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A solution of Einstein’s vacuum field equation is derived that describes a general boosted Kerr black hole
relative to a Lorentz frame at future null infinity. The metric contains five independent parameters—mass
m, rotation ω, boost parameter v=c and the boost direction defined by ðn1; n2; n3Þ satisfying
ðn1Þ2 þ ðn2Þ2 þ ðn3Þ2 ¼ 1—and reduces to the Kerr black hole when the boost parameter is zero and
n1 ¼ 1. The solution describes the most general configuration that an astrophysical black hole must have.
The black hole rotates about the z axis with angular momentum proportional to mω and the geometry has
just one Killing vector ∂=∂u, where u is the retarded time coordinate. The boost turns the ergosphere
asymmetric, with dominant lobes in the direction opposite to the boost. The event and Cauchy horizons,

defined for the case ω < m, are specified respectively by the radii r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
. The horizons are

topologically spherical and the singularity has the topology of a circle on planes that are orthogonal to the
boost direction. We argue that this black hole geometry is the natural set to describe the remnants of the
recently observed gravitational wave events GW150914, GW151226, GW170814 and GW170817 [B. P.
Abbott et al. (LIGO and Virgo Collaborations), Phys. Rev. Lett. 116, 061102 (2016); 116, 241103 (2016);
119, 141101 (2017); 118, 221101 (2017)]. In the conclusions we discuss possible astrophysical processes
in the asymmetric ergosphere and the electromagnetic dynamical effects that may result from the rotating
black hole moving at relativistic speeds.

DOI: 10.1103/PhysRevD.99.084054

I. INTRODUCTION

The Kerr black hole [1] is an exact stationary solution of
vacuum Einstein equations of general relativity that
describes a rotating black hole with two parameters, mass
and angular momentum, and has the Schwarzschild black
hole [2] as its static configuration limit. The Kerr solution
turned out to be of fundamental importance to the under-
standing of astrophysical processes involved in objects with
a tremendous output of energy as quasars, pulsars and
active galactic nuclei (AGN). The recent direct observa-
tions of the gravitational wave emission from binary
black hole mergers—GW150914 [3], GW151226 [4],
GW170814 [5], GW170817 [6]—by the LIGO Scientific
Collaboration and the Virgo Collaboration showed that the
initial black holes of each binary had mass ratios
αGW150914 ≃ 0.8, αGW151226 ≃ 0.53, αGW170104 ≃ 0.62 and
αGW170914 ≃ 0.83, respectively. The nonequal mass of the
initial black holes in the observed binaries imply that the
gravitational waves emitted have a nonzero gravitational
wave momentum flux, indicating that the remnant black
hole is a Kerr black hole boosted along a particular
direction relative to the asymptotic Lorentz frame at null
infinity where such emissions have been detected. In this

sense the remnant black hole description must contain
additional parameters—the boost parameters—connected
to its motion relative to the observation frame. The boost of
the remnant black hole results from the net momentum flux
of the gravitational waves emitted in the collision and
merger of two nonequal mass black holes that generated the
remnant.
The main object of this paper is to describe an exact

solution of a general boosted Kerr black hole relative to an
asymptotic Lorentz frame at future null infinity. This
solution corresponds to the most general configuration
that an astrophysical remnant black hole must have, in
particular as the remnant configuration of the collision and
merger of black holes recently observed in the direct
detection of gravitational waves [3–6]. The derivation
and interpretation of this solution will be framed in the
Bondi-Sachs (BS) characteristic formulation of gravita-
tional wave emission in general relativity [7–10], where we
have a clear and complete derivation of physical quantities
and its conservation laws, connected to the radiative wave
transfer of energy and momentum, namely, the mass and
momentum extracted of the system by the gravitational
waves emitted, evaluated at future null infinity (r → ∞),
where the spacetime is asymptotically flat. In the BS
formulation the conservation laws and final values of the
conserved quantities are exact. The formulation [7,8] relies*ivano@cbpf.br
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on (i) expanding the metric functions in a power series of
1=r (where r is the luminosity distance), (ii) taking into
account the BS boundary conditions (connected to the
asymptotic flatness of the spacetime and the outgoing wave
condition), (iii) using Einstein’s vacuum equations and
(iv) eliminating some arbitrary functions that arise in the
integration scheme. This procedure is far from being trivial,
and furthermore the coordinate system used may present
singularities for r sufficiently small [7–10]. In this sense the
use of the above procedures to obtain the exact metric of the
remnant spacetime, expected to be that of a general boosted
Kerr black hole, remains to be done. An analogous
difficulty occurs in the case of 1þ 3 numerical relativity
simulations.
To circumvent this problem we will undertake the inte-

