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We adapt the techniques of entanglement renormalization tensor networks to weakly interacting
quantum field theories in the continuum. A key tool is “quantum circuit perturbation theory,”which enables
us to systematically construct unitaries that map between wave functionals which are Gaussian with
arbitrary perturbative corrections. As an application, we construct a local continuous multiscale
entanglement renormalization ansatz (cMERA) circuit that maps an unentangled scale-invariant state
to the ground state of φ4 theory to one loop. Our local cMERA circuit corresponds exactly to one-loop
Wilsonian renormalization group (RG) flow on the spatial momentum modes. In other words, we establish
that perturbative Wilsonian RG on spatial momentum modes can be equivalently recast as a local cMERA
circuit in φ4 theory and argue that this correspondence holds more generally. Our analysis also suggests
useful numerical ansätze for cMERA in the nonperturbative regime.
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I. INTRODUCTION

Tensor networks have become a transformative tool for
numerically analyzing one-dimensional (1D) quantum
systems on the lattice, as well as exploring properties of
1D many-body states with area-law entanglement [1–9].
However, there are various obstructions to generalizing
tensor networks (i) to higher dimensions and (ii) to
continuum field theories. Tensor networks for higher-
dimensional lattices are computationally difficult to imple-
ment since accurate numerics can require an intractably
large number of tensor contractions, even for systems of
modest size [10]. On the other hand, the predominant
continuum tensor network cMPS (continuous matrix prod-
uct states) is useful for nonrelativistic systems in 1þ 1
dimensions, but fails for relativistic systems in 1þ 1
dimensions and also suffers from the “contraction problem”
in higher dimensions [11–14].
A promising tensor network architecture designed to

work both in higher dimensions and in the continuum is

called cMERA, the continuum analog of MERA (multi-
scale entanglement renormalization ansatz) [15]. cMERA
generates variational ansätze which have a hierarchical
pattern of entanglement across distance scales. The con-
struction of the cMERA state is inspired by spatial
renormalization group (RG) methods. Each layer of the
network composing the state corresponds to a step of
renormalization group flow.
For all of its promise, cMERA has only been constructed

for the ground states of free field theories which are
solvable using standard methods [15–18]. Even in the
context of mean field theory, cMERA has limited utility
over known methods [19].
In this paper, we take the first steps towards applying

cMERA to interacting field theories. In particular, we use
quantum circuit perturbation theory to construct a cMERA
for the ground state of φ4 theory to one loop in perturbation
theory. Remarkably, we can construct a spatially local
cMERA circuit which corresponds exactly to one-loop
Wilsonian RG on spatial momentum modes. We argue that
this equivalence between Wilsonian RG and spatially local
tensor networks holds more generally. This equivalence
addresses a crucial conceptual and technical gap between
momentum space and position space RG methods, whose
precise relationship was previously not known. Further, our
analysis provides a bridge between the analytic Wilsonian
techniques used in high energy physics for momentum space
RG and the algebraic tensor network techniques introduced
by quantum information theorists for real space RG.
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Our perturbative analysis of cMERA suggests numerical
cMERA ansätze for ground states of interacting theories,
which need not have weak coupling. We explore a
numerical ansatz in the Appendix.

II. CIRCUIT PERTURBATION THEORY

Before constructing cMERA circuits for weakly inter-
acting field theories, we need to gain facility with manipu-
lating quantum circuits for quantum field theories (QFTs).
Our core tool is quantum circuit perturbation theory, which
we summarize here. For a detailed user guide, see [20]. A
central question is, given two states of a quantum field
theory jΨ1i and jΨ2i which are each Gaussian with
arbitrary perturbative corrections, how do we systemati-
cally construct a unitary U such that UjΨ1i ¼ jΨ2i?
For concreteness, we restrict our attention to scalar field

theory in d dimensions. The canonical commutation
relations are ½ϕ̂ðx⃗Þ; π̂ðy⃗Þ� ¼ iδdðx⃗ − y⃗Þ. A Gaussian state
jΨi has a wave functional of the form

