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Strong background fields require a nonperturbative treatment, which is afforded in QED by the Furry
expansion of scattering amplitudes. It has been conjectured that this expansion breaks down for sufficiently
strong fields, based on the asymptotic growth of loop corrections with increasing “quantum nonlinearity,”
essentially the product of field strength and particle energy. However, calculations to date have assumed
that the background is constant. We show here, using general plane waves of finite duration, that
observables at high quantum nonlinearity scale differently depending on whether intensity or energy is
large. We find that, at high energy, loop contributions to observables tend to fall with increasing quantum
nonlinearity, rather than grow.
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I. INTRODUCTION

A strong electromagnetic field is characterized by a
dimensionless coupling to matter which is larger than one.
Hence the interaction of the field with matter cannot be
treated in perturbation theory. For QED processes in a
strong field the required semi-non-perturbative treatment
is given by the Furry expansion of scattering amplitudes.
Here the coupling between matter and generated/absorbed
photons, still characterized by the fine-structure constant α,
is treated in perturbation theory as normal, while the
coupling to the strong field is treated exactly. This amounts
to replacing the fermion propagator by a dressed propa-
gator, while all other position space Feynman rules are
unchanged [1].
It has however been conjectured that for sufficiently

strong fields, this semiperturbative expansion also breaks
down [2–6], and the theory becomes “fully nonperturba-
tive.” This conjecture is based on the identification of an
effective coupling parameter αχ2=3, where χ is essentially
the product of field strength and probe particle energy (see
below). As field strength increases, loop corrections appear
to grow with higher powers of the effective coupling, and
so when αχ2=3 ∼ 1 the Furry expansion breaks down. The
physics of the regime αχ2=3 ∼ 1 is thus unknown, but for
experimental proposals for how to approach it see [7–9].
For a review of the conjecture see [10].

The calculations behind the conjecture have, however,
been performed in constant crossed fields; these are the zero
frequency limit of plane waves, commonly used as a first
model of laser fields at ultrahigh intensity [11–16]. (We
will typically refer to field intensity, rather than strength.)
Notably, the power of 2=3 which appears is tied to the Airy
functions particular to the constant field case. This prompts
the question of what happens in more general fields.
Furthermore, the literature to date has tended to focus on
(loop corrections to) the polarization and mass operators,
neither of which are observables. Indeed, the one-loop vertex
correction has been argued to scale asymptotically as either
αχ2=3 or just α, depending on the gauge used [6,17].
There are, then, several issues to address. First, we

should only consider gauge invariant observables. Second,
fields which decay at infinity, rather than constant fields,
should be the generic case; here we will work with plane
wave pulses of finite duration and arbitrary intensity, which
can be treated exactly in the Furry expansion [11,12,14,15].
Third, observables do not in general depend on χ alone, but
on intensity and energy individually. A dependence solely
on χ is again particular to the constant field limit, but χ can
also be made large by making the energy large. (Literature
investigations of one-loop processes in pulsed fields
already contain hints that the scalings attributed to the
constant field case may not be universal, see for example
[18,19].) Fourth, while loop corrections have been calcu-
lated in the high intensity approximation, emissivity
corrections and inclusive observables have not been dis-
cussed, and we expect higher numbers of emissions to also
become more important at high intensity. In this paper we
will present an initial investigation of these issues using the
few one-loop diagrams which have been calculated exactly
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in pulsed plane waves, rather than constant fields. We
will contrast two high-χ limits, reached by high intensity or
high energy.
We introduce relevant parameters in Sec. II. In Sec. III

we consider nonlinear Compton scattering at tree level, and
forward scattering at one loop. In Sec. IV we consider
photon helicity flip at one loop. In both cases we will show
that observables scale differently in the two high-χ limits,
demonstrating that there is no universal high-χ behavior.
The high-χ (energy) limit, in particular, does not seem to
suffer from a potential breakdown of perturbation theory as
the high-χ (intensity) limit does. A further consequence of
our results is that, as we will show, currently used high-
intensity approximations in numerical laser-plasma models
are unable to properly reproduce high-energy, quantum,
behavior. We conclude in Sec. V. Closely related calcu-
lations have very recently appeared in [20], and wewill find
agreement with the conclusions presented there.