gration of Einstein’s equation for stationary twisting
Petrov D vacuum spacetimes, as discussed in the present
paper. Among this Petrov type D class we will obtain a
spacetime solution that corresponds to a Kerr black holewith
additional parameters connected to the motion of the black
hole relative to an asymptotic Lorentz frame at future null
infinity; as the boost parameters go to zero we recover the
Kerr metric [1]. This metric is therefore a candidate to
describe an astrophysical remnant black hole, in particular
the remnant configuration of the collision and merger of
black holes recently observed in the direct detection of
gravitational waves [3–6]. We also discuss that the boosted
black hole solution can be a natural set for astrophysical
processes connected to the asymmetry of the ergosphere and
to electromagnetic dynamical effects that result from the
rotating black holemoving at relativistic speeds in a direction
not coinciding with the rotation axis of the black hole. These
effects may correspond to the electromagnetic counterpart of
the gravitational wave emission by the black hole having
possibly the same order ofmagnitude. The paper extends our
previous result obtained in the axisymmetric case [11].
Throughout the paper geometric units G ¼ c ¼ 1 are

used.

II. DERIVATION OF THE SOLUTIONS

In obtaining the metric of a stationary nonaxisymmetric
boosted Kerr black hole we adopt a simple and elegant
apparatus described in Stephani et al. [12] (Secs. 29.1 and
29.5) to obtain twisting Petrov D vacuum solutions of
Einstein’s equations. This procedure follows Kerr in his
original derivation of the Kerr geometry [1]. The metric is
expressed as

ds2 ¼ 2ω1ω2 − 2ω3ω4 ð1Þ

where the 1-forms ωa are given by

ω1 ¼ ω̄2 ¼ −dξ=ρ̄P; ω3 ¼ duþ Ldξþ L̄dξ̄;

ω4 ¼ drþWdξþ W̄dξ̄þHω3; ð2Þ

in Bondi-Sachs–type coordinates ðu; r; ξ; ξ̄Þ [7–9,13],
where a bar denotes complex conjugation. The metric
functions L, W, ρ, H and P are assumed to be independent
of the time coordinate u, namely, ∂=∂u is a Killing vector
of the geometry. P is a real function. Einstein’s vacuum
equations result in (cf. [12])

ρ−1 ¼ −ðrþ iΣÞ; W ¼ i∂ξΣ; ð3Þ

H ¼ λ=2 −
mr

r2 þ Σ2
; ð4Þ

λ ¼ 2P2Reð∂ξ∂ ξ̄ lnPÞ; ð5Þ

λΣþ P2Reð∂ξ∂ ξ̄ΣÞ ¼ 0; ð6Þ

2iΣ ¼ P2ð∂ ξ̄L − ∂ξL̄Þ; ð7Þ

where m is a real constant parameter and λ ¼ �1 is the
curvature of the two-dimensional surface dξdξ̄=P2. Here
λ ¼ 1 is adopted. The r-dependence is isolated in ρ and H
so that the remaining functions to be determined—P, Σ and
L—are functions of ðξ; ξ̄Þ only. By a coordinate trans-
formation we have set the origin of the affine parameter r in
Eqs. (3) and (4) equal to zero [12]. The remaining field
equations to be integrated reduce then to Eqs. (5), (6) and
(7). Here we will substitute the variables ðξ; ξ̄Þ by ðθ;ϕÞ via
the stereographic transformation

ξ ¼ cotðθ=2Þeiϕ:

The real function Pðξ; ξ̄Þ is integrated from Eq. (5) by
assuming P with the form

P ¼ Kðθ;ϕÞffiffiffi
2

p
sin2ðθ=2Þ : ð8Þ

Equation (5) reduces then to

1 ¼ KKθθ þ KKθ cot θ − K2
θ þ K2 þ ðKKϕϕ − K2

ϕÞ
sin2 θ

: ð9Þ

Kðθ;ϕÞ ¼ 1 is a solution of Eq. (9) and corresponds to the
original Kerr solution. As we will see in the following the
general K-function is the proper and natural tool to
introduce the boost in asymptotically flat gravitational
fields, preserving the asymptotic boundary conditions at
future null infinity, even for radiating fields. The K-
function actually belongs to the asymptotic orthochronous
inhomogeneous Lorentz group that is isomorphic to con-
formal transformations of the two-sphere into itself,
denoted the Bondi-Metzner-Sachs (BMS) group [7–10,13].
A general solution of Eq. (9) is given by

