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In Cuzinatto et al. [Phys. Rev. D 93, 124034 (2016)], it has been demonstrated that theories of gravity in
which the Lagrangian includes terms depending on the scalar curvature R and its derivatives up to order n,
i.e., fðR;∇μR;∇μ1∇μ2R;…;∇μ1 � � �∇μnRÞ theories of gravity, are equivalent to scalar-multitensorial
theories in the Jordan frame. In particular, in the metric and Palatini formalisms, this scalar-multitensorial
equivalent scenario shows a structure that resembles that of the Brans-Dicke theories with a kinetic term for
the scalar field with ω0 ¼ 0 or ω0 ¼ −3=2, respectively. In the present work, the aforementioned analysis is
extended to the Einstein frame. The conformal transformation of the metric characterizing the trans-
formation from Jordan’s to Einstein’s frame is responsible for decoupling the scalar field from the scalar
curvature and also for introducing a usual kinetic term for the scalar field in the metric formalism. In the
Palatini approach, this kinetic term is absent in the action. Concerning the other tensorial auxiliary fields,
they appear in the theory through a generalized potential. As an example, the analysis of an extension of the
Starobinsky model (with an extra term proportional to ∇μR∇μR) is performed and the fluid representation
for the energy-momentum tensor is considered. In the metric formalism, the presence of the extra term
causes the fluid to be an imperfect fluid with a heat flux contribution; on the other hand, in the Palatini
formalism the effective energy-momentum tensor for the extended Starobinsky gravity is that of a perfect
fluid type. Finally, it is also shown that the extra term in the Palatini formalism represents a dynamical field
which is able to generate an inflationary regime without a graceful exit.
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I. INTRODUCTION

The current precision-data era of observational cosmol-
ogy [1–5] poses challenges for the standard model of
particle physics and general relativity (GR) alike. In fact,
the particle physics community works intensely to accom-
modate dark matter within the theoretical framework—
proposals include axionlike particles [6–10], weakly
interacting massive particles (WIMPs) [11], superfluid
dark matter (DM) [12–14]—and experimental facilities
strive to detect the dark matter particle [15,16]. Dark
energy hints that general relativity may not be the final
theory of the gravitational interaction—although it is
possible to explain it via a cosmological constant [17]

or exotic matter components. The last solution is the so-
called modified matter approach [18] whose particular
models are quintessence [19–21], k-essence [22,23], and
unified models of dark matter and dark energy [24–30].
Dark energy could also be explained by the modified
gravity approach, i.e., extensions to GR changing the
geometrical side of the field equation. Probably, the most
explored framework in this branch is the fðRÞ theories
[31–34] but several other types have been explored
[35–41]. String-inspired theories [42–44] and gauge-
invariant gravity theories [45] suggest that a possible
suitable modification is to consider higher-order deriva-
tives of the curvature-related objects (R, Rμν, R

μ
νρσ); these

theories will henceforth be called higher-order theories of
gravity. This possibility of extension to GR has drawn the
attention of the community as a possibility to address
inflation [46–54], efforts toward a meaningful quantiza-
tion of gravity [55–58] or the issue of ghost plagued
models [59–62]—see also [63].
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The interest in higher-order theories extends to the
subject of their equivalence to scalar-tensor theories.
This is ultimately possible due to the additional degrees
of freedom (d.o.f.) (with respect to GR) that are present in
both approaches. The equivalence modified–gravity/scalar-
tensor theories were studied both at the classical level
[32,64] and at the quantum level [65–67], at least for fðRÞ
theories.
Higher-order fðR;∇μ1R;∇μ1∇μ2R;…;∇μ1 ���∇μnRÞ theo-

ries of gravity are known to be scalar-multitensorial
equivalent [64]. The equivalence was shown both in the
metric formalism and in the Palatini formalism in the
Jordan frame. In the metric formalism, the scalar-multi-
tensor actions derived from fðR;∇R;…;∇nRÞ are shown
to be analogous to the Brans-Dicke class of models with
parameter ω0 ¼ 0 and a potentialU; the theory differs from
ordinary Brans-Dicke in the sense that the d.o.f. additional
to the scalar one appear within the definition of U—these
additional components are tensorial in character and
motivate the name “scalar-multitensorial equivalent.” In
the Palatini formalism, this equivalence resembles a Brans-
Dicke theory with ω0 ¼ −3=2 again with a potential. In
both formalisms, the equivalence was established in the
Jordan frame, where the scalar mode couples with the Ricci
scalar in the action. This action is said to be in the Einstein
frame when a Ricci scalar is not accompanied by any field
(scalar or otherwise) and the extra fields appear in the
potential or even explicitly in the action integral (but not
coupled with curvature-related objects). A considerable
advantage of the Einstein frame is that the theory is
rewritten as GR plus extra fields minimally coupled with
gravity. The Einstein frame is derived from the Jordan
frame through a conformal transformation of the metric
tensor and convenient field redefinitions of the scalar field
and tensor fields eventually present in the action. The
passage from the Jordan to the Einstein frame is a step that
is missing in the work [64].1 One of the present paper’s
main goals is to fill in this gap and advance the study of
higher-order fðR;∇μ1R;…;∇μ1 � � �∇μnRÞ gravity.
The tools developed in this context will be applied here

to a particular model of inflation. As it is well known from
the literature, nowadays the Starobinsky model [71] is
considered the most promising candidate for describing the
inflationary period of the universe [2].2 This model modi-
fies GR by adding a single term proportional to R2 to the
Einstein-Hilbert Lagrangian. For this reason, it is one of the
most minimalist and simplest proposals for inflation. It is
also motivated by the introduction of vacuum quantum

corrections to the theory of gravity [75]. However, the
main success of the Starobinsky model lies in the fact that
it is completely compatible with the most recent obser-
vational data [2–4]. Even though the current precision of
the available data still cannot exclude other models as
viable candidates. The scope here is to explore an
extension of Starobinsky inflation stemming from the
inclusion of the derivative-type term ∇μR∇μR alongside
the Einstein-Hilbert term and an R2 term in the gravita-
tional Lagrangian. The resulting model was dubbed
Starobinsky-Podolsky theory in Ref. [64]. This infla-
tionary model has been fully explored in Ref. [76] via
the metric formalism in the Einstein frame.3 Here its
Palatini counterpart shall be explored. There is a clear
motivation for studying Starobinsky-Podolsky inflation in
the Palatini approach. In fact, the Palatini version of the
original Starobinsky model does not allow inflation to
occur because the auxiliary scalar field in the theory is not
a dynamical quantity [32]. We will show later in this
paper that the Starobinsky-Podolsky model accommodates
an auxiliary vector field besides the usual Starobinsky’s
traditional auxiliary scalar field. The presence of this
additional vector field may change the dynamics of the
system. The consequences for inflation of introducing
such a higher-order term will be considered. In particular,
the intention is to check if inflation is attainable within the
Starobinsky-Podolsky model in the Palatini formalism and
if a graceful exit can take place in this approach.
The paper is organized as follows: Initially, the Jordan-

to-Einstein frame transformation is performed at the level
of the action. Section II deals with the construction of the
scalar-multitensorial equivalent of fðR;∇R;…;∇nRÞ in
the Einstein frame in both metric and Palatini formalisms.
The Starobinsky-Podolsky theory [64] is taken as a
paradigm of nonsingular fðR;∇RÞ gravity in Sec. III;
the general technique developed in Sec. II is applied to this
case and gives rise to a natural definition of an effective

energy-momentum tensor T̃ðeffÞ
μν . The fluid representation of

T̃ðeffÞ
μν is explored in Sec. III C. The Starobinsky-Podolsky

theory in the context of inflation is dealt with in Sec. IV.
Final comments are displayed in Sec. V.

II. HIGHER-ORDER GRAVITY IN THE
EINSTEIN FRAME

We start with a generic higher-order gravity theory of the
form4

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;∇R;∇2R;…;∇nRÞ þ LM�: ð1Þ
1There is a way to transform the action from the original

(geometric) frame directly to the Einstein frame in fðRÞ theories
as explained in Refs. [68,69]. See also [70] for the Palatini
formalism case.

2Examples of nonstandard proposals to the mechanism respon-
sible for the early universe accelerated dynamics are presented in
Refs. [72–74].

3An equivalent model using two scalar auxiliary fields was
analyzed in Ref. [77]. This paper assumes the higher-order term
as a small perturbation to the Starobinsky Lagrangian.

