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Employing the quasi-Maxwell form of the Einstein field equations in the context of gravitoelectromag-
netism, we introduce a general relativistic analog of Poisson’s equation as a natural outcome of the
corresponding spacetime decomposition formalism. The active density introduced in this formalism, apart
from the matter-energy density and pressure, includes a third component which is the gravitoelectro-
magnetic energy density. This general relativistic analog of Poisson’s equation is compared to another
analog introduced by Ehlers et al. [Am. J. Phys. 74, 607 (2006)]. Introduction of the cosmological constant
and its effect on the active mass are also discussed for both exterior and interior static spacetimes. In the
stationary case, we consider the Kerr spacetime with a special choice for its interior metric.
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I. INTRODUCTION AND MOTIVATION

One of the main criteria in the development of scientific
theories in physics has been the assertion that any new
theory should reduce to the old theory it has replaced, in
that limit of its parameters where the old theory is expected
to be at work. In the case of quantum mechanics, this is
embodied in the celebrated correspondence principle of
Bohr. Einstein used the same idea to fix the constant factor
appearing in his field equations of general relativity (GR),
namely, Gab ¼ κTab, by looking for a Poisson equation in
the Newtonian approximation [1]. This approximation
comprises taking the energy density as the only source
of the gravitational field in the slowly varying weak-field
limit so that [2]

gab ¼ ηab þ fab ð1Þ

with fab ≪ 1 and fab;0 ¼ 0 leading to

▽2f00 ¼ κT00 ≡ κρ: ð2Þ

This has obviously the form of a Poisson equation, but one
should be cautious with the introduction of the correct
Newtonian gravitational potential in this equation. To
identify the correct potential, one could look at the geodesic
equation in the same approximation, which leads to the
following equation of motion for a test particle

d2xμ

dt2
≈ 1=2ημνf00;ν ð3Þ

in which t is the coordinate time. Comparing the last
equation with the Newtonian equation of motion in a
gravitational potential U, we end up with

f00 ¼ 2U; g00 ¼ ð1þ 2UÞ: ð4Þ

The above argument shows the crucial role of the geodesic
equation in identifying the correct gravitational potential in
the Newtonian limit.
Starting from Einstein field equations, one can introduce

relativistic analogs of Poisson’s equation and along with it a
gravitational potential. Obviously then, there will be free-
dom in choosing a gravitational potential, but this comes at
the cost of introducing new energy-matter content on the
right-hand side of the Poisson equation, with the immediate
task of finding their interpretation.
Recently, a general relativistic analog of Poisson’s

equation was introduced for static gravitational fields,
where the relativistic potential is defined as the potential
energy per unit mass [3]. Obviously, in analogy with its
Newtonian counterpart, the right-hand side of such an
equation could be identified as the source of the gravita-
tional field, which is alternatively called active mass [3,4],
proper mass [5], or bare mass [6]. In their definition, as
pointed out by the authors, there is an obvious deficiency in
the analogy in that the acceleration on a particle at rest
in the static gravitational field is not given by the gradient
of the introduced potential. Introduction of a relativistic
analog of the Poisson equation by its three-dimensional
nature involves a spacetime decomposition formalism,
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especially in the case of stationary spacetimes which
possess off-diagonal metric components. Here, employing
the so-called gravitoelectromagnetism (GEM), we intro-
duce a relativistic analog of Poisson’s equation for sta-
tionary spacetimes through the quasi-Maxwell form of the
Einstein field equations (EFEs). In this definition, a third
component is added to the active mass density which is the
gravitoelectromagnetic energy density. We will discuss the
two definitions in the context of gravitational binding
energy, which is the difference between the defined active
mass and the physical mass of a star, as measured, e.g., by a
planet orbiting the star on a timelike geodesic.
The paper is organized as follows. In Sec. II we introduce

the 1þ 3 or threading formulation of spacetime decom-
position and derive the quasi-Maxwell form of the Einstein
field equations in the presence of a perfect fluid. In Sec. III
we introduce our general relativistic analog of Poisson’s
equation in stationary spacetimes and compare it with the
one given in [3]. In Sec. IV using the active mass densities
in these two definitions, we calculate corresponding gravi-
tational active masses in different spacetimes, including
Schwarzschild and de Sitter spacetimes. We also apply our
formalism to the case of Kerr spacetime as the prototype of
stationary spacetimes, with a special choice for the interior
Kerr solution. Finally, in Sec. V we summarize and discuss
our main results.

