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We develop a nonparametric method for inferring the universal neutron star (NS) equation of state (EOS)
from gravitational wave (GW) observations. Many different possible realizations of the EOS are generated
with a Gaussian process conditioned on a set of nuclear-theoretic models. These synthetic EOSs are causal
and thermodynamically stable by construction, span a broad region of the pressure-density plane, and can
be selected to satisfy astrophysical constraints on the NS mass. Associating every synthetic EOS with a pair
of component masses M1;2 and calculating the corresponding tidal deformabilities Λ1;2, we perform
Monte Carlo integration over the GW likelihood for M1;2 and Λ1;2 to directly infer a posterior process for
the NS EOS. We first demonstrate that the method can accurately recover the properties of an injected GW
signal, and subsequently use it to analyze data from GW170817, finding a canonical deformability of
Λ1.4 ¼ 160þ448

−113 and pð2ρnucÞ ¼ 1.35þ1.8
−1.2 × 1034 dyn=cm2 for the pressure at twice the nuclear saturation

density at 90% confidence, in agreement with previous studies, when assuming a loose EOS prior. With a
prior more tightly constrained to resemble the theoretical EOS models, we recover Λ1.4 ¼ 556þ163

−172 and

pð2ρnucÞ ¼ 4.73þ1.4
−2.5 × 1034 dyn=cm2. We further infer the maximum NS mass supported by the EOS to be

Mmax ¼ 2.09þ0.37
−0.16 (2.04þ0.22

−0.002) M⊙ with the loose (tight) prior. The Bayes factor between the two priors is

BA
I ≃ 1.12, suggesting that neither is strongly preferred by the data and that constraints on the EOS from

GW170817 alone may be sensitive to the choice of prior.

DOI: 10.1103/PhysRevD.99.084049

I. INTRODUCTION

Determining the neutron star (NS) equation of state
(EOS) is a major unsolved problem in nuclear astrophysics.
The NS EOS is the zero-temperature pressure-density
relation that arises from the star’s nuclear microphysics,
encoding its composition and internal structure, and deter-
mining its macroscopic properties. Because young NSs
cool rapidly via neutrino emission and quickly reach β
equilibrium, thermal and dissipative corrections to the EOS
are negligible, and NS matter is typically modeled as a
perfect fluid [1]. The EOS for the low-density NS crust is
well known [2], but the conditions in the dense NS core are
so extreme that laboratory experiments are unable to probe
its constituent supranuclear matter. Consequently, astro-
physical observations of NSs offer the best opportunity for
constraining the unknown core EOS.

Because a given candidate EOS prescribes a unique
mass-radius relation [3], simultaneous mass and radius
measurements have been attempted for a number of NSs
[4]. However, obtaining an accurate radius measurement,
which involves modeling the star’s thermal x-ray emission,
is notoriously challenging [5]. Likewise, simultaneous
pulsar mass and moment of inertia measurements have
been proposed as a means of constraining the NS EOS via
the mass-moment of inertia relation [6,7]. Existing radio
observatories are, however, unable to measure the relativ-
istic periastron advance of any known binary pulsar with
sufficient precision to infer the stellar moment of inertia [8].
Although future moment of inertia measurements from
next-generation radio telescopes, such as the Square
Kilometre Array [9], and forthcoming radius measurements
from the NICER soft x-ray observatory [10] are expected to
make significant contributions to the study of ultradense
matter, at present the most informative constraints on the
NS EOS come from gravitational-wave (GW) astronomy.
Indeed, Advanced LIGO’s [11] and Virgo’s [12] GW mea-
surement of NS tidal deformability in GW170817 [13],
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the loud signal of a binary NS merger, was the basis for the
analyses that produced the most discriminating constraints
on the supranuclear EOS to date [14,15].
The tidal forces that arise in NS binaries during inspiral

deform the stars away from their spherical equilibrium
shape. The mass quadrupole moments they acquire draw
energy from the orbit and add to the binary’s gravitational
radiation, enhancing its GW luminosity and leading to a
slight acceleration of the coalescence. This manifests as a
phase shift in the waveform relative to the merger of point
particles [16–18], which is measurable with existing GW
detectors [19–23]. Its magnitude depends on the size of the
induced stellar quadrupoles, measured by the tidal deform-
abilities Λ1;2 of the two NSs. Λ is an EOS-dependent,
dimensionless function of the NS mass M that correlates
with the pressure gradients inside the star—i.e., with the
stiffness of the EOS. A stiff EOS has large pressure gra-
dients that support bigger, more diffuse stars with large Λ,
while a soft EOS has small pressure gradients that yield
more compact stars with small Λ. Thus, as with the mass-
radius or mass-moment of inertia relation, simultaneous
measurements can pick out the preferred M-Λ relation,
which is in one-to-one correspondence with the NS EOS.
The first GW constraints on NS tidal deformability were

reported in Ref. [13]. The parameters Λ1;2 were included in
the waveform model and inferred, along with the masses
M1;2 and the other source properties, from GW170817
strain data [24]. The resulting posterior distribution over the
tidal deformabilities and masses established an upper
bound on the chirp deformability

Λ̃¼ 16

13

ðM1þ12M2ÞM1
4Λ1þðM2þ12M1ÞM2

4Λ2

ðM1þM2Þ5
; ð1Þ

the particular mass-weighted average of Λ1;2 that appears in
the waveform at lowest post-Newtonian order [18,25].
Assuming that the components of GW170817 rotated slowly

]23,26,27 ], with dimensionless spin χ1;2≔cS1;2=GM1;2
2≤

0.05, Ref. [13] placed a 90%-credible upper bound Λ̃ ≤ 800.
The upper limit on the deformability of a canonical 1.4 M⊙
NSwas also found to beΛ1.4 ≔ Λð1.4 M⊙Þ ≤ 800. Thiswas
refined to Λ̃ ¼ 300þ420

−230 (median and highest-posterior-den-
sity 90% confidence interval) in a subsequent analysis [28],
whichmade use of improvedwaveformmodels and included
lower frequencies within the GW data. For comparison, the
widely used candidate EOS sly [29], among the softer
theoretical models, has Λ1.4 ≈ 290, while ms1b [30], one of
the stiffest, has Λ1.4 ≈ 1220. Overall, these constraints favor
a relatively soft NS EOS, and bounds fromRef. [28] disfavor
several candidate EOSs at the 90% confidence level.
Nonetheless, the analyses of Refs. [13,28] neglected

important correlations between Λ1 and Λ2 and did not
attempt to translate the tidal constraints into a direct
inference of the NS EOS. Because the composition of
NSs is dictated by universal nuclear many-body physics,

every NS is thought to share a common EOS. Their
individual properties can thus be parametrized by the
stellar mass alone. In particular, since all NSs conform
to the sameM-Λ relation, the waveform parametersΛ1;2 are
not truly independent. For example, with the standard
convention M2 ≤ M1, Λ2 ≥ Λ1 for any physically realistic
EOS, as ΛðMÞ decreases monotonically. Moreover, the
correlation between Λ1;2 has been shown to be approx-
imately universal [31,32]; knowledge of Λ1 and the binary
mass ratio is sufficient to determine Λ2 with high fidelity,
regardless of the EOS. Deviations from the universal
relation are at most ∼10%, and are substantially smaller
for nearly equal-mass systems. Incorporating these corre-
lations, known as binary Love relations, into a prior on Λ1;2

can significantly improve the recovery of tidal information
from GWs. An injection study performed in Ref. [33]
demonstrated that the area of the 90%-credible region of the
Λ1 − Λ2 posterior is reduced by a factor of 2 or more.
The intrinsic correlations captured by the binary Love

relations were taken into account in a pair of reanalyses
of GW170817. Reference [15] made use of the EOS-
insensitive, mass-ratio dependent binary Love relations from
Refs. [31,32] to compute Λ2 as a function of the other
parameters in the waveform model. Reference [14] used a
closely related approximation, Λ2 ¼ ðM1=M2Þ6Λ1, for the
same purpose. With the inclusion of these physical restric-
tions on the tidal deformabilities, both works tightened the
tidal constraints inferred from GW170817. Reference [14]
reported Λ̃ ¼ 222þ420

−138 for a uniform component-mass prior,
while Ref. [15] found Λ1.4 ¼ 190þ390

−120 (both median and
symmetric 90% confidence interval). Both studies employed
the low-spin prior described above, and they prefer a
marginally softer EOS than was originally inferred.
Reference [15] also sought to constrain the NS EOS

directly, instead of working exclusively with the tidal
deformabilities. It adopted a spectral parametrization for
the EOS [34–37] following methodology originally devel-
oped for piecewise polytropes [38–41]. The spectral
coefficients were sampled in place of Λ1;2 in the waveform,
and the most probable EOS was then reconstructed, with
error bars, from the first four spectral coefficients. This
spectral method ultimately produced a process in the
pressure-density plane, in addition to a joint posterior on
Λ1;2; just as a distribution gives the relative probability of
finite sets of variates, a process gives the relative proba-
bility of functional degrees of freedom. Although the Λ1;2

posterior can be used for Bayesian hypothesis ranking of
different candidate EOSs [21,42,43], the EOS process is
inherently more informative. The discrete set of nuclear
theory models tested in a hypothesis ranking scheme may
not capture the full range of possibilities for the EOS, and
reducing each model to an overall evidence score may
make it difficult to deduce preferences for specific fine-
grained features of the EOS. In contrast, Ref. [15] was able
to report, e.g., the recovered pressure at 2 and 6 times the
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nuclear saturation density (ρnuc ¼ 2.8 × 1014 g=cm3) inde-
pendently of existing nuclear-theoretic models with ∼60%
uncertainty.
However, parametric EOS inference has limitations of

its own. The reduction of a complicated pressure-density
function to a small number of parameters necessarily
leads to modeling errors [41]. This problem is especially
acute for sharp features in the pressure-density relation,
such as first-order phase transitions, and a four-parameter
spectral representation has been shown to model such
discontinuous behavior rather poorly [35]. Indeed, it
performs no better in this regard than a three-segment
piecewise polytrope parametrization, whose issues with
phase transitions are widely acknowledged [35,39].
While it may be possible to design an alternate para-
metrization specially adapted to such phase transitions,
given the extremely varied phenomenology of hybrid
EOSs (e.g., [44–47]; see Ref. [48] for an overview), it is
unlikely that any single parametric model will be able to
faithfully represent the full range of EOS variability with
only a handful of parameters. Accordingly, a nonpara-
metric representation of the EOS may be better suited to
the task of inferring the internal structure of NSs from
astrophysical observations.
The faithfulness of a nonparametric representation of a

function f scales with the amount of underlying knowl-
edge of f—the way, e.g., the appropriate number of bins
to use in a histogram grows as more data are observed—
instead of the number of parameters chosen in a para-
metric model. Nonparametric representations typically
involve a set of hyperparameters that control allowed
types of functional behavior—like the number and
placement of bins in a histogram—but the resulting
freedom in f is much larger than that afforded by a
parametric model. This is because hyperparameters
describe the correlations between a function’s values
rather than the values themselves. Hence, the uncertainty
in the nonparametric representation decreases as obser-
vations of the function accrue, while systematic errors in
the parametric representation are fixed by the degree to
which the model is suited to f. Given that information
about the unknown EOS will accumulate through suc-
cessive GW observations, a nonparametric approach is
well adapted to the so-called relativistic inverse stellar
structure problem.
In this paper, we introduce a nonparametric method for

directly inferring the NS EOS from GW data. Rather than
prescribing a functional form for the relation between the
star’s pressure p and its total energy density ε, as was done
in Ref. [15], we use Gaussian process regression (GPR) to
generate a large number of possible realizations εðaÞðpÞ of
the EOS, labeled by a ¼ 1; 2;…; N. These synthetic EOSs
span the full range of stiffnesses, core pressures, and other
characteristics consistent with thermodynamic stability,
causality, astrophysical observations of NSs, and candidate

models εðαÞðpÞ, α ¼ 1; 2;…; n, from nuclear theory.1 We
then associate each synthetic EOS εðaÞðpÞ with NS masses