II. PARAMETERS AND INVARIANTS

Consider the interaction of some particle, momentum pμ,
with a strong background field FμνðxÞ. A key parameter is
the “quantum nonlinearity” χ of the particle, defined by [11]

χ ¼ e
m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pμFμνFνσpσ

p
; ð1Þ

in which e and m are, by convention, the electron charge
and mass. We will only deal with electrons and photons
here. It is clear that χ looks, in general, like the product of
particle energy and field strength, with the proportionality
factor depending on field- and collision geometry. (For an
electron, χ is equal to the ratio of the electric field in the
rest frame, to the Schwinger field ES ¼ m2=e.) Since χ is a
composite parameter it can be made large by increasing
the particle energy, the field strength, or both. We
emphasize that the physics differs depending on whether
a particular value of χ is reached by going to high energy,
or high intensity [21].
Our focus here is on plane waves. For a wave charac-

terized by the lightlike propagation direction nμ we have

χ ¼ n:p
m

jEj
ES

: ð2Þ

The plane wave will have some typical scale ω associated
with it, be it a central frequency, inverse width, etc., and it is
convenient to define dimensionless variables in terms of
this scale.1 So, let kμ ¼ ωnμ be a typical momentum vector

associated to the wave, and ϕ ¼ k:x the dimensionless
“lightfront time” on which the wave depends. This allows
us to define the dimensionless energy, b, and field intensity
parameter, a0, by

b ≔
k:p
m2

; a0 ≔
χ

b
¼ jeEj

mω
: ð3Þ

(Note that χ ¼ a0b is independent of the chosen scale ω.)
The intensity parameter a0 is the coupling between the
plane wave and matter, and easily exceeds unity in modern
laser experiments [22–24]. For, say, a head-on collision
between an electron and the wave we have b ≃ 2ðω=mÞγ at
high energy.
Below we will compare the behavior of processes at high

χ reached via high intensity or high energy, meaning large
a0 or large b respectively. There are many classic examples
of processes which exhibit a very different dependence on a
single (usually energy) invariant, compare for example the
low [25] and high [26] energy behaviors of the photon-
photon cross section, see also [27] for a review. Here,
though, we will examine how the two independent invar-
iants a0 and b essentially compete to affect different
behaviors of processes in strong fields.

III. FORWARD SCATTERING AND NONLINEAR
COMPTON SCATTERING

We begin with the diagrams in Fig. 1. These are the
tree level fermion propagator, its one-loop correction,
and the tree level vertex, in the Furry picture. The loop
diagram F 1 (associated with the mass operator in the
literature on αχ2=3) contributes to forward scattering of
the electron, and to electron spin-flip, while the vertex
yields e.g. tree level photon emission from a field-
accelerated electron, or “nonlinear Compton scattering”
(NLC) [11,28–32].
Consider the electron forward scattering amplitude; this

is degenerate with soft emission [33–35], so we should
consider not just exclusive but also inclusive processes. Let
PðbjaÞ be the probability of an exclusive scattering process
a → b as calculated in the Furry expansion, and let
Pð∢bjaÞ be the inclusive probability. Then the probability
of observing an electron scattered with no photon emission
above the detector resolution εmin of the system is, writing
e for electron and γs for a soft photon,

FIG. 1. F 0 is the Furry picture propagator in a background
field, F 1 its one-loop correction, and N 0 tree level photon
emission, “nonlinear Compton scattering.”

1The physics is independent of this choice, but not of the
physical scale ω. If, as for constant fields, no such scale is
apparent, one can simply use the electron rest mass. Any natural
scale will emerge during the evaluation of the spacetime integrals
to be introduced below.
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Pð∢ejeÞ ¼ PðejeÞ þ Pðe; γsjeÞ þ…

¼
Z
εIR

jF 0 þ iF 1 þ…j2 þ
Zεmin

εIR

jN 0 þ…j2 þ…

¼ 1 −
Z
εIR

2ImðF ⋆
0F 1Þ þ

Zεmin

εIR

jN 0j2 þOðα2Þ;

ð4Þ

where εIR is the infra-red (IR) cutoff. By the optical
theorem the one-loop imaginary part is exactly equal to
the tree level probability of NLC. (For the explicit dem-
onstration of this in plane waves see [36].) Hence we have