Kðθ;ϕÞ ¼ aþ bx̂:n; a2 − b2 ¼ 1; ð10Þ
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where x̂ ¼ ðcos θ; sin θ cosϕ; sin θ sinϕÞ is the unit vector
along an arbitrary direction x and n ¼ ðn1; n2; n3Þ is a
constant unit vector satisfying

n21 þ n22 þ n23 ¼ 1: ð11Þ

The solution (10) has three independent parameters
and defines a general Lorentz boost K contained in the
homogeneous Lorentz transformations of the BMS
group. The boost parameter γ parametrizes a and b as
ða ¼ cosh γ; b ¼ sinh γÞ, and is associated with the veloc-
ity v ¼ tanh γ of the black hole relative to a Lorentz frame
at future null infinity. The case of a nonboosted solution
(the Kerr solution) would correspond to b ¼ 0.
Assuming Σ ¼ Σðθ;ϕÞ Eq. (6) in the variables ðθ;ϕÞ has

the form

Σθθ þ cot θΣθ þ
1

sin2 θ
Σϕϕ þ

2Σ
K2ðθ;ϕÞ ¼ 0; ð12Þ

from which the regular solution is derived,

Σðθ;ϕÞ ¼ ω
bþ aðx̂:nÞ
aþ bðx̂:nÞ ; ð13Þ

where ω is an arbitrary constant to be identified with the
rotation parameter of the solution; the parameters n ¼
ðn1; n2; n3Þ satisfy Eq. (11). For n2 and/or n3 nonzero, the
black hole solution will be nonaxisymmetric, namely,
∂=∂ϕ is not a Killing vector of the geometry.
Equation (7) can now be integrated using Eq. (13).

Adopting accordingly

Lðθ;ϕÞ ¼ iLðθ;ϕÞe−iϕ; ð14Þ

where Lðθ;ϕÞ is real, results in

Lθ − L= sin θ þ ð1 − cos θÞ Σðθ;ϕÞ
K2ðθ;ϕÞ ¼ 0: ð15Þ

A general solution of Eq. (15) is given by

Lðθ;ϕÞ ¼
�
1 − cos θ
sin θ

��
C1 −

Z
Σðθ;ϕÞ
K2ðθ;ϕÞ sin θdθ

�
; ð16Þ

where C1 is an arbitrary constant associated with the
solution of the homogeneous part of Eq. (15). Actually
C1 can be an arbitrary function of ϕwhich, however, can be
rescaled to a constant in the final form of the metric.
Furthermore in order to avoid an apparent singular behavior
for a zero boost b2 ¼ 0, as occurring in the axisymmetric
Kerr boosted case [11], the choice C1 ¼ ω=2b2 is adopted
in the remainder of the paper. For the general boost
equation (10) the integrals in Eq. (16) are expressed

Z
Σðθ;ϕÞ
K2ðθ;ϕÞ sin θdθ ¼ ωðI1 þ I2 þ I3 þ I4Þ; ð17Þ

where

I1 ¼ b
Z

sin θ
K3ðθ;ϕÞdθ; I2 ¼ an1

Z
sin θ cos θ
K3ðθ;ϕÞ dθ;

I3 þ I4 ¼ aðn2 cosϕþ n3 sinϕÞ
Z

sin2θ
K3ðθ;ϕÞdθ: ð18Þ

These integrals furnish (by the use of a symbolic manipu-
lation package such as MAPLE) a closed solution in terms of
involved combinations of trigonometric functions, and will
not be displayed here for lack of space. In particular, in the
axisymmetric case, we obtain consistently

Z
Σðθ;ϕÞ
K2ðθ;ϕÞ sin θdθ ¼ ω

2b2
a2 þ 2ab cos θ þ b2

ðaþ b cos θÞ2 : ð19Þ

The integrands of the integrals in Eq. (18) allows us to
define a Bondi-Sachs 4-momentum aspect as

pμðθ;ϕÞ ¼ mkμ

K3ðθ;ϕÞ ; ð20Þ

where kμ ¼ ð−1; cos θ; sin θ cosϕ; sin θ sinϕÞ defines the
generators of the BMS translations in the temporal, and
Cartesian directions x, y and z of an asymptotic Lorentz
frame at future null infinity, and where Kðθ;ϕÞ given in
Eq. (10) is the generator of Lorentz boosts of the BMS
[7–10]. The integration of Eq. (20) in the whole sphere
yields the total Bondi-Sachs 4-momentum associated with
the solution (27) below,

Pμ ¼ 1

4π

Z
2π

0

dϕ
Z

π

0

pμðθ;ϕÞ sin θdθ; ð21Þ

namely, the Bondi-Sachs mass MBS and the Bondi-Sachs
momentum PBS,

MBS ¼ ma ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þ

p ;

PBS ¼ mbn ¼ mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þ

p n: ð22Þ

The evaluation of Eq. (21) leading to the result (22)
involved a long and careful computation using the
Mathematica package.
As we will discuss below the mass and momentum

aspects (20) are physical quantities that contribute to the
angular momentum of the solution.
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From Eq. (14) we obtain

Ldξþ L̄ ξ̄ ¼ −2Lðθ;ϕÞ cot θ=2dϕ; ð23Þ

where Lðθ;ϕÞ is given by Eq. (16).
Analogously from Eq. (1), W ¼ i∂ξΣ, it results