MðaÞ
1;2 drawn from a prior distribution and calculate the

corresponding tidal deformabilities ΛðaÞ
1;2. A Gaussian kernel

density estimate (KDE) approximates the marginal condi-

tional likelihood LðaÞ ≔ LðdjMðaÞ
1 ;MðaÞ

2 ;ΛðaÞ
1 ;ΛðaÞ

2 ;HÞ
obtained from standard parameter estimation [24,49]. By
assigning LðaÞ to εðaÞðpÞ, we establish a statistical map
between observables (M1;2, Λ1;2) and the pressure-density
plane. In the limit of many samples (N → ∞), we obtain a
smooth EOS posterior process. This inference scheme is
similar to what was used in Ref. [39] in the context of
piecewise polytropes, but our approach adopts a different
representation of the EOS prior and employs different
techniques for obtaining the posterior. Reference [50]
employs integration techniques similar to ours in order
to bound macroscopic NS observables, but adopts an
ad hoc EOS prior and applies cuts based on the Λ1.4
bounds reported in Refs. [13,51].
Besides possessing systematics that are completely

independent from those for parametric methods, a non-
parametric approach to EOS inference has several attractive
features. Instead of requiring a separate analysis of GW
strain data with an alternate waveform model, our method
operates on the standard GW M1;2-Λ1;2 likelihoods pro-
duced by parameter estimation. Moreover, a GPR repre-
sentation of the EOS naturally comes equipped with
smooth error estimates for the function, unlike simple
interpolation or a spectral construction. Most importantly,
such a representation provides immense flexibility when
selecting the EOS prior; by conditioning the GPR on
different sets of candidate EOSs, priors specialized to
different classes of theoretical models can easily be
specified. With these, one could investigate, e.g., the
prevalence of hyperonic degrees of freedom or first-order
phase transitions in the EOS by calculating the relative
posterior support for the relevant priors. Astrophysical
priors on NS masses and radii can also be accommodated
by the GPR, and physical constraints on the EOS—such as
causality, thermodynamic stability, and the binary Love
relations—are automatically incorporated. Furthermore,
conditioning the priors on tabulated EOSs may make
our prior beliefs more transparent compared to ad hoc
choices for parameters which may not have immediate
physical interpretations. The flexibility and transparency
afforded by a nonparametric representation of the EOS may
become increasingly important as more binary NS systems
are observed, reducing statistical uncertainty to levels
comparable to systematic model uncertainties [52].

1We index tabulated candidate EOSs with Greek letters ðαÞ;
ðβÞ; ðγÞ;…, and synthetic EOSs with Latin letters ðaÞ;
ðbÞ; ðcÞ;….
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Leveraging these advantages, we develop two nonpara-
metric priors with Gaussian processes conditioned on a
fiducial set of tabulated candidate EOSs. Our model-
agnostic prior attempts to span the full range of physically
plausible EOSs and is only loosely informed by the
theoretical models, while our model-informed prior is more
tightly constrained by the candidate EOSs. Applying both
priors to a series of simulated signals, we confirm that our
inference scheme behaves as expected. Performing our
analysis on GW170817, we infer Λ̃ ¼ 210þ383

−113 (631þ164
−122 )

and Λ1.4 ¼ 160þ448
−113 (556þ163

−172 ) with the model-agnostic
(model-informed) prior.2 We also infer the pressures
pð2ρnucÞ ¼ 1.35þ1.8

−1.2 × 1034 ð4.73þ1.4
−2.5×1034Þdyn=cm2 and

pð6ρnucÞ¼ 8.86þ4.3
−5.9 ×1035 ð7.55þ2.0

−3.2×1035Þdyn=cm2. Both
the model-agnostic and model-informed results are
consistent with previous analyses of GW170817 [14,15].
Additionally, we extrapolate the correlations between mid-
range and high densities in the synthetic EOSs to place the
first constraints on themaximumNSmass derived fromGW
data alone. Our analysis with the model-agnostic (model-
informed) prior yields Mmax¼2.09þ0.37

−0.16 ð2.04þ0.22
−0.002Þ M⊙.

Computing the Bayes factor BA
I between the two priors, we

find that neither is strongly preferred by the data: BA
I ¼

1.12� 0.06 (point estimate and 1-σ uncertainty). The fact
that the inferred constraints vary significantly depending on
the choice of prior, while the Bayes factor is near unity,
suggests that constraints on the EOS and tidal deformabil-
ities from GW170817 may be influenced by the choice of
prior. Modeling systematics associated with the parametri-
zation of prior beliefs may therefore be important.
We detail our development of Gaussian processes in

Sec. II and describe our inference scheme in Sec. III.
Section IV reports the specific priors used in this analysis.
We apply them to simulated signals in Sec. V and to real
GW170817 data in Sec. VI. We present our conclusions in
Sec. VII.

II. NONPARAMETRIC REPRESENTATION OF
THE EQUATION OF STATE

Our nonparametric approach to GW-based EOS infer-
ence relies heavily on Gaussian processes (GPs). We
therefore begin by reviewing GPs in general, before
explaining our specific implementation for causal, thermo-
dynamically stable EOSs. GPs have been applied to many
problems in GW astronomy, such as the modeling of
gravitational waveforms [53,54] and electromagnetic
counterpart light curves [55], the optimization of parameter
estimation strategies [56–58], and hierarchical popula-
tion inference [59,60], but they have not previously been
used in the relativistic inverse stellar structure problem.

Furthermore, many of these applications only use GPs to
interpolate between a sparse sample of known functions,
marginalizing over interpolation uncertainty, rather than
employing a GP directly as a Bayesian prior. We use GPs
for both purposes. A helpful general reference about GPs
can be found in Ref. [61].

A. Gaussian processes

GPs provide an extremely flexible and compact repre-
sentation of the uncertainty in a function’s values (ordi-
nates). AGP treats a real-valued function f as an element of
an infinite-dimensional vector space with correlations
between its ordinates fi ≔ fðxiÞ ∈ ð−∞;∞Þ modeled as
a multivariate Gaussian distribution N with mean hfii and
covariance Covðfi; fjÞ. The joint distribution on the
function’s ordinates, conditioned on their corresponding
abscissae xi, is thus

fijxi ∼N ðhfii;Covðfi; fjÞÞ: ð2Þ

The elements of the covariance matrix are determined
by a covariance kernel K such that Kij ≔ Kðxi; xjÞ ¼
Covðfi; fjÞ. Typically,K is chosen such that the covariance
is larger for abscissae that are closer together, effectively
constraining f to be smooth over a length scale set by the
kernel. More generally, K determines the preferred func-
tional behavior of realizations drawn from the GP. Each
realization f of the GP is therefore a sequence of correlated
random variables, but all such functions nonetheless share
some general features.
A standard choice for K is the squared-exponential

kernel

Kseðx; x0Þ ¼ σ2 exp

�
−
ðx − x0Þ2

2l2

�
; ð3Þ

in which the hyperparameters σ and l determine the
behavior of the functions: σ sets the overall strength of
the correlations, and l governs the length scale over which
they occur. Although we did not investigate alternative
choices, other common kernels are the Ornstein-Uhlenbeck
and Mortén kernels (see Sec. 4.2 of Ref. [61] for a more
complete list). We choose the squared exponential because
it is analytic and adequately captures the observed varia-
tions within our data. Hence, our GP is built from this
kernel, along with variants of the white-noise kernel

Kwnðx; x0Þ ¼ σ2wnðxÞδðx − x0Þ; ð4Þ

which models measurement uncertainty at a specific point.
One can determine conditional distributions for an

arbitrary set of ordinates fi given a set ffj�g of known
values via

2Here and in the remainder of the paper, quoted error bars refer
to highest-posterior-density 90% confidence intervals about the
maximum a posteriori unless otherwise specified.
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Pðfijxi; ffj� ; xj�gÞ ¼
Pðfi; ffj�gjxi; fxj�gÞ

Pðffj�gjfxj�gÞ
; ð5Þ

the definition of a conditional probability. Here and
throughout this work, starred indices (e.g., xi�) indicate
abscissae upon which we condition the GP, as opposed to
generic abscissae (e.g., xi) at which the ordinates are
unknown. We also adopt the Einstein summation conven-
tion throughout. Applying Eq. (5) to a GP yields

fijxi; ffj� ; xj�g
∼N ðhfii þ Kik� ðK−1Þk�j� ðfj� − hfj�iÞ;

Kij − Kim� ðK−1Þm�n�Kn�jÞ: ð6Þ
As the set ffj�g of known values is expanded, the condi-
tioned processes fromwhich the ordinates are drawn become
tighter, reducing the variance between different realizations
f of the GP. That is, the uncertainty in the representation
decreases as knowledge of the function accrues.
Furthermore, conditioned processes can be inferred

simultaneously for fi and its first derivative ∂if ≔
df=dxjx¼xi via a self-consistent joint distribution (see
Secs. 4.1.1 and 9.4 of Ref. [61] for a derivation)

�
fi
∂if

�����xi ∼N
�� hfii

h∂ifi

�
;

�
Kij ∂jKi▪

∂iK▪j ∂i∂jK▪▪

��
: ð7Þ

Here we introduce the notation ∂iK▪j ≔ ∂xKðx; xjÞjx¼xi ,∂jKi▪ ≔ ∂x0Kðxi; x0Þjx0¼xj , and ∂i∂jK▪▪ ≔
∂x∂x0Kðx; x0Þjx¼xi;x0¼xj . Applying Eq. (5), the conditioned
distribution becomes�

fi
∂if

�����xi; ffj� ; xj�g
∼N

�
E

��
fi
∂if

��
;Cov

��
fi
∂if

�
;