hϕjΨi ¼ N e−
1
2

R
ddx⃗ddy⃗ðϕðx⃗Þ−aðx⃗ÞÞbðx⃗;y⃗Þðϕðy⃗Þ−aðy⃗ÞÞ; ð1Þ

whereN is an overall normalization. Throughout the paper,
we will use N as a placeholder for normalization. We see
that the state is completely determined by its one- and two-
point correlation functions. We will be primarily interested
in translation- and rotation-invariantGaussian states—this
corresponds to states of the form in Eq. (1) for which
aðx⃗Þ ¼ const and bðx⃗; y⃗Þ ¼ bðjx⃗ − y⃗jÞ.
In scalar field theory, we can write any nonsingular

Hermitian operator O as

O ¼
X∞
n¼0

Xn
k¼0

Z
ddx⃗1 � � �ddx⃗ncðkÞn ðx⃗1;…; x⃗nÞSðkÞn ðx⃗1;…; x⃗nÞ;

ð2Þ

where all of the cðkÞn are real-valued functions or distribu-
tions, and

SðkÞn ðx⃗1;…; x⃗nÞ ¼ ϕ̂ðx⃗1Þ � � � ϕ̂ðx⃗kÞπ̂ðx⃗kþ1Þ � � � π̂ðx⃗nÞ þ H:c:;

ð3Þ

where 1 ≤ k ≤ n. In other words, fSðkÞn g generates all
operators in the theory. The quadratic operators, which

are generated by fSðkÞn gn≤2, have particularly nice proper-
ties: they form a (closed) Lie algebra and generate unitaries
which map Gaussian states to Gaussian states. In terms of
equations, if Q, Q0 are quadratic operators, then ½Q;Q0� is
also a quadratic operator. If jΨi is a Gaussian state, then
e−iQjΨi is also a Gaussian state.
Given two (translation- and rotation-invariant) Gaussian

states jΨG
1 i; jΨG

2 i, one can systematically find quadratic

operators Q such that e−iQjΨG
1 i ¼ jΨG

2 i. This systematic
construction is possible due to the technology of squeezed
coherent states, which leverages that quadratic operators
form a manageably small (closed) Lie algebra. By contrast,
given two non-Gaussian states, it is generally not possible
to systematically construct unitaries which map between
the states. This problem amounts to considering the equation
e−iOjΨ1i¼ jΨ2i for a generic O (as per Eq. (2)) with

undetermined cðkÞn ’s, and then finding cðkÞn ’s which satisfy
the equation.
Luckily, there is a tractable middle ground between the

Gaussian and non-Gaussian cases. Suppose we have some
small parameter ϵ, and that jΨ1i; jΨ2i are Gaussian up to
perturbative corrections in ϵ. Specifically, suppose that we
consider first order corrections in ϵ of the form

jΨ1i ¼ ð1 − iϵR1ÞjΨG
1 i; jΨ2i ¼ ð1 − iϵR2ÞjΨG

2 i; ð4Þ

where R1, R2 are generated by fSðkÞn gn≤N for some N,
meaning that R1, R2 do not contain products of ϕ̂’s and π̂’s
that exceed length N. The analysis that follows generalizes
to arbitrary orders in ϵ.
We will construct a unitary of the form U ¼ e−iðQþϵRÞ,

where R is generated by fSðkÞn gn≤N such that UjΨ1i ¼
jΨ2i þOðϵ2Þ. LetQ be a quadratic operator which satisfies
e−iQjΨG

1 i ¼ jΨG
2 i. Given jΨG

1 i; jΨG
2 i, we can construct

such a Q explicitly. Then, using various manipulations
of the Baker-Campbell-Hausdorff formula, we obtain