Wðθ;ϕÞ ¼ e−iϕ
�
−iΣθsin2θ=2þ

Σϕ

2 cot θ=2

�
; ð24Þ

and we obtain

Wdξþ W̄dξ̄ ¼
�
Σθ sin θdϕ −

Σϕ

sin θ
dθ

�

¼ ω

�
−n1sin2θ þ ðn2 cosϕþ n3 sinϕÞ sin θ cos θ

K2ðθ;ϕÞ
�
dϕþ ω

ðn2 sinϕ − n3 cosϕÞ
K2ðθ;ϕÞ dθ: ð25Þ

In order to complete the metric 1-forms (2) we have

H ¼ 1

2
−

mr
r2 þΣ2ðθ;ϕÞ ; ρ−1 ¼ −ðrþ iΣðθ;ϕÞÞ: ð26Þ

The metric (1) finally results in

ds2 ¼ r2 þ Σ2ðθ;ϕÞ
K2ðθ;ϕÞ ðdθ2 þ sin2θdϕ2Þ − 2ðdu − 2Lðθ;ϕÞ cot θ=2dϕÞ

×

�
drþ ω

−n1sin2θ þ ðn2 cosϕþ n3 sinϕÞ sin θ cos θ
K2ðθ;ϕÞ dϕþ ω

n2 sinϕ − n3 cosϕ
K2ðθ;ϕÞ dθ

�

− ðdu − 2Lðθ;ϕÞ cot θ=2dϕÞ2 × r2 − 2mrþ Σ2ðθ;ϕÞ
r2 þ Σ2ðθ;ϕÞ : ð27Þ

where Kðθ;ϕÞ and Σðθ;ϕÞ are given in Eqs. (10) and (13),
respectively, andLðθ;ϕÞ in Eq. (16). The metric describes a
boosted Kerr black hole along an arbitrary direction relative
to an asymptotic Lorentz frame at future null infinity. The
direction of the boost is defined by the Euler parameters
ðn1; n2; n3Þ, cf. (10), of the Lorentz boosts of the BMS
group [7].
For n2 ¼ 0 ¼ n3 and b ¼ 0 the metric (27) is the original

Kerr metric in retarded Bondi-Sachs–type coordinates.1

For ω ¼ 0 it represents a boosted Schwarzschild black
hole along the direction determined by ðn1; n2; n3Þ.
By isolating the mass dependent term in the above

geometry we obtain

ds2 ¼ ds2M þ 2mr
r2 þ Σ2ðθ;ϕÞ ðlαdx

αÞ2; ð28Þ

where lα ¼ ð1; 0; 0;−2Lðθ;ϕÞ cot θ=2Þ is a null vector with
respect to both metrics ds2 and ds2M, namely, lαlα ¼ 0. In
verifying these results we used

guu ¼ 4K2ðθ;ϕÞL2ðθ;ϕÞ
ðcos θ − 1Þ2ðr2 þ Σ2ðθ;ϕÞÞ ;

guϕ ¼ −
2K2ðθ;ϕÞLðθ;ϕÞ

ðcos θ − 1Þ sin θðr2 þ Σ2ðθ;ϕÞÞ ;

gϕϕ ¼ 4K2ðθ;ϕÞ
sin2θðr2 þ Σ2ðθ;ϕÞÞ :

The metric ds2M does not involve the mass and has the
associated Riemann tensor equal to zero, as can be tested
carefully, being the metric gðMÞαβ of a flat space, so that
Eq. (27) assumes the Kerr-Schild form

gαβ ¼ gðMÞαβ þ
2mr

r2 þ Σ2ðθ;ϕÞ lαlβ:
1We note that these coordinates correspond actually to the

standard Kerr-Schild or Eddington-Finkelstein coordinates used
largely in the literature of Kerr spacetimes.
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As we are in the realm of Kerr metrics it is straightforward
to see that in the axisymmetric case, namely, when
n2 ¼ 0 ¼ n3, the metric (27) reduces either to the axial
Kerr boosted metric or to the Kerr metric, whether b ≠ 0 or
b ¼ 0 respectively, the metrics having the Killing vectors
∂=∂u and ∂=∂ϕ.
Expanding (27) in the axisymmetric case for large r and

in the limit of slow rotation parameter ω ≪ m, we obtain

ds2 ≃ −
�
1 −

2m
r

�
du2 − 2dudrþ r2ðdθ2 þ sin2θdϕ2Þ

K2ðθÞ ;