�
fj
∂jf

���
; ð8Þ

where

E

��
fi
∂if

��
¼
� hfii
h∂ifi

�
þ
�

Kij�

∂iK▪j�

�
ðK−1Þj�k� ðfk� − hfk� iÞ;

ð9Þ

Cov

��
fi
∂if

�
;

�
fj
∂jf

��

¼
�

Kij ∂jKi▪

∂iK▪j ∂i∂jK▪▪

�
−
�

Kij�

∂iK▪j�

�
ðK−1Þj�k� ½Kk�j ∂jKk�▪ �;

ð10Þ

given known values ffj�g and corresponding abscissae
fxj�g. Contingent on our choice of K and hyperparameters,

this conditioned process allows us to make probabilistic
statements about fi and ∂if at arbitrary abscissae based on
observations of ordinates in other regions of the function’s
domain. In other words, Eq. (8) generates a function over
its whole domain from a finite set of known values. GPR is
more sophisticated than simple interpolation, as it auto-
matically comes equipped with estimates of the uncertainty
in the interpolated values.
In our application, we use GPR to model uncertainty in

the NS EOS. Viewing the GP as a generator of random
functions with (specifiable) common overall behavior, we
harness GPR to produce many random synthetic EOSs that
resemble candidate EOSs from nuclear theory. We find that
the squared-exponential covariance suitably reproduces the
variability observed in the nuclear-theoretic candidate
EOSs when the hyperparameters are appropriately selected.
In principle, one could choose the hyperparameters by
optimizing the likelihood Pðffj�gjfxj�g; σ; lÞ of observing
the known data fj� at xj� with respect to (σ, l); or, better
still, marginalize over the hyperparameters according to
this likelihood and a prior Pðσ; lÞ so that

Pðfijxi;ffj� ; xj�gÞ ¼
Z

dσdl

�
Pðfijxi;ffj� ; xj�g;σ; lÞ

×Pðffj�gjfxj�g;σ; lÞPðσ; lÞ
�
; ð11Þ

in effect defining a mixture model of many GPs. However,
in our implementation we simply set the hyperparameters
by inspection, such that the GP can reproduce the features
of the candidate EOSs. This manual selection of hyper-
parameters does not influence our results, and exploring
refinements of these choices is left to future work.

B. Gaussian process model for
the equation of state

The NS EOS is a function εðpÞ that relates the star’s
pressure p to its total energy density ε, the sum of rest-mass
energy density ρ and internal energy density ϵ. The rest-
mass and total energy densities are related by the first law
of thermodynamics,

dε ¼ ðεþ pÞ
ρ

dρ: ð12Þ

Since the precise functional relationship between ε and p is
uncertain, but partial knowledge of the nuclear micro-
physics places some restrictions on its behavior, a GP
conditioned on candidate models from nuclear theory is
especially well suited to modeling EOS uncertainty. In
particular, individual realizations of the GP serve as
samples from the set of physically viable EOSs.
The simplest way to construct a nonparametric repre-

sentation of the EOS would be to apply GPR directly in the
p-ε plane. However, the resulting GP would formally
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support EOSs with ε < 0, since its range is necessarily the
whole real line. Moreover, by default, GPR on εðpÞ would
include thermodynamically unstable or acausal EOSs—i.e.,
functions with dp=dε < 0 or superluminal sound speeds
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dε

p
> c. To incorporate causality, thermody-

namic stability, and positivity of the total energy automati-
cally, we instead build a GP over

ϕ ¼ log

�
c2

dε
dp

− 1

�
: ð13Þ

The auxiliary variable ϕ, first introduced in Ref. [35], can
take any value along the real line, and it naturally
incorporates the desired physical constraints because
ϕ ∈ R corresponds to 0 ≤ dp=dε ≤ c2. Positivity of
p then ensures cs ≤ c and ε ≥ 0. The spectral approach
to EOS inference [36,37] employed in Ref. [15] also starts
with a similar transformation, but goes on to decompose the
EOS onto a small set of basis functions. In contrast, we
assign a prior process to ϕ ¼ ϕðlogpÞ via GPR condi-
tioned on tabulated EOSs. The process over ϕ can easily be
translated to a process over ε. Since the map from ϕ to ε is
nonlinear, Gaussian uncertainty in ϕ will, however, gen-
erally not correspond to Gaussian uncertainty in ε.
We condition the GP for ϕðlogpÞ on a training set of n

candidate EOSs εðαÞðpÞ from the literature. The data for the

αth candidate EOS constitute a function log εðαÞðlogpðαÞ
j� Þ

with ordinates log εðαÞj� and abscissae logpðαÞ
j� .

3 As the

amount of flog εðαÞj� ; logp
ðαÞ
j� g data available may vary from

candidate EOS to candidate EOS, and the relative weight
assigned to each model in the training set is proportional to
the number of data points included, we resample each
εðαÞðpÞ to s points so that the GP for ϕðlogpÞ is
conditioned equally on every input EOS. This need not
be the case—one could formulate a mixture model of GPs
(see, e.g., Refs. [62,63]) to establish a weighted training set
of candidate EOSs—but for simplicity we assume equal
weights here. This resampling could be performed with,
e.g., linear interpolation, but we instead use GPR to obtain
an estimate of the uncertainty associated with the inter-
polation. Thus, we construct a GP representation of
ϕðαÞðlogpÞ for each candidate EOS in the training set,
such that one realization of the αth GP is an s-fold list of

ordinates fϕðαÞ
i g at evenly spaced points in logp. In this

way, the maps from ε to ϕ for the tabulated EOSs—which
come without uncertainties—are effectively equipped with
error bars. The GPs for ϕðαÞðlogpÞ are subordinate to, and
used as input for, the overarching GP for ϕðlogpÞ. We next
describe the construction of the GPs for ϕðαÞðlogpÞ in some
detail, before addressing the GP for ϕðlogpÞ itself.

For every candidate EOS εðαÞðpÞ, we first fit log εðαÞ with
a low-order polynomial in logp and construct a GP for the
residuals. The resulting joint distribution on log εðαÞ, its first
derivative ∂i log εðαÞ ≔ d log εðαÞ=d logpjp¼pi

and the tabu-

lated data flog εðαÞj� g is2
664

log εðαÞi

∂i log εðαÞ

log εðαÞj�

3
775
�������� logpi; flogpðαÞ

j� g

∼N

0
BBB@
2
6664

log ε̂ðαÞi

∂i log ε̂ðαÞ

log ε̂ðαÞj�

3
7775;

2
6664

KðαÞ
ij ∂jK

ðαÞ
i▪ KðαÞ

ij�

∂iK
ðαÞ
▪j ∂i∂jK

ðαÞ
▪▪ ∂iK

ðαÞ
▪j�

KðαÞ
i�j ∂jK

ðαÞ
i�▪ KðαÞ

i�j�

3
7775
1
CCCA:

ð14Þ

Here we take the values flog ε̂ðαÞi ; ∂i log ε̂ðαÞ; log ε̂
ðαÞ
j� g from

the low-order polynomial fit as the mean in the process and
model correlations among the residuals around this fit.
While we assume a squared-exponential covariance kernel
for all tabulated EOSs, we choose hyperparameters

ðσðαÞ; lðαÞÞ by hand separately for each KðαÞ
ij and inspect

the resulting GPs to ensure that they adequately reproduce
the features of the input EOSs.
Conditioning the joint distribution on the tabulated

ordinates flog εðαÞj� g via Eq. (5), we obtain

�
log εðαÞi

∂i log εðαÞ

����� logpi; flog εðαÞj� ; logp
ðαÞ
j� g

∼N
�
EðαÞ

��
log εi
∂i log ε

��
;

CovðαÞ
��

log εi
∂i log ε

�
;

�
log εj
∂j log ε

���
; ð15Þ

where the explicit expressions for the expectation value
and conditioned covariance follow from Eqs. (9) and (10).
The corresponding process for ϕðαÞ is calculated from
Eq. (13) as

ϕðαÞ
i j logpi; flog εðαÞj� ; logp

ðαÞ
j� g

∼N ðEðαÞðϕiÞ;CovðαÞðϕi;ϕjÞÞ; ð16Þ
with

EðαÞðϕiÞ ¼ log

�
EðαÞð∂i log εÞ

�
eE

ðαÞðlog εiÞ

pi

�
c2 − 1

�
: ð17Þ

We approximate the covariance matrix CovðαÞðϕi;ϕjÞ
through a first order Taylor expansion for ϕi in terms of
log εi and ∂i log ε, i.e.,

3Candidate EOS data tabulated as p vs ρ can also be
accommodated by transforming the rest-mass energy density
to total energy density via Eq. (12).
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ϕiðlog εi; ∂i log εÞ ≈ ϕi þ
δϕ

δ log ε

����
i
δ log εi þ

δϕ

δð∂ log εÞ
����
i
δð∂i log εÞ; ð18Þ

so that

Covðϕi;ϕjÞ¼
�

δϕ

δ logε

����
i

��
δϕ

δ logε

����
j

�
Covðlogεi;logεjÞþ

�
δϕ

δð∂ logεÞ
����
i

��
δϕ

δ logε

����
j

�
Covð∂i logε; logεjÞ

þ
�

δϕ

δ logε

����
i

��
δϕ

δð∂ logεÞ
����
j

�
Covðlogεi;∂j logεÞþ

�
δϕ

δð∂ logεÞ
����
i

��
δϕ

δð∂ logεÞ
����
j

�
Covð∂i logε;∂j logεÞ: ð19Þ

This allows us to translate log εðαÞðlogpðαÞ
j� Þ to the auxiliary

variable ϕðαÞðlogpiÞ, interpolated at an arbitrary set of
abscissae, while keeping track of the uncertainty associated
with the interpolation. We refer to this as resampling the
tabulated EOSs, because we take irregularly spaced tabu-
lated data for εðαÞðpÞ and transform it into a process for
ϕðαÞðlogpÞ from which we can extract regularly sampled
data. Figure 1 shows the ϕðαÞðlogpÞ process we construct
for one of the candidate EOSs described in Sec. IV.
The overarching GP for ϕðlogpÞ is subsequently con-

ditioned on the collection of processes ϕðαÞðlogpÞ for the
individual candidate EOSs. We again use a squared-
exponential kernel, but supplement it with a white-noise
kernel [cf. Eq. (4)]

