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We investigate the Becchi-Rouet-Stora-Tyutin (BRST) formalism for gauge theories on spherically
symmetric black hole spacetimes, with or without a cosmological constant (Λ ≥ 0). This is illustrated
through the example of scalar electrodynamics. We first demonstrate that the horizons contribute additional
surface terms to the Gauss law constraint of the theory when gauge transformations are not required to
vanish on the horizons. We then consider the BRST invariant path integral including these surface terms
following the Hamiltonian BRST formalism. We fix a radiationlike gauge which involves null components
of the electromagnetic field at the horizons. We find that the presence of the surface terms in the constraint
forces the ghost and gauge fixing actions to include additional terms at the horizons. The null combination
of the gauge fields at the horizons is shown to modify the ghost number charge of the theory through
additional terms at the horizons. We also demonstrate how one can construct a gauge-fixing fermion which
generates its own nilpotent symmetry transformations, called co-BRST transformations, that leave the
theory invariant. The BRST and co-BRST transformations are further used to identify dressed (gauge
invariant) fields of theory, whose dressings are affected by the presence of Killing horizons. We conclude
with a discussion of potential applications of our results in soft limits and thermal field theories on black
hole backgrounds.
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I. INTRODUCTION

Gauge field theories play a central role in our under-
standing of interactions between elementary particles. The
reasons behind their usefulness as quantum field theories
valid to very short distances are renormalizability and
unitarity. The Becchi-Rouet-Stora-Tyutin (BRST) sym-
metry [1,2] provides a very convenient tool for verifying
these properties of a gauge theory. While any theory with a
Hermitian Hamiltonian operator is necessarily unitary, a
gauge field theory has redundant degrees of freedom
(d.o.f.) which have to be eliminated by gauge fixing.
Apart from a few exceptions, gauge-fixing terms introduce
states of negative norm into the theory, which in turn must
be eliminated by the introduction of ghost fields. A test of
unitarity of a gauge theory is to verify if the action,
including the gauge-fixing and ghost terms, is invariant
under BRST symmetry. The corresponding conserved
charge QBRST is nilpotent and defines a cohomology on
the Fock space of the theory, leading to a consistent
separation of physical and unphysical states, and the theory
is unitary on the physical subspace. Since the redundancy

of gauge theories is manifested in the constraints, one way
of constructing the BRST charge is to start with the
constrained Hamiltonian of the theory and introduce ghost
fields and their conjugate momenta as Lagrange multipliers
for the constraints in the BRST charge [3,4]. In this paper
we follow this route for gauge theories on black hole
spacetimes, paying close attention to the effect of horizons.
It is known that the presence of spatial boundaries on

the manifold can significantly modify the dynamics and
quantization of gauge theories. However, the consequences
on gauge fields arising from spatial and null boundaries can
significantly differ due to the properties of gauge fields
and the underlying symmetries of these surfaces. For
instance, it has been recently understood that the infinite-
dimensional symmetry groups of gauge and gravitational
fields at null infinity I on asymptotically flat spacetimes
imply the existence of an infinite number of soft charges on
the sphere at null infinity [5–7]. Of central importance to
these results are the allowed nonvanishing gauge param-
eters which depend only on the angular variables. The
presence of soft charges on the sphere at null infinity, along
with the requirement of charge conservation, has been used
to argue that soft electromagnetic and gravitational hairs
should also exist on the horizons of black holes on
asymptotically flat backgrounds [8,9]. These results have
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further motivated the investigation of conserved charges
and currents on null surfaces in general [10–12]. Thus
gauge and gravitational fields, or more generally con-
strained field theories, might provide further insight into
our understanding of black holes.
Constrained field theories can be understood within

the well established Dirac-Bergmann and BRST formal-
isms. Ordinarily in the case of curved backgrounds with
spatial boundaries, surface terms are introduced in the
Hamiltonian to provide constraints without any surface
contributions [13–15]. This is consistent with the require-
ment that gauge parameters vanish at spatial infinity. More
generally, the regularity of fields, including gauge fields,
can be invoked to fix the parameters of gauge trans-
formations at spatial boundaries [16–18]. As a conse-
quence, the constraints of the theory involve no
corrections from the boundary and any surface terms which
arise from the Dirac-Bergmann formalism are identified
with additional boundary conditions which must be
imposed on the fields [19–21].
In the case of BRST invariant actions on manifolds with

spatial boundaries, boundary conditions on the gauge fields
imply a general class of boundary conditions on the ghosts
in order to ensure the BRST invariance of the theory [22–
25]. There have also been recent considerations of spatial
bounding surfaces within the manifold, as in the case of
entangling surfaces used to investigate the entanglement
entropy. While the consideration of edge modes and
boundary conditions on the gauge fields have important
implications on entanglement entropy calculations [26–32],
in all known cases with spatial boundaries the constraints of
gauge theories are not modified by the presence of spatial
boundaries.
The situation is different for Killing horizons, such as

black hole event horizons or cosmological horizons. These
are not physical boundaries even though the (timelike)
Killing vector field becomes null on these 3-surfaces.
Specifically, this implies that fields need not be set to zero
on horizons, and therefore the parameters of gauge trans-
formations need not vanish on these “null boundaries” as
they do on spatial boundaries. In the case of null and spatial
infinities, which represent the boundaries of a compactified
manifold, we can however identify fall-off conditions on the
fields defined on the background which can help restrict the
behavior of gauge fields there. This is not the case for
Killing horizons, which can represent globally defined null
surfaces on black hole backgrounds. This includes the case
of black hole de Sitter backgrounds, where the black hole
event horizon and cosmological horizon are finitely located
within the global manifold. As such, we cannot a priori
impose any conditions on gauge fields at Killing horizons.
We can only insist that gauge invariant scalars, such as those
appearing in the stress tensor, are finite at the horizons.
The finiteness of gauge-invariant scalars and the arbi-

trariness of gauge parameters at the horizons served as the

basis of our recent work on the constrained dynamics of
field theories on curved backgrounds with Killing horizons
[33,34]. Using the Dirac-Bergmann formalism, it was
shown there that the Gauss law constraint of gauge theories
gets additional surface contributions from the horizons of
the background. This modifies the charges and also allows
for interesting gauge fixing choices involving surface terms
at the horizons. In this paper, we continue our investigation
of constrained field theories on curved backgrounds with
horizons, now using the Hamiltonian BRST formalism. In
particular, using the example of scalar electrodynamics, we
will investigate the effect of horizons on interacting gauge
theories. We will find that like the Gauss law constraint, the
BRST charge will also pick up a horizon contribution.
While we do not consider all possible implications of our
results in this paper, we will construct a co-BRST operator
and use the invariance under BRST and co-BRST to
identify dressed fields as in [35]. In our work, the spacetime
is treated as a fixed background; we have not considered
gravitational constraints.
We first demonstrate, using the Dirac-Bergmann formal-