4Throughout the signature is ð−;þ;þ;þÞ. We adopt units
where c ¼ 1 and 2κ ¼ 16πG ¼ 1.
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This is called the geometric frame for the action integral. In Ref. [64], we have shown it can be written in the Jordan frame,

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦR − ω0

1

Φ
∂ρΦ∂ρΦ −UðΦ;ϕμ;…;ϕμ1���μn ;∇μϕ

μ;…;∇μn � � �∇μ1ϕ
μ1���μnÞ þ LMðgμν;ψ ;∇ψ ;…Þ

�
; ð2Þ

where ψ are the matter fields. The value of the parameter ω0

distinguishes the formalism used to describe the theory:
ω0 ¼ 0 is used for the metric formalism and ω0 ¼ − 3

2
is a

feature of the Palatini one. In the latter, the action S0 is
required to depend only on the Levi-Civita connection. In
both Palatini and metric frames, the use of auxiliary fields is
required. These auxiliary fields—appearing in Eq. (2)—are
defined as

Φ≡ ϕ −∇μϕ
μ þ � � � þ ð−1Þn∇μn � � �∇μ1ϕ

μ���μn ; ð3Þ

8>>>>>>>>><
>>>>>>>>>:

ϕ≡ ∂f
∂ξ ;

ϕμ ≡ ∂f
∂ξμ ;

ϕμν ≡ ∂f
∂ξμν ;

..

.

ϕμ1���μn ≡ ∂f
∂ξμ1 ���μn ;

ð4Þ

and

UðΦ;ϕμ;…;ϕμ1���μn ;∇μϕ
μ;…;∇μn � � �∇μ1ϕ

μ1���μnÞ ¼ ðΦþ∇μϕ
μ þ � � � þ ð−1Þnþ1∇μn � � �∇μ1ϕ

μ1���μnÞξ
þϕμξμ þϕμνξμν þ � � � þϕμ1���μnξμ1���μn − fðξ; ξμ; ξμν;…;ξμ1���μnÞ: ð5Þ

We indicate Ref. [64] for further details.
In this paper, we proceed by introducing the conformal

transformation for the metric tensor

g̃μν ¼ Φgμν ð6Þ

depending on the scalar fieldΦ given in Eq. (3). Notice that
it depends on the contraction of the scalar and multitensor
fields in Eq. (4). Under Eq. (6), the Ricci scalar can be
written as [78]

R̃≡ g̃μνR̃μν ¼
1

Φ

�
Rþ 3

2Φ2
∇ρΦ∇ρΦ −

3

Φ
□Φ

�
ð7Þ

or

R ¼ ΦR̃ −
3

2Φ
∂̃ρΦ∂̃ρΦþ 3Φffiffiffiffiffiffi

−g̃
p ∂̃ρ

� ffiffiffiffiffiffi
−g̃

p ∂̃ρ lnΦ
�
; ð8Þ

since ∂̃ρ ≡ g̃ρα∂̃α ¼ g̃ρα∂α.
Equation (8) converts Eq. (2) to

S00 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃ −

1

Φ2

�
ω0 þ

3

2

	
∂̃ρΦ∂̃ρΦþ 3ffiffiffiffiffiffi

−g̃
p ∂̃ρð

ffiffiffiffiffiffi
−g̃

p ∂̃ρ lnΦÞ

−
1

Φ2
UðΦ;ϕμ;…;ϕμ���μn ;∇μϕ

μ;…;∇μn � � �∇μ1ϕ
μ1���μnÞ þ 1

Φ2
LMðgμν;ψ ;∇ψ ;…Þ



: ð9Þ

This is the general form of the action in the Einstein frame. Next, we obtain the field equations in both the metric and the
Palatini formalisms.

A. Metric formalism

Here, we will proceed by taking ω0 ≠ − 3
2
which includes the case ω0 ¼ 0. We start by redefining the scalar field Φ:

Φ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ω0

p
lnΦ: ð10Þ

The conformal transformation for the metric (6) implies

Γα
μρ ¼ Γ̃α

μρ þϒα
ρμ; ð11Þ

with the object ϒα
ρμ defined as
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ϒν
ρμ ¼ −

1

2
ðδνρ∂μ lnΦþ δνμ∂ρ lnΦ − g̃νσ g̃μρ∂σ lnΦÞ

¼ −
1

2
ffiffiffi
3

p ðδνρ∂μΦ̃þ δνμ∂ρΦ̃ − g̃νσ g̃μρ∂σΦ̃Þ; ð12Þ

and Γ̃α
μρ is the Levi-Civita connection for the metric g̃μν.

Henceforth, we will denote the operator ∇̃ as the covariant
derivative with respect to the connection Γ̃ and
ϒσ

μρ ¼ ϒσ
μρðΦ̃; g̃αβÞ. With this, it is easy to show the

following useful formulas:

∇μϕ
μ ¼ ∇̃μϕ

μ þϒρ
ρμϕμ ¼ ∇̃μϕ

μ −
2ffiffiffi
3

p ϕρ∂ρΦ̃ ð13Þ

and

∇ν∇μϕ
μν ¼ ∇̃ν½∇̃μϕ

μν þϒμ
μρϕρν þϒν

μρϕ
μρ�

þϒν
νσð∇̃μϕ

μσ þϒμ
μρϕρσ þϒσ

μρϕ
μρÞ: ð14Þ

The action S00, modulo surface terms, then reads

S00 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃ −

1

2
g̃ρσ∂ρΦ̃∂σΦ̃ − Ũ þ L̃M

�
; ð15Þ

where the conformal potential is

Ũ¼ ŨðΦ̃;∇̃μΦ̃;…;∇̃μn � � �∇̃μ1Φ̃;ϕμ1 ;…;ϕμ1���μn ;∇̃μ1ϕ
ν1 ;…;∇̃μ1ϕ

ν1���νn ;∇̃μ1∇̃μ2ϕ
ν1ν2 ;…;∇̃μ1∇̃μ2ϕ

ν1���νn ;…;∇̃μ1 � � �∇̃μnϕ
ν1���νnÞ

¼ e
− 2Φ̃ffiffiffiffiffiffiffiffi

3þ2ω0
p

UðΦðΦ̃Þ;ϕμ;…;ϕμ1���μn ;∇μϕ
μðΦ̃; g̃αβÞ;…;∇μn � � �∇μ1ϕ

μ1���μnðΦ̃; g̃αβÞÞ; ð16Þ

and

L̃M ¼ L̃Mðg̃μν; Φ̃;ψ ; ∇̃ψ ;…Þ

¼ e
− 2Φ̃ffiffiffiffiffiffiffiffi

3þ2ω0
p

LMðgμνðg̃μν; Φ̃Þ;ψ ;∇ψðΦ̃; g̃αβÞ;…Þ ð17Þ

is the matter-field Lagrangian under the metric conformal
transformation.
Equation (15) is the action integral in the Einstein frame

for the metric formalism. The corresponding field equations
are derived next.

1. Field equations in the metric formalism

Functional variations of the action S00 in Eq. (15)
with respect to the fields give the equations of motion
(EOM) for the higher-order gravity in the Einstein frame.
In the metric approach, these fields are the conformal
metric g̃μν, the scalar field Φ̃, the multitensor fields
fϕμ1 ;ϕμ1μ2 ;…;ϕμ1���μng, and the matter field ψ .
Performing the variations in this sequence leads to the

EOM Eqs. (18), (22), (24), and (25) below. In fact, the
gravitational field equation is

R̃μν −
1

2
g̃μνR̃ ¼ 1

2
ðTμν þ TðeffÞ

μν Þ; ð18Þ

where

Tμν ≡ g̃μνL̃M − 2
δL̃M

δg̃μν
ð19Þ

is the ordinary energy-momentum tensor for the matter
field and

TðeffÞ
μν ≡∂μΦ̃∂νΦ̃− g̃μν

�
1

2
g̃ρσ∂ρΦ̃∂σΦ̃þŨ

	
þ2

δŨ
δg̃μν

ð20Þ

is the effective energy-momentum tensor for the auxiliary
fields in the metric formalism. The definition Eq. (20)
contains the term

δŨ
δg̃μν

¼ ∂Ũ
∂g̃μν −

1ffiffiffiffiffiffi
−g̃

p ∂μ1

� ffiffiffiffiffiffi
−g̃

p ∂Ũ
∂ð∂μ1 g̃

μνÞ
	
þ � � � þ ð−1Þnffiffiffiffiffiffi

−g̃
p ∂μ1 � � � ∂μn−1∂μn

� ffiffiffiffiffiffi
−g̃

p ∂Ũ
∂ð∂μn � � � ∂μ1 g̃

μνÞ
	
: ð21Þ

Moreover, the EOM for the scalar field Φ̃ is

□̃ Φ̃−
δŨ

δΦ̃
¼ −

δL̃M

δΦ̃
; ð22Þ

where □̃ ¼ ∇̃ρ∇̃ρ, under the definition
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δŨ

δΦ̃
¼ ∂Ũ

∂Φ̃ − ∇̃μ1

∂Ũ
∂ð∇̃μ1Φ̃Þ þ � � � þ ð−1Þn∇̃μ1 � � � ∇̃μn

∂Ũ
∂ð∇̃μn � � � ∇̃μ1Φ̃Þ : ð23Þ

Variations with respect to the multiple tensorial fields fϕμ1 ;ϕμ1μ2 ;…;ϕμ1…μng lead to the set of equations

8>>>>>>>>>>><
>>>>>>>>>>>:

∂Ũ
∂ϕν1 − ∇̃μ1

�
∂Ũ

∂∇̃μ1
ϕν1

	
¼ 0;

∂Ũ
∂ϕν1ν2 − ∇̃μ1

�
∂Ũ

∂∇̃μ1
ϕν1ν2

	
þ ∇̃μ2∇̃μ1

�
∂Ũ

∂∇̃μ1
∇̃μ2

ϕν1ν2

	
¼ 0;

..