KðEOSÞ
ij ¼ δij

σn
2

n

X
α

ðEðαÞðϕiÞ − EðEOSÞðϕiÞÞ2 ð20Þ

scaled by the observed variance between the n tabulated
EOSs at the pressures pi, where

EðEOSÞðϕiÞ ¼
1

n

X
β

EðβÞðϕiÞ: ð21Þ

In this way, we not only model the covariance between ϕ
at different pressures, but also the spread in candidate EOSs
at each abscissa. The scaling hyperparameter σn in Eq. (20)
allows us to specify how closely we wish the synthetic
EOSs to follow the tabulated ones; small values enforce
the conditioned process to closely follow the average of the
tabulated EOSs. For simplicity, we condition based on the

interpolated ordinates ϕðαÞ
i� at the same regularly sampled

set of pressures logpi� regardless of the EOS, though this is
not strictly necessary.
Equipped with processes ϕðαÞðlogpÞ for each tabulated

EOS, and the white-noise kernel approximating modeling

FIG. 1. A demonstration of our GP mapping from εðh4Þ to ϕðh4Þ using a third-order polynomial fit and a squared-exponential kernel with
σðh4Þ ¼ 0.1 and lðh4Þ ¼ 0.6 [see Eq. (14)]. Irregularly sampled tabulated values and estimates obtained from numeric differentiation (red)
are resampled to a regular grid in logp via GPR, along with residuals and associated error estimates (gray). We note that the residuals
between tabulated values and our interpolation of εðαÞ are ≲1% at high pressures, resulting in ≲10% relative uncertainty in ϕ.
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uncertainty at each pressure, we construct the overarching
GP for ϕðlogpÞ conditioned on all the tabulated EOSs.
The joint distribution on ϕðlogpÞ and the subordinate
ϕðαÞðlogpÞ is thus2

666666664

ϕk

ϕðα¼1Þ
i�

ϕðα¼2Þ
i�

..

.

ϕðα¼nÞ
i�

3
777777775

��������������
logpk; logpi� ∼N ðE;CovÞ ð22Þ

with

E ¼

2
666666664

ÊðEOSÞðϕkÞ
ÊðEOSÞðϕi� Þ
ÊðEOSÞðϕi� Þ

..

.

ÊðEOSÞðϕi� Þ

3
777777775
; ð23Þ

where ÊðEOSÞðϕi�Þ is a low-order polynomial fit to
EðEOSÞðϕi� Þ in logp, and

Cov ¼

2
6666666664

Kij Kij� Kij� � � � Kij�

Ki�j Ki�j� þ Covðα¼1Þ
i�j� þ KðEOSÞ

i�j� Ki�j� � � � Ki�j�

Ki�j Ki�j� Ki�j� þ Covðα¼2Þ
i�j� þ KðEOSÞ

i�j� � � � Ki�j�

..

. ..
. ..

. . .
. ..

.

Ki�j Ki�j� Ki�j� � � � Ki�j� þ Covðα¼nÞ
i�j� þ KðEOSÞ

i�j�

3
7777777775
: ð24Þ

The covariance matrix for this GP representation of the NS EOS is composed of several terms:

FIG. 2. Inferred processes for several ϕðαÞðlogpÞ (red) and an example overarching GP ϕðlogpÞ (black) conditioned on all of them
(left) along with the same reference EOSs and the model-agnostic (cyan, loosely informed by nuclear theory) and model-informed (blue,
more tightly constrained by nuclear theory) priors used in this analysis (right; see Sec. IV). Shaded regions correspond to 1-σ confidence
regions. We see that the model-agnostic prior comfortably contains all the reference EOSs, while the model-informed prior more closely
follows a group of tabulated EOS.
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(a) block diagonal contributions CovðαÞ from the condi-

tioned uncertainty in ϕðαÞ
i for each candidate EOS, as

in Eq. (16);
(b) diagonal contributions KðEOSÞ from the white-noise

kernel (20), encoding modeling uncertainty in the

ordinates fϕðαÞ
j� g from the candidate EOSs at each

pressure pj� ; and
(c) a squared-exponential covariance matrix K, as in

Eq. (3), describing the correlations between all ordi-
nates ϕi.

Specific choices for the squared-exponential kernel hyper-
parameters (σ, l) and the white-noise kernel scaling factor
σn complete the model. Conditioning this process on the
means EðαÞ for the tabulated EOSs yields

ϕij logpi;fEðα¼1Þðϕj� Þ;Eðα¼2Þðϕj� Þ;…;Eðα¼nÞðϕj� Þ; logpj�g
∼N ðẼ;gCovÞ; ð25Þ

which approximates the desired process

ϕijlogpi;flogεðα¼1Þ
j� ;logpðα¼1Þ

j� g; flogεðα¼2Þ
k� ;logpðα¼2Þ

k� g;…;

flog εðα¼nÞ
l� ; logpðα¼nÞ

l� g by conditioning on interpolated
values EðαÞ with associated uncertainties instead of con-
ditioning directly on the tabulated EOS data. This is
illustrated in Fig. 2. Concrete expressions for the final
conditioned expectation value and covariance follow from
Eq. (6).
The GP defined by Eq. (25) models ϕðlogpÞ, rather than

εðpÞ. Nonetheless, for each realization ϕðaÞðlogpÞ of the
process, we invert Eq. (13) and numerically integrate
∂εðaÞ=∂p ¼ ð1þ eϕ

ðaÞ Þ=c2 to obtain εðaÞðpÞ, which is
suitable for calculating macroscopic NS properties. The
rest-mass density can be obtained from εðaÞ via Eq. (12),
allowing us to plot the EOS in conventional pðaÞðρÞ form.
The individual realizations of the EOS are stitched
onto a model for the low-density crust EOS, which is well
known below nuclear saturation density; we use a piece-
wise polytrope implementation of sly [38]. In this
way, we obtain a unified EOS valid at all densities up to
a specified maximum value. The distribution of functions
εðaÞðpÞ calculated in this manner defines the EOS prior

process PðεðpÞjfεðαÞj� g; σ⃗Þ. Each synthetic EOS drawn
from this process is a random function that resembles
the input tabulated EOSs both qualitatively and quanti-
tatively. The choice of hyperparameters σ⃗ ≔
½σ; l; σn; σðα¼1Þ; lðα¼1Þ; σðα¼2Þ; lðα¼2Þ;…; σðα¼nÞ; lðα¼nÞ� for
the GP provides the freedom to self-consistently explore
a wide swath of the space of possible EOSs, or to mimic the
behavior observed in the candidate EOSs more closely.
The process for εðpÞ, conditioned on the full training set

of candidate EOSs, generates a large set of new proposals
for the pressure-density relation without resorting to a
parametrization. Astrophysical constraints on the EOS,

such as the requirement that it support observed NS masses,
are applied by directly checking, e.g., the maximum mass
for each synthetic EOS. Any synthetic EOS that violates the
constraint is discarded from the prior. Similar astrophysical
cutoffs could incorporate future information about NS radii
and moments of inertia from electromagnetic astronomy.

III. BAYESIAN INFERENCE OF THE EQUATION
OF STATE VIA MONTE CARLO INTEGRATION

GP representations of the uncertainty in NS internal
structure play a fundamental role in our nonparametric
inference of the EOS. The candidate EOSs upon which the
GP is conditioned, as well as the choice of the hyper-
parameters σ⃗, determine the characteristics of the EOS prior

process PðεðpÞjfεðαÞj� g; σ⃗Þ. In particular, the degree to which
elements εðaÞðpÞ ∼ PðεðpÞjfεðαÞj� g; σ⃗Þ of the prior process
resemble the input EOSs is controlled by the hyperpara-
meters σ, l, and σn. Here we show how the GW likelihood
from parameter estimation is used in conjunction with the
prior to produce an EOS posterior process.
The posterior process for the EOS is ultimately derived

from GW detector data (d), which is sensitive to macro-
scopic NS observables such as masses and tidal deform-
abilities. Source properties are recovered from d via
Bayesian inference for the parameters of a prescribed
waveform model. The waveform parameters include the
massesM1;2, the tidal deformabilitiesΛ1;2, and other source
properties and phenomenological parameters denoted as ϑ.
The priors chosen forM1;2 and ϑ, along with the underlying
description of the waveform, constitute the Bayesian model
H for the data.
Strictly speaking, the waveform parameters M1;2 and

Λ1;2 are not completely independent, as a specification of
M and the EOS is sufficient to determine Λ. Indeed, an
EOS εðpÞ predicts a uniqueM-Λ relation, which we denote
as ΛðM; εÞ. This relation is calculated by first integrating
the Tolman-Oppenheimer-Volkoff (TOV) equations [64,65]
and the field equation governing the quadrupolar tidal
perturbation [66] simultaneously from the center of the NS
to its surface for a choice of central density ρc. These
equations of stellar structure determine the mass, radius,
and tidal deformability of the NS. A sequence of stable
neutron stars is then constructed by repeating the integra-
tion for a sequence of central densities up to ρmax

c , the
central density for which the mass reaches a maximum
Mmax and beyond which the star becomes unstable [67].
The resulting tidal deformability and mass sequence con-
stitutes ΛðM; εÞ. Integration of the equations of stellar
structure also gives us access to theM-ρc relationMðρc; εÞ,
which includes Mmax information.
The EOS posterior process Pðεjd; fεðαÞj� g; σ⃗;HÞ is

obtained from the GW data through an application of
Bayes’ theorem, which states
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Pðεjd; fεðαÞj� g; σ⃗;HÞ ∝ Pðdjε;HÞPðεjfεðαÞj� g; σ⃗Þ: ð26Þ

Pðdjεi;HÞ is the likelihood of the data given an EOS εðpÞ and the model H. Marginalizing separately over the waveform
parameters of interest ðM1;2;Λ1;2Þ and the nuisance parameters ϑ, it can be written as

Pðdjε;HÞ ¼
Z

dM1dM2PðM1;M2jHÞ
�Z

dϑPðϑjHÞPðdjϑ;M1;M2;Λ1ðM1; εÞ;Λ2ðM2; εÞÞ
�
: ð27Þ

The integral in square brackets is the marginal conditional likelihood LðdjM1;M2;Λ1ðM1; εÞ;Λ2ðM2; εÞ;HÞ for the
observed GW data given a pair of masses and tidal deformabilities. In terms of this likelihood, Eq. (26) reads

Pðεijd;fεðαÞj� g; σ⃗;HÞ

∝PðεijfεðαÞj� g; σ⃗Þ
Z

dΛ1dΛ2dM1dM2PðM1;M2jHÞδðΛ1−ΛðM1;εiÞÞδðΛ2−ΛðM2;εiÞÞ½LðdjM1;M2;Λ1;Λ2;HÞ�: ð28Þ

Here, we marginalize over Λ1;2 in addition to M1;2 by
introducing Dirac delta functions over ΛðM; εÞ. This
accounts for the fact that the likelihood available from
standard parameter estimation does not include intrinsic
correlations among Λ1;2 (cf. Ref. [28]); most stochastic
samplers employed in GW parameter estimation sample
from LðdjM1;M2;Λ1;Λ2;HÞ and treat Λ1;2 as completely
independent parameters.4