ism, that the Gauss law constraint of the theory receives
additional surface contributions from the black hole hori-
zon and also from the cosmological horizon, if it is present.
We then extend the phase space and consider the
Hamiltonian BRST formalism for the theory on spherically
symmetric backgrounds with horizons. The BRST charge
inherits the horizon terms which are present in the Gauss
law constraint of the theory. The horizon terms in the
Gauss law constraint ensure that BRST transformations
have their usual expressions on curved backgrounds with-
out boundaries. However, the BRST transformations
which we derive also act on fields at the horizons. Thus
in general, we require a gauge with surface terms to fix the
theory at the horizons of the spacetime. For fixing the
gauge, we use a modified radiation gauge which include
null components of the electromagnetic field at the hori-
zons. This choice leads to surface integrals at the horizons
in the BRST invariant action and a ghost number charge
which involves additional terms from the horizons of the
background.
The gauge fixing fermion in the Hamiltonian BRST

formalism can be chosen such that it is a generator of a new
set of nilpotent symmetry transformations, different from
the BRST transformations, which leave the theory invari-
ant. These are known as co-BRST transformations, which
have been considered for scalar electrodynamics in flat
spacetime [35,36]. Invariance under both BRST and co-
BRST transformations help identify dressed scalar fields as
physical fields in flat spacetime. In the context of the
present work, we find an additional contribution to the
dressing arising from the horizons. We conclude our paper
with a discussion on the potential implications of our
results on soft limits at the horizons of black holes and
thermal field theories on black hole spacetimes.
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The organization of our paper is as follows. In Sec. II we
set up our notations and conventions for gauge theories on
spherically symmetric backgrounds with horizons. In
Sec. III we consider scalar electrodynamics on spacetimes
with horizons and show that the Gauss law constraint has to
include an additional surface term. We also discuss con-
sistent gauge fixing choices which involve surface terms
at the horizons, to be used in the Hamiltonian BRST
formalism. In Sec. IV, we describe the derivation of the
BRST path integral from the Hamiltonian and derive the
BRST invariant action in a gauge which involve null
components of the gauge field at the horizons. We
show that the ghost number charge of the theory in this
gauge involves additional terms at the horizons of the
background.
In Sec. V, we define a gauge fixing fermion which

generates nilpotent co-BRST transformations that leave the
theory invariant. The BRST and co-BRST transformations
are used to identify the dressing of scalar fields of the
theory on backgrounds which are not asymptotically flat. In
Sec. VI, we describe how our results could be used to
further investigate infrared limits and thermal gauge the-
ories on black hole backgrounds.

II. GEOMETRIC FRAMEWORK

We begin by considering some essential preliminaries
needed for the remaining sections. The BRST construction
will be carried out on a static, spherically symmetric and
torsion-free manifold M endowed with at least one
horizon. In other words, we only assume that the spacetime
possesses a timelike Killing vector field ξa normalized as
ξaξa ¼ −λ2, which satisfies

ξ½a∇bξc� ¼ 0: ð2:1Þ

It follows that there exists a spacelike hypersurface Σwhich
is everywhere orthogonal to ξa. The horizon is defined by
ξa becoming null, λ ¼ 0. For an asymptotically flat or anti-
de Sitter space, Σ is the region “outside the horizon,” while
for backgrounds with a positive cosmological constant,
such as static de Sitter black hole spacetimes, Σ is the
region “between the horizons.”
The induced metric hab and projection operator hab on Σ

are given by

hab ¼ gab þ λ−2ξaξb; hab ¼ δab þ λ−2ξaξb; ð2:2Þ

leading to the following expression for the determinant of
spacetime metric

ffiffiffiffiffiffi
−g

p ¼ λ
ffiffiffi
h

p
: ð2:3Þ

We will denote the Killing horizons of the spacetime as H.
The intersection of H with Σ is topologically a 2-sphere

(or the union of two 2-spheres, if there is a cosmological
horizon) with an induced metric σab which can bewritten as

σab ¼ hab − nanb; ð2:4Þ

where na is the outward (inward) pointing unit spatial
normal to the inner (outer) horizon, which points into Σ and
satisfies nana ¼ 1. We will also refer to these 2-spheres as
the “horizon” and write them as ∂Σ. Note that ∂Σ is not a
physical boundary space in any sense, fields or their
functions do not need to vanish or diverge there in general.
In the context of gauge theories, we only require gauge
invariant scalars constructed out of the fields to be finite
on ∂Σ.
If we need to refer to H, which is of course null, we will

call it the spacetime horizon. In this paper we will also
make use of the null normals of H, defined in spacetime.
On the spherically symmetric backgrounds we are consid-
ering, we can define the two null normals la and ka in terms
of the normalized timelike Killing vector field λ−1ξa and
the unit spatial normal na to the spatial sections of the null
hypersurface,

la ¼
1ffiffiffi
2

p ðλ−1ξa þ naÞ; ka ¼
1ffiffiffi
2

p ðλ−1ξa − naÞ: ð2:5Þ

For this choice of the null normals, we find that la and ka
satisfy

lala ¼ 0 ¼ kaka; laka ¼ −1; ð2:6Þ

and we can write the metric on the null hypersurface as

σ̃ab ¼ gab þ lakb þ lakb: ð2:7Þ

These expressions hold for all null hypersurfaces of the
background, including H.
The BRST formalism requires fields which belong to the

Grassmann algebra, of both even and oddGrassmann parity.
Denoting Grassmann parity by ϵ, we say that the fieldΦA is
“even” when ϵΦA

¼ 0 (mod 2) and that it is “odd” when
ϵΦA

¼ 1 (mod2). Lagrangians andHamiltonianswill always
be an even functional of the fields. Because Grassmann
parity is additive for composite fields, given any two
functionals of the fields FðΦAÞ and GðΦAÞ, we have

FG ¼ ð−1ÞϵFϵGGF: ð2:8Þ

Due to the presence of odd Grassmanian fields, the
derivatives of functionals have to be handled carefully.
The derivative of a functional FðΦAÞ of a field ΦA can be
written in two possible ways

either
δLF
δΦA

; or
δRF
δΦA

; ð2:9Þ
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where δL
δΦA

and δR
δΦA

denote the left and right functional
derivatives with respect to ΦA, respectively. For the left
functional derivative δL

δΦA
, we vary F with respect to ΦA,

with δΦA moved to the extreme left using Eq. (2.8) and then
deleted. Likewise the right functional derivative δR

δΦA
means

that F is varied with respect to ΦA, with δΦA moved to the
extreme right and then deleted. These derivatives are
identical when the field ΦA is even. In the following,
functional derivatives will always be taken to mean “left”
unless specified otherwise.
The action functional for N fields ΦA, A ¼ 1;…; N, is

given by the time integral of the Lagrangian L

S½ΦA�¼
Z

dtL¼
Z

dt
Z
Σ

dVxLðΦAðxÞ;∇aΦAðxÞÞ; ð2:10Þ

where dVx is the volume element on Σ, and
LðΦAðxÞ;∇aΦAðxÞÞ is the Lagrangian density. The
Lagrangian density can be written in terms of the “spatial”
and “temporal” derivatives of the fields,