Pð∢ejeÞ ¼ 1 −
Z

∞

εIR

jN 0j2 þ
Zεmin

εIR

jN 0j2 þOðα2Þ

¼ 1 −
Z∞

εmin

jN 0j2 þOðα2Þ: ð5Þ

For plane waves we can take εmin → 0 without introducing
any IR divergence, assuming as usual that there is no DC
mode [37]. The forward scattering probability is then equal
to one minus the tree-level NLC probability, demonstrating
the standard IR result that the proper inclusion of higher
loop and emissivity corrections can reduce probabilities
[33]. The diagrams necessary to study this in depth in the
context of αχ2=3 have not yet been calculated, however. (We
return to this in the conclusions.) Here, we observe that the
tree-level NLC probability also determines the one-loop
forward-scattering probability, and so we turn to the
explicit calculation of NLC in two, distinct, high-χ limits.
Consider an electron,momentumpμ, collidingwith a plane

wave depending on lightfront time k:x, so b ¼ k:p=m2. The
wave may be described by a potential eAμ=m ¼ aμðk:xÞ
which is transverse, k:aðk:xÞ ¼ 0, and where the profile
aμðk:xÞ is characterized by amplitudea0, witha0 the intensity
parameter [12,15]. The electron emits a photon ofmomentum
k0μ and scatters. The total probability of this NLC scattering at
tree level is given by an integral over the lightfrontmomentum
fraction s ≔ k:k0=k:p of the emitted photon, and over two
lightfront times θ and ϕ as [38]

Pðe; γjeÞ ¼ −
α

πb

Z1

0

ds
Z

dϕ
Z∞

0

dθ sin

�
sθμ

2bð1 − sÞ
�

×

�
1

μ

∂μ
∂θ þ

�
1

2
þ 1

4

s2

1 − s

�
ha0i2θ

�
; ð6Þ

where we define, here and throughout, a floating average h·i
and Kibble’s (normalized) effective mass μ by [39,40]

hfi ¼ 1

θ

Zϕþθ=2

ϕ−θ=2

dðk:xÞfðk:xÞ; μðϕ; θÞ ¼ 1 − ha2i þ hai2:

ð7Þ

Note that the probability (6) is a function of a0 and b
individually. The s-integral can be performed analyti-
cally [38].

A. High intensity

The high-intensity limit is reached when a0 ≫ 1. An old
result is that the “formation length” of quantum processes
scales in this limit as 1=a0, so that amplitudes can be
calculated in the locally constant field approximation
(“LCFA”) [11]. (It is now known that this argument fails
for the emission of photons with low energy [41] or low
lightfront energy [42–44].) The scaling of processes in
constant fields, on which the αχ2=3 conjecture is based, is
shared by the LCFA. We consider the slightly more general
case of the LCFA because of its use in particle-in-cell
codes, used to plan and analyze intense laser experiments,
for a review see [45]. Taking a0 ≫ 1, the LCFA for NLC
is [11,43,44],

Pðe; γjeÞ≃−
α

b

Z
dϕ

Z1

0

dsAi1ðzÞ þ
�
2

z
þ χγ

ffiffiffi
z

p �
Ai0ðzÞ;

where zðϕÞ ≔
�

1

χeðϕÞ
s

1− s

�2
3

: ð8Þ

Note that, aside from the 1=b prefactor, the LCFA (and
constant field) expressions now depend only on χ. The
asymptotic scaling of the probability is obtained by
expanding the Airy functions, which yields

Pðe; γjeÞ ∼ α

b

Z
dϕχ2=3ðϕÞ: ð9Þ

We are only interested in typical scalings, so “∼” indicates
throughout that we neglect purely numerical factors,
keeping track only of dependence on the important
parameters b, a0, χ and, below, pulse shape effects. For
pulses, the integral in (9) generates a finite factor which, if
we consider a short pulse characterized only by some
width τ and use the choice of scale described in Sec. II, is
independent of parameters. For the constant field limit
proper, χ is constant and the ϕ-integral generates a
(dimensionless) length factor. Either way we have, for
some peak value of χ,

Pðe; γjeÞ ∼ αχ2=3

b
∼
αχ2=3

γ
ðmτÞ: ð10Þ
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The first expression gives the literature scaling. The pulse
length is made explicit in the second expression. As χ
increases with increasing intensity, i.e. at fixed b, the
probability clearly grows. It easily exceeds unity, even for
short pulses, demonstrating the need for higher order
corrections [38].