.

∂Ũ
∂ϕν1 ���νn − ∇̃μ1

�
∂Ũ

∂∇̃μ1
ϕν1…νn

	
þ ∇̃μ2∇̃μ1

�
∂Ũ

∂∇̃μ1
∇̃μ2

ϕν1 ���νn

	
− � � � þ ð−1Þn∇̃μn � � � ∇̃μ1

�
∂Ũ

∂∇̃μ1
���∇̃μnϕ

ν1 ���νn

	
¼ 0:

ð24Þ

Finally, the EOM for the matter field ψ reads simply

δL̃M

δψ
¼ 0: ð25Þ

We end this section by emphasizing that Ũ depends on
higher-order derivatives of the fields Φ̃ and ϕν1���νn (for
n ≥ 2); cf. Eq. (16). These higher-order terms give rise to
additional kinetic terms in the scalar-tensor theory.

B. Palatini formalism

In the Palatini formalism, the metric tensor and the
connection are varied independently. This demands a
different notation from the previous metric formalism.
Accordingly, we adopt

R ¼ gμνRμν

¼ gμνð∂ρΓ
ρ
μν − ∂μΓ

ρ
ρν þ Γβ

μνΓρ
ρβ − Γβ

ρνΓρ
μβÞ: ð26Þ

If GR is required to be a limit case, then the covariant
derivative ∇ρ should be given in terms of the Christoffel
symbols f τ

ρσg ¼ 1
2
gτλð∂σgλρ þ ∂ρgσλ − ∂λgρσÞ. Moreover,

the Ricci scalar is R ¼ gμνRμν ¼ gμνð∂ρf ρ
μνg − ∂μf ρ

ρνgþ
f β
μνgf ρ

ρβg − f β
ρνgf ρ

μβgÞ. On the other hand, the covariant

derivative constructed from Γ is denoted by ∇̄ρ. The action
must contain covariant derivatives built only with f τ

ρσg; this
is related to the way matter responds to gravity, i.e.,
∇μTμν ¼ 0 (but ∇̄μTμν ≠ 0) [32]—see also [79].
The metric conformal to gμν defined as

hμν ≡ f0ðR;∇R;…Þgμν ð27Þ

involves the general derivative

f0ðR;∇R;…Þ ¼ ∂f
∂R−∇ρ

� ∂f
∂∇ρR

	
þ � � �

þ ð−1Þn∇ρn � � �∇ρ1

∂f
∂∇ρ1 � � �∇ρnR

: ð28Þ

The metric hμν satisfies

hαβ ¼ 1

f0ðR;∇R;…Þ g
αβ; ð29Þ

and

ffiffiffiffiffiffi
−h

p
¼ ½f0ðR;∇R;…Þ�2 ffiffiffiffiffiffi

−g
p ðh≡ det hμνÞ; ð30Þ

so the metricity condition holds,

∇̄ρ

� ffiffiffiffiffiffi
−h

p
hαβ

�
¼ 0 ⇒ ∇̄ρhαβ ¼ 0: ð31Þ

Then a relation between Γβ
μν and f β

μνg is achieved:

Γβ
μν ¼

n β

μν

o
þ 1

2

1

f0
gαβðgαμ∂νf0 þ gνα∂μf0 − gμν∂αf0Þ: ð32Þ

In the face of that,Rμν is written in terms of Ricci tensor
Rμν (and derivatives of f0) as

Rμν ¼ Rμν þ
3

2

1

ðf0Þ2∇μf0∇νf0

−
1

2

1

f0
ð∇μ∇νf0 þ∇ν∇μf0 þ gμν□f0Þ: ð33Þ

For the scalar curvature

R ¼ Rþ 3

2

1

ðf0Þ2 ð∇μf0∇μf0Þ − 3
1

f0
ð□f0Þ: ð34Þ

In the Palatini approach, Eq. (1) is more clearly written in
the form
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;∇R;∇2R;…;∇nRÞ þ LM�: ð35Þ

Under the definitions Eqs. (3)–(5), the Jordan frame arises:

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ΦR −UðΦ;ϕμ;…;ϕμ1���μn ;∇μϕ
μ;…;∇μn � � �∇μ1ϕ

μ1���μnÞ þ LMðgμν;ψ ;∇ψ ;…Þ�: ð36Þ

The use of Eq. (34) then leads to

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦRþ 3

2

1

Φ
∂ρΦ∂ρΦ − UðΦ;ϕμ;…;ϕμ1���μn ;∇μϕ

μ;…;∇μn � � �∇μ1ϕ
μ1���μnÞ þ LMðgμν;ψ ;∇ψ ;…Þ

�
;

which is precisely Eq. (2) with ω0 ¼ − 3
2
. This justifies our statement below that equation. Therefore, the conformal

transformation gμν → g̃μν as in Eq. (6) set the action integral in the Einstein frame:

S00 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
½R̃ − Ũ þ L̃Mðg̃μν;ψ ; ∇̃ψ ;…Þ�: ð37Þ

This is Eq. (9) with ω0 ¼ − 3
2
and the further definitions

Ũ ¼ ŨðΦ; ∇̃μΦ;…; ∇̃μn � � �μ1 Φ;ϕμ1 ;…;ϕμ1���μn ; ∇̃μ1ϕ
ν1 ;…; ∇̃μ1ϕ

ν���νn ;∇̃μ1∇̃μ2ϕ
ν1ν2 ;…; ∇̃μ1∇̃μ2ϕ

ν1���νn ;…; ∇̃μ1 � � � ∇̃μnϕ
ν1���νnÞ

¼ 1

Φ2
UðΦ;ϕμ;…;ϕμ1���μn ;∇μϕ

μðΦ; g̃αβÞ;…;∇μn � � �∇μ1ϕ
μ���μnðΦ; g̃αβÞÞ ð38Þ

and

L̃MðΦ; g̃μν;ψ ; ∇̃ψ ;…Þ ¼ 1

Φ2
LMðgμνðg̃μν;ΦÞ;ψ ;∇ψðΦ; g̃αβÞ;…Þ; ð39Þ

with the “conformal” covariant derivative ∇̃μ built from

Γ̃α
μρðΦ; g̃αβÞ ¼ Γα

μρðgαβðΦ; g̃αβÞÞ −ϒα
ρμðΦ; g̃αβÞ; ð40Þ

where

ϒν
ρμðΦ; g̃αβÞ ¼ −

1

2
ðδνρ∂μ lnΦþ δνμ∂ρ lnΦ − g̃νσ g̃μρ∂σ lnΦÞ: ð41Þ

Compare Eqs. (38) and (39) to Eqs. (16) and (17)–notice
that it is not necessary to introduce the auxiliary field Φ̃, as
in Eq. (10), since there is no kinetic term in S00 this time.

1. Field equations in the Palatini formalism

In accordance with the previous paragraph, the action S00

in Eq. (37) does not depend explicitly on the general
connection Γ. Therefore, the field equations can be
obtained by taking variations with respect to the fields
g̃μν, Φ, ϕμ, and so on.
The EOM for the gravitational field is formally the same

as Eq. (18) in the metric approach with the usual energy-
momentum tensor identical to Eq. (19), but with an
effective energy-momentum tensor

TðeffÞ
μν ≡ −

�
g̃μνŨ − 2

δŨ
δg̃μν

	
; ð42Þ

which differs from Eq. (20). The second term in the right-
hand side (RHS) of Eq. (42) is given by Eq. (21). It is
interesting to note that the potential Ũ gives rise to an
effective energy-momentum tensor similar in structure to
the matter one up to a global sign.
Varying Eq. (37) with respect to Φ leads to

δŨ
δΦ

¼ δL̃M

δΦ
; ð43Þ

where δŨ
δΦ is completely analogous to Eq. (23) albeit Φ is

used in place of Φ̃. When we confront Eq. (43) with
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Eq. (22), we notice that a term of the type □̃Φ is absent in
the former, whereas it is present in the last.
The EOM for the multiple tensorial fields

fϕμ1 ;ϕμ1μ2 ;…;ϕμ1���μng and the matter field are identical
in form to Eqs. (24) and (25).
The next section deals with a case study: a particular

Lagrangian of the type fðR;∇RÞ scaling with the Einstein-
Hilbert term, the Starobinsky contribution R2, and a
derivative term of the kind ∇μR∇μR. We call this example
the Starobinsky-Podolsky gravity.