L≡ LðΦAðxÞ;DaΦAðxÞ; _ΦAðxÞÞ; ð2:11Þ

where DaΦA ¼ hba∇bΦA are the Σ-projected derivatives of
the fields ΦA, and _ΦA are their time derivatives, defined as
their Lie derivatives with respect to ξ,

_ΦA ≔ £ξΦA: ð2:12Þ

The momentaΠA canonically conjugate to the fieldsΦA are
defined as

ΠA ¼ δL

δ _ΦA

; ð2:13Þ

where the functional derivative in this definition is taken on
the hypersurface Σ, i.e., it is an “equal-time” functional
derivative, defined as

δΦAðx⃗; tÞ
δΦBðy⃗; tÞ

¼ δBAδðx; yÞ ¼
δ _ΦAðx⃗; tÞ
δ _ΦBðy⃗; tÞ

: ð2:14Þ

The δðx; yÞ in Eq. (2.14) is the three-dimensional covariant
delta function defined on Σ,

Z
Σ
dVyδðx; yÞfðy⃗; tÞ ¼ fðx⃗; tÞ: ð2:15Þ

Given a Lagrangian L we can construct the canonical
Hamiltonian through the Legendre transform

HC ¼
Z
Σ

dVxðΠA _ΦAÞ − L: ð2:16Þ

The generalized Poisson bracket for two functionals
FðΦA;ΠAÞ and GðΦA;ΠAÞ is defined as

½F;G�P ¼
Z

dVz

�
δRF

δΦAðzÞ
δLG

δΠAðzÞ −
δRF

δΠAðzÞ
δLG

δΦAðzÞ
�
:

ð2:17Þ

In accounting for Grassmann fields, the generalized
Poisson bracket reduces to a commutator when any one
of the fields is even and an anticommutator when both
fields are odd. We will henceforth refer to this bracket
simply as the Poisson bracket. With the choice of FðxÞ ¼
ΠBðx⃗; tÞ and GðyÞ ¼ ΦAðy⃗; tÞ, we recover the canonical
relation between the fields and their momenta

½ΠBðx⃗; tÞ;ΦAðy⃗; tÞ�P ¼ −δBAδðx; yÞ: ð2:18Þ

The time evolution of any functional of the fields can
also be determined from its Poisson bracket with the
Hamiltonian.

_FðxÞ ¼ ½FðxÞ; HC�P: ð2:19Þ

Using the above definitions, we can now consider
Hamiltonian formalisms for constrained field theories on
spherically symmetric backgrounds with horizons. There
exist several excellent textbooks and reviews which cover
these topics (see, for example, [4,37–40] for the Dirac-
Bergmann formalism and [3,4] for the Hamiltonian BRST
approach), and we will not review them here.

III. SCALAR ELECTRODYNAMICS

Before proceeding to the Hamiltonian BRST treatment
in the next section, we will first need to identify all the
constraints of the theory using the Dirac-Bergmann for-
malism in order to define the BRST charge operator. The
procedure will follow the standard treatment in [4,37–40].
In the case of scalar electrodynamics, the results are simply
curved spacetime generalizations of those known in flat
spacetime, with the exception of the form of the Gauss law
constraint. As promised earlier, we will find that the Gauss
law constraint receives a contribution from the horizons of
the background. For a similar result in the case of the free
Maxwell field, we refer the reader to [33] for spherically
symmetric backgrounds and [34] for a certain class of
axisymmetric backgrounds.
The action for scalar quantum electrodynamics on the

spherically symmetric black hole spacetime is

SSQED ¼ −
Z

dV4

�
DaΦðDbΦÞ�gab þm2ΦΦ�

þ 1

4
FabFcdgacgbd

�
; ð3:1Þ
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where dV4 ¼ λdVx is the four dimensional volume form on
the manifold Σ ×R (with metric gab),Φ is a complex scalar
field,Da ¼ ∂a þ igAa is the gauge covariant derivative and
Fab ¼ 2∂ ½aAb� is the electromagnetic field strength tensor.
We can now project this action on to the hypersurface
described in the previous section. Time derivatives are
given by the Lie derivative with respect to ξa, as in
Eq. (2.12). In particular

£ξab ¼ _ab ¼ −λeb þDbϕ; ð3:2Þ

where Da is the spatial derivative defined in Eq. (2.11) and
we have defined ed ¼ −λ−1ξcFcd. By further defining
aa ¼ hbaAb, ϕ ¼ Aaξ

a, D̄a ¼ ∂a þ igaa, D0 ¼ £ξ þ igϕ
and fab ¼ Fcdhcahdb, we can rewrite Eq. (3.1) as

SSQED ¼
Z

dt
Z
Σ

dVxλ

�
λ−2D0ΦðD0ΦÞ� − habD̄aΦðD̄bΦ�Þ

−m2ΦΦ� −
1

4
fabfab þ

1

2
eaea

�
: ð3:3Þ

Denoting the conjugate momenta of ab, ϕ,Φ, andΦ� by πb,
πϕ, Π, and Π�, respectively, we have

πb ¼ ∂LSQED

∂ _ab ¼ −eb; πϕ ¼ ∂LSQED

∂ _ϕ ¼ 0;

Π ¼ ∂LSQED

∂ _Φ
¼ λ−1ðD0ΦÞ�; Π� ¼ ∂LSQED

∂ _Φ� ¼ λ−1D0Φ:

ð3:4Þ

Thus the only primary constraint of the theory is

Ω1 ¼ πϕ: ð3:5Þ

The canonical Hamiltonian can be constructed from the
Legendre transform

HC ¼
Z
Σ

dVxðπb _ab þ Π _Φþ Π� _Φ�Þ − L

¼ H0 þ
Z
Σ

dVxðπbDbϕþ igϕðΦ�Π� −ΦΠÞÞ; ð3:6Þ

where H0 is defined as

H0 ¼
Z
Σ

dVxλ

�
1

2
πbπb þ

1

4
fabfab þ ΠΠ�

þm2ΦΦ� þ D̄aΦðD̄aΦÞ�
�
: ð3:7Þ

Apart from the involvement of a curved manifold and its
covariant derivatives, the definition of H0 is the usual one
known in flat spacetime which is used in the BRST
treatment of this theory.
Using a multiplier vϕ, we will now include the primary

constraint πϕ ≈ 0 to the canonical Hamiltonian to define a
new Hamiltonian

H̃ ¼ HC þ
Z
Σ

dVxvϕπϕ: ð3:8Þ

The canonical Poisson brackets of the theory are

½ϕðxÞ; πϕðyÞ�P ¼ δðx; yÞ; ½abðxÞ; πaðyÞ�P ¼ δabδðx; yÞ;
ð3:9Þ

½ΦðxÞ;ΠðyÞ�P ¼ δðx; yÞ; ½Φ�ðxÞ;Π�ðyÞ�P ¼ δðx; yÞ:
ð3:10Þ

We now arrive at a key result used in this paper, namely that
the Gauss law constraint of this theory is modified through
the presence of horizons. This is determined by requiring
that the primary constraint πϕ is satisfied at all times. The
consistency check of the primary constraint _πϕ ≈ 0, is
evaluated through the Poisson bracket of πϕ and H̃ with the
help of a smearing function ϵ as follows,

Z
Σ

dVyϵðyÞ _πϕðyÞ ¼
Z
Σ

dVyϵðyÞ½πϕðyÞ; H̃�P

¼
Z
Σ

dVyϵðyÞ
�
πϕðyÞ;

Z
Σ

dVxπ
bðxÞDx

bϕðxÞ þ igϕðxÞðΦ�ðxÞΠ�ðxÞ −ΦðxÞΠðxÞÞ
�
P

¼ −
I
∂Σ
dayϵðyÞnybπbðyÞ þ

Z
Σ

dVyϵðyÞðDy
bπ

bðyÞ − igðΦ�ðyÞΠ�ðyÞ −ΦðyÞΠðyÞÞÞ: ð3:11Þ

Here we have used the canonical Poisson brackets given in
Eq. (3.10) and an integration by parts. The smearing
function ϵ is assumed to be well behaved, but ϵ or its first
derivative are not required to vanish on the horizon (or

horizons, if Σ is the region between the horizons in a de
Sitter black hole spacetime). By not requiring such con-
ditions on the smearing functions at the horizons, we can
equivalently state that we are not a priori adopting either
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Dirichlet or Neumann boundary conditions. Then the
Schwarz inequality demonstrates that the surface integral
is finite

jnbπbj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnbnbjjπbπbj

q
: ð3:12Þ

In this expression, nbnb ¼ 1 by definition, since nb is the
“unit normal” to spatial sections of the horizon(s) and
points in the direction of increasing time. Likewise, πbπb ¼
ebeb appears in the energy momentum tensor (more
precisely in invariant scalars such as TabTab), and therefore
may not diverge at the horizon. It follows that the surface
integral in Eq. (3.11) is finite at the horizon. We can thus
read off the Gauss law constraint from the last equality of
Eq. (3.11),

Ω2 ¼ nbπbjH −Dbπ
b þ igðΦ�Π� −ΦΠÞ ≈ 0: ð3:13Þ

The vertical bar jH on the first term in Eq. (3.13) denotes
that it is a contribution restricted to the horizon(s) of the
spacetime. In other words, while the bulk contribution
holds for all points of Σ, the additional surface contribution
of Eq. (3.13) must be considered for all points at the
horizons ∂Σ. Like the constraint πϕ ≈ 0, this constraint also
needs to be smeared with a well behaved function, regular
at the horizons, for the purpose of Poisson bracket
calculations. We thus understand the constraint as

Z
Σ

dVxϵðxÞΩ2ðxÞ ¼
I
∂Σ
ϵðxÞnxbπbðxÞ −

Z
Σ

dVxϵðxÞðDx
bπ

bðxÞ

− igðΦðxÞ�ΠðxÞ� −ΦðxÞΠðxÞÞÞ
≈ 0: ð3:14Þ

Including the constraint Eq. (3.13) in the Hamiltonian with
its own multiplier v2, we can write the total Hamiltonian as

HT ¼ H0 þ
Z
Σ

dVxððv2 þ ϕÞΩ2 þ vϕπϕÞ: ð3:15Þ

It is straightforward to verify that _Ω2 ≈ 0, which reveals
that there are no further constraints of the theory.
Since ½πϕ;Ω2�P ¼ 0, the constraints are first class and

generate gauge transformations of the fields. These trans-
formations follow from the Poisson brackets of the fields
with the general linear combination of the first class
constraints, ϵ1πϕ þ ϵ2Ω2

δϕ ¼ ϵ1; δab ¼ Dbϵ2;

δΦ ¼ −igϵ2Φ; δΠ ¼ igϵ2Π;

δΦ� ¼ igϵ2Φ�; δΠ� ¼ −igϵ2Π�: ð3:16Þ

We see that the gauge transformation of ab, i.e., δab in
Eq. (3.16), takes its usual form as on curved backgrounds
without boundaries. This is a consequence of the surface
term in the Gauss law constraint. We also note that the
gauge transformations in Eq. (3.16) hold for the fields
throughout Σ, including the horizons. This in particular
suggests the need to consider gauge fixing choices with
surface terms at the horizons.
We can also determine the multipliers on the space of

solutions of Hamilton’s equations from the equations of
motion. By considering ½ϕ; HT �P we see that vϕ ¼ _ϕ.
Likewise, we note that ½ab;HT �P gives the expression of
Eq. (3.2) provided ∂bv2 ¼ 0. This allows us to set v2 ¼ 0
without any loss of generality. With this choice for vϕ and
v2, we have

HT ¼ H0 þ
Z
Σ

dVxðϕΩ2 þ _ϕπϕÞ: ð3:17Þ

A. Gauge fixing choices

Before applying the Hamiltonian BRST formalism to
this theory, it will be instructive to first describe how
consistent gauge fixing choices can be determined within
the Dirac-Bergmann formalism. Gauge fixing can be
carried out through the introduction of additional con-
straints which have nonvanishing Poisson brackets with the
first-class constraints of the theory. Given the two first-class
constraints of the theory in Eqs. (3.5) and (3.13)

Ω1 ¼ πϕ;

Ω2 ¼ nbπbjH −Dbπ
b þ igðΦ�Π� −ΦΠÞ; ð3:18Þ

we need to introduce two additional constraints which
should have nonvanishing Poisson brackets with those in
Eq. (3.18) and be consistent with them. The Gauss law
constraint and its surface terms motivate the following
gauge-fixing constraint

Ω3 ¼ Dbðλ−1abÞ − nbλ−1abjH: ð3:19Þ

This constraint has the desired property of providing a
nonvanishing Poisson bracket with Ω2. The consistency of
this constraint requires that its time derivative with the
Hamiltonian weakly vanishes. We find the following
Poisson bracket of Ω3 with HT given in Eq. (3.17)

½Ω3; HT �P ¼ nbπbjH −Dbπ
b þ ðnbλ−1DbϕÞjH

−Dbðλ−1DbϕÞ: ð3:20Þ

This weakly vanishes on account of Ω2, provided we
impose
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Ω4 ¼ Dbðλ−1DbϕÞ − ðnbλ−1DbϕÞjH
þ igðΦ�Π� −ΦΠÞ: ð3:21Þ

Thus Ω3 and Ω4 are consistent with the constraints of
Eq. (3.18) and have nonvanishing brackets with them. The
construction of Dirac brackets on spherically symmetric
backgrounds with horizons, following gauge fixing choices
which involve surface terms at the horizons, has been
described in further detail in [33]. Equations (3.19) and
(3.21), apart from surface terms at the horizons, is the
familiar choice of the radiation gauge for scalar electro-
dynamics [38].
An alternative choice of gauge fixing, as far as surface

terms at the horizons are concerned, is to consider null
components of the fields at the horizons. This can be done
by considering in place of Eq. (3.19) the following
constraint

Ω3 ¼ Dbðλ−1abÞ − ðλ−1nbab − λ−2ϕÞjH: ð3:22Þ

Using Eq. (2.5), we recognize the surface term as a null
component of Aa, specifically

ffiffiffi
2

p
λ−1kaAa. We now find

that _Ω3 weakly vanishes provided

Ω4 ¼ Dbðλ−1DbϕÞ − ðλ−1ðnbDbϕ − λ−1vϕÞÞjH
þ igðΦ�Π� −ΦΠÞ: ð3:23Þ

Since vϕ ¼ _ϕ on the space of solutions of Hamilton’s
equations, we can think of the surface term in Eq. (3.23) as
equivalent to

ffiffiffi
2

p
λ−1ka∇aϕ. A few comments about the

surface term in Eq. (3.23) may be in order. On the one hand,
since the surface term contains the gauge dependent fields
ab and ϕ and their derivatives, we cannot a priori impose
any conditions on their finiteness be it at the horizon or
elsewhere. On the other hand, we also note that regardless
of the behavior of ab and ϕ atH, the null vectors ka and la

in Eq. (2.5) have a reparametrization invariance which can
always be used to produce a finite result. For example, we
can consider the change in normalization ka → λ−1ka and
la → λla in Eq. (2.5), under which the relations in Eq. (2.6)
continue to hold. Thus the surface terms in Eqs. (3.22) and
(3.23) can always be adjusted so that they do not lead to
divergences in any gauge-invariant quantity.
We thus see that fixing null components at the horizons

is a consistent choice within the Dirac-Bergmann formal-
ism and can admit an interesting set of Dirac brackets. In
the following sections, we will derive results for the BRST
invariant action where the effect of such gauge fixing
choices will be shown to have more pronounced effects on
the surface action at the horizon. We will also demonstrate
that the use of Eq. (3.22) in the Hamiltonian BRST
formalism can provide horizon corrections to the ghost
number charge and dressed gauge invariant fields of scalar
electrodynamics.

IV. HAMILTONIAN BRST FORMALISM

We will now apply the Hamiltonian BRST formalism to
derive the BRST invariant effective action and path integral
for this theory. We will follow the standard treatment given
in [3,4], but on the black hole spacetimes with horizon
contributions to the Gauss law and gauge fixing constraints,
as described above. We first extend the phase space of the
previous section to include additional Grassmann odd
fields, namely the ghosts and their momenta. Thus in
addition to the fields considered in the previous section, we
now introduce the ghost C and antighost C̄ and their
conjugate momenta P, P̄, which satisfy

½P̄ðxÞ; C̄ðyÞ�P ¼ −δðx; yÞ ¼ ½PðxÞ; CðyÞ�P: ð4:1Þ

All brackets involving the ghosts other than those given in
Eq. (4.1) vanish. The ghost number can be determined from
the ghost number charge

QC ¼
Z
Σ

dVxðCP þ P̄ C̄Þ: ð4:2Þ

Given a functional of the fields F in the extended phase
space, we have

½F;QC�P ¼ ghðFÞF; ð4:3Þ

where ghðFÞ denotes the ghost number of F. Then

ghðCÞ ¼ 1 ¼ ghðP̄Þ;
ghðPÞ ¼ −1 ¼ ghðC̄Þ: ð4:4Þ

Apart from the fields C, C̄, P, P̄, all other canonical fields in
the extended phase space have vanishing ghost number.
The generator of BRST transformations QBRST in the

extended phase space can be directly constructed from the
first-class constraints of a theory resulting from the Dirac-
Bergmann formalism. Following the procedure in [3] we
have

QBRST ¼
Z
Σ

dVxðCðxÞΩ2ðxÞ − iλP̄ðxÞπϕðxÞÞ: ð4:5Þ

In Eq. (4.5) we have included a factor of λ in the second
term. This is merely a convenient choice for what follows
and does not result from more fundamental grounds. Nor
does it contradict any known result, as λ ¼ 1 in flat
spacetime.
The BRST charge is Grassmann odd and has ghost

number ghðQBRSTÞ ¼ 1. BRST transformations of the
fields are generated by its Poisson bracket with QBRST.
Given a functional of the fields F, we will denote its BRST
transformation by sF
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sF ¼ ½F;QBRST�P: ð4:6Þ

If F has ghost number ghðFÞ and mass dimension dF, then
sF has ghost number ghðFÞ þ 1 and mass dimension
dF þ 1. By evaluating the Poisson brackets of the fields
with QBRST we find

sab ¼ DbC; sϕ ¼ −iλP̄;

sC̄ ¼ iλπϕ; sP ¼ −Ω2;

sΦ ¼ −igCΦ; sΠ ¼ igCΠ;

sΦ� ¼ igCΦ�; sΠ� ¼ −igCΠ�;

sP̄ ¼ 0 ¼ sC; sπϕ ¼ 0 ¼ sπa: ð4:7Þ

Just as in the case of the gauge transformations generated
by the first class constraints, the BRST transformations of
the fields given in Eq. (4.7) are the same as those on
backgrounds without boundaries. The BRST charge is
nilpotent,

½QBRST; QBRST�P ≡Q2
BRST ¼ 0; ð4:8Þ

i.e., s2F ¼ 0 for all F.
It is straightforward to verify thatH0 defined in Eq. (3.7)

is invariant under the BRST transformations given in
Eq. (4.7). Further, since the BRST transformation is
nilpotent, any BRST invariant quantity is known up to
the addition of a term sF ¼ ½F;QBRST�P for any F. In
particular, we can define the following BRST invariant
Hamiltonian

HBRST ¼ H0 − sΨ; ð4:9Þ

where Ψ must have odd Grassmann parity and
ghðΨÞ ¼ −1, but can be arbitrary otherwise. As we will
see shortly, Ψ is used to implement gauge fixing choices
within the Hamiltonian BRST formalism and hence is aptly
known as the gauge fixing fermion.
From the Legendre transform with the Hamiltonian in

Eq. (4.9), we can also define the following BRST invariant
action

SBRST ¼
Z

dt
Z
Σ

dVx½ _abπb þ _ϕπϕ þ _ΦΠþ _Φ�Π�

þ _̄C P̄þ _CP −HBRST�; ð4:10Þ

Since Ψ can be specified arbitrarily, physical processes
are independent of the choice Ψ, and hence independent
of any gauge choice. The invariance of the partition
function is expressed by the Fradkin-Vilkovisky theorem
[41,42], which says that the path integral over all the
canonical variables of the extended phase space μA ≡
ðab; πb;ϕ; πϕ;Φ;Π;Φ�;Π�; C;P; C̄; P̄Þ

Z ¼
Z

½DμA� exp ðiSBRSTÞ; ð4:11Þ

is independent of the choice of Ψ. The following Ψ is
customarily chosen

Ψ ¼
Z
Σ

dVxðiC̄ðxÞχðxÞ þ PðxÞϕðxÞÞ; ð4:12Þ

where χ is independent of the ghosts and their momenta,
but can be specified arbitrarily otherwise. In the following
we will also assume that χ is independent of all momenta
other than πϕ. Subject to this assumption, we now adopt
Eq. (3.22) in the BRST formalism through the following
choice of χ

χ ¼ Daðλ−1aaÞ − ðλ−1naaa − λ−2ϕÞjH −
1

2
πϕ; ð4:13Þ

where as before, the symbol jH indicates that the term is
evaluated at the horizons. Then the BRST transformation of
Ψ has the following expression

sΨ ¼
Z
Σ

dVxðλπϕχ þ iλPP̄ þ ϕΩ2 þ iC̄sχÞ; ð4:14Þ

where
R
Σ
dVxiC̄sχ explicitly has the form

Z
Σ

dVxiC̄sχ ¼ i
Z
Σ

dVxC̄Daðλ−1DaCÞ

− i
I
∂Σ
daxλ−1C̄ðnaDaC þ iP̄Þ: ð4:15Þ

We can now use Eq. (4.14) to defineHBRST and thus SBRST,
using which we have the following path integral from
Eq. (4.11)

Z ¼
Z

½DμA� expðiSBRSTÞ

¼
Z

½DμA� exp
�
i
Z

dt
Z
Σ

dVx

�
_aaπa þ _ϕπϕ þ _ΦΠ

þ _Φ�Π� þ _̄C P̄þ _CP − ϕΩ2 − iC̄sχ

− λ

�
1

2
πbπb þ

1

4
fabfab þ ΠΠ� þm2ΦΦ�

þ D̄aΦðD̄aΦÞ� þ πϕχ þ iPP̄
���

: ð4:16Þ

We can now integrate out the momenta P, P̄, Π, Π�, and πa
to find

KARAN FERNANDES and AMITABHA LAHIRI PHYS. REV. D 99, 085004 (2019)

085004-8



Z¼
Z

½DaaDϕDΦDΦ�DC̄DCDπϕ�expðiSBRSTÞ; ð4:17Þ

where SBRST is now written as SBRST ¼ SSQED þ Sgh þ Sgf,
with

SSQED¼
Z

dt
Z
Σ

dVxλ

�
1

2
eaea−

1

4
fabfabþλ−2D0ΦðD0ΦÞ�

− D̄aΦðD̄aΦÞ�−m2ΦΦ�
�
;

Sgh¼−i
Z

dt
Z
Σ

dVxðλ−1 _̄C _CþDaðλ−1DaCÞÞ

− i
Z

dt
I
∂Σ
daxλ−1C̄ðλ−1 _C−naDaCÞ;

Sgf ¼
Z

dt
Z
Σ

dVxλπ
ϕ

�
λ−1 _ϕ−Daðλ−1aaÞþ

1

2
πϕ

�

−
Z

dt
I
∂Σ
daxπϕðλ−1ϕ−naaaÞ: ð4:18Þ

In deriving Eq. (4.17), we performed a Gaussian integration
over πa and made use of Eq. (3.2). The integration over P,
P̄, Π, and Π� simply involve delta functions which enforce

the relations P̄ ¼ iλ−1 _C and P ¼ −iλ−1ð _̄C þ ðλ−1C̄ÞjHÞ,
while Π and Π� have their expressions given in
Eq. (3.4). Due to the surface term present in Sgh in
Eq. (4.18), we cannot integrate out πϕ in the path integral
as in the absence of a horizon, for example in flat
spacetime. To identify the BRST transformations which
leave SSQED þ Sgh þ Sgf in Eq. (4.18) invariant, we can in
Eq. (4.17) simply substitute for all momenta other than πϕ

their value at the extremum. This gives

sab ¼ DbC; sϕ ¼ _C;

sΦ ¼ −igCΦ; sΦ� ¼ igCΦ�;

sC̄ ¼ iλπϕ: ð4:19Þ

Likewise, we also find that the ghost number charge in
Eq. (4.2) (or equivalently, the Noether charge from Sgh in
Eq. (4.18) resulting from the scaling transformation
C̄ → e−sC̄ and C → esC) now has the following expression

QC ¼ i
Z
Σ

dVxλ
−1ð _C C̄−C _̄CÞ − i

I
∂Σ
daxλ−2CC̄: ð4:20Þ

We note that just as in the case of gauge dependent fields,
we cannot assume any particular behavior for the ghost
fields on the background. The surface integral in Eq. (4.20)
is absent in the ghost number charge on backgrounds

without horizons. The implications of the surface integral
for fields at the horizon can only be checked through the
calculation of physical observables. Our procedure seems
to find explicitly the ghost d.o.f. on the horizons of black
holes. The presence of the horizon contributions to the
ghost number charge in Eq. (4.20) could be particularly
relevant in the context of thermal gauge theories, as we will
discuss later.

V. THE CO-BRST OPERATOR
AND DRESSED CHARGES

We will now explore a construction in which the gauge
fixing fermion Ψ is the generator of nilpotent symmetry
transformations and a conserved charge of the theory. We
will follow the construction made previously in the context
of quantum electrodynamics in flat spacetime [35]. There it
was shown that a nilpotent operator Q⊥

BRST, different from
QBRST, exists which preserves the gauge fixing action and
generates nonlocal and noncovariant transformations, that
reduce the ghost number of the fields it acts on by one. It
was also argued that physical states of the theory jΦi need
to satisfy QBRSTjΦi ¼ 0 and Q⊥

BRSTjΦi ¼ 0.
Within the Hamiltonian BRST formalism, it was shown

that this conserved charge can be identified with a gauge
fixing fermion which generates the nilpotent transforma-
tions ofQ⊥

BRST and which in addition can be used to identify
singlet states belonging to the BRST invariant inner product
space [36]. The gauge fixing fermion in this case is known
as the co-BRST charge. In this subsection, we will
demonstrate how we can choose a gauge fixing fermion
with these properties, which will generalize the results of
[35,36] to curved backgrounds with horizons.
We begin by noting that we are free to modify H0 and Ψ

of Sec. IV by the BRST differential of an arbitrary
functional A as

H̃0 ¼ H0 þ sA Ψ̃ ¼ Ψþ A; ð5:1Þ

Under this modification, HBRST in Eq. (4.9) remains
invariant and the results in Sec. IV are not affected. Let
us thus consider the following expressions for H̃0 and Ψ̃

H̃0 ¼ H0 −
Z
Σ

dVx

Z
Σ

dVy
1

2
Ω2ðxÞGðx; yÞΩ2ðyÞ

Ψ̃ ¼ Ψþ
Z
Σ

dVx

Z
Σ

dVy
1

2
PðxÞGðx; yÞΩ2ðyÞ; ð5:2Þ

where Ω2 is as in Eq. (3.13), Ψ is as in Eq. (4.12) [with χ in
Ψ as in Eq. (4.13)] and Gðx; yÞ is a Green function which
satisfies