Thus, provided that LðdjM1;M2;Λ1;Λ2;HÞ is known,
we need only compute the integral (28) to obtain a posterior
process for the EOS. In practice, however, standard param-
eter estimation gives us access to a finite number of samples
from the likelihood instead of the distribution itself.
Assuming that the exact marginal conditional likelihood
can be accurately modeled from the available samples [68],
we simply approximate LðdjM1;M2;Λ1;Λ2;HÞ with a
Gaussian KDE (see, e.g., Ref. [28]). The integral is then
evaluated with Monte Carlo techniques. Although
Monte Carlo integration is relatively inefficient, it provides
the most straightforward way to compute the posterior
process. More advanced methods, such as Markov-chain
MonteCarlo integration,may be amenable to the inclusion of
a GP prior, but the associated jump proposals are nontrivial
(see, e.g., Refs. [69,70]). We therefore rely exclusively on
direct Monte Carlo integration in this paper, implementing
the following algorithm to calculate the posterior process:
(a) draw a synthetic EOS εðaÞi ∼ PðεijfεðαÞj� g; σ⃗Þ as a

realization of the GP prior;
(b) draw a pair of component masses MðaÞ

1 ;MðaÞ
2 ∼

PðM1;M2jHÞ from a specified prior;

(c) compute tidal deformabilities ΛðaÞ
1 and ΛðaÞ

2 associated

with MðaÞ
1 , MðaÞ

2 , and εðaÞi via the equations of stellar
structure;

(d) evaluate the corresponding GW likelihood LðaÞ ¼
LðdjMðaÞ

1 ;MðaÞ
2 ;ΛðaÞ

1 ;ΛðaÞ
2 ;HÞ via the KDE; and

(e) repeat until a sufficiently large number of samples has
been collected.

Because our samples have unequal weights, we gauge the
precision of the Monte Carlo integral through the effective
number of samples

Neff ¼ exp

�
−
X
a

wðaÞ logwðaÞ
�

ð29Þ

with

wðaÞ ¼
�
LðaÞ=X

b

LðbÞ
�

ð30Þ

based on the entropy of the weights observed a posteriori.
The largerNeff, the better the precision. If only a few samples
have significant weights, then both the entropy and Neff
will be small. However, if most samples have similar
weights, the entropy and Neff will be large, possibly
approaching the upper bound Neff ¼ N achieved for equal
weights.
Monte Carlo integration also provides a means of

directly estimating the evidence PðdjfεðαÞj� g; σ⃗;HÞ for a
given prior process as a functional integral over εðpÞ:

PðdjfεðαÞj� g; σ⃗;HÞ

¼
Z

DεdM1dM2½PðεjfεðαÞj� g; σ⃗Þ

× PðM1;M2jHÞLðdjM1;M2;ΛðM1; εÞ;ΛðM2; εÞ;HÞ�

≈
1

N

XN
a

LðaÞ
���� εðaÞ ∼ PðεjfεðαÞj� g; σ⃗Þ
MðaÞ

1 ;MðaÞ
2 ∼ PðM1;M2jHÞ

: ð31Þ
4Some parameter estimation analyses may include nontrivial

priors for M1;2 and Λ1;2, but we can account for this by
appropriately reweighting their samples.
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Unlike the posterior process, the sampling uncertainty in

PðdjfεðαÞj� g; σ⃗;HÞ scales inversely with
ffiffiffiffi
N

p
rather thanffiffiffiffiffiffiffiffi

Neff
p

, although Neff ∝ N as N → ∞. Because our KDE
approximation of the likelihood has an unknown nor-
malization factor, only relative measures of evidence are
meaningful, and we therefore compute the Bayes factor—
the ratio of evidences—when comparing support for
different priors.

IV. GAUSSIAN PROCESS
EQUATION-OF-STATE PRIORS

In our specific implementation, we condition our GP
EOS prior on a fiducial set of candidate EOSs selected from
extant nuclear-theoretic models. Our training set of candi-
date EOSs is composed of seven well-established models
[71]: alf2 [72], eng [73], h4 [74], mpa1 [75], ms1,
ms1b [76], and sly [77]. These models span a wide range
of stiffnesses and support 1.93 M⊙ stars, a conservative
observational bound on the maximum NS mass [78]. Our
candidate EOSs are purely hadronic, except for alf2 and
H4, which contain color-flavor-locked quarks and hyper-
ons, respectively.
First off, we seek to build an uninformative EOS prior

process that uniformly covers the entire range of physi-
cally viable EOSs, from the stiffest possible (saturating
the causality constraint) to the softest possible (margin-
ally failing to support a 1.93 M⊙ NS). Within this range,
synthetic EOSs should vary as freely as possible subject
to the physical constraints discussed in Sec. II B. We
therefore use the tabulated EOSs to provide only weak,
general guidance to the form of the synthetic EOSs.
This is achieved by setting a large white-noise variance
σn, orders of magnitude larger than the correlation
amplitude σ, while choosing σ and l of order unity.
Thus, synthetic EOSs drawn from the prior can depart
significantly from the mean of the tabulated EOSs upon
which they are conditioned [cf. Eq. (23)] and can exhibit
different types of functional behavior [cf. Eq. (24)] while
exploring a large swath of the pressure-density plane. We
refer to this fiducial EOS prior process as the model-
agnostic prior.
We also explore an alternate choice of prior. Our second

prior seeks to conform more closely to our tabulated EOSs,
producing much tighter a priori bounds in the pressure-
density plane. In this case, hyperparameters are chosen to
yield synthetic EOS behavior that reproduces the features
common to all of the input EOSs: σn is set to be comparable
to σ, while σ and l are essentially unchanged from the
model-agnostic case, and the synthetic EOSs consequently
depart relatively little from the average of the candidate
EOSs. We call the resulting EOS prior process the model-
informed prior.
While the model-agnostic prior approximates an unin-

formative process over the EOS, the model-informed prior

preferentially encodes features that are common to most
nuclear-theoretic models, producing a nontrivial process
that favors certain candidate EOSs. Accordingly, EOSs that
are outliers in, e.g., stiffness are relatively unlikely given
the model-informed prior, and hence particularly stiff or
soft EOSs are disfavored a posteriori as well as a priori.
We note that our specific hyperparameter selections for the
model-informed prior are somewhat ad hoc and certainly
not unique. Different choices would produce different
nontrivial priors, and these may be worth exploring in
the future.
Our GP priors are shown in Fig. 2 along with our set of

tabulated EOSs. We see that the model-agnostic prior
supports a much broader range of possible EOSs, while
remaining centered—like the model-informed prior—on
our representative set of candidate models. We also
compare our prior processes to the spectral method’s
[15] in Fig. 3. One observes that the spectral prior is
centered on a similar region of the pressure-density plane as
both our model-agnostic and model-informed priors, but
that our model-agnostic prior covers a somewhat broader
region. Because our synthetic EOSs are not restricted to a
single parametric form, they also encapsulate a wider range
of functional behaviors than the spectral EOSs, though this
may not be apparent from the two-dimensional projection
in the figures.
We first evaluate the nonparametric method’s perfor-

mance by analyzing simulated GW signals with both the
model-agnostic and model-informed GP prior processes
(Sec. V). We then place constraints on the true NS EOS
(Sec. VI) using publicly available GW170817 M-Λ pos-
teriors [68].5 When performing the Monte Carlo integra-
tion, we draw component masses from a uniform prior
consistent with the low-spin prior of Ref. [13], and we
iterate until Oð103Þ effective samples have been returned,
typically corresponding to Oð105Þ draws from the prior.
The two parallel inferences demonstrate how the non-
parametric method can be tuned to assume different levels
of a priori confidence in the fiducial candidate EOSs. We
remark, however, that neither of the priors constructed here
should be construed as an optimal representation of the
variability in the NS EOS. Our selection of hyperpara-
meters and training EOSs simply provides a qualitative
illustration of possible designs for the GP prior process; the
optimization of the EOS prior will be pursued in future
work. For example, the fiducial set of candidate EOSs
could be expanded to include more recently developed
models with broader phenomenology, including first-order
phase transitions or strange quark matter. The hyperpara-
meters could also be selected more judiciously to produce
an EOS prior process that covers an even larger region of

5Our analysis technically requires M-Λ likelihoods, but be-
cause Ref. [28] assumed flat priors, the likelihood is proportional
to the posterior distribution for these variables.
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the pressure-density plane; this is particularly relevant for
the model-informed prior, as excessively stiff or soft EOSs
tend to fall toward its edge. Nonetheless, the GP priors
introduced here are sufficiently broad to demonstrate the
nonparametric method’s efficacy, and we expect the model-
agnostic prior in particular to resemble more carefully
designed EOS prior processes.

V. SIMULATED GRAVITATIONAL
WAVE SIGNALS

We perform an injection campaign to demonstrate the
nonparametric method’s ability to infer a known EOS from
GW data. This proof of principle study is conducted with
the intention of applying the same analysis to GW170817,
and, accordingly, our simulated signals are designed to
resemble that event. We define three different sources with
parameters similar to those inferred for GW170817 and
inject the corresponding GW signals into real detector noise
surrounding the event [13,79]. In particular, the injections
have component masses and spins that are compatible with
the inferred source properties for GW170817; the sources
are placed at a comparable distance and orientation relative
to the detectors; and the signals’ network signal-to-noise
ratios are approximately the same (SNR ≈ 35) [28]. The
injected component spins are restricted to χ < 0.1; while

spins can impact the estimation of tidal effects, those
inferred for GW170817 are sufficiently small that they
are not thought to significantly affect our analysis.
Nonetheless, while we assume the spins are small, we
do not fix them to be identically zero, and we marginalize
over spin when recovering the injected parameters. For
each of these sources, we further select one of three
candidate EOSs—ms1, h4, sly—ranging from relatively
stiff to soft. The choice of injected masses and EOS
determines the tidal deformabilities in the simulated GW
signal. The M1;2 and Λ1;2 values for each mock event, as
well as the associated EOS, are listed in Table I. Injections
are performed with the TaylorF2 waveform (see, e.g.,
Ref. [80]) and the M1;2-Λ1;2 marginal likelihoods are
sampled with LALInference [24,49] using the same.
The posteriors obtained for one simulated event, injec-

tion I with h4, are shown by way of example in Figs. 4
and 5 along with the associated priors. Figure 4 shows
projections of the joint probability distribution over M1;2
and Λ1;2 into the Λ1-Λ2 and Λ1-M1 subspaces, as well as
marginal distributions for M1, Λ1, and Λ2. On the left, one
can see that the model-agnostic prior supports a wide range
of possible M-Λ relations, and the inferred posterior
comfortably includes the injected value. This is in keeping
with our expectations, since the model-agnostic prior is
designed to contain all feasible EOSs. Nonetheless, the