III. APPLICATION: THE STAROBINSKY-
PODOLSKY LAGRANGIAN

The original Starobinsky-Podolsky action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ c0

2
R2 þ c1

2
∇μR∇μR

�
; ð44Þ

which in the Jordan frame reads

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ΦR−

1

2c0
ðΦþ∇μϕ

μ−1Þ2−ϕμϕμ

2c1

�
; ð45Þ

as detailed shown in Ref. [64]. A version of Eq. (44) with
c0 ¼ 0 was introduced by Ref. [45] in the context of a
second order gauge theory for gravity [80]. Some aspects of
such a model have been investigated in Refs. [81,82] with
respect to the present day acceleration.
Rigorously, Eqs. (44) and (45) have a notation compatible

with the metric formalism. For the Palatini formalism, the

mappingR → R is required as explained in the beginning of
Sec. II B. Due to this difference, we split the analysis in the
two cases discussed in Secs. III A and III B.

A. Metric formalism

Equation (45) can be transformed using the definition
Eq. (6) of the conformal metric g̃μν and Eq. (10) which
introduced the field Φ̃. The Einstein-frame version for
Starobinsky-Podolsky action then follows

S00 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃ −

1

2
∂̃ρΦ̃∂̃ρΦ̃ − Ũ

�
; ð46Þ

where

Ũ ¼ 1

2c0

�
1þ e−

Φ̃ffiffi
3

p ∇̃μϕ
μ −

2e−
Φ̃ffiffi
3

pffiffiffi
3

p ϕρ∂̃ρΦ̃ − e−
Φ̃ffiffi
3

p
	2

þ e−
3Φ̃ffiffi
3

p g̃μνϕμϕν

2c1
: ð47Þ

It is worth mentioning that Eq. (46) reproduces the conve-
ntional Starobinsky Lagrangian [71] with the potential

Ũ ¼ UðΦ̃Þ ¼ 1

2c0

�
1 − e−

Φ̃ffiffi
3

p
	

2

; ð48Þ

by assuming ϕμ ¼ 0 in Eq. (47).
The field equations for Φ and ϕμ are

□̃ Φ̃þ 1ffiffiffi
3

p
c0

e−
2Φ̃ffiffi
3

p
�

2ffiffiffi
3

p ϕσ∂̃σΦ̃ − ∇̃μϕ
μ − 1

	�
e

Φ̃ffiffi
3

p þ ∇̃μϕ
μ −

2ffiffiffi
3

p ϕρ∂̃ρΦ̃ − 1

	
−

1ffiffiffi
3

p e−
3Φ̃ffiffi
3

p g̃μνϕμϕν

2c1
¼ 0; ð49Þ

where □̃ ¼ ∇̃ρ∇̃ρ and

1

c0
∂̃σ

�
e

Φ̃ffiffi
3

p þ ∇̃μϕ
μ −

2ffiffiffi
3

p ϕμ∂̃μΦ̃ − 1

	
−

1

c1
e−

Φ̃ffiffi
3

p
ϕσ ¼ 0: ð50Þ

From Eqs. (49) and (50), we conclude that both Φ̃ and ϕμ

are dynamical fields in the sense of their Cauchy data. In
particular, due to the quadratic coupling ðϕρ∂ρΦ̃Þ2 the
second-order time derivative of Φ̃ is present in both
equations. With regard to the second-order derivative of
ϕμ, only the ϕ0 component is derived twice with respect to
time—this happens for the choice σ ¼ 0 in Eq. (50).
Therefore, only ϕ0 is dynamical, while the equations for
σ ¼ i establish constraints for the components ϕi.
Predictably, the gravitational EOM for the Starobinsky-

Podolsky Lagrangian in the metric approach is5

R̃μν −
1

2
g̃μνR̃ ¼ 1

2
TðeffÞ
μν ; ð51Þ

where

T̃ðeffÞ
μν ¼ ∂̃μΦ̃∂̃νΦ̃ − g̃μν

�
1

2
g̃ρα∂̃ρΦ̃∂̃αΦ̃þ Ũ

	

þ 2
δŨ
δg̃μν

; ð52Þ

with

5The ordinary Tμν as given in Eq. (19) is not present in Eq. (51)
because we are not taking the matter field in the analysis of
Starobinsky-Podolsky action. This could simply be added to the
theory afterwards.
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2
δŨ
δg̃μν

¼ −
e−

3Φ̃ffiffi
3

p

c1
ϕμϕν

þ 1

c0
g̃μν∇̃λ

�
ϕλe−

Φ̃ffiffi
3

p
�
1þ e−

Φ̃ffiffi
3

p ∇̃ρϕ
ρ

−
2e−

Φ̃ffiffi
3

pffiffiffi
3

p ϕρ∂̃ρΦ̃ − e−
Φ̃ffiffi
3

p
	�

: ð53Þ

The effective energy-momentum tensor (52) bears an
ordinary kinetic term for the scalar field plus terms coming
from the generalized potential Ũ which contains couplings
between the scalar and vector fields up to first order
derivatives.

B. Palatini formalism

In accordance with Eq. (37), Starobinsky-Podolsky
action in the Einstein frame and Palatini approach is

S00 ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
½R̃ − Ũ�: ð54Þ

The potential Ũ in this equation assumes the form

Ũ ¼ 1

2c0

�
1þ 1

Φ
∇̃μϕ

μ −
2

Φ2
ϕρ∂ρΦ−

1

Φ

	
2

þ 1

Φ3

g̃αβϕαϕβ

2c1
;

ð55Þ

which is identical to the effective potential energy Eq. (47)

appearing in the metric formalism if one takes Φ ¼ e
Φ̃ffiffi
3

p
.

The EOM for Φ and ϕμ are

1

c0

�
2

Φ
ϕρ∂̃ρΦ − ∇̃ρϕ

ρ − 1

	�
Φþ ∇̃σϕ

σ −
2

Φ
ϕσ ∂̃σΦ − 1

	
−

1

Φ
g̃αβϕαϕβ

2c1
¼ 0 ð56Þ

and

1

c0
∂̃σ

�
Φþ ∇̃ρϕ

ρ −
2

Φ
ϕρ∂̃ρΦ − 1

	
−

1

Φ
ϕσ

c1
¼ 0: ð57Þ

Even though the action Eq. (54) does not contain a
canonical kinetic term for Φ, the field equation Eq. (57)
contains the second time derivative ofΦ due to the presence
of the derivative coupling ð 2

Φ2 ϕρ∂ρΦÞ2 in the potential
energy. This does not mean, however, Φ is a dynamical
object. As one can see in Eq. (56), there is no second time
derivative of any quantity—it is a constraint equation. If an
auxiliary vector field Vρ is introduced,

Vρ ≡ ϕρ

Φ2
; ð58Þ

it is straightforward to show that

∇̃ρϕ
ρ −

2

Φ
ϕρ∂̃ρΦ ¼ Φ2∇̃ρVρ: ð59Þ

Equations (56) and (57) can be reexpressed as

Φ4ð∇̃ρVρÞ2 þΦ3

�
∇̃ρVρ þ c0

2c1
g̃αβVαVβ

	
þΦ − 1 ¼ 0

ð60Þ

and

1

c0

1

Φ
∇̃σðΦþΦ2∇̃ρVρÞ − 1

c1
Vσ ¼ 0; ð61Þ

respectively. Equation (60) makes clear the nondynamical
character of the field Φ in the Palatini approach. Moreover,
if one replaces Φ derived from Eq. (60) into Eq. (61), a
nonlinear equation for Vρ is obtained. Its analysis evidences
that only the V0 component is dynamical. An analogous
situation occurs in the Jordan frame, although the equations
attained in the latter case are distinct from the ones obtained
here.
The gravitational field equation assumes, once more, the

expected form of Eq. (51) but now

T̃ðeffÞ
μν ¼ −

�
g̃μνŨ − 2

δŨ
δg̃μν

	
ð62Þ

with the second term calculated from Eq. (55) as

2
δŨ
δg̃μν

¼ −
1

c1Φ3
ϕμϕν þ

1

c0
g̃μν∇̃λ

�
ϕλ

Φ

�
1þ 1

Φ
∇̃ρϕ

ρ −
2

Φ2
ϕρ∂̃ρΦ −

1

Φ

	�
: ð63Þ

Now we turn to the study of the fluid representation for T̃ðeffÞ
μν in both metric and Palatini formalisms.
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C. Fluid representation for T̃ðeffÞ
μν

A general energy-momentum tensor can be expressed
in terms of an imperfect fluid energy-momentum
tensor [83],

Tμν ¼ ðεþ pÞuμuν þ pgμν þ uμqν þ uνqμ þ πμν; ð64Þ

where p is the pressure, ρ is the energy density, uμ is
the four-velocity associated with a fluid element, qμ
denotes the heat flux, and πμν stands for the viscous
shear tensor. These various quantities in Eq. (64) satisfy
the following properties:

8>>><
>>>:

qμuμ ¼ 0;

πμνuν ¼ 0;

πμμ ¼ 0;

πμν ¼ πνμ;

ð65Þ

which determines the available d.o.f.: two of them are
related to ε and p, and three independent components in
Tμν come from qμ and five from πμν. The metric
determines the background and the four-velocity fixes
the reference system.
In this section, we shall encounter the form assumed by

the energy-momentum tensor T̃ðeffÞ
μν for the Starobinsky-

Podolsky action. We begin by doing so in the metric
formalism.

1. T̃ðeffÞ
μν in metric formalism

In the metric formalism, the Starobinsky-
Podolsky energy-momentum tensor is shown to be of
an imperfect fluid type with πμν ¼ 0. This means there

are up to five independent components in TðeffÞ
μν , namely

one component related to Φ and four of them associated
with ϕμ.

In order to see that, we define the four-velocity as a linear
combination of the gradient of the scalar field and the
vectorial field,

uμ ¼
1

N
ð∂μΦ̃þ χϕμÞ;

N ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∂αΦ̃þ χϕαÞð∂αΦ̃þ χϕαÞ

q
; ð66Þ

where χ is a quantity to be determined;N is a normalization
factor.
The next step is to decompose ϕμ as

ϕμ ¼ λuμ þ ϕαðg̃αμ þ uαuμÞ ¼ λuμ þ
qμ
τ
; ð67Þ

which exhibits a component that is parallel to uμ and a
component orthogonal to it. This means that the second
term in Eq. (67) is parallel to the heat flux qμ—see the first
identity in Eq. (65). Therefore,

qμ ≡ τϕαðg̃αμ þ uαuμÞ: ð68Þ

We shall set

χ ¼ e−
3Φ̃
2
ffiffi
3

pffiffiffiffiffi
c1

p ð69Þ

and

τ ¼ −Nχ: ð70Þ
The relations Eqs. (66), (68), and (74) can be substituted

into Eq. (64). The resulting expression is then compared to
Eq. (52), leading to the identifications

ðεþ pÞ ¼ N2 þ 2χð∂αΦ̃þ χϕαÞϕα ð71Þ

and

p ¼ −
1

2
∂̃αΦ̃∂̃αΦ̃ − Ũ þ 1

c0
∇̃λ

�
ϕλe−

Φ̃ffiffi
3

p
�
1þ e−

Φ̃ffiffi
3

p ∇̃ρϕ
ρ −

2e−
Φ̃ffiffi
3

pffiffiffi
3

p ϕρ∂̃ρΦ̃ − e−
Φ̃ffiffi
3

p
	�

; ð72Þ

with Eqs. (69) and (70) completely specifying the four-
velocity Eq. (66) and the heat flux Eq. (68).
Incidentally, the parameter λ in Eq. (67) is also found:

λ ¼ −
1

N
ϕαð∂αΦ̃þ χϕαÞ: ð73Þ

Additionally, it becomes clear that there is no room for the
viscous shear tensor, i.e.,

πμν ¼ 0: ð74Þ

The potential Ũ shown up in the expression for p is given
by Eq. (47). By inserting Eq. (72) into Eq. (71), one obtains
ε in terms of the fields Φ̃, ϕμ, and g̃μν.
This reasoning completes our task of establishing, in the

metric formalism, Starobinsky-Podolsky TðeffÞ
μν as a shear-

less imperfect fluid energy-momentum tensor.

2. T̃ðeffÞ
μν in Palatini formalism

The effective energy-momentum tensor in the Palatini
formalism is given by Eqs. (62), (55), and (63), i.e.,
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T̃ðeffÞ
μν ¼ −

1

c1Φ3
ϕμϕν þ g̃μν

�
−Ũ þ 1

c0
∇̃λ

�
ϕλ

Φ

�
1þ 1

Φ
∇̃ρϕ

ρ −
2

Φ2
ϕρ∂̃ρΦ −

1

Φ

	��
: ð75Þ

Direct comparison with Eq. (64) sets it as a perfect fluid Tμν with

qμ ¼ πμν ¼ 0: ð76Þ
This comparison also yields

uμ ¼
1

N
ϕμ; N ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ϕαϕ
α;

p
ð77Þ

and

ðεþ pÞ ¼ −N2

�
1

c1Φ3

	
; ð78Þ

with

p ¼ −Ũ þ 1

c0
∇̃λ

�
ϕλ

Φ

�
1þ 1

Φ
∇̃ρϕ

ρ −
2

Φ2
ϕρ∂̃ρΦ −

1

Φ

	�
: ð79Þ

Hence, Starobinsky-Podolsky T̃ðeffÞ
μν is a perfect fluid tensor

in the Palatini formalism.
The four-velocity Eq. (77) is completely determined by

the auxiliary vector field ϕμ. From a geometrical point of
view, uμ scales as the gradient of the scalar curvature (given
solely by ϕμ in Palatini’s case); this means the fluid velocity
accompanies the rate of change in the curvature. Moreover,
since uμ scales with ϕμ, this field defines the orientation of

the T̃ðeffÞ
μν decomposition. In particular, the ϕ0 component is

the only one to produce a relevant contribution to the
direction of temporal evolution of the system under the
choice of a comoving frame uμ ¼ ð1; 0; 0; 0Þ.
Equation (78) brings forth the possibility of violation of

the null energy condition [78] associated with what is
known in cosmology as the phantom regime, i.e., p < −ε.
For Φ > 0, the phantom regime takes place whenever the
condition c1 > 0 is satisfied. On the other hand, this
same condition leads to the presence of ghosts6 in the
Starobinsky-Podolsky action [84]. This demonstrates (at
least in this particular case) the direct relationship between
ghosts and a phantomlike behavior.

IV. INFLATION IN THE PALATINI FORMALISM

Now an application to inflation is considered. The
analysis is restrained to the Palatini approach. The reason
for this lies in the fact that the presence of the imperfect
fluid components demands a more careful analysis in the
metric formalism—this analysis is presented in [76].
It is interesting to notice that the Starobinsky model in

the Palatini approach cannot generate an inflationary
period, once the scalar auxiliary field is not dynamical.
Here the situation is different since the vector field could
eventually be responsible for driving inflation. This is
addressed below.
Starobinsky-Podolsky action (44) reduces to the standard

Starobinsky action in the limit c1 → 0. The EOM (56) and
(57) should be consistent in this limit. In order to
accomplish that we define a new vector field

ξμ ¼ ϕμ=c1 ð80Þ

in terms of which the EOM read

1

c0

�
2

Φ
c1ξρ∂ρΦ − c1∇ρξ

ρ − 1

	�
Φþ c1∇σξ

σ −
2

Φ
c1ξσ∂σΦ − 1

	
−

c1
2Φ

gαβξαξβ ¼ 0; ð81Þ

1

c0
∂σ

�
Φþ c1∇ρξ

ρ −
2

Φ
c1ξρ∂ρΦ − 1

	
−

1

Φ
gσρξρ ¼ 0; ð82Þ

where the tilde was omitted for notational economy.

6A ghost is a field with kinetic energy with a “wrong sign.”
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Background cosmology is described by the Friedmann–Lemaître–Robertson–Walker (FLRW) line element,

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2dΩ2�; ð83Þ

where aðtÞ is the scale factor and t is the coordinate time (with c ¼ 1). The angular part is dΩ2 ¼ dθ2 þ sin2 θdφ2. We
consider a comoving reference frame: the four-velocity is uμ ¼ δμ0. Homogeneity and isotropy of the space section demand

Φ¼ΦðtÞ; ξρ ¼ ðξ0ðtÞ;0;0;0Þ⇒∇μξ
μ ¼ ∂0ξ

0 þ 3Hξ0 and gαβξαξβ ¼ −ðξ0Þ2; ð84Þ

with the usual definition

H ≡ 1

a
da
dt

ð85Þ

for the Hubble function. Then, Eqs. (81) and (82) turn to

−
�
c1

�
∂0ξ

0 þ 3Hξ0 − 2ξ0
∂0Φ
Φ

	
þ 1

��
Φ − 1þ c1

�
∂0ξ

0 þ 3Hξ0 − 2ξ0
∂0Φ
Φ

	�
þ c0c1

2Φ
ðξ0Þ2 ¼ 0; ð86Þ

∂0Φþ c1∂0

�
∂0ξ

0 þ 3Hξ0 − 2ξ0
∂0Φ
Φ

	
þ c0

Φ
ξ0 ¼ 0: ð87Þ

In terms of the new variable

Z ¼ c1

�
∂0ξ

0 þ 3Hξ0 − 2ξ0
∂0Φ
Φ

	
; ð88Þ

the above equations are

Z2 þΦZ þ ðΦ − 1Þ − c1c0
2Φ

ðξ0Þ2 ¼ 0; ð89Þ

∂0Φþ ∂0Z þ c0
Φ
ξ0 ¼ 0: ð90Þ

In the limit c1 → 0, one has Z → 0 and Φ → 1.
The next step is to write down the Friedmann equations (for the perfect fluid),

H2 ¼ 1

3M2
Pl

ε ¼ 1

6
ε; ð91Þ

dH
dt

¼ −
1

2M2
Pl

ðεþ pÞ ¼ −
1

4
ðεþ pÞ; ð92Þ

where 16πG ¼ 1 ⇒ M2
Pl ¼ 2. Taking into account Eqs. (55), (78), (79) and using the definition (80), the quantities ε and p

are written as

εþ p ¼ c1
gαβξβξα

Φ3
ð93Þ

and

p¼ −Uþ c1
c0

�
Φþ c1∇ρξ

ρ −
2c1
Φ

ξρ∂ρΦ− 1

	�
1

Φ2
∇λξ

λ − 2
ξλ

Φ2

∂λΦ
Φ

	
þ c1
c0

ξλ

Φ2
∂λ

�
Φþ c1∇ρξ

ρ −
2c1
Φ

ξρ∂ρΦ− 1

	
; ð94Þ

where
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U ¼ 1

2c0Φ2

�
Φþ c1∇μξ

μ − 2c1ξρ
∂ρΦ
Φ

− 1

	
2

þ c1
2Φ3

gαβξαξβ: ð95Þ

Inserting Eq. (87) into the last term of Eq. (94),

p ¼ −U þ 1

c0Φ2

�
c1∇ρξ

ρ − 2c1ξρ
∂ρΦ
Φ

	
2

þ 1

c0Φ2

�
c1∇λξ

λ − 2c1ξλ
∂λΦ
Φ

	
ðΦ − 1Þ þ c1

Φ3
gσρξρξσ; ð96Þ

so that Eq. (93) turns to

ε ¼ 1

2c0Φ2
ðΦ − 1Þ2 − c21

2c0Φ2

�
∇μξ

μ − 2ξρ
∂ρΦ
Φ

	
2

þ c1
2Φ3

gαβξαξβ: ð97Þ

Particularly, on the FLRW background, Eqs. (93) and (97) are

εþ p ¼ −c1
ðξ0Þ2
Φ3

ð98Þ

and

ε ¼ 1

2c0Φ2
ðΦ − 1Þ2 − 1

2c0c1Φ2
Z2 −

c1
2Φ3

ðξ0Þ2: ð99Þ

Therefore, Friedmann equations (91) and (92) are cast into the form

H2 ¼ 1

6

�
1

2c0Φ2
ðΦ − 1Þ2 − 1

2c0Φ2
Z2 −

c1
2Φ3

ðξ0Þ2
�
; ð100Þ

dH
dt

¼ c1
4

ðξ0Þ2
Φ3

: ð101Þ

Background cosmology in the context of our model is described by Eqs. (89), (90), (100), and (101).
It is convenient to write the various equations in terms of dimensionless quantities. By a simple inspection of the action,

we are able to associate each quantity with its dimension: c0 → ½mass�−2; c1 → ½mass�−4; ϕμ → ½mass�−1; Φ → ½mass�0;
ξμ → ½mass�3. Accordingly, let us define

hc ≡ c1=20 H ⇒ H ¼ c−1=20 hc; ð102Þ

Θ≡ c3=20 ξ0 ⇒ ξ0 ¼ Θc−3=20 ; ð103Þ

_Q≡ ∂̄0Q ¼ c1=20 ∂0Q; ð104Þ

β≡ −
c1
c20

; ð105Þ

in terms of which Eqs. (89), (90), (100), and (101) become

h2c ¼
1

6

�
β

2Φ3
Θ2 þ 1

2

�
1 −

1

Φ

	
2

−
1

2Φ2
Z2

�
; ð106Þ

_hc ¼ −
β

4

Θ2

Φ3
ð107Þ

and
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Z2 þΦZ þ ðΦ − 1Þ þ β

2Φ
Θ2 ¼ 0; ð108Þ

_Z þ _Φþ Θ
Φ

¼ 0; ð109Þ

where [cf. Eq. (88)]

Z ¼ −β
�
_Θþ 3hcΘ − 2Θ

_Φ
Φ

	
: ð110Þ

Obviously, β ¼ 0 ⇒ Z ¼ 0; then, Eq. (108) imposes
Φ ¼ 1. (This was checked before from the limit
c1 → 0.) In this case, we get hc ¼ 0 implying a constant
scale factor. Hence, the standard Starobinsky action does
not engender dynamics in the Palatini formalism.
The next step is to use Eq. (108) to write Z as

2Z ¼ −Φþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΦ − 2Þ2 − 2β

Φ
Θ2

r
; ð111Þ

where the solution with a negative sign multiplying the
square root had to be neglected. This is needed if we claim
the solution Φ ¼ 1 to be recovered in the limit β → 0. By
differentiating this expression, replacing the result into
Eq. (109), and performing some manipulations, we obtain
the final set of equations which will be used to analyze the
inflationary solutions:

h2cðΦ;ΘÞ ¼ 1

6

�
β

2

Θ2

Φ3
þ 1

2

�
1 −

1

Φ

	
2

−
ðJ −ΦÞ2
8Φ2

�
; ð112Þ

_hcðΦ;ΘÞ ¼ −
β

4

Θ2

Φ3
ð113Þ

and

_Φ≡ fðΘ;ΦÞ ¼ Θ
Φ

�
−3J þΦ − 6βhcΘ

J þ ðΦ − 2Þ − 3βðΘΦÞ2
	
; ð114Þ

_Θ≡ gðΘ;ΦÞ ¼ Φ − J
2β

− 3hcΘ

þ 2
Θ2

Φ2

�
−3J þΦ − 6βhcΘ

J þ ðΦ − 2Þ − 3βðΘΦÞ2
	
; ð115Þ

where

JðΦ;ΘÞ ¼ Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2

Φ

	
2

− 2
Θ2

Φ3
β

s
: ð116Þ

From Eq. (113) we see that

ä
a
¼ −

β

4Φ3
Θ2 þ h2c: ð117Þ

Hence, a decelerated regime for the scale factor (necessary
for the end inflation) can be obtained only if β and Φ have
the same sign (i.e., Φβ ≥ 0), once h2c is always positive. In
principle, a transition from a positive (negative) to a
negative (positive) Φ could be considered. However, when
crossing Φ ¼ 0 divergences show up, for instance, in _hc
and h2c. This is the reason why Φ will be restricted to have
the same sign as β. Note that this condition together with
the fact that JðΦ;ΘÞ has to be a real quantity implies further
restrictions on the parameters fΦi;Θig. In fact, a real J is
obtained only if

�
1 −

2

Φ

	
2

≥ 2
Θ2

Φ3
β: ð118Þ

We emphasize that this condition must be satisfied through-
out the evolution of the inflationary period. Also we realize
that Φ ¼ 2 is attainable only if Θ ¼ 0; otherwise J would
be complex.

A. Inflationary regime

In this section, we analyze which values of the param-
eters fΦi;Θi; βg (where the index i stands for initial
conditions) could give rise to a quasiexponential expansion
followed by a radiationlike decelerated universe (hot big
bang scenario).
The conditions (118) and Φβ ≥ 0 essentially establish

that the quantity ϵH, as defined below, is a real (positive)
quantity:

ϵH ≡ − _hc
h2c

> 0: ð119Þ

This parameter is intimately related to the existence of an
inflationary regime. In order to obtain a quasiexponential
expansion, a necessary condition is that ϵH ≪ 1. Due to
Eqs. (112) and (113), this condition is obtained only if

�
1 −

1

Φ

	
2

≫ β
Θ2

Φ3
: ð120Þ

If we assume (120) is satisfied and exclude the possibility
of Φ taking values in the neighborhood of Φ ¼ 2,7 then
Eq. (116) can be approximated by

J ≃Φ
����1 − 2

Φ

����
�
1 −

Θ2

Φ3 β

ð1 − 2
ΦÞ2

	
: ð121Þ

As a consequence,

7In general, Φ ≈ 2 does not satisfy (118).
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ϵH ≃
β
4
Θ2

Φ3

1
6
½β
2
Θ2

Φ3 þ 1
2
ð1 − 1

ΦÞ2 − 1
8
ðj1 − 2

Φ jð1 −
Θ2

Φ3β

ð1−2
ΦÞ2
Þ − 1Þ

2

�
: ð122Þ

We separate the analysis into two cases:
(i) 0 < Φ < 2. In this case,

ϵH ≃
3h

1þ ð1−1
ΦÞ

ð1−2
ΦÞ
i :

The condition ϵH ≪ 1 is satisfied only if Φ ≈ 2. However, this is not in agreement with the assumption made above.
We conclude that no inflation can take place in this case.

(ii) Φ < 0 or Φ > 2. We find

ϵH ≃
β
4
Θ2

Φ3

1
6
½β
2
Θ2

Φ3 þ 1
2
ð1 − 1

ΦÞ2 − 1
2Φ2 − 1

2Φ

Θ2

Φ3β

ð1−2
ΦÞ
�
:

If we exclude the neighborhoods of Φ ¼ 0 and Φ ¼ 2, we can approximate the expression above as

ϵH ≃
3βΘ2

Φ3ð1 − 2
ΦÞ

: ð123Þ

For an inflationary regime, the condition ϵH ≃ 3βΘ2

Φ2ðΦ−2Þ ≪ 1 must be satisfied simultaneously with Eq. (120). This is
achieved if

Θ
Φ

≪ 1 ⇒
βΘ2

Φ3
≪ 1; ð124Þ

as long as β
Φ is not so large. The next step is to check if the conditions used so far suggest the existence of an inflationary

scenario. In order to do so, we study the second condition for inflation, which reads

ηH ¼ −
_ϵH

hcϵH
≪ 1: ð125Þ

Equations (114) and (115) can be rewritten under condition (124) enabling us to calculate _ϵH. Since J and h2c become,
respectively, J ≃Φ − 2 and h2c ≃ 1

12
ð1 − 2

ΦÞ, we end up with

_Φ ≃ −
Θ
Φ

�
1 − 3

Φ
1 − 2

Φ

	
; ð126Þ

_Θ ≃
1

β
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

�
1 −

2

Φ

	s
Θ; ð127Þ

and

ηH ≃ −
2

ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffi
1 − 2

Φ

q
2
41

Θ

0
@2

β
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�
1 −

2

Φ

	s
Θ

1
Aþ 4

Θ
Φ2

�
1 − 3

Φ
1 − 2

Φ

	�
1þ 3ð1 − 4

3ΦÞ
4ð1 − 2

ΦÞ
�35: ð128Þ

From Eqs. (126) and (124) we conclude that j _Φj ≪ 1. This means Φ varies slowly and can be taken approximately as a
constant in Eq. (127). As a consequence,
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ΘðtÞ ≃ e−
t
2

ffiffiffiffiffiffiffiffiffiffiffi
3ð1−2

ΦÞ
p

þ 2

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − 2

ΦÞ
q : ð129Þ

The exponential decay shows that after some short time

Θ ≃
2

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − 2

ΦÞ
q ; ð130Þ

which is an accumulation point on the ðΘ; _ΘÞ plane. This
reduces Eq. (128) to

ηH ≃−
Θ
Φ

8
ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffi
1− 2

Φ

q 1

Φ

�
1− 3

Φ
1− 2

Φ

	�
1þ 3ð1− 4

3ΦÞ
4ð1− 2

ΦÞ
�
≪ 1: ð131Þ

Up to this point, we concluded that the conditions
(ΘΦ ≪ 1) and (Φ < 0 or Φ > 2) imply ϵH ≪ 1 and
ηH ≪ 1, which means inflation occurs. The question that
arises now is whether this inflation ends. In order to answer
this question, we manipulate Eqs. (126) and (127) to obtain
the expression that allows us to plot the direction fields on
the ðΦ; _ΦÞ phase space:

d _Φ
dΦ

≃ −
1

β

1

_ΦΦ

�
1 − 3

Φ
1 − 2

Φ

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

�
1 −

2

Φ

	s
þ

_Φ
Φ
þ _Φ

3

Φ2

1

ð1 − 3
ΦÞ

−
2

Φ2ð1 − 2
ΦÞ

_Φ: ð132Þ

Now let us consider the case jΦj ≫ 1. Equations (126),
(127), and (132) are reduced to

8<
:

_Φ ≃ − Θ
Φ ;

_Θ ≃ 1
β −

ffiffi
3
4

q
Θ;

ð133Þ

and

d _Φ
dΦ

≃ −
1

Φ _Φβ
−

_Φ
Φ
−

ffiffiffi
3

4

r
: ð134Þ

With Eqs. (133) and (134) we can easily analyze the
direction fields for both Φi < 0 and Φi > 2 cases:

(i) Φi < 0. Figure 1 shows the plot for the direction
fields on the ðΦ; _ΦÞ phase space forΦi < 0. We note
the existence of an attractor line which indicates the
slow-roll regime for the field Φ. This line, however,
shows Φ decreasing while _Φ tends to zero. This

behavior indicates that although inflation takes
place, it apparently does not end, since the ratio Θ

Φ
becomes even smaller. This statement can be verified
when Eq. (130) is backsubstituted into (126). We
obtain

_Φ≃−
2

Φβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1− 2

ΦÞ
q �

1− 3
Φ

1− 2
Φ

	
< 0 with j _Φj≪ 1:

ð135Þ

Since β and Φ have the same sign, then _Φ < 0. This
way, if the initial condition is such that Φi < 0 − Δ,
with Δ being positive (which means β is negative),
then the condition Θ

Φ ≪ 1 sets Θ to be negative.
When Θ reaches the accumulation point, Φ de-
creases (slowly), increasing its modulus. This is
such that the ratio Θ

Φ becomes smaller and smaller.

FIG. 1. Direction fields on the ðΦ; _ΦÞ phase space for negative values of Φ and various values of β: (a) β ¼ −0.1, (b) β ¼ −0.3, and
(c) β ¼ −1.
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Then the conditions for inflation never cease and
inflation cannot end.

(ii) Φi > 2. The direction fields on this approximative
analysis are shown in Fig. 2. We notice the existence
of an attractor line for different values of β. This
indicates the existence of the slow-roll regime. The
attractor line shows Φ decreasing with time. If we
extrapolate the observed behavior of this line, we
expect the field Φ to reach values for which the
condition Θ

Φ ≪ 1 will eventually break down. This is
a necessary condition for inflation to cease. How-
ever, the condition Φ ≫ 1 will also be violated, and
when this happens, we cannot rely on Eqs. (133) to
properly describe our system.

We conclude that inflation happens in this scenario, but
we cannot be decisive if it ends or not. In order to achieve a
definitive answer, the equations should be studied without
any approximation. This is done in the next section.

B. Analysis of the complete equations—Assessing the
existence of an end to inflation

In order to check if and how inflation ends in our model,
we have to analyze Eqs. (114) and (115) with no approx-
imations. We have to consider a set of initial conditions for
Φ and Θ that are consistent with inflation (i.e., Θi ≪ Φi)
and follow the evolution of the variables. The end of
inflation will be characterized by the violation of condition
Θ ≪ Φ. We also expect the dynamics of the auxiliary fields
will come to an end, allowing the universe to enter a
radiation-dominated era. These conditions are achieved if
we find attractors (fixed points) for Eqs. (114) and (115) on
which the condition Θ ≪ Φ is not satisfied.

1. Fixed points

The fixed points of the system are found when

Θ
Φ

�
−3J þΦ − 6βhcΘ

J þ ðΦ − 2Þ − 3βðΘΦÞ2
	

¼ 0; ð136Þ

Φ − J
2β

− 3hcΘþ 2
Θ2

Φ2

�
−3J þΦ − 6βhcΘ

J þ ðΦ − 2Þ − 3βðΘΦÞ2
	

¼ 0:

ð137Þ

One of the fixed points is obtained when Θ ¼ 0 and
J ¼ Φ ⇒ Φ ¼ 1. However, if we start in a region where
Φ ≫ 1, then we have to cross the critical region Φ ¼ 2.
This is possible if and only if Θ ¼ 0 at the same time when
Φ ¼ 2; otherwise, J becomes complex. Besides, for this
very same reason, when going fromΦ ¼ 2 toΦ ¼ 1, Θ has
to be null. However, when ðΦ;ΘÞ ¼ ð2; 0Þ, _Φ ¼ 0, and
_Θ > 0 [see Eqs. (114) and (115)], showing that the
trajectory tends to keep Φ unchanged and to increase
the values of Θ, the trajectory does not move toward the
point (1, 0). This is what makes the region of the
configuration space Φ < 2 problematic for our system,
and for this reason, this fixed point will be discarded.
We find another fixed point when

�−3J þΦE − 6βhcΘE ¼ 0

−J þΦE − 6βhcΘE ¼ 0
: ð138Þ

In this case,

J ¼ 0 ⇒ ΘE ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦE

2β
ðΦE − 2Þ2

s
ð139Þ

and

ΦE ¼ 6βhcΘE: ð140Þ

Considering that ΦE and β have the same sign and hc is
positive, the minus sign on Eq. (139) has to be neglected.
Replacing Eq. (139) in Eq. (140) shows that ΦE is found

as a solution of the following equation:

FIG. 2. Direction fields on the ðΦ; _ΦÞ phase space for positive values of Φ and various values of β: (a) β ¼ 0.1, (b) β ¼ 0.3, and
(c) β ¼ 1.
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�
ΦE −

6

5

	
ðΦE − 2Þ3β ¼ 8Φ3

E

15
: ð141Þ

This is a fourth-order equation for ΦE, which presents four
solutions. Two of them are complex solutions and for this
reason they will be neglected. The other two solutions are
real. One of them, however, is bound to be less than 6=5, for
any value of β—see Fig. 3. As has been discussed before,
the region Φ < 2 is not suitable for our system: we are left
with only one of the four solutions—the upper curve
in Fig. 3.
First, we check consistency with the Hubble function,

which is rewritten as

h2cðΦE;ΘEÞ ¼
1

24

1

Φ2
E

�
ΦE −

6

5

	
ðΦE − 2Þ: ð142Þ

For ΦE > 2, h2c > 0 and hc is real and positive.
Second, we have to check if the denominator

DðΦ;ΘÞ≡ J þ ðΦ − 2Þ − 3βðΘΦÞ2—see Eqs. (136) and
(137)—does not vanish at the fixed point. We have

DðΦE;ΘEÞ ¼ −
ðΦE − 2ÞðΦE − 6Þ

2Φ
: ð143Þ

This expression shows we have a singularity if ΦE ¼ 6.
This singularity can be avoided if we correctly choose the
value of the parameter β. Equation (141) can be used to
invert β in terms of ΦE:

β ¼ 8Φ3
E

15ðΦE − 6
5
ÞðΦE − 2Þ3 : ð144Þ

If we set ΦE ¼ 6, then β ¼ 0.375. If we choose β ≠ 0.375,
then for ΦE > 2 we have no problem of singularities
with DðΦE;ΘEÞ.
In the third place, we check if the scale factor decelerates

at the fixed point, allowing inflation to cease and the
universe to change from a de Sitter–type phase to a
decelerated expansion. From Eq. (117), we find

ä
a
¼ −

1

48Φ2
E
ðΦE − 6ÞðΦE − 2Þ:

Consequently, if 2 < ΦE < 6, we have an acceleration of
the scale factor, while for ΦE > 6 we have a deceleration.
Therefore, in order to have a suitable fixed point which
could eventually lead to a good model of inflation we are
forced to choose 0 < β < 0.375, according to Eq. (144).

2. Stability of the fixed point

At last, we have to check if the fixed point is an attractor.
In principle, this can be done by assessing the Lyapunov
coefficients. These are obtained as the eigenvalues λ� of the
matrix

M ¼
� ∂f

∂Φ
∂f
∂Θ

∂g
∂Φ

∂g
∂Θ

	
Φ ¼ ΦE

Θ ¼ ΘE

; ð145Þ

whose elements are calculated from Eqs. (114) and (115).
Since we have a 2 × 2 matrix, it is immediate that

λ� ¼ 1

2

2
4�∂f

∂Φþ ∂g
∂Θ

	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂f
∂Φþ ∂g

∂Θ
	

2

− 4

�∂f
∂Φ

∂g
∂Θ −

∂g
∂Φ

∂f
∂Θ

	s 3
5
Φ ¼ ΦE

Θ ¼ ΘE

:

However, the partial derivatives in the above expression
diverge, making the Lyapunov coefficients analysis diffi-
cult to be implemented. In order to circumvent this
problem, we have to look for numerical solutions and
see if an attractor appears.
We performed numerical calculations in order

to build the direction fields on the ðΦ; _ΦÞ phase
space and checked the existence of an attractor on this

space. The procedure for building these curves was the
following:
‐ we started with initial conditions ðΦi;ΘiÞ and a fixed
value β and found numerical solutions ðΦiðtÞ;ΘiðtÞÞ;

‐ by plotting the curves ΦiðtÞ, we verified that ΦiðtÞ is
monotonous in time, so the inverse relation ti ¼ tðΦiÞ
was obtained;

‐ from the solutions ΘiðtÞ, we found ΘðΦÞ ¼ ΘiðtðΦiÞÞ;

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Β

FIG. 3. Real solutions ΦE of Eq. (141) and the function Φ ¼ 2
as a function of β.
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‐ we derived Eq. (114) with respect to time. This led to a
second order equation for Φ, i.e., Φ̈ ¼ Φ̈ðΦ; _Φ;Θ; _ΘÞ;

‐ we replaced Φ̈ by d _Φ
dΦ

_Φ, _Θ by _ΘðΦ;ΘðΦÞÞ and Θ
by ΘðΦÞ thus obtaining d _Φ

dΦ ¼ 1
_ΦFðΦ; _ΦÞ, where

FðΦ; _ΦÞ ¼ Φ̈ðΦ; _Φ;ΘðΦÞ; _ΘðΦ;ΘðΦÞÞÞ;
‐ the direction fields on the ðΦ; _ΦÞ phase space were
plotted.
The result is presented in Fig. 4 for β ¼ 0.1. Other values

of β produce similar graphs; for this reason, they were not
displayed in the text. The graph in Fig. 4 displays an
attractor line along which Φ decreases slowly (toward
corresponding smaller values of _Φ). So the slow-roll regime
takes place even for the nonapproximate equations. As Φ
approaches ∼5, the attractor line changes drastically: Φ
practically stops decreasing and _Φ increases very fast. The
trajectory diverges in the phase space and no attractor can
be identified. The conclusion is straightforward: there is an
inflationary period but the trajectories do not lead to an
attractor; hence, the dynamics of the auxiliary fields does
not seem to end and the model does not provide a
satisfactory end for the inflationary period. No graceful
exit can be identified by the numerical solutions.
We conclude this section by stating that the Starobinsky-

Podolsky model analyzed in the Einstein frame in the
Palatini formalism does not provide a satisfactory model for
inflation.

V. FINAL REMARKS

This paper was dedicated to construct the scalar-multi-
tensorial equivalent of higher-order fðR;∇R;…Þ theories
of gravity in the Einstein frame. Thework was performed in
the metric and Palatini formalisms pointing out the
differences and similarities. The main difference between
these formulations is that in the metric approach there is a
clear kinetic structure for the scalar field Φ̃, whereas in the
Palatini approach this structure is absent. This is explicitly
verified in the differences between the effective energy-
momentum tensors and between the scalar field equations
of both approaches. In addition, we also thoroughly studied

the particular case of the Starobinsky-Podolsky model in
the Einstein frame and characterized its effective energy-
momentum tensor in terms of a fluid description, where a
shearless imperfect fluid is obtained in the metric approach,
while a perfect fluid is obtained in Palatini formalism. This
completes the development started in Ref. [64].
An important point to be emphasized is that although the

higher-order fðR;∇R;…Þ theories have an apparently
similar form to the fðRÞ theories in the Einstein frame,
they differ substantially due to the structure of the potential
Ũ. While in fðRÞ theories the potential Ũ depends
only on the scalar field, in higher-order models, Ũ has a
much more complex structure depending on the extra fields
fΦ;ϕμ;…;ϕμ���μng and its covariant derivatives. However,
even taking into account the complexity of the potential Ũ,
the fðR;∇R;…Þ-like theories are simplified considerably
when rewritten in the Einstein frame. This is particularly
true in the situation where the higher-order terms are small
corrections to the Einstein-Hilbert (or Starobinsky) action,
and in this case the potential Ũ can be treated in a
perturbative way.
There are several cases where it is convenient to describe

the fðR;∇R;…Þ theories in the Einstein frame. In par-
ticular, an important case to be analyzed is the study and
description of ghosts. Following an approach analogous to
that in Ref. [84], one can study in which higher-order
theories and under which conditions the pathologies
involving ghosts are avoided.
Another interesting case takes place in inflationary cos-

mology. Usually, inflationary models based on modified
gravity are more easily described in the Einstein frame. For
example, Starobinsky’s inflation [71] is widely studied
through its scalar-tensorial version. In Sec. IV, we explored
the possibility of generating inflation through Starobinsky-
Podolsky gravity in the Palatini formalism. We showed that
the extra (vector) field is able to engender an inflationary
regime for a wide range of initial conditions. However, this
regime does not end in a satisfactoryway: it does not lead to a
hot-big-bang type of dynamics. Somepossibilities to circum-
vent this problem are to include even higher-order terms, to
introduce extra new fields or even to consider nonminimal
couplings. Finally, it is worth mentioning that a similar but
more involved analysis was done in [76]; this paper con-
sidered Starobinsky-Podolsky inflation in themetric formal-
ism and showed a graceful exit is possible for the model.
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