II. GRAVITOELECTROMAGNETISM AND THE
QUASI-MAXWELL FORM OF THE EINSTEIN
FIELD EQUATIONS: A BRIEF INTRODUCTION

The 1þ 3 or threading formulation of spacetime decom-
position is the decomposition of spacetime by the world-
lines of fundamental observers who are at fixed spatial
points in a gravitational field. In other words, these
worldlines sweep the history of their spatial position
decomposing the underlying spacetime into timelike
threads [7]. In stationary asymptotically flat spacetimes,
these observers are at rest with respect to distant observers
in the asymptotically flat region. Employing radar signal
propagation between two nearby fundamental observers
(i.e., ignoring spacetime curvature), the spacetime metric
could be expressed in the following general form,

ds2 ¼ dτ2sy − dl2 ¼ g00ðdx0 − gαdxαÞ2 − γαβdxαdxβ; ð5Þ
where gα ¼ − g0α

g00
and

γαβ ¼ −gαβ þ
g0αg0β
g00

; γαβ ¼ −gαβ ð6Þ

is the spatial metric of a 3-space Σ3, on which dl gives the
element of spatial distance between any two nearby events.
All the tensor operations in this 3-space are defined with
respect to the three-dimensional metric γαβ, and more
specifically, the covariant differentiation of a 3-vector Tα

in this 3-space is defined as follows:

Tα
;β ¼ Tα

;β þ λαβμT
μ ð7Þ

in which λαβμ is the Christoffel symbol made out of the
metric γαβ in the same way that the usual connection
coefficients are made out of the metric gab. Also, dτsy ¼ffiffiffiffiffiffi
g00

p ðdx0 − gαdxαÞ gives the infinitesimal interval of the
so-called synchronized proper time between any two
events. In other words, any two simultaneous events have
a world time difference of dx0 ¼ gαdxα. In the threading
formalism, the 3-velocity for a test particle is measured by
fundamental observers which are at rest with respect to a
rigid global coordinate system and is defined in terms of the
synchronized proper time read by clocks synchronized
along the particle’s trajectory as follows [7,8]:

vα ¼ dxα

dτsy
¼ dxαffiffiffiffiffiffi

g00
p ðdx0 − gαdxαÞ

: ð8Þ

Obviously, in the case of static spacetimes (i.e., g0α ¼ 0)
the above definition reduces to the proper velocity defined
by vα ¼ 1ffiffiffiffiffi

g00
p dxα

dx0.

Substituting the above definition of 3-velocity in Eq. (5),
one can show the following relation between the proper and
synchronized proper times:

dτ2 ¼ g00ðdx0 − gαdxαÞ2½1 − v2� ¼ dτ2sy:ð1 − v2Þ: ð9Þ

Also, the components of the 4-velocity ui ¼ dxi=dτ of a
test particle in terms of the components of its 3-velocity are
given by

uα ¼ vαffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; u0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�

1ffiffiffiffiffiffi
g00

p þ gαvα
�
: ð10Þ

For a test particle moving in a stationary spacetime, starting
from the spatial components of the corresponding timelike
geodesic equation

duμ

dτ
¼ −Γμ

abu
aub ð11Þ

and using expressions for the connection coefficients in
terms of the three-dimensional objects and substituting for
the 4-velocity components from (10), the left-hand side
of the above equation could be written as the force acting
on the particle defined as the derivative of its momentum
with respect to the synchronized proper time [7,8],

fμ ≡DPμ

dτsy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p d
dτ

mvμffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p þ λμαβ
mvαvβffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð12Þ

Intuitively, this shows that test particles moving on the
geodesics of a stationary spacetime depart from the geo-
desics of the 3-space Σ3 as if acted on by the above GEM
Lorentz-type 3-force. In its vectorial form (with lowered
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index), it could be written after a long but straightforward
manipulation as follows

fg ¼
m0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ðEg þ v ×
ffiffiffiffiffiffi
g00

p
BgÞ ð13Þ

in which the gravitoelectric (GE) and gravitomagnetic
(GM) 3-fields are defined as follows [9]:

Bg ¼ curlðAgÞ; ðAgα ≡ gαÞ; ð14Þ

Eg ¼ −∇ ln
ffiffiffi
h

p
; ðh≡ g00Þ: ð15Þ

Obviously, they satisfy the following constraints:

∇ ×Eg ¼ 0; ∇ · Bg ¼ 0: ð16Þ

Now, in terms of the GEM fields measured by the
fundamental observers [10], Einstein field equations for
a one-element perfect fluid could be written in the follow-
ing quasi-Maxwell form [8],

∇ ·Eg ¼
1

2
hB2

g þ E2
g − 8π

�
pþ ρ

1 − v2
−
ρ − p
2

�
; ð17Þ

∇ × ð
ffiffiffi
h

p
BgÞ ¼ 2Eg × ð

ffiffiffi
h

p
BgÞ − 16π

�
pþ ρ

1 − v2

�
v; ð18Þ

ð3ÞPμν ¼ −Eμ;ν
g þ 1

2
hðBμ

gBν
g − B2

gγ
μνÞ

þ Eμ
gEν

g þ 8π

�
pþ ρ

1 − v2
vμvν þ ρ − p

2
γμν
�
; ð19Þ

in which v is the 3-velocity of the perfect fluid as defined in
(8), and ð3ÞPμν is the three-dimensional Ricci tensor of the
3-space Σ3.
The above formalism can be employed to derive gravi-

tational analogs of some of the electromagnetic effects such
as those studied in [8,11–13]. Here, what concerns us
mainly is the following point: Comparing Eq. (17) with its
analog in electromagnetism, one could define the GEM
energy density measured by fundamental observers in the
following form:

ug ¼
1

2
hB2

g þ E2
g: ð20Þ

In what follows, we will discuss the consequences of
the presence of the above quantity in the general relativistic
analog of Poisson’s equation introduced in the next section.

III. GENERAL RELATIVISTIC ANALOGS
OF POISSON’S EQUATION FROM
GRAVITOELECTROMAGNETISM

The Poisson equation in Newtonian theory of gravity
ð∇2φ ¼ 4πGρÞ, which is formally the same as its counter-
part in electromagnetism, gives the relation between the
gravitational potential and density of the active mass which
produces the corresponding gravitational field in an inertial
coordinate system. Looking for a general relativistic analog
of Poisson’s equation, the above GEM formulation of
spacetime decomposition introduces a natural candidate.
From Eqs. (13) and (15), for a test particle at rest (i.e., in the
comoving frame), the force acting on the mass introduces
the following definition of GE potential,

φGEM ¼ ln
ffiffiffi
h

p
: ð21Þ

The same definition could also be obtained solely from the
analogy between the definitions of an electric field in terms
of a scalar potential and its gravitational analog, namely,
(15). Looking for the static, spherically symmetric, interior
solutions of Einstein’s field equations with a perfect fluid,
Wald also takes the above form as the general relativistic
analog of Newtonian potential [5].
Employing the above definition of GE potential and

using (20), one could express the relation (17) in the
comoving coordinate system to end up with

∇2φGEM ¼ 4πðρþ 3pÞ − ug: ð22Þ

The above equation could be taken as a general relativistic
analog of Poisson’s equation in stationary spacetimes.
Comparison with the Poisson equation in Newtonian
gravity shows that the expression ρGEM ¼ ρþ 3p −
ug=4π could be considered as the active mass density of
the gravitational field. Obviously, by the general form of
GEM energy density ug, its contribution to the active mass
is expected to be negative.
Going back to our starting point, i.e., Eq. (11), the above

definition was built to be consistent with the geodesic
equation. But obviously, it is not the only general relativ-
istic analog to Poisson’s equation. In [3], following the
Newtonian case and restricting attention to static gravita-
tional fields, Ehlers et al. define the general relativistic
potential as the work required to displace a unit mass from
infinity. Based on this definition of potential, the authors
introduce their general relativistic analog of Poisson’s
equation which we call the Ehlers-Ozsvath-Schucking
(EOS) definition/formulation.
Here we use the threading formulation of spacetime

decomposition introduced in the previous section to show
that there is no need to restrict the discussion to static
spacetimes, and the same definition could be obtained for
stationary spacetimes as a particle’s potential energy per
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unit mass in its comoving frame [7]. To do so, using
definitions of the 3-velocity (8) and 4-velocity (10), one
could show that in a stationary spacetime, the energy of a
particle defined as the time component of its 4-momentum
is given by