FIG. 3. A comparison for GW170817 between the spectral prior from Ref. [15] (black) and our model-agnostic (cyan) and model-
informed (blue) priors (left), as well as between the spectral posteriors (black) and our model-agnostic (magenta) and model-informed
(red) posteriors (right). Solid lines show the medians and shaded regions correspond to 50% and 90% credible regions. We see that our
model-agnostic posterior favors even softer EOSs than the spectral approach, whereas the model-informed prior favors slightly stiffer
EOSs than the spectral approach. However, the associated uncertainties suggest all results are consistent.
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inference produced informative constraints on the tidal
deformabilities, as the 90% confidence region of the
posterior is much reduced relative to the prior.
Figure 5 shows the corresponding EOS prior and

posterior processes in the pressure-density plane. In the
left-hand panel, the broad model-agnostic prior is signifi-
cantly narrowed by the inference, especially around 2ρnuc,
producing a posterior process that favors an EOS somewhat
softer than the prior’s median. The inference also yields
information about the central density ρc and pressure pc of
each NS, since the M-ρc relation for each synthetic EOS is
known. The overplotted contours indicate the posterior for
the more massive component’s central values. Constraints
on the EOS above ρc;1, the central density associated with
M1, arise exclusively through correlations within the
synthetic EOSs; the GW likelihood directly constrains
the EOS only below ρc;1.
The right-hand panels of Figs. 4 and 5 show our inference

with the model-informed prior. In terms of the joint
M1;2-Λ1;2 probability distribution, themodel-informed prior

ismuchmore restrictive, leading to a tighter posterior than in
the model-agnostic case. Specifically, the model-informed
posterior has limited support for very soft EOSs (small tidal
deformabilities). This is consistent with the fact that the
model-informed prior is closely tied to the training set of
candidate EOSs, which includes models no softer than sly
(Λ1.4 ≈ 290), whereas the less constrained synthetic EOSs
from the model-agnostic prior explore softer regions of the
pressure-density plane. Despite the model-informed poste-
rior’s smaller support, the injected parametersM1;2 andΛ1;2

are still recovered within 90% confidence, although Λ̃
happens to liemarginally outside the 90% confidence region
for this event.
In the model-informed case, we note that the posterior in

the pressure-density plane is nearly identical to the prior.
This is because the model-informed prior is already quite
narrow, and a single GW event conveys only a limited
amount of information. We expect tighter constraints to be
achievable with combined observations from multiple
events [39,42].

TABLE I. Injected parameters used to test EOS recovery and the associated one-dimensional posterior credible regions. Three mass
ratios and three injected EOSs are considered. We report the 90% credible regions for the model-agnostic (model-informed) prior along
with the maximum a posteriori for each parameter separately. Additionally, we report the Bayes factor between our priors (BA

I ),
generally showing no strong preference for either prior with a single event. Error estimates correspond to 1-σ uncertainty for Bayes
factors. Analogous results for GW170817 are shown as well, with similar conclusions.

Injected Recovered with model-agnostic (model-informed) prior

BA
I

m1½M⊙� m2½M⊙� EOS Λ1 Λ2 Λ̃ m1½M⊙� m2½M⊙� Λ1 Λ2 Λ̃

(I) 1.57 1.19 MS1 714 3320 1550 1.40þ0.27
−0.04 1.30þ0.05

−0.20 611þ979
−276 2350þ2030

−897 1530þ387
−455 22.6� 0.7

(1.72þ0.03
−0.27 ) (1.08þ0.18

−0.03 ) (210þ472
−70 ) (3190þ279

−2070) (890þ177
−112 )

H4 390 2250 983 1.57þ0.12
−0.22 1.15þ0.18

−0.07 341þ504
−265 1200þ1440

−488 836þ337
−366 0.26� 0.01

(1.60þ0.10
−0.23 ) (1.14þ0.17

−0.07 ) (231þ413
−109 ) (1152þ1340

−407 ) (740þ167
−164 )

SLy 130 834 354 1.41þ0.27
−0.05 1.22þ0.11

−0.13 155þ363
−121 792þ842

−563 463þ277
−320 0.44� 0.01

(1.40þ0.24
−0.05 ) (1.30þ0.05

−0.18 ) (316þ328
−192 ) (862þ1080

−281 ) (667þ147
−144 )

(II) 1.37 1.36 MS1 1580 1630 1600 1.40þ0.20
−0.05 1.29þ0.06

−0.15 636þ637
−546 1670þ1330

−1028 1200þ541
−686 0.85� 0.02

(1.40þ0.23
−0.05 ) (1.29þ0.05

−0.17 ) (406þ345
−226 ) (1030þ1210

−329 ) (776þ192
−199 )

H4 1000 1034 1020 1.39þ0.22
−0.04 1.31þ0.04

−0.17 341þ527
−257 942þ1240

−452 721þ461
−386 0.30� 0.01

(1.39þ0.23
−0.04 ) (1.31þ0.04

−0.18 ) (306þ440
−121 ) (942þ1080

−276 ) (728þ178
−162 )

SLy 349 362 355 1.40þ0.17
−0.05 1.29þ0.06

−0.13 140þ278
−109 341þ581

−217 247þ332
−162 1.40� 0.03

(1.41þ0.13
−0.06 ) (1.29þ0.06

−0.10 ) (431þ210
−202 ) (902þ547

−304 ) (655þ161
−130 )

(III) 1.42 1.33 MS1 1270 1850 1530 1.62þ0.13
−0.20 1.14þ0.17

−0.07 361þ725
−278 2550þ1620

−1470 1210þ458
−474 1.97� 0.06

(1.67þ0.09
−0.19 ) (1.13þ0.13

−0.06 ) (246þ194
−121 ) (1830þ1200

−895 ) (782þ191
−229 )

H4 782 1190 968 1.58þ0.16
−0.16 1.14þ0.16

−0.07 251þ605
−193 2010þ1409

−1130 998þ376
−515 0.44� 0.01

(1.63þ0.12
−0.17 ) (1.13þ0.14

−0.06 ) (210þ308
−94 ) (1960þ713

−1050) (697þ190
−154 )

SLy 269 420 338 1.62þ0.10
−0.24 1.15þ0.17

−0.08 110þ333
−92 641þ1020

−480 337þ359
−230 0.53� 0.01

(1.46þ0.25
−0.09 ) (1.17þ0.16

−0.09 ) (231þ331
−121 ) (1040þ1030

−458 ) (637þ133
−139 )

GW170817
1.46þ0.16

−0.09 1.26þ0.10
−0.10 110þ278

−81 361þ529
−252 210þ383

−113 1.12� 0.06

(1.41þ0.15
−0.04 ) (1.32þ0.04

−0.13 ) (426þ214
−229 ) (772þ641

−212 ) (631þ164
−122 )
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The full set of injected signals is presented in the
Appendix, and we summarize the results here, reporting
our method’s performance for each of the injections in
Table I. We quote the injected M1;2, Λ1;2, and Λ̃ values
along with one-dimensional 90% credible regions around
the maxima a posteriori. In general, we find that the
component masses are always well recovered with both
priors, while Λ1;2 are typically well recovered with the
model-agnostic prior, although the maxima a posteriori are
not always centered on the injected values. This is due to a
combination of noise fluctuations (the likelihood does not
peak at the injected values) and the influence of our priors
(the injected values lie near the edge of the prior). In other
words, if the injected EOS is rare a priori, as is the case for
some of the candidate EOSs in the model-informed prior, it
is not surprising that they are also rare a posteriori. We

expect the model-agnostic prior to recover injected EOSs
more successfully because it is essentially uninformative,
whereas the model-informed prior is nontrivial by design.
Unsurprisingly, Λ̃ is generally less sensitive to the priors
and is consequently recovered more robustly. The GW data
constrain Λ1;2 primarily through Λ̃, so a posteriori relative
degrees of belief for combinations of Λ1;2 that produce the
same Λ̃ are mostly informed by the prior.
In contrast to themodel-agnostic prior,Λ1;2 are not always

well recoveredwith themodel-informed prior.While several
two-dimensional projections, such as the marginal Λ1-Λ2

distribution, appear to comfortably contain the injected
signal, in reality it lies near the edge of the allowed M-Λ
relations in some cases (see, e.g., Fig. 4). Hence, the
injection is found near the edge of the posterior because
of the constraints applied in the full four-dimensional space.

FIG. 4. Prior (cyan/blue), likelihood (green), and posterior (magenta/red) distributions for our model-agnostic (left) and model-
informed (right) GP priors for a single simulated injection, event I with h4 from Table I. Contours for the joint distributions correspond
to 50% and 90% credible regions. Because of the broader support in the model-agnostic prior, the injected value (gray cross-hairs) is
comfortably contained in the associated posterior’s support. We note that the model-informed prior appears to contain the injected value
in some marginal distributions, but it actually lives near the edge of the allowed M-Λ region. This accounts for the fact that the Λ1;2
posterior barely contains the injection even though it appears to be contained in the Λ1;2 prior. Since we perform inference with a
nontrivial prior in a four-dimensional space, the resulting constraints may not be obvious from two-dimensional projections.
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This indicates that our model-informed prior could be too
tight to reliably infer the true EOS if it is significantly softer
or stiffer than the candidate EOSs included in our training
set. Our model-agnostic prior is more trustworthy in this
regard, though it generally produces looser constraints
because of its broader support. Furthermore, the model-
informed prior tends to more strongly influence the inferred
Λ1;2, resulting at times in injected values recovered outside
the 90% credible regions. However, this is to be expected for
injected EOSs lying near or beyond the edge of our prior.We
only expect our confidence regions to have the correct
coverage if the injected signalswere drawn directly from our
priors, which is not the case here. Although ms1, h4, and
sly are among the candidate EOSs upon which the GP was
conditioned, they are not themselves synthetic EOSs drawn
from the EOS prior process.
Since the recovered posteriors for the injections depend

on the GP prior, we may quantify the degree to which the
GW data prefer one prior or the other via Bayesian model
selection. We estimate the Bayes factor

BA
I ¼ PðdjfεðαÞj� g; σ⃗A;HÞ

PðdjfεðαÞj� g; σ⃗I ;HÞ
ð32Þ

between our model-agnostic and model-informed priors
for all events listed in Table I, calculating the evidence
according to Eq. (31). For most simulated signals,
neither prior is strongly preferred by the data, with
the exception of injection I with ms1. As ms1 is
particularly stiff, it lies at the very edge of our
model-informed prior’s support, and therefore there is
much more evidence in favor of the model-agnostic
prior. This appears to be more prevalent for particularly
stiff EOSs than for particularly soft ones (compare BA

I
for ms1 and sly), but we typically find that the GW
data do not disfavor our model-informed prior at high
confidence. One could imagine performing a similar
model selection scheme on different GP priors condi-
tioned on specific features of the NS EOS, to test, e.g.,
for the existence of a first-order phase transition in the
NS EOS.