B. High energy

The high-energy, b → ∞, limit of NLC may not be so
well known, so we give a little more detail. Starting from
(6), we rescale θ → bθ. Then we use the assumption that
the plane wave has finite duration, for then μðϕ;∞Þ ¼ 1
[40,46], i.e. the effective mass at large distance equals the
free mass. To leading order in b ≫ 1 we can then replace
μ → 1. It may be checked that the first term in square
brackets of (6) only contributes sub-leading terms in the
high-energy limit, so we turn to the second term. We
Fourier transform each factor of a0 appearing. The overall
dϕ integral is then trivial, setting the Fourier variables to be
equal and opposite, such that we obtain ãðνÞ:ã⋆ðνÞ in the
integrand for ν the remaining Fourier variable. Writing
t≡ s=ð1 − sÞ, the θ-integral reduces at this stage to

4

Z∞

0

dθ
θ
sin2

νθ

2
sin

θt
2b

¼ πΘð2bjνj − tÞ: ð11Þ

This puts a limit on the s-integral, which is most easily
performed by changing variables to t. The final result for
the leading order high energy limit is2

Pðe; γjeÞ ¼ −
α

4b

Z
dν
2π

ãðνÞ:ã⋆ðνÞ
�
1

2
þ log 2bjνj

�
þ… :

ð12Þ

This describes the convolution of the plane wave intensity
profile ãðνÞ:ã⋆ðνÞ with the term in large brackets, which is
just the high-energy limit of ordinary Compton scattering
of an electron, momentum pμ, against a photon of
momentum νkμ (see e.g. [48], Sec. 6.1). The whole result
is quadratic in a0 and is, interestingly, exactly the same as
the high-energy limit of the wholly perturbative, small a0,
calculation. The remaining Fourier integral is finite for
finite pulses, and it is clear that the asymptotic behavior of
the probability is

Pðe; γjeÞ ∼ αa20
b

logb: ð13Þ

This may be confirmed with an example. Consider the
pulse in Fig. 2, with aðϕÞ ¼ a0ϕ expð−ϕ2Þ and linear
polarization. Then we can evaluate the Fourier integral
in (12) exactly to find

Pðe; γjeÞ ¼ αa20
b

1

16

ffiffiffi
π

2

r �
log bþ 1

2
log 2þ 3

2
−
γE
2

�
þ…:

ð14Þ

C. Discussion

The expressions (10) and (13) give two different high-χ
limits of both NLC at tree level, and electron forward
scattering at one loop. These two limits have different
functional forms, and a comparison is facilitated by making
it explicit that the high intensity limit corresponds to
increasing χ by increasing a0, at fixed b, while the high
energy limit corresponds to increasing χ by increasing b at
fixed a0. This allows us to write (9) and (13) as

Pðe; γjeÞ
χ∼a0→∞

∼
αχ2=3

b
; Pðe; γjeÞ

χ∼b→∞
∼ α

a30
χ
log χ: ð15Þ

Hence the nonlinear Compton probability falls with
increasing χ at high energy, rather than increasing as it
does at high intensity. Furthermore, this implies that at
high-χ reached via high energy, the loop correction to
forward-scattering is smaller than the tree level contribu-
tion, again in contrast to the high intensity limit. This shows
explicitly that there is no universal high-χ behavior of
observables. Also, at least for the observables considered
here, the increase in size of higher-loop corrections at high
intensity does not appear at high energy.
The LCFA is a commonly employed tool which allows

for progress where analytic results are lacking, especially in
the consideration of inhomogeneous background fields
with realistic spacetime structure. It is already known that
the CCF and LCFA approximations, as currently employed,
give incorrect results at low photon energy [41] and low

E/ES

a/a0

–3 –2 –1 1 2 3

–0.4

–0.2

0.2

0.4

0.6

0.8

1.0

FIG. 2. The potential and electric field of the short pulse
aðϕÞ ¼ a0ϕ expð−ϕ2Þ, where ϕ ¼ xþ=τ for some width τ, as
used in the text.

2Interestingly, this method is similar to that needed to obtain
the s → 0 (low lightfront energy) limit of the differential
probability. While this appears to be zero from (6), the correct
nonzero value is only obtained after performing the lightfront
time integrals [43,47].
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lightfront momentum [42–44], and we can now show that
they also fail in the high-energy regime.
The LCFA for nonlinear Compton is (aside from the 1=b

prefactor) a function of χ alone, and the high-χ limit is
therefore (9); it is impossible to obtain the correct high
energy behavior in (15) from the LCFA expression. The
scaling is different, and furthermore the logarithmic
dependence in (15) is missed. The reason for this is that
the LCFA requires, at the level of the integrated rates as
considered here, not just a0 ≫ 1 but a20 ≫ b [21,49], so
that making the assumption that the LCFA holds precludes
the possibility of going to high energy. Our example of
NLC makes this concrete; the high-intensity limit (10)
comes from the first term in square brackets of (6), while
the high-energy limit (13) comes from the second term.
This shows straightforwardly that the two limits do not
commute.
It follows that approximations used in particle-in-cell

codes break down at high energy. It is therefore important
to understand, when modelling potential experiments,
whether high χ is being reached via high energy or high
intensity.

IV. HELICITY FLIP

For our next example we consider photon helicity flip. In
a plane wave a single photon can produce pairs, or
otherwise only scatter forward (due to the many sym-
metries of plane waves), and may flip helicity due to loop
interactions with the wave. Let the photon have momentum
k0μ, so that b ¼ k:k0=m2 is the energy parameter, and let ϵμ
and ϵ0μ be two orthogonal helicity polarization vectors, see
Fig. 3. Then the probability Pðγ0jγÞ of helicity flip is given
at one-loop by Pðγ0jγÞ ¼ jTj2, where the amplitude T may
be expressed, using lightfront field theory [50–52], as a
double integral [18,53] over two lightfront times ϕ and θ.
Explicitly [18],

T ¼ −
α

π

1

b

Z∞

−∞

dϕ
Z∞

0

dθθ

�
K1

�
θμ

b

��
āθaθ −

1

4
āϕaϕ

�

þK2

�
θμ

b

��
1

2
āϕaθ −

1

2
āθaϕ

��
; ð16Þ

in which we have defined

aϕ ¼ ∂ϕϵ:hai; āϕ ¼ ∂ϕϵ
0⋆:hai;

aθ ¼ ∂θϵ:hai; āθ ¼ ∂θϵ
0⋆:hai; ð17Þ

and the two K-functions are combinations of modified
Bessel functions arising from the integral over the virtual
lightfront momentum fraction in the loop [18]

K1ðxÞ ¼ ixe−ixðK1ðixÞ − K0ðixÞÞ ¼
Z1

0

ds exp

�
−ix

2sð1 − sÞ
�
;

K2ðxÞ ¼ ð1 − i∂xÞK1ðxÞ: ð18Þ

A. High intensity

Consider a linearly polarized plane wave. (The same
results are found for other polarization choices, but the
intermediate expressions are not as clear.) Then the high
intensity, LCFA, approximation to the flip amplitude is [18]

T ∼
α

b

Z
dϕ

Z1

0

ds
1

z
ðAi0ðzÞ − iGi0ðzÞÞ;

where z ¼
�

1

χγðϕÞsð1 − sÞ
�

2=3
; ð19Þ

and Gi is the Scorer function. As before, we simply replace
the ϕ-integral by a volume factor for the constant field case.
The individual dependence on a0 and b seen in the
integrand of (16) [18] is again replaced by a dependence
only on their product, χ. The asymptotic behavior of (19)
is easily extracted from the known expansion of the Airy
and Scorer functions as

T ∼
α

b

Z
dϕχ2=3γ ðϕÞ ∼ αχ2=3

b
⇒ Pðγ0jγÞ ∼ α2χ4=3

b2
: ð20Þ

This is also the scaling in the constant field case
[2,10,54,55] (for which the numerical value given by the
ϕ-integral again becomes a length factor).

B. High energy

We turn to the high-energy limit of helicity flip. Consider
the K1-term in (16). The high energy limit may be
calculated simply by expanding in powers of the small
parameter 1=b, replacing K1 → 1. By writing the averages
in terms of Fourier integrals it is then easy to perform the ϕ
and θ integrals. Turning to the K2-term, we first integrate
by parts in θ (the boundary terms are zero), such that we
take the derivative of θK2. (The integration of the averages
is easily performed in Fourier space.) This has the effect of
improving convergence under the integral, such that we can

FIG. 3. The one-loop diagram contributing to helicity flip and
forward scattering at one loop (and, via the optical theorem, pair
production at tree level).
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again expand in powers of 1=b. Expanding −∂θðθK2Þ in
this way the leading order terms are

log b − 2 − γE − logðiθμ=2Þ þO
�
1

b

�
þO

�
log b
b

�
: ð21Þ

This multiplies a function which falls like 1=θ2 for large θ.
Hence for large enough b the logb term will dominate, and
we can, for pulsed fields, neglect the log θμ term. (This can
be confirmed by changing variables θ → θb as before and
expanding again; one finds only higher order terms in 1=b.)
Carrying out the integrals, the final result may be written in
terms of the Fourier transform ãμðνÞ as

T ∼
α

πb

Z
dν
2π

ϵ̄0:ãðνÞϵ:ã⋆ðνÞ
�
1

2
−
iπ
2
signðνÞ log b

�
þ… :

ð22Þ

For generic pulses the Fourier integral converges. The first
term in (22) is nonzero for helicity states, but whether the
second term survive depends on the polarization of the
field. Generically, then, for a polarization and helicity
dependent constant σ we have,

T ∼
αa20
b

�
1þ σ

2
log b

�
⇒ Pðγ0jγÞ ∼ α2a40

b2
ð1þ σ logbÞ:

ð23Þ

C. Discussion

In order to compare the high-χ (intensity) limit (20) of
helicity flip with the high-χ (energy) limit (23) we again
rewrite the latter in terms of χ, increasing with b at fixed a0.
This gives, to leading order,

Pðγ0jγÞ
χ∼a0→∞

∼
α2χ4=3

b2
; Pðγ0jγÞ

χ∼b→∞
∼ α2

a60
χ2

ð1þ σ log χÞ: ð24Þ

These two high-χ limits exhibit the same trends as for NLC,
above. In the high-χ (energy) limit, the probability of
helicity flip is manifestly decreasing with χ, unlike in
the high intensity limit. This agrees with the numerical
evaluation of the exact result (16) given in [18]. The LCFA
approximation again fails to capture the logarithmic behav-
ior at high energy, and for the same reason as above; the
high intensity limit precludes taking the high energy limit.
Note again that the high-χ (energy) limit coincides with that
of the lowest-order perturbative calculation of the process.
There are, as for the other processes considered here,
higher-order corrections depending on a20=b.

V. CONCLUSIONS

We have considered the behavior of QED scattering
probabilities in background plane wave fields, in the high-χ
limit. This was in the context of the conjectured breakdown
of (Furry picture) perturbation theory in the regime
αχ2=3 ∼ 1. We have shown, though, that there is no unique
high χ behavior. The high intensity and high energy limits,
which both give high χ, yield different scalings. At high
intensity, both constant field results and locally constant
field approximations of pulsed field results show the same
power law scaling with αχ2=3. The high energy limit, on the
other hand, shows for general pulsed fields a logarithmic
dependence on χ which is typical of QED.
Further, we have seen that observables tend to fall with χ

at high energy, rather than rise, as at high intensity. This
suggests that the high-χ limit of scattering processes in
strong fields, reached via high energy, may not exhibit the
perturbative breakdown attributed to the high-χ limit
reached via high intensity. More work is however needed
to better judge this, especially since only a few diagrams
have been calculated in the level of detailed needed.
We have also seen that the high-energy behavior of the

considered rates cannot be recovered once the locally
constant crossed field approximation (LCFA) has been
made: making that approximation on the parameter space
precludes being able to take the high-energy limit. An
immediate consequence is that LCFA-based particle-in-cell
simulations used to model laser-matter interactions do not
correctly capture high-energy quantum effects.
Note that we do not disagree with previously calculated

constant field scalings. However, we have stressed that it is
important to consider observables. It would in particular be
interesting to examine inclusive observables, and to see
how the consistent inclusions of both loops [3,4,56] and
emission affects their behavior. It may be that this reduces
probabilities, as happens with the exponentiation of infra-
red corrections in QED [33] (and in background plane
waves [37]), and so brings the perturbative expansion back
under control. Alternatively, if we view the breakdown of
perturbation theory as a breakdown of the background field
approximation, then it may be that including some form of
back-reaction [57] at each order of perturbation theory is
enough to give a better behaved series. These are chal-
lenging and interesting topics for future study.
Finally, we note that the high energy limit of the

observables we have considered is equal to that obtained
if the plane wave background is treated perturbatively,
instead of exactly using the Furry expansion. This may
offer simplifications for the calculation of more complex
processes at high energy.
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Note added.—As this manuscript was being prepared, [20] appeared on the arXiv, the subject of which is very similar to our
own. Encouragingly, while our methods differ, our conclusions are in agreement. Thanks to Antonino Di Piazza for
correspondence on this matter.
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