R ¼ iadQ
1 − eiadQ

R1 þ
iadQ

1 − e−iadQ
R2; ð5Þ

where the superoperator adA acts by adAB ¼ ½A;B�. Even
though Eq. (5) may appear unwieldy—when we expand out
the power series in the adQ operators, we find an infinite
sum of nested commutators—there is a crucial simplifica-
tion: the commutator of a quadratic operator with any

operator generated by fSðkÞn gn≤N yields another operator

which is still in fSðkÞn gn≤N . As a consequence, we can write
R above as R ¼ R0

1 þ R0
2, where R0

1; R
0
2 are each in

fSðkÞn gn≤N . Furthermore, given specific states jΨ1i; jΨ2i
which are translation and rotation invariant, we can
explicitly compute Q as well as R: namely, by explicitly
evaluating Eq. (5).
Said in a different way, manipulations of quadratic

operators are tractable because fSðkÞn gn≤2 forms a basis
for a (closed) Lie algebra. By contrast, nonquadratic

operators are harder to handle because fSðkÞn gn≤N for any
N > 2 does not form a basis for a closed Lie algebra, since
commutators of nonquadratic operators generically yield
operators with progressively longer products of ϕ̂’s and π̂’s.
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However, fSðkÞn gn≤2 ∪ fϵSðkÞn gn≤N does form a basis for a
closed Lie algebra to OðϵÞ, which enables us to evaluate
various sums of nested commutators [such as in Eq. (5)] in
closed form. At higher orders in ϵ, we would leverage the
fact that

fSðkÞn gn≤2 ∪ fϵSðkÞn gn≤N ∪ ⋃
m

l¼2

fϵlSðkÞn gn≤lðN−1Þ ð6Þ

forms a basis for a closed Lie algebra to OðϵmÞ.
In the next section, we construct a circuit from an

arbitrary scale-invariant, zero-mean, Gaussian wave func-
tional to the ground state of φ4 theory at one loop in the
perturbative coupling. In subsequent sections, we will
use this result to construct a local position space
cMERA which is equivalent to one-loop Wilsonian RG
on spatial momentum modes.

III. ONE-LOOP CIRCUIT FROM GAUSSIAN TO
GROUND STATE OF φ4 THEORY

It will be convenient for us to work in momentum space.
We choose Fourier conventions so that ½ϕ̂ðk⃗Þ; π̂ðp⃗Þ� ¼
iδdðk⃗þ p⃗Þ. The Hamiltonian for φ4 theory, with one-loop
Wilsonian renormalization on its spatial momentummodes,
is given by

HΛeu
1-loop ¼

1

2

Z
Λ
ddk⃗ðπ̂k⃗π̂−k⃗ þ ϕ̂k⃗ðk⃗2 þ e−2um̃2Þϕ̂−k⃗Þ

þ eðd−3Þuλ
4!

1

ð2πÞd

×
Z

Λ
ddk⃗1ddk⃗2ddk⃗3ϕ̂k⃗1

ϕ̂k⃗2
ϕ̂k⃗3

ϕ̂−k⃗1−k⃗2−k⃗3
; ð7Þ

where ϕ̂k ≔ ϕ̂ðk⃗Þ. The Hamiltonian is renormalized to
scale jk⃗j ¼ Λeu with −∞ < u ≤ 0, and m̃2 ¼ m2 þ δm2,
with m being the bare mass. The one-loop ground state
wave functional of HΛeu

1-loop is [21]

hϕjΨðΛeuÞi ¼ N e−G½ϕ�−e−2uδm2R1½ϕ�−eðd−3ÞuλR2½ϕ� þOðλ2Þ;
ð8Þ

where G½ϕ�, R1½ϕ�, R2½ϕ� are specified in the Appendix.
Next we introduce a reference Gaussian state jΨ0i,

namely,

hϕjΨ0i ¼ det
1
4ðΩ=πÞe−1

2

R
ddk⃗ϕk⃗Ωðk⃗Þϕ−k⃗ ; ð9Þ

which is translation and rotation invariant with zero mean.
We construct a unitaryU such thatUjΨ0i ¼ jΨðΛeuÞi þ

Oðλ2Þ. Our unitary is U ¼ exp ðiK2;0 þ iλðK2;1 þ K4ÞÞ
with

K2;0 ¼ −
Z

ddk⃗1ddk⃗2δðdÞðk⃗1 þ k⃗2Þg2;0ðk⃗1ÞSð1Þ2 ðk⃗1; k⃗2Þ;

K2;1 ¼ −
Z

ddk⃗1ddk⃗2δðdÞðk⃗1 þ k⃗2Þg2;1ðk⃗1ÞSð1Þ2 ðk⃗1; k⃗2Þ;

K4 ¼
Z Y4

i¼1

ddk⃗iδðdÞ
�X4

j¼1

k⃗j

�
ðgð1Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4Þ

× Sð1Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4Þ þ gð3Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4Þ
× Sð3Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4ÞÞ; ð10Þ

where the g2;0, g2;1, g
ð1Þ
4 , and gð3Þ4 kernels are specified in the

Appendix.
The unitary that we have constructed is not the unique

unitary satisfying UjΨ0i ¼ jΨðΛeuÞi þOðλ2Þ. For in-
stance, if we have any unitaries U1, U2 satisfying

U1jΨ0i ¼ jΨ0i þOðλ2Þ; ð11Þ

U2jΨðΛeuÞi ¼ jΨðΛeuÞi þOðλ2Þ; ð12Þ

then we have

U2UU1jΨ0i ¼ jΨðΛeuÞi þOðλ2Þ: ð13Þ

Therefore,U2UU1 is also a viable unitary for our purposes.
It is in fact possible to construct the most general unitary
mapping jΨ0i to jΨðΛeuÞi up to Oðλ2Þ corrections, but we
will not do so here. It will suffice to consider our particular
unitary U ¼ exp ðiK2;0 þ iλðK2;1 þ K4ÞÞ.

IV. cMERA FOR WEAKLY
INTERACTING FIELDS

cMERA is a variational ansatz for the ground states
of field theories. The ansatz, which lives in the UV, is
constructed by building up entanglement hierarchically
from an unentangled, scale-invariant IR state. Concretely,
consider the IR state jΩi which has the form

hϕjΩi ¼ N exp

�
−
1

2

Z
ddx⃗ϕðx⃗ÞMϕðx⃗Þ

�
ð14Þ

for some constant M. Notice that jΩi is separable (i.e.,
spatially unentangled) and is scale invariant with respect to
spatial dilatations, i.e., e−iuLjΩi ¼ jΩi, with L being the
spatial dilatation operator. The cMERA ansatz takes the form
of the path-ordered exponential

jΨcMERAi ¼ Ps exp

�
−i

Z
uUV

uIR

dsðKðsÞ þ LÞ
�
jΩi; ð15Þ

where KðsÞ is called the entangler, which contains free
parameters that we variationally optimize by minimizing
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hΨcMERAjHUVjΨcMERAi for some UV Hamiltonian. For
concreteness, we let uIR ¼ −∞ and uUV ¼ 0.
Equation (15) has a straightforward interpretation: KðsÞ
creates correlations at a distance scale ∼Λ−1 expð−sÞ for
−∞ < s ≤ 0. Or equivalently, in momentum space, KðsÞ
creates correlations at a momentum scale ∼Λ expðsÞ
for −∞ < s ≤ 0.
If we want to capture the correlations of jΨcMERAi in

Eq. (15) renormalized down to the momentum scale Λeu
(i.e., distance scale Λ−1e−u) for −∞ ≤ u ≤ 0, then we
would replace uIR with u.
Even though we have cast cMERA as a variational

ansatz, all previously known applications have been for the
ground states of free bosonic or free fermionic theories
[15–18]. The ground state of a free theory is a Gaussian
wave functional, and one can find KðsÞ exactly so that
jΨcMERAðΛÞi agrees with a free ground state in the UV.
One complication with computing KðsÞ for interacting

theories is that their RG flows are nontrivial, unless the
theory is a conformal field theory (CFT). Necessarily, KðsÞ
must encode information about the RG flow, so will have a
more complicated form vis-à-vis free theories.
In this section, we will use quantum circuit perturbation

theory to construct a local KðsÞ such that the corresponding
cMERA state agrees with the one-loop UV ground state
of φ4 theory. Additionally, our cMERA state will have
jΨcMERAðΛeuÞi equal with the one-loop Wilsonian renor-
malized ground state of φ4 theory at all intermediate RG
scales Λeu. This establishes a direct correspondence
between cMERA circuits with local entanglers, and
Wilsonian RG on spatial momentum modes.
Before proceeding to φ4 theory, we will first compute

KðsÞ for the ground state of a free massive scalar field
theory, such that jΨcMERAðΛeuÞi equals the Wilsonian
renormalized ground state at all intermediate RG scales.
This is distinct from previous work, which only required
that the cMERA state agree with a desired UV ground
state [15–18].
The exact Wilsonian renormalized Hamiltonian for a

massive scalar field theory is given by Eq. (7) with λ ¼ 0.
The ground state renormalized to scale Λeu is

hϕjΨ0ðΛeuÞi ¼ N e−
1
2

R
ddk⃗θð1−jk⃗j=ΛÞϕk⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2þe−2um2

p
ϕ−k⃗ ; ð16Þ

where θðzÞ is an analytic (and thus smooth) version of the
Heaviside step function, for instance, a sigmoid. Thus,
θð1 − jk⃗j=ΛÞ provides a smooth cutoff at jk⃗j ¼ Λ. (Recall
that when we perform Wilsonian RG down to scale Λeu,
we rescale the momenta so that the cutoff is set back
to Λ, and we also renormalize the fields to put the kinetic
term of the Hamiltonian in a canonical form.) Letting
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
in Eq. (14), we find that the desired

entangler is

KðsÞ ¼
Z

ddk⃗

�
1

4
θð1 − jk⃗j=ΛÞ − 1

8
log

�
k⃗2 þ e−2sm2

Λ2 þm2

�

×
jk⃗j
Λ

θ0ð1 − jk⃗j=ΛÞ
�
ðϕk⃗π−k⃗ þ πk⃗ϕ−k⃗Þ: ð17Þ

Our answer has several interesting features in position
space. The Fourier transform of 1

4
θð1 − jk⃗j=ΛÞ is a

function localized at the origin with width 1=Λ which
leads to correlations at scale Λes in the cMERA state. The

Fourier transform of − 1
8
logðk⃗2þe−2sm2

Λ2þm2 Þ jk⃗jΛ θ0ð1 − jk⃗j=ΛÞ is
localized at the origin with width 1=ðe−smÞ (i.e., the
inverse renormalized mass scale), but it has essentially
zero amplitude unless 1=m≲ Λ−1e−s. This result means
that we can only see the effect of the mass m of the UV
theory if we probe distance scales around ∼1=m or larger.
Probing shorter distance scales essentially only touches
massless modes.
Now we construct the entanglerKðsÞ for the ground state

of φ4 theory such that jΨcMERAðΛeuÞi equals the Wilsonian
renormalized ground state at all intermediate RG scales to
one loop. Recall that the desired ground state jΨðΛeuÞi is
given by Eq. (8). We find that the one-loop entangler can be
written as

KðsÞ ¼
Z

ddk⃗1ddk⃗2δðdÞðk⃗1 þ k⃗2Þf2;0ðk⃗1; sÞSð1Þ2 ðk⃗1; k⃗2Þ

þ λ

Z
ddk⃗1ddk⃗2δðdÞðk⃗1 þ k⃗2Þf2;1ðk⃗1; sÞSð1Þ2 ðk⃗1; k⃗2Þ

þ λeds
Z

ddkδðdÞðk⃗1 þ k⃗2 þ k⃗3 þ k⃗4Þ

× ðfð1Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4; sÞSð1Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4Þ
þ fð3Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4; sÞSð3Þ4 ðk⃗1; k⃗2; k⃗3; k⃗4ÞÞ; ð18Þ

where the kernels f2;0, f2;1, f
ð1Þ
4 , fð3Þ4 are given in the

Appendix. Although the expressions for the kernels are
somewhat unwieldy, they have several remarkable proper-
ties. Most importantly, some Fourier analysis shows that all
of the kernels in KðsÞ decay at worst exponentially in
position space, with decay constant ∼1=ðe−smÞ (i.e., the
inverse renormalized mass scale). More specifically, the
Fourier transform of each kernel decays at worst exponen-
tially in the distance jx⃗i − x⃗jj between any two spatial
position vectors x⃗i, x⃗j appearing in the kernel. The locality
of the kernels arises due to the poles of the massive
propagator, as well as the relativistic dispersion relation

for massive fields ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ e−2sm2

p
. (Here we have

renormalized the mass to momentum scale Λes.) The mass
terms shift the poles of the kernels off the real axis (or axes,
for the multidimensional integrals), so we can analytically
deform the contour of the Fourier transform to achieve
exponential decay in position space. We have plotted
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spatial slices of the kernels in Fig. 1 by taking Fourier
transforms into real space.
Our analysis implies that the entangler is exponentially

local in position space, and thus for the case at hand,
Wilsonian RG on spatial momentum modes can be reex-
pressed in terms of a local cMERA circuit to one loop in
perturbation theory. This creates a direct link between more
standard momentum space Wilsonian RG and cMERA
tensor networks. Since the exponential position space
locality of the kernels only depends on the pole structure
of the propagator and the relativistic dispersion relation for
massive fields, we expect analogous results to hold to
higher loops in φ4 theory, and for other massive theories.
For massless theories, the kernels will have a weaker decay
due to the altered pole structure of the propagator and the
relativistic dispersion relation for massless fields.
Our result forKðsÞ for φ4 theory has the property that the

mass-dependent parts of the entangler only “activate” at
distance scales greater than ∼1=m, which is analogous to
the free theory result above.

V. DISCUSSION

We have shown that we can perturbatively construct a
cMERA with a local entangler for the ground state of
weakly interacting φ4 theory. Furthermore, the cMERA can
be constructed to agree with Wilsonian RG on spatial
momentum modes. Our procedure is systematic and should
provide similar constructions for other QFTs. In particular,
we expect that cMERA kernels for other massive theories,
given by our procedure, will also be exponentially localized
in position space. Furthermore, we expect that cMERA

kernels for massless theories will also be localized in
position space, but not exponentially. Our calculations
motivate a numerical approach to cMERA, which does
not require fields to be weakly interacting (see the
Appendix).
There are several interesting future directions. First, it

would be interesting to perform higher-loop calculations,
and to generalize the results to fermionic theories [22] and
gauge fields. One can also compute the cMERA circuit for
weakly interacting CFTs like the Wilson-Fisher fixed point.
It may also be possible to generalize our perturbative
techniques to many-body spin systems, along the lines
of [23].
Since tensor networks are intrinsically tied with entan-

glement properties of the quantum states they generate, a
detailed study of the entanglement properties of weakly
interacting cMERA circuits may yield new insights. It
would also be interesting to understand the connection to
“flow equations” [24–26] and various generalizations of
holography [27–30]. One could also explore complexity for
weakly interacting field theories, along the lines of [31,32].
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APPENDIX

1. Kernels for one-loop entangler

Here we specify some details of our analysis at one loop.
The parameters and kernels in the one-loop ground state
given in Eq. (8) are

m̃2 ¼ m2 þ λ

2

Z
Λ

Λeu

ddk⃗
ð2πÞd

1

k⃗2 þm2
≕m2 þ δm2; ðA1Þ

G½ϕ� ¼ 1

2

Z
Λ
ddk⃗ϕk⃗ωkϕ−k⃗; ðA2Þ

R1½ϕ� ¼
1

4

Z
Λ
ddk⃗

1

ωk
ϕk⃗ϕ−k⃗; ðA3Þ

R2½ϕ� ¼
1

16

Z
Λ
ddk⃗

1

ωk

�Z
ddq⃗
ð2πÞd

1

ωk þ ωq

�
ϕk⃗ϕ−k⃗ ðA4Þ

þ 1

24

1

ð2πÞd
Z

Λ ddk⃗1ddk⃗2ddk⃗3
ωk1 þ ωk2 þ ωk3 þ ω−k⃗1−k⃗2−k⃗3

× ϕk⃗1
ϕk⃗2

ϕk⃗3
ϕ−k⃗1−k⃗2−k⃗3

; ðA5Þ

with ωk ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ e−2um2

p
.

The unspecified kernels g2;0, g2;1, g
ð1Þ
4 , and gð3Þ4 in Sec. III

are given below. Defining

Gj ≔ 2ðg2;0ðk⃗1Þ− g2;0ðk⃗4Þ þ ð−1Þjþ1
2 ðg2;0ðk⃗2Þ þ g2;0ðk⃗3ÞÞÞ;

g̃ðjÞ4 ≔
e−Gj − 1

Gj
gðjÞ4 ; j¼ 1;3; ðA6Þ

the kernels are

g2;0 ¼
1

4
logðΩðk⃗1Þ=ωk1Þ; ðA7Þ

g2;1 ¼ −
1

ω2
k1

�
e−2uðδm2=λÞ

8

þ eðd−3Þu

32

1

ð2πÞd
Z

ddk⃗2
1

ωk1 þ ωk2

�
; ðA8Þ

g̃ð1Þ4 ¼ 1

96

eðd−3Þu

ð2πÞd
1

ωk2ωk3ωk4ðωk1 þωk2 þωk3 þωk4Þ
; ðA9Þ

g̃ð3Þ4 ¼ 1

32

eðd−3Þu

ð2πÞd
1

ωk4ðωk1 þ ωk2 þ ωk3 þ ωk4Þ
: ðA10Þ

Our desired ground state jΨðΛeuÞi is given by
Eq. (8), with the parameters and kernels specified in
Eqs. (A1)–(A4). Letting

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
þ λ

�
1

2
ðδm2=λÞ 1

M

−
4

ð2πÞd
Z

Λ
ddq⃗

1

MðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
Þ

�
ðA11Þ

in Eq. (14), the one-loop entangler is given in Eq. (18),
where f2;0, f2;1 are

f2;iðe−uk⃗; uÞ ¼
d
du

½θð1 − jk⃗j=ΛeuÞg2;iðe−uk⃗; uÞ� ðA12Þ

for i ¼ 0, 1, and fð1Þ4 , fð3Þ4 are

fðjÞ4 ðk⃗1; k⃗2; k⃗3; k⃗4; uÞ ¼ e−ðdþ1Þu
�
eu
�
d −

∂F jðs; uÞ
∂u

�
g̃ðjÞ4 ðk⃗1; k⃗2; k⃗3; k⃗4; uÞ − eu

X4
j¼1

k⃗j ·
∂
∂k⃗j

g̃ðjÞ4 ðk⃗1; k⃗2; k⃗3; k⃗4; uÞ

þ eu
∂
∂u g̃

ðjÞ
4 ðk⃗1; k⃗2; k⃗3; k⃗4; uÞ − g̃ðjÞ4 ðk⃗1; k⃗2; k⃗3; k⃗4; uÞ

X4
l¼1

jk⃗lj
Λ

θ0ð1 − jk⃗pj=ΛÞ
θð1 − jk⃗lj=ΛÞ

�Y4
p¼1

θð1 − jk⃗pj=ΛÞ

ðA13Þ
for j ¼ 1, 3. Here F 1ðs; uÞ and F 3ðs; uÞ are defined by

F jðs; uÞ ≔ 2

Z
u

s
dtðf2;0ðe−tk⃗1; tÞ − f2;0ðe−tk⃗4; tÞ þ ð−1Þjþ1

2 ðf2;0ðe−tk⃗2; tÞ þ f2;0ðe−tk⃗3; tÞÞÞ:
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2. Lessons for numerics

The ultimate goal of cMERA is to provide a robust
numerical ansatz for the ground state of an interacting
quantum field theory. We have focused on developing
machinery for perturbative calculations to bring cMERA
into the new territory of interacting field theories, albeit
weakly interacting. However, we can use insights from our
calculations to construct an ansatz which may be viable for
numerical variational calculations.
We construct an entangler

KðsÞ ¼
X
j1

Z
1=Λ

ddx⃗1fj1ðx⃗1; uÞOj1ðx⃗1Þ

þ
X
j2

Z
1=Λ

ddx⃗1ddx⃗2fj2ðx⃗1; x⃗2; uÞOj2ðx⃗1; x⃗2Þ

þ � � � þ
X
jn

Z
1=Λ

ddx⃗1 � � � ddx⃗nfjnðx⃗1;…; x⃗n; uÞ

×Ojnðx⃗1;…; x⃗nÞ;

where the position space integrals are cutoff from below at
scale 1=Λ. We take fi1 ;…; fin to be functions of a specified
form, but with undetermined parameters that we can
tune and optimize. We approximate the cMERA circuit
Ps exp ð−i

R
0
uIR

dsðKðsÞ þ LÞÞ by

½e−iΔuðKðuIRÞþLÞe−iΔuðKðuIRþΔuÞþLÞ � � � e−iΔuðKð0ÞþLÞ�T;
ðA14Þ

where Δu ≔ −uIR=N for some positive integer N, and
½� � ��T denotes that we truncate the terms inside the bracket
at order OððΔuÞTÞ. Our cMERA ansatz is

jΨcMERAi ≔ ½e−iΔuðKðuIRÞþLÞe−iΔuðKðuIRþΔuÞþLÞ � � �
× e−iΔuðKð0ÞþLÞ�T jΩi; ðA15Þ

which depends on the functions fi1 ;…; fin . To utilize this
ansatz, we consider a UV Hamiltonian HUV and perform
the numerical minimization

min
fi1 ;…;fin

hΨcMERAjHUVjΨcMERAi
hΨcMERAjΨcMERAi

; ðA16Þ

where the denominator is required since jΨcMERAi is not
normalized as given. Our calculations suggest that a good
way of parametrizing the fi1 ;…; fin is in terms of sine-
Gaussian wavelets, which only depend on the differences
of coordinates jx⃗i − x⃗jj. For instance, we might parametrize
a kernel fðx⃗1; x⃗2Þ by

fðx⃗1; x⃗2; faj; bj; cj; dj;ϕjgÞ
¼

X
j

aje
−b2j jx⃗1−x⃗2j2þcjjx⃗1−x⃗2j cosðdjjx⃗1 − x⃗2j þ ϕjÞ;

which is the form of the sum of the real parts of Gabor
wavelets. A kernel fðx⃗1; x⃗2; x⃗3; x⃗4Þ might be parametrized
similarly by

fðx⃗1; x⃗2; x⃗3; x⃗4; faj;Bj; cj;dj;ϕjgÞ
¼

X
j

aje−x
TBjxþcj·x cosðdj · xþ ϕjÞ;

where x≔ ðjx⃗1− x⃗2j; jx⃗1− x⃗3j; jx⃗1− x⃗4j; jx⃗2− x⃗3j; jx⃗2− x⃗4j;
jx⃗3− x⃗4jÞ. Here Bj is a 6 × 6 matrix of parameters, and
cj;dj;ϕj are all six-dimensional vectors of parameters. For
non-CFTs, the parameters in the two equations above can
depend on u and thus have nontrivial dependence on the
distance scale.
We envision that by parametrizing the kernels fi1 ;…; fin

in terms of appropriate sine-Gaussian wavelets, it should be
possible for cMERA to become a useful variational method
for the ground states of CFTs as well as regular QFTs
(for which there are additional parametric dependencies in
the kernels). In particular, the integrals and gradient descent
procedure required to minimize

hΨcMERAjHUVjΨcMERAi=hΨcMERAjΨcMERAi

over the parameters of sine-Gaussian wavelets (or similar
such wavelets) can be performed efficiently.
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