þ 4mω

rK2ðθÞ sin
2θdudϕ; ð29Þ

where KðθÞ ¼ ðaþ b cos θÞ. This linearized version rep-
resents a boosted mass monopole plus the Lense-Thirring
rotating term with angular momentum mω [14–16].
Therefore in the axisymmetric case the metric (27) can
then be interpreted as a boosted Kerr black hole rotating
about the z axis (the axis defining the angle ϕ) with angular
momentum mω. The boost is along the axis of rotation,
relative to an asymptotic Lorentz frame at future null
infinity.
Now for the general boosted case an analogous expan-

sion results in

ds2 ≃ −
�
1 −

2m
r

�
du2 − 2dudrþ r2ðdθ2 þ sin2θdϕ2Þ

K2ðθ;ϕÞ
−
4m
r

Lðθ;ϕÞ cot θ=2dudϕ: ð30Þ

By comparing Eqs. (29) and (30) we observe that a
difference appears in the Lense-Thirring rotation term.
This actually results from the fact that—besides the mass
aspect—the rotation term of Eq. (29) contains just the
3-momentum aspect componentp1 of the geometry, while in
Eq. (30) the complete 3-momentum aspect ðp1; p2; p3Þ is
present. In this sense we have in Eq. (30) a genuine natural
extension of theLense-Thirring rotation term. Thevanishing
of the components p2 and p3 of the 3-momentum aspects
(20), by takingn2 ¼ 0 ¼ n3, restores the axisymmetry of the
boosted black hole configuration. We remark that the
presence of a momentum aspect that adds to the mass
aspect in Eq. (17) is mandatory sincewe cannot make all the
Euler parameters zero due to the relation n21 þ n22 þ n23 ¼ 1.
In all cases the angular momentum is proportional to mω
about the axis defining the coordinate ϕ.
We note that the 1=K2-factor multiplying the two-sphere

line element in Eqs. (29) and (30) is actually a conformal
transformation of the unit two-sphere into itself which is
isomorphic to a Lorentz boost of the BMS group [10,13].
The z axis about which the black hole rotates does not
coincide with the boost axis except in the axial case
n2 ¼ 0 ¼ n3 [11]. A further detailed examination of the

rotation term dudϕ of the Kerr boosted geometry (27) will
be given in the following section, where the angular
momentum of the event horizon r ¼ rþ is analyzed.
Finally for illustration and comparison with the above

results we present the slow rotation limit of a nonboosted
nonaxisymmetric Kerr black hole [cf. (27)] that reads

ds2 ≃ −
�
1 −

2m
r

�
du2 − 2dudrþ r2ðdθ2 þ sin2θdϕ2Þ

þ 4mω

r
ðn1sin2θ þ ðn2 cosϕþ n3 sinϕÞ

× ðθ − sin θ cos θÞÞdudϕ: ð31Þ

The angular momentum at the equator in this case results
in ΩðϕÞ ¼ mωðn1 þ πðn2 cosϕþ n3 sinϕÞ=2Þ.

III. PROPERTIES OF THE SOLUTION: THE
ERGOSPHERE AND HORIZONS

A direct examination of Eq. (27) shows that ∂=∂u is a
Killing vector of the geometry and defines its stationary
character. The general boosted Kerr geometry also presents
an ergosphere, defined by the limit surface for static
observers, namely, the locus where the Killing vector
∂=∂u becomes null [16], and by the event horizon to be
discussed below. In the coordinate system of Eq. (27) the
equation of the limit surface guu ¼ 0 results in

r2 − 2mrþ Σ2ðθ;ϕÞ ¼ 0; ð32Þ

or

rstatðθ;ϕÞ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − Σ2ðθ;ϕÞ

q
: ð33Þ

The horizons are the surfaces defined by

grr ¼ 1

r2 þ Σ2ðθ;ϕÞ
�
r2 − 2mrþ ω2

Δðθ;ϕÞ
K2ðθ;ϕÞ

�
¼ 0; ð34Þ

where

Δðθ;ϕÞ ¼ ðbþ ax̂:nÞ2 þ Δ1ðθ;ϕÞ;

and

Δ1ðθ;ϕÞ ¼ n21sin
2θ þ n22ðcos2ϕcos2θ þ sin2ϕÞ

þ n23ðcos2ϕsin2θ þ cos2θÞ
− 2n1n2ðsin θ cos θ cosϕÞ
− 2n1n3ðsin θ cos θ sinϕÞ
− 2n2n3ðsin2θ sinϕ cosϕÞ: ð35Þ

Since ðn21 þ n22 þ n22Þ ¼ 1 and ða2 − b2Þ ¼ 1 for a gen-
eral boost, cf. (10), it follows after some algebra that
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Δðθ;ϕÞ=K2ðθ;ϕÞ ¼ 1, so that Eq. (34) reduces to the
simple form

r2 − 2mrþ ω2 ¼ 0;

with roots

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
: ð36Þ

We can see that the event horizon rþ and the Cauchy
horizon r− do not alter by the effect of the boost.
The region between the surfaces rstat and rþ is the

ergosphere where the Penrose process [17,18] takes place.
The ergosphere is deformed along the direction n ¼
ðn1; n2; n3Þ of the boost, as illustrated in Fig. 1 (left panel)
for a Kerr black hole with mass m ¼ 1 and rotation
parameter ω ¼ 0.999, in geometrical units. The boost
parameter adopted to construct the figure was b ¼ 3.28,
corresponding to the boost velocity of the black hole
v=c ¼ tanh γ ≃ 0.956532, relative to a Lorentz frame at
null infinity. The ergosphere static limit surface contacts the
event horizon rþ in just two points. In the configuration of
Fig. 1 (right panel) these points correspond to ϕ¼π=3.931,
with θ ≃ 25.84° and θ ≃ 25.84°� π.
Both horizons rþ and r− constitute three-dimensional

manifolds with the topology of S3, although the associated
geometry is not spherical. This property—already known
for the case of the original Kerr black hole spacetime
[19,20]—holds also for the boosted extensions of the Kerr

manifold. For the sake of simplicity and space we consider
the case of the event horizon r ¼ rþ only, and the
restriction to the section θ ¼ π=2 of the geometry (27).
The case of the Cauchy horizon r− has a similar analysis
and results. We obtain

ds2j ¼ ΩðϕÞdudϕ −
�
Σ2ðπ=2;ϕÞ − ω2

r2þ þ Σ2ðπ=2;ϕÞ
�
du2

þ
�
r2þ þ Σ2ðπ=2;ϕÞ − 4Lðπ=2;ϕÞωn1

K2ðπ=2;ϕÞ

− 4Lðπ=2;ϕÞ
�
Σ2ðπ=2;ϕÞ − ω2

r2þ þ Σ2ðπ=2;ϕÞ
��

dϕ2; ð37Þ

where

ΩðϕÞ¼ 2ω

�
n1

K2ðπ=2;ϕÞþ
2Lðπ=2;ϕÞðΣ2ðπ=2;ϕÞ−ω2Þ

ωðr2þþΣ2ðπ=2;ϕÞÞ
�
;

Σ2ðπ=2;ϕÞ−ω2¼ω2
ðn2 cosϕþn3 sinϕÞ2−1

K2ðπ=2;ϕÞ ;

Kðπ=2;ϕÞ¼ aþbðn2 cosϕþn3 sinϕÞ: ð38Þ

The term ΩðϕÞ of the restricted geometry (37) corresponds
to a rotation about the z axis. The associated angular
momentum is not conserved since ∂=∂ϕ is not a Killing
vector of the black hole geometry. Furthermore from Fig. 1
we also can see that the angle between the boost axis,

FIG. 1. Plots of the ergosphere for a boosted Kerr black hole, with m ¼ 1, ω ¼ 0.999 and the boost direction taken as n1 ¼ 0.9,
n2 ¼ 0.3, n3 ≃ 0.316227766. The boost parameters b and a correspond to the velocity of the black hole v=c ≃ 0.956532. (Left panel) A
three-dimensional view of the ergosphere static limit where the thin black axis corresponds to the direction ðn1; n2; n3Þ of the boost while
the thick black axis is the axis of rotation (the z axis) of the black hole. (Right panel) A section of the ergosphere static limit by the plane
ϕ ¼ π=3.931 (red continuous line) shown in the plane θ. The boost axis shown in the left figure is defined by the two points θ ≃ 25.84°
and θ ≃ 25.84°� π where the ergosphere contacts the two-dimensional event horizon rþ ≃ 1.044710 (dashed blue line).
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defined by the Euler parameters ðn1; n2; n3Þ, and the
rotation axis z is θ0 ¼ arccosðn1Þ.
If we consider the axisymmetric limit of Eq. (27), the

rotational term of the event horizon r ¼ rþ at the equatorial
plane θ ¼ π=2 reduces to

Ω ¼ ω
4mrþ

ða2r2þ þ ω2b2Þ : ð39Þ

Finally the geometry of the event horizon at the section
du ¼ 0 results in

ds2j ¼ r2þ þΣ2ðθÞ
ðaþ bcosθÞ2 ðdθ

2 þ sin2 θdϕ2Þ

þ ω2 sin4 θ
ðaþ b cosθÞ4

�
r2þ þΣ2ðθÞ þ 2mrþ

r2þ þΣ2ðθÞ
�
dϕ2; ð40Þ

which is topologically, but not geometrically, a two-sphere.
For the general boosted Kerr black hole this property can be
checked numerically.

IV. THE SINGULARITY

By a careful examination of the curvature invariants of
Eq. (27) we can see that the metric and the curvature are
truly singular at

r2 þ Σ2ðθ;ϕÞ ¼ 0; ð41Þ

namely, at

r ¼ 0; Σðθ;ϕÞ ¼ 0: ð42Þ

The singularity is then contained in the two-dimensional
surface defined by

ðn1 cos θ þ n2 sin θ cosϕþ n3 sin θ sinϕÞ ¼ −b=a; ð43Þ

at r ¼ 0. Specifically the singular points correspond
to closed curves which are the intersection of the two-
dimensional surface Hðθ;ϕÞ with the two-sphere
Sðθ;ϕÞ ¼ b=a with center at the origin,

Hðθ;ϕÞ¼ ðn1 cosθþn2 sinθcosϕþn3 sinθ sinϕÞ; ð44Þ

Sðθ;ϕÞ ¼ −b=a; for all ðθ;ϕÞ: ð45Þ

For increasing values of jbj—as the radius of the (red)
sphere Sðθ;ϕÞ about the origin increases—the radius of the
singularity lines initially increases and then decreases. In
the limits b ¼ 0 and b → ∞ (that is, when b=a ¼ v=c → 1)
the closed curves reduce to a point. This is illustrated in
Fig. 2 for of b ¼ −0.15, −0.45 and −1.8.
For the axisymmetric boosted case (n1 ¼ 1 and

n2 ¼ 0 ¼ n3) the closed curves corresponding to the
singularity of the black hole are circles on the planes z ¼
const [namely, θS ¼ arccosð−b=aÞ], with 0 < jbj < ∞, as
illustrated in Fig. 3 for b ¼ −0.1, b ¼ −0.45 and b ¼ −1.2.
Analogous to the general boosted case, for b → �∞ the
singularity circle reduces to a point at the north/south poles
ðθ ¼ 0; πÞ; for b ¼ 0 (the Kerr black hole) the circle
reduces to a point on the equatorial plane.

FIG. 2. Plots of the intersections of the surface Hðθ;ϕÞ ¼ ðn1 cos θ þ n2 sin θ cosϕþ n3 sin θ sinϕÞ (blue) with the sphere Sðθ;ϕÞ
about the origin with radius −ðb=aÞ (red). The intersection defines a closed line of singularities; for increasing values of jbj these closed
curves increase and then decrease as the radius of the spherical surface (red) about the origin increases. The figures correspond to the three
values of b ¼ −0.15, b ¼ −0.45 and b ¼ −1.8 (from left to right), with fixed parameters ðn1 ¼ 0.9; n2 ¼ 0.2; n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n21 − n22

p
Þ. For

b ¼ 0 and b → �∞ the circles reduce to a point. The closed singularity curves are contained in planes orthogonal to the direction of the
boost ðn1; n2; n3Þ.
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The point singularities occurring at the equatorial
plane and at the north/south poles (corresponding respec-
tively to b ¼ 0 and b → �∞) can be developed by
using the flat metric ds2M of the Kerr-Schild form (28).
A straightforward calculation yields that in the axial case
Lðθ;ϕÞS ¼ −ωðaþ bÞ=2 so that the background geometry
ds2M in Eq. (28) assumes the form

ds2MjS ¼ −du2 þ ω2dϕ2;

independent of b, so that in terms of the Minkowski metric
ds2M the curvature singularity at θ ¼ π=2 and θ ¼ 0; π has
the topology of a ring [19]. This pattern is to be maintained
for the general boosted case except that the closed
singularity curves are obviously no longer on the equatorial
plane, being actually contained in planes orthogonal to the
direction of the boost determined by ðn1; n2; n3Þ.

V. DISCUSSIONS AND CONCLUSIONS

In this paper we have derived a solution of Einstein’s
vacuum equations (27) corresponding to a general boosted
Kerr black hole that describes the most general configu-
ration of a remnant astrophysical black hole present in
nature.
Astrophysical processes in which black holes are formed

were the object of recent detections by the LIGO Scientific
Collaboration and the Virgo Collaboration [21], of the
gravitational waves emitted by a binary black hole merger
[3–6] with mass ratios in the range 0.53–0.83. The unequal
masses of the initial black holes in the observed binaries
result that the gravitational waves emitted have a nonzero
gravitational wave momentum flux, indicating that the
remnant black hole must be a Kerr black hole boosted
along the direction of the late time momentum flux, with
respect to the asymptotic Lorentz frame at null infinity

where such emissions have been detected. The remnant
black hole solution has five independent parameters,
namely, the mass m, the rotation parameter ω, the boost
velocity v ¼ tanh γ and the direction of the boost deter-
mined by ðn1; n2; n3Þ satisfying ðn1Þ2þðn2Þ2þðn3Þ2¼1.
These parameters are necessary to the description of a
remnant black hole in nature. In the integration of the
solution the general Kðθ;ϕÞ-function appears as the appro-
priate and natural tool to introduce the boost in asymp-
totically flat gravitational fields, preserving the asymptotic
boundary conditions at future null infinity. The additional
parameters connected to the boost do not change the Kerr
black hole structure, namely, the event and the Cauchy
horizons, both having the topology of a three-sphere. The
paper extends our previous results obtained in the axisym-
metric case [11].
The issue of the rotation of the black hole is examined

firstly in the case of large r and the slow rotation limit. We
obtain that this linearized version represents a boosted mass
monopole plus the Lense-Thirring rotating term with
angular momentum proportional to mω about the axis
defining the angle ϕ. By comparing the axisymmetric and
nonaxisymmetric case we observe that the difference in the
Lense-Thirring rotation term results basically from the fact
that—besides the mass aspect—the rotation term in the
axisymmetric case contains just the 3-momentum aspect p1

of the geometry, while in the nonaxisymmetric case the
complete 3-momentum aspect ðp1; p2; p3Þ is present. This
clarify the extension of the Lense-Thirring rotation term for
the general boosted case. We note that the momentum
aspects p2 and p3 break the rotational symmetry about the z
axis so that the angular momentum varies as the black hole
rotates about the z axis; ∂=∂ϕ is obviously not a Killing
vector of the metric. In the limit of p2 and p3 going
continuously to zero (30) tends continuously to (29) as
expected.

FIG. 3. Plot of the intersection of the surface Hðθ;ϕÞ (blue) and the sphere Sðθ;ϕÞ (red) for the axial boosted case, with n1 ¼ 1,
n2 ¼ 0 ¼ n3 and b ¼ −0.1, b ¼ −0.45 and b ¼ −1.2 (from left to right). The intersections are circles of singularity on the z ¼ const (or
θ ¼ const) planes, as should be expected in the axial configuration. For b ¼ 0 and jbj → ∞ the circles reduce to a point respectively at
the equatorial plane θ ¼ π=2 and at the poles θ ¼ 0; π.
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The static limit surface and the ergosphere are also
examined in the case of the general boosted Kerr black
hole; as in the axisymmetric case the general boost turns the
ergosphere asymmetric in the direction opposite to the boost.
The singularity at r ¼ 0, Σðθ;ϕÞ ¼ 0 corresponds to

closed curves contained in two-dimensional planes orthogo-
nal to the direction of the boost determined by ðn1; n2; n3Þ.
For increasing values of the boost parameter jbj the radius of
the singularity lines initially increase and then decreases.
In the limits b ¼ 0 (that is, when b=a ¼ v=c ¼ 0) and
b ¼ →∞ (that is, when b=a ¼ v=c → 1) the closed curves
reduce to a point. The point singularities occurring at the
equatorial plane and at the north/south poles (corresponding
respectively to v ¼ 0 and v → 1) can be developed, in the
Minkowski background, into curves with the topology of
a ring.
Actually the boosted black hole solution can be a natural

set for astrophysical processes connected to the asymmetry
of the ergosphere and to electromagnetic dynamical effects
that may result from the rotating black hole moving at
relativistic speeds in a direction not coinciding with the
rotation axis. In this setting electromagnetic losses due to
translational and rotational motion of the black hole are
expected to occur. These effects may correspond to the
electromagnetic counterpart of the gravitational wave
emission by the black hole having possibly the same order
of magnitude, and can eventually turn out to be important
for the astrophysics of highly energetic bounded sources
observed in our actual Universe (as for instance AGN) as
we comment below.
We envisage that these processes can have applications

in modeling the astrophysics of electromagnetic outflows
involving the boost and rotation encompassed in the black
hole (27). In fact rotating black holes in electrovacuum or in
a tenuous plasma can produce strong electromagnetic
signals similar to the magnetospheres of rotating pulsars
as in the Blandford-Znajek processes [22–24]. Another

aspect has to do with the motion of the black hole at
relativistic speeds in such an environment. The electro-
magnetic fields can either be of external origin or due to the
motions of the constituents of the plasma itself. Electric
currents flowing in the plasma may induce a time depen-
dent magnetic field B in a plane orthogonal to the rotation
axis. Furthermore, since the rotation axis makes an angle
θ ¼ arccosðn1Þ with the boost direction, a further nonzero
electric field component proportional to ðv ∧ BÞ will be
present. This makes possible the appearance of electro-
magnetic flows that may appear as an electromagnetic
counterpart of late time emissions in the merger of black
holes [25–28]. We recall that this boost is inherited from the
net momentum flux of the gravitational waves emitted in
the collision and merger of two nonequal mass black holes
that generated the remnant.
Finally we argue that the application of such mechanisms

as engines of relativistic electromagnetic jets from quasars,
pulsars and AGN could be properly considered and
implemented in the neighborhood of the general boosted
Kerr black hole (27). We are presently examining numeri-
cally solutions of Maxwell equations in the background
of the black hole (27) taking into account a tenuous plasma
as source, with a view to the evaluation of the electro-
magnetic power emitted in these configurations (cf. also
Abdujabbarov et al. [29] for the axisymmetric case [11]).
Recently Benavides-Gallego et al. [30] studied weak
gravitational lensing around a boosted Kerr black hole
[11] in the presence of plasma.
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