VI. GW170817

Having tested our nonparametric inference on simu-
lated GW events, we now apply it to real data from
GW170817. We repeat the analysis of the previous
section using the same model-agnostic and model-
informed priors. Our recovered M1;2-Λ1;2 posteriors and

FIG. 5. Processes corresponding to the injection in Fig. 4 (event I with h4 from Table I), showing the prior (cyan/blue) and posterior
(magenta/red) for our model-agnostic (left) and model-informed (right) priors. Solid lines show the medians and shaded regions
correspond to 50% and 90% credible regions for the one-dimensional marginal distributions for pðρÞ. Contours correspond to the 50%
and 90% credible regions for the central density and pressure ofM1 and vertical black bars denote ρnuc, 2ρnuc, and 6ρnuc. We see stronger
relative a posteriori constraints with the model-agnostic prior, whereas the posterior obtained with the model-informed prior is nearly
indistinguishable from the prior itself.
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EOS posterior processes are shown in Figs. 6 and 7,
respectively. One-dimensional credible regions for the
component masses and tidal deformabilities are reported
in Table I, which also presents the Bayes factor between
the two priors.
With the model-agnostic prior, we find that GW170817

places significant a posteriori constraints on the tidal
deformabilities, favoring a limited region corresponding
to relatively soft EOSs. Indeed, we infer a chirp deform-
ability of Λ̃ ¼ 210þ383

−113 . Using ΛðM; εÞ for every synthetic
EOS εðaÞðpÞ, we find Λ1.4 ¼ 160þ448

−113 . The lower bound
of our confidence interval suggests some of the smallest
tidal deformabilities of any study to date. Our findings
agree with the results of previous analyses, namely Λ̃ ¼
300þ420

−230 [28] (highest-posterior-density 90% confidence
interval about the median), Λ̃ ¼ 222þ420

−138 [14], and Λ1.4 ¼
190þ390

−120 [15] (both symmetric 90% confidence intervals

about the median).6 Moreover, the 90% confidence region
of our Λ1-Λ2 posterior, shown in Fig. 6, is markedly similar
to the corresponding region of the posterior obtained with
the spectral method (cf. Fig. 1 of Ref. [15]).
From Fig. 7, we observe a preference for a slightly

softer-than-average pressure-density relation at mid-range
densities. In particular, we obtain the 90%-credible re-
gions pð2ρnucÞ¼1.35þ1.8

−1.2 ×1034 dyn=cm2 and pð6ρnucÞ¼
8.86þ4.3

−5.9 ×1035 dyn=cm2 on the pressure at 2 and
6 times nuclear density. These values agree with the
median pressures pð2ρnucÞ¼3.5þ2.7

−1.7 ×1034 dyn=cm2 and
pð6ρnucÞ ¼ 9.0þ7.9

−2.6 × 1035 dyn=cm2 (90% confidence)

FIG. 6. Marginal distributions for GW170817, analogous to Fig. 4. The priors (cyan/blue), likelihood (green), and posteriors
(magenta/red) are shown for both the model-agnostic (left) and model-informed (right) priors. Reference curves (gray) are shown for
(from left to right) sly, h4, and ms1. Contours in the joint distributions correspond to the 50% and 90% credible regions, and we see
that the model-agnostic prior’s a posteriori constraints are similar to those reported in Ref. [15], whereas the model-informed prior
favors significantly larger Λ1;2 but similar masses.

6Because the results reported in the literature are generally
symmetric confidence intervals about the median, whereas ours
are highest-posterior-density intervals about the maximum a pos-
teriori, our confidence intervals are systematically shifted down-
wards relative to them (see, for example, Fig. 11 of Ref. [28]).
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obtained in Ref. [15]. Furthermore, Fig. 7 displays our
inference for the central density ρc;1 and pressure pc;1 of the
more massive component of the binary; we find that the
posterior peaks at ρc;1 ≈ 3ρnuc. SinceMðρc; εÞ is known for
each synthetic EOS, the posterior process can also be used
to make an inference for the maximum mass supported by
the NS EOS. We find that Mmax ¼ 2.09þ0.37

−0.16 M⊙ with the
model-agnostic prior.
Repeating the inference with the model-informed

prior, we recover a smaller a posteriori 90% confidence
region that has less support for soft EOSs, as can be seen
in the right-hand panel of Fig. 6. Our inferred tidal
deformabilities are thus somewhat larger: Λ̃ ¼ 631þ164

−122
and Λ1.4 ¼ 556þ163

−172 . The upper bounds on the tidal
deformabilities are similar to the results of the original
analyses of GW170817 [13,28], but the lower bounds
are much larger. This is because the tabulated EOSs
used to construct the model-informed prior cannot
produce Λ1.4 ≲ 290 (the sly value), while the GW
data appear to support deformabilities Λ1.4 ≲ 200.
Electromagnetic observations of the kilonova associated
with GW170817 have found similarly large lower
bounds for Λ̃ [51,55,81]. The numerical relativity sim-
ulations of Ref. [81], in particular, suggest Λ̃≳ 300, in
mild tension with our model-agnostic result but more
compatible with our model-informed analysis. Curiously,

the Λ1.4 90% confidence region for the model-agnostic
prior includes a long tail to large values and contains the
maximum a posteriori estimate from the model-informed
prior, although the 50% confidence region is much tighter.
The EOS posterior process for the model-informed

prior is plotted in the right-hand panel of Fig. 7. The
pressure constraints extracted from the posterior are
pð2ρnucÞ ¼ 4.73þ1.4

−2.5 × 1034 dyn=cm2 and pð6ρnucÞ ¼
7.55þ2.0

−3.2 × 1035 dyn=cm2, consistent with Ref. [15] (see
Fig. 3). The posterior for the central density ρc;1 peaks
around 2ρnuc, and the constraint on the maximum mass
supported is tightened to Mmax ¼ 2.04þ0.22

−0.002 M⊙.
Overall, our results for GW170817 are consistent with

the literature [13–15,28], favoring relatively low Λ̃ and a
correspondingly soft EOS. In fact, Fig. 3 shows that our
inferred model-agnostic posterior process for εðpÞ favors a
slightly softer EOS than that found with the spectral
method [15], though the uncertainties are quite broad.
On the other hand, the model-informed posterior prefers
slightly larger pressures than that of the spectral method.
Nonetheless, compared to our priors—i.e., ppriorð2ρnucÞ ¼
1.09þ8.8

−1.1 × 1034 ð4.96þ1.3
−2.9 × 1034Þ dyn=cm2 for the model-

agnostic (model-informed) prior—we generally see smaller
90% confidence regions and shifted modes in the pressure-
density plane a posteriori.

FIG. 7. Processes for the model-agnostic (left) and model-informed (right) priors with GW170817, both a posteriori (magenta/red)
and a priori (cyan/blue). We find only marginally tightened posterior constraints with the model-informed prior, whereas the model-
agnostic posterior clearly favors softer EOSs. As in Fig. 5, solid lines show medians, shaded regions represent 50% and 90% credible
regions for pðρÞ, contours represent the 50% and 90% credible regions for the central densities and pressures of M1, and vertical bars
denote ρnuc, 2ρnuc, and 6ρnuc.
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Although the differences between prior and posterior
are more pronounced in the model-agnostic case,
neither prior is strongly favored by the data. We find BA

I ¼
1.12� 0.06 (point estimate and 1-σ uncertainty), sug-
gesting that our inference of the tidal deformabilities
and the EOS itself may be relatively prior dominated. In
other words, the data from GW170817 alone cannot
strongly differentiate between a model that yields
pð2ρnucÞ ¼ 1.35þ1.8

−1.2 × 1034 dyn=cm2 and one that yields
pð2ρnucÞ ¼ 4.73þ1.4

−2.5 × 1034 dyn=cm2, suggesting that all
such constraints should be interpreted with care. We expect
that combined data from multiple GW signals will be
needed to discriminate between different models for
the EOS.

VII. CONCLUSIONS

GW measurements of the macroscopic properties of
NSs offer a promising means of deducing information
about the nuclear microphysics that governs their internal
structure. The nonparametric framework for NS EOS
inference developed here provides direct constraints on
the pressure-density relation inside the star from the
standard GW likelihood. The GP formulation of the
EOS can compactly and faithfully represent a more diverse
set of possible EOSs than parametric models, and since its
systematic uncertainties are independent of those from
previous analyses, nonparametric inference can be used to
complement and corroborate existing approaches. The full
EOS posterior process produced by our approach allows
pressures and densities within the NS to be inferred,
derived properties such as the maximum NS mass to be
constrained, and model selection between various EOS
priors to be performed.
We studied simulated GW170817-like signals using real

detector noise as a demonstration of our method’s efficacy
at recovering a known EOS. The inference produced
informative constraints on the tidal deformabilities and
the pressure-density relation, in the sense that the 90% con-
fidence region of the posterior was reduced. Overall, we
find that injections with stiffer EOSs favor stiffer EOSs
a posteriori, and softer injected EOSs favor softer poste-
riors, as expected. However, the constraints depend some-
what strongly on the prior assumed, and the data typically
do not favor the model-agnostic prior over the model-
informed one, or vice versa.
Using the same model-informed and model-agnostic

priors, we analyzed GW170817 to infer tidal deformabil-
ities, pressures, and the maximum mass supported by the
EOS. We summarize the results below and discuss their
significance.
Tidal deformabilities. Analyzing GW170817 with

the model-agnostic prior, we infer a canonical deform-
ability of Λ1.4 ¼ 160þ448

−113 and a chirp deformability of
Λ̃ ¼ 210þ383

−113 , in comfortable agreement with previous

analyses [14,15]. The maximum a posteriori values we
obtain for the canonical and chirp deformabilities are
the smallest claimed to date, but come with broad
uncertainties. Such small tidal deformabilities favor an
EOS that resembles the softest nuclear-theoretic models
available. Repeating the analysis with the model-
informed prior, the inferred tidal deformabilities are
Λ1.4 ¼ 556þ163