ε≡ P0 ¼ mg0iui ¼
m

ffiffiffiffiffiffi
g00

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ;

which is a conserved quantity during the motion of the
particle [14]. In the comoving frame, it reduces to m

ffiffiffiffiffiffi
g00

p
[7], leading to the following definition of a general
relativistic gravitational potential

φEOS ≡ εðv ¼ 0Þ
m

¼ ffiffiffiffiffiffi
g00

p ≡ ffiffiffi
h

p
: ð23Þ

Using the above definition of gravitational potential, one
can rewrite Eq. (17) for static spacetimes (i.e., Bg ¼ 0) in
the comoving coordinates to arrive at the following analog
of Poisson’s equation [15],

∇2φEOS ¼ 4π
ffiffiffi
h

p
ðρþ 3pÞ: ð24Þ

Comparing the above two expressions as the general
relativistic analogs of Poisson’s equations, the following
points are worthy to be mentioned:
(1) Since we are using nothing but the Einstein field

equations to arrive at either of the above analogs of
Poisson’s equations (22) and (24), it is obvious that
they both reduce to the Newtonian case in the
corresponding limit.

(2) Active mass densities are given by the expressions
ρGEM ¼ ρþ 3p − ug=4π and ρEOS ¼

ffiffiffi
h

p ðρþ 3pÞ,
respectively.

(3) Using relations (13) and (15), in the comoving
frame, the acceleration of a test particle is given
by aGEMμ ≡ Egμ ¼ −∂μ ln

ffiffiffi
h

p ≡ −∂μφGEM, whereas
taking (23) as the gravitational potential, the
acceleration of a particle at rest is aEOSμ ¼
− 1ffiffi

h
p ∂μ

ffiffiffi
h

p ≡ − 1ffiffi
h

p ∂μφEOS; i.e., it is not given by

the gradient of the potential [3].
(4) For a static spherical source in the weak-field limit,

where g00 ≈ ð1þ 2ΦNÞ ¼ ð1 − 2M=rÞ, at large dis-
tances from the center of the source, the two
definitions of the general relativistic potentials are
given by (to the first order in ΦN)

φGEM ¼ ln
ffiffiffi
h

p
≈ −

M
r
¼ ΦN; ð25Þ

φEOS ¼
ffiffiffi
h

p
≈ 1 −

M
r
¼ 1þΦN: ð26Þ

Obviously, the EOS potential asymptotically ap-
proaches the rest mass energy at the spatial infinity

[3], whereas the GEM potential is the same as the
Newtonian potential and vanishes asymptotically.

A. Inclusion of the cosmological constant term

In the presence of the cosmological constant term,
generalization of the above general relativistic Poisson’s
equation could be obtained by considering the cosmologi-
cal Λ term as the energy-momentum tensor of a (dark)
perfect fluid with the equation of state ρ ¼ −p ¼ Λ=8π.
So, we only need to replace the term ρþ 3p with ρþ
3p − Λ

4π in Eqs. (22) and (24) leading to

∇2φGEM ¼ 4π

�
ρþ 3p −

ug
4π

−
Λ
4π

�
ð27Þ

and

∇2φEOS ¼ 4π
ffiffiffi
h

p �
ρþ 3p −

Λ
4π

�
; ð28Þ

respectively. Compared with Poisson’s equation, on the
right-hand side of the above equations, both pressure and
the cosmological Λ term contribute to the active mass.
Also, in the GEM formulation there appears the GEM
energy density as another element contributing to the active
mass. In the EOS formulation, the factor

ffiffiffi
h

p
on the right-

hand side is another obvious difference compared to
Poisson’s equation.
Before advancing further to compare the above two

definitions in the next section, which is the main objective
of our study, it should be clarified that the main concern of
the authors in [3,4] was to revisit the so-called Tolman’s
paradox [16]. This paradox arises from considering the
consequences of the pressure term in (24) as a source for
the gