finer details of particle production in the absence/
presence of a temperature, one of course needs the full CFT.
We hope to make some progress regarding this in our
future work.
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