−172 and Λ̃ ¼ 631þ164
−122 . The 90% confidence

regions from both priors overlap, although the maxima
a posteriori are notably different.
Pressures. The posterior process places direct constraints

on the EOS in the pressure-density plane, enabling us to
extract the constraints pð2ρnucÞ¼ 1.35þ1.8

−1.2 ×1034 dyn=cm2

and pð6ρnucÞ ¼ 8.86þ4.3
−5.9 × 1035 dyn=cm2 on the pressure

at 2 and 6 times the nuclear saturation density with the
model-agnostic prior. These figures are consistent with the
pressure constraints calculated with the spectral method.
Qualitatively, we observe a similar preference for lower-
than-average pressures at midrange densities as was noted
in Ref. [15]. The pressures inferred with the model-
informed prior are pð2ρnucÞ ¼ 4.73þ1.4

−2.5 × 1034 dyn=cm2

and pð6ρnucÞ ¼ 7.55þ2.0
−3.2 × 1035 dyn=cm2, favoring a

slightly stiffer EOS. Nonetheless, the results of the infer-
ence are still consistent with those of previous analyses [15]
within their uncertainties.
Maximum mass. The EOS posterior process gives

us access to maximum-mass information through correla-
tions between the high densities relevant for Mmax and the
midrange densities probed by GW170817. With the model-
agnostic prior, we constrain the maximum NS mass to
be Mmax ¼ 2.09þ0.37

−0.16M⊙, disfavoring especially stiff can-
didate EOSs that produceMmax ≳ 2.5 M⊙. Ours is the first
reported constraint derived exclusively from GW data. This
is compatiblewithmultimessenger studies ofGW170817 via
EOS model selection [82] and approximate universal rela-
tions [83], numerical relativity [84], and general-relativistic
magnetohydrodynamic simulations [85], which account for
the observed spectrum of the electromagnetic counterpart,
the lifetime of the merger remnant, and the GW-inferred
source properties. Taken together, the multimessenger stud-
ies suggest 2.15 M⊙ ≲Mmax ≲ 2.28 M⊙. The constraint on
themaximumNSmass is tightened toMmax ¼ 2.04þ0.22

−0.002M⊙
with the model-informed prior.
Bayes factor. Despite producing noticeably dissimilar

a posteriori credible regions for the tidal deformabilities
and the pressure-density relation, the Bayes factors
between the model-agnostic and model-informed priors
are Oð1Þ for virtually all of the simulated events consid-
ered. For GW170817, we find BA

I ¼ 1.12� 0.06 (point
estimate and 1-σ uncertainty). This implies that data from a
single event are not sufficiently informative to strongly
favor either model. We conclude that EOS constraints
derived from GW170817 alone are likely to be sensitive to
the choice of prior. Thus, the EOS priors must be carefully
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motivated on physical grounds and associated constraints
interpreted scrupulously.
Given the prior dependence of the results, revisiting the

choice of candidate EOSs used to condition the GP priors
may be worthwhile. One could expand the training set to
include candidate EOSs softer than sly and stiffer than
ms1. Since early indications are that the NS EOS is rela-
tively soft, extending the prior at its soft edge is particularly
important for obtaining reliable model-informed inferences
from GW data. Adding candidate EOSs with, e.g., first
order phase transitions or strange quark matter could also
make the training set more fully representative of the
theoretical possibilities for the EOS. Similarly, one could
broaden the training set to include nonbarotropic candidate
EOSs, such as recent proposals that depend on the
environmental dark matter density [86–88]. Despite already
covering a large area of the pressure-density plane, the
model-agnostic prior could also benefit from conditioning
on an expanded and more representative set of input EOSs,
as it would assimilate an even greater degree of variation in
the functional behavior of the EOS. Coupled with improved
hyperparameter selection via automated marginalization
over many possible settings [cf. Eq. (11)], it may be
possible to deliver tighter constraints on the tidal deform-
abilities and the pressure-density relation with priors better
grounded in nuclear theory.
Although we found that posterior constraints from a

single GW event are rather broad and prior dependent, we
expect that the impact of prior assumptions will even-
tually be overcome by the combined data from many GW
signals. Our Monte Carlo integration scheme can be
straightforwardly extended to incorporate an arbitrary

number of events: we simply draw masses (e.g., MðaÞ
1;A)

consistent with each event A separately for each synthetic
EOS, and then combine the likelihoods LA from
each event so that the overall weight for the ath synthetic

EOS is LðaÞ ¼ Q
ALAðdAjMðaÞ

1;A; M
ðaÞ
2;A; Λ

ðaÞ
1;A; Λ

ðaÞ
2;A;HAÞ.

Electromagnetic observations of NS radii from NICER
and moment of inertia measurements from radio
observations can also be incorporated as additional
likelihoods when available. A precise quantification
of the nonparametric method’s ability to constrain the
EOS with multiple GW signals will be investigated in
future work.
As illustrated by our Bayes factors between the model-

agnostic and model-informed priors, our method naturally
provides evidence estimates which can be used for
Bayesian hypothesis ranking. Leveraging the flexibility
that the nonparametric representation offers when selecting
the EOS prior, one could perform diverse kinds of model
selection beyond the simple example presented here. For
instance, evidence for different NS matter compositions
(e.g., purely hadronic vs hyperonic) or phenomenological
features of the EOS (e.g., strong phase transitions) could be
compared. This can be done by changing the set of

tabulated EOSs used to condition the underlying GP, so
as to construct separate priors reflecting the typical behav-
ior of different classes of EOS. In the context of
GW170817, a hypothesis ranking scheme could also be
applied to determine whether the GW data identify the
event as a binary NS, a binary black hole, or a NS-black
hole merger. Model selection with a GP representation for
the EOS has the potential to shed light on a variety of
interesting questions about the macroscopic properties and
internal structure of NSs. More broadly, the versatility of
nonparametric EOS inference will help maximize the
information obtained from future observations, serving
as a key component in the effort to constrain the supra-
nuclear EOS.
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APPENDIX: COMPLETE RESULTS FOR
SIMULATED GW SIGNALS

In this appendix, we present complete results for the
injection study described in Sec. V. In Figs. 8–12, we show
the GW likelihood, nonparametric priors, and posteriors for
each of the injections listed in Table I, finding the expected
behavior in our posteriors. We omit process plots for the
model-informed prior for all injections because they closely
resemble Fig. 5. Injected signals with stiffer EOSs (ms1)
shift the posterior to stiffer pressures relative to the prior,
whereas softer EOSs (sly) produce lower pressures
a posteriori. EOSs that fall near the middle of the prior
(h4) mainly produce tightened confidence regions. We also
see that the central densities for M1 are shifted to smaller
values for stiff EOSs and larger values for soft EOSs. This
is because stiffer (softer) EOSs have larger (smaller) radii
for the same mass, and ρc ∼M=R3 scales inversely with the
NS size. All these trends are readily apparent with the
model-agnostic prior, whereas the model-informed prior
often produces posteriors nearly identical to the prior.
However, as Table I shows, the data typically do not
strongly favor one prior over the other.
Often, ms1 is “too stiff” for our model-informed prior

but only disfavored by our model-agnostic prior. Although
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we attempt to construct the model-agnostic prior to support
an extremely broad range of possible EOSs, there are
simply many more EOSs that support relatively compact
stars compared to the few that are at least as stiff as ms1.
This is because causality places a strict upper limit on how
stiff an EOS can be, evidenced by the asymmetric one-
dimensional marginal distributions in, e.g., Fig. 5, and our
model-informed prior assigns relatively small weight to
such EOSs. The majority of tabulated EOSs used are not
that stiff. Similarly, sly is almost “too soft” for our model-
informed prior, although it still appears to be a better fit
than ms1 in most scenarios. The h4 EOS is “just right,” in
that the model-informed prior captures its behavior well
and is sometimes preferred over the model-agnostic one by
as much as a factor of ≃4.

Generally, the model-agnostic prior’s broader support
means that the a posteriori credible regions can stretch to
include the injected values. However, we find that this does
not provide a better fit to the data than the model-informed
prior, with the exception of ms1 for injection I (first row of
Table I, Figs. 8 and 11). There are a few other injections for
which the injected value is near the edge of the credible
regions, but these are typically near the edge of the support
for both the model-informed and model-agnostic priors,
resulting in no strong preference for one prior over the other.
We stress that this occurs because of a combination of
factors. Primarily, noise fluctuations in the data shift the
likelihood relative to the injected value, meaning that the
maximum likelihood parameters are not the injected ones.
Additionally, our priors are nontrivial in (M1;2,Λ1;2) andwill

FIG. 8. Λ1-Λ2 joint prior (cyan), likelihood (green), and posterior (magenta) distributions using the model-agnostic prior. Injected
values are shown as gray cross-hairs, and the colored contours correspond to 50% and 90% confidence regions. Rows correspond to
events I–III from Table I and columns are labeled according to the injected EOS.
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prefer certain values over others. One should only expect
credible regions to correspond to correct coverage (e.g., 50%
of signals are recovered within the 50% credible regions) if
the signals are actually drawn from the prior. Our injections
are performed using a subset of the EOSs used to construct
our priors, but they are not actually drawn from our priors.

Furthermore, we chose relatively extreme EOSs that live
near the edge of our fiducial set, and, compounding the
impact of noise fluctuations, it should consequently not be
terribly surprising that some of the injected values are
recovered near the edge of our 90% credible regions.
Again, EOSs that are rare a priori are often rare a posteriori.

FIG. 9. Λ1-M1 joint prior (cyan), likelihood (green), and posterior (magenta) distributions using the model-agnostic prior. Injected
values are shown as gray cross-hairs, and the colored contours correspond to 50% and 90% confidence regions. Rows correspond to
events I–III from Table I and columns are labeled according to the injected EOS.
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FIG. 10. Prior (cyan) and posterior (magenta) processes for injections for the model-agnostic prior. Solid lines show the medians,
shaded regions represent the 50% and 90% credible regions for pðρÞ, and the contours represent the 50% and 90% credible regions for
the central densities and pressures of M1. Rows correspond to events I–III from Table I and columns are labeled according to
injected EOS.
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FIG. 11. Λ1-Λ2 joint prior (blue), likelihood (green), and posterior (red) distributions using the model-informed prior. Injected values
are shown as gray cross-hairs, and the colored contours correspond to 50% and 90% confidence regions. Rows correspond to events I–III
from Table I and columns are labeled according to the injected EOS. We note that ms1’s model-informed posterior for injection I is
relatively undersampled, with Neff ∼ a few × 102 even though N > 106. Furthermore, this is the only injection that strongly favors one
prior over the other, with BA

I ¼ 22.6� 0.7, as evidenced by the dearth of posterior support for the model-informed prior. Our evidence
estimation, therefore, remains relatively precise even though errors in the posterior’s shape are dominated by the relatively small number
of samples with large weights.
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