FðDÞGðx; yÞ ¼ −δðx; yÞ; ð5:3Þ
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with respect to a differential operator FðDÞ which will be
determined shortly. Since sP ¼ −Ω2 and sΩ2 ¼ 0, we see
that H̃0 − sΨ̃ ¼ H0 − sΨ. Unlike Ψ, we can now show that
Ψ̃ can generate its own nilpotent symmetry transformations.
We denote ½μα; Ψ̃�P ¼ s̄μα as the transformations generated
by Ψ̃, where μα ≡ ðaa; πa;ϕ; πϕ;Φ;Π;Φ�;Π�; C̄; P̄; C;PÞ
represents the set of all fields in the extended phase space.
Evaluating the Poisson brackets of the fields with Ψ̃ we find
the following set of transformations

s̄abðxÞ¼
Z
Σ

dVy
1

2
PðyÞDx

bðGðx;yÞÞ; s̄ϕðxÞ¼−
1

2
iC̄ðxÞ;

s̄CðxÞ¼−ϕðxÞ−
Z
Σ

dVy
1

2
Ω2ðyÞGðx;yÞ;

s̄P̄ðxÞ¼−iχðxÞ;
s̄πaðxÞ¼ iλ−1ðxÞDx

aC̄ðxÞ;
s̄πϕðxÞ¼−PðxÞ− ðiλ−2ðxÞC̄ðxÞÞjH;

s̄ΦðxÞ¼−
Z
Σ

dVy
1

2
igPðyÞΦðxÞGðx;yÞ;

s̄ΠðxÞ¼
Z
Σ

dVy
1

2
igPðyÞΠðxÞGðx;yÞ;

s̄Φ�ðxÞ¼
Z
Σ

dVy
1

2
igPðyÞΦ�ðxÞGðx;yÞ;

s̄Π�ðxÞ¼−
Z
Σ

dVy
1

2
igPðyÞΠ�ðxÞGðx;yÞ;

s̄ C̄ðxÞ¼ 0¼ s̄PðxÞ: ð5:4Þ

The Poisson bracket with Ψ̃ reduces by 1 the ghost number
of the field it acts on. The nilpotence of these trans-
formations on all fields other than C and P̄ follow trivially.
The transformations of C and P̄ are nilpotent provided the
Green function Gðx; yÞ satisfies

Z
Σ

dVxfðyÞDx
aðλ−1ðxÞDa

xGðx; yÞÞ

−
I
∂Σ
daxfðyÞnaxλ−1ðxÞDx

aGðx; yÞ ¼ −fðxÞ; ð5:5Þ

where fðxÞ is any well-behaved function on the hypersur-
face Σ. We can equivalently write Eq. (5.5) in the following
way

Dx
aðλ−1ðxÞDa

xGðx; yÞÞ − ðλ−1naxDx
aGðx; yÞÞjH ¼ −δðx; yÞ:

ð5:6Þ

Thus we can write FðDÞ ¼ Daðλ−1DaÞ − ðλ−1naDaÞjH.
We note that the solution of Dx

aðλ−1ðxÞDa
xGðx; yÞÞ ¼

−δðx; yÞ provides the electrostatic potential on spherically
symmetric backgrounds [43–47], whose algebraic expres-
sions are known about the Schwarzschild [46] and
Reissner-Nordström spacetimes [47].
Since the transformations in Eq. (5.2) do not affect the

expression of HBRST, the path integral in Eq. (4.17) and the
actions in Eq. (4.18) are not modified. One can now verify
that SBRST ¼ SSQED þ Sgh þ Sgf is not only invariant under
the BRST transformations given in Eq. (4.19), but also
under the following co-BRST transformations

s̄abðxÞ¼−i
Z
Σ

dVy
1

2
λ−1ðyÞ _̄CðyÞDx

bðGðx;yÞÞ

− i
I
∂Σ
day

1

2
λ−2ðyÞC̄ðyÞDx

bðGðx;yÞÞ;

s̄ΦðxÞ¼−
Z
Σ

dVy
1

2
gλ−1ðyÞ _̄CðyÞΦðxÞGðx;yÞ

−
I
∂Σ
day

1

2
gλ−2ðyÞC̄ðyÞΦðxÞGðx;yÞ;

s̄Φ�ðxÞ¼
Z
Σ

dVy
1

2
gλ−1ðyÞ _̄CðyÞΦ�ðxÞGðx;yÞ

þ
I
∂Σ
day

1

2
gλ−2ðyÞC̄ðyÞΦ�ðxÞGðx;yÞ;

s̄CðxÞ¼
Z
Σ

dVy
1

2
ðDy

aðλ−1ðyÞ _aaðyÞÞ

− igλ−1ðyÞðΦ�ðyÞDy
0ΦðyÞ−ΦðyÞDy

0Φ�ðyÞÞÞGðx;yÞ

−
1

2
ϕðxÞ−

I
∂Σ
day

1

2
λ−1ðyÞnya _aaðyÞGðx;yÞ;

s̄ϕðxÞ¼−
1

2
iC̄ðxÞ; s̄πϕðxÞ¼ iλ−1ðxÞ _̄CðxÞ;

s̄C̄ðxÞ¼0: ð5:7Þ

The transformations in Eq. (5.7) were determined from
Eq. (5.4) after substituting the values of the momenta at
their extremum, specifically πa ¼ λ−1 _aa − λ−1Daϕ and

P ¼ −iλ−1 _̄C − iðλ−2C̄ÞjH. These are the same expressions
for the momenta as those in the previous section. The co-
BRST transformations in Eq. (5.7) are the curved spacetime
generalizations of those presented in [35], where they were
used to demonstrate the invariance of dressed scalar fields.
Specifically in flat spacetime, the dressed scalar fields
defined as
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Φphys ¼Φexp
�
−ig

∂iAi

∇2

�
; Φ�

phys ¼Φ� exp
�
ig
∂iAi

∇2

�
;

ð5:8Þ

satisfy the conditions sΦphys ¼ 0 ¼ s̄Φphys and sΦ�
phys ¼

0 ¼ s̄Φ�
phys, whileΦ andΦ� do not. In Eq. (5.8), the index i

denotes spatial coordinates, while ∇−2 is the inverse
Laplacian of flat spacetime which satisfies ∇2

x∇−2ðx⃗; y⃗Þ ¼
−δðx⃗ − y⃗Þ, where δðx⃗ − y⃗Þ is the Dirac delta function on flat
spacetime. Given the transformations in Eq. (5.7) and the
equation satisfied by the Green function Gðx; yÞ in
Eq. (5.6), the following dressed fields

ΦphysðxÞ ¼ ΦðxÞ exp
�
−ig

Z
Σ

dVyD
y
aðλ−1ðyÞaaðyÞÞGðx; yÞ

þ ig
I
∂Σ
dayλ−1ðyÞnyaaaðyÞGðx; yÞ

�
;

Φ�
physðxÞ ¼ Φ�ðxÞ exp

�
ig
Z
Σ

dVyD
y
aðλ−1ðyÞaaðyÞÞGðx; yÞ

− ig
I
∂Σ
dayλ−1ðyÞnyaaaðyÞGðx; yÞ

�
; ð5:9Þ

can be seen to satisfy sΦphys¼0¼ s̄Φphys and sΦ�
phys ¼ 0 ¼

s̄Φ�
phys. In the flat limit, Eq. (5.9) reduces to Eq. (5.8). The

additional surface integrals now account for contributions
from the horizons of the spacetime. In particular, the above
expressions for dressed matter also hold for backgrounds
with cosmological horizons. Thus the co-BRST charge can
be used to identify dressed matter fields on black hole
backgrounds which are not asymptotically flat.
In the next section, wewill discuss how the dressed fields

in Eq. (5.9) could be relevant in consideration of soft
photon limits on backgrounds with horizons. Before
proceeding to this discussion, we would like to provide
a few comments on the above construction, specifically
with regards to the choice of gauge. As we noted in Sec. IV,
the nilpotence of the BRST charge QBRST allows us to
chooseΨ in any way we please. In the case of the co-BRST
construction, an arbitrary choice can also be considered, but
this would in general require modifying Ω2 in the expres-
sions given in Eq. (5.2) and the need for additional
conditions on the Green function Gðx; yÞ apart from
Eq. (5.3). In hindsight, we can state that the gauge as
chosen in this section provides the simplest generalization
of the known construction of the co-BRST charge in flat
spacetime. Furthermore, as mentioned previously, in the
absence of the surface terms in Eq. (5.6), the solution for
the Green function is simply that of the electrostatic
potential on spherically symmetric backgrounds, for which
there exist known closed form expressions. Thus from the

standpoint of determining physical observables from the
path integral, the gauge considered in this paper will prove
useful. As is well known, the results for physical observ-
ables will in any case be independent of the choice
of gauge.

VI. SUMMARY AND DISCUSSION

In this work, we considered the Hamiltonian BRST
formalism for constrained theories on spherically symmetric
backgrounds with horizons.We first provided the geometric
framework needed to perform the Hamiltonian analysis on
spacelike hypersurfaces orthogonal to the timelike Killing
vector field of the spacetime. By considering the action for
scalar quantum electrodynamics as an example, we then
derived the constraints using the Dirac-Bergmann formal-
ism. Keeping with our consideration of backgrounds with
horizons, we were careful to evaluate Poisson brackets with
smearing functions that are regular at the horizons. The
Gauss law constraint, derived from the evaluation of Poisson
brackets, was shown to involve terms from the horizon(s) of
the spacetime. We then considered the Hamiltonian BRST
formalism of the theory in the extended phase space
involving the ghosts and their momenta. By fixing null
components of the gauge fields at the horizons, we dem-
onstrated that the ghost number charge of the theory involve
additional corrections from the horizons of the background.
We further considered gauge fixing fermions that generate
their own nilpotent symmetry transformations which leave
the action invariant. The gauge fixing fermion in this case is
identified with the co-BRSToperator. The requirement that
physical fields are invariant under BRST and co-BRST
transformations led us to identify dressed gauge invariant
scalar fields of scalar electrodynamics, whose dressing
function depends on the electromagnetic fields at the
horizons of the background.
One of the avenues for further investigation following

the results in this paper involves the quantization of gauge
theories on black hole backgrounds. In identifying that the
constraints are modified at the horizons, it is clear that as
operator relations the constraints must be satisfied by states
in the bulk and at the horizons. The mode expansion for
gauge fields at the horizon and in particular their polar-
izations can be expected to be along the null directions at
the horizons. This could be used to further explore the
nature of “edge modes” at the horizon, along the lines of
that which has been considered on the spatial boundaries of
manifolds [17,18,27,30,31]. A consideration of the Hilbert
spaces and the independent modes at the horizons and in
the bulk of the spacetime lie outside the scope of the present
work. We do note that in this regard the dressed gauge
invariant fields, co-BRST operator and the corrections of
the ghost number charge at the horizons, as considered in
this paper, will be particularly useful. We should mention
that a standard application of the BRST symmetry is its use
in proving the renormalizability of a theory, using the
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Zinn-Justin equation for example. In our example above,
the BRST transformations on spacetimes with horizons
turn out to be the same as on those without horizons, so the
Zinn-Justin equation is unaffected.
The use of dressed gauge invariant fields in quantum

electrodynamics was originally considered by Dirac [48].
The infrared properties of dressed fields were initiated in
[49,50] and their relevance in providing a finite S-matrix
for quantum electrodynamics was provided by Faddeev and
Kulish [51]. More recently, dressed fields have been shown
to provide a realization of the soft charges at null infinity on
asymptotically flat spacetimes which are consistent with
Weinberg’s soft photon theorem [52]. While soft hairs on
the horizons of black holes of asymptotically flat spacetime
have been argued for in [8], a similar realization of such soft
hairs in terms of dressed fields and their implications on
black hole information remain open problems. The dressed
fields in Eq. (5.9) could be useful in this respect.
Ordinarily, there is a considerable amount of freedom in

choosing the gauge dressing of fields in a given theory. For
instance, the following dressed field in flat spacetime is
perfectly legitimate

ΦphysðxÞ ¼ ΦðxÞ exp
�Zx

Γ

dziAiðx0; zÞ
�
; ð6:1Þ

where the integral in the exponent is over some path Γ. This
represents the “Wilson dressing” for a given scalar field Φ.
While such a dressing can be appropriate in the context of
QCD and within holography, we note that in QED this
dressing defines an infinitely excited state, where the
electric flux is confined along Γ. On the other hand, the
field given in Eq. (5.8) does provides the correct expression
for the electric field of a static charge. It is particularly
important to identify physically viable dressings in order to
further investigate infrared properties and soft limits, which
in the case of the dressed fields of Eq. (5.8) were studied in

[53,54]. By involving horizon corrections to the dressing
function of static scalar fields, Eq. (5.9) in particular allows
for the consideration of scattering processes near the
horizon following the expansion of the exponential.
The modification of the ghost number charge could also

have interesting implications. This is particularly true for
thermal gauge theories, whose partition function in the
thermofield double formalism is known to depend on the
ghost number charge [55,56]. Specifically we note that
while Tre−βH provides the correct partition function for
theories without gauge invariance, this is not the case in
gauge theories whose state space involves unphysical d.o.f.
such as the longitudinal modes of the gauge fields and the
ghosts. One can proceed to determine the physical state
space either through the co-BRST construction or by
adopting a special gauge, such as the Coulomb gauge
and axial gauge, in which no physical particles appear.
However a much simpler alternative was provided in
[55,56], where it was shown that Tre−βH−πQC describes
the thermal partition function for gauge theories, consistent
with the correct (periodic) boundary conditions of the
ghosts. Thus by simply substituting Tre−βH with
Tre−βH−πQC , we can proceed with gauge theories just as
one does in theories without gauge invariance. In the
context of our paper, we demonstrated that both the
Hamiltonian and ghost number charge involve surface
corrections at the horizons of the background. This implies
that known correlation functions and thermal propagators
in flat spacetime could also be involve corrections from the
horizons of the background. We look forward to perform-
ing these and related investigations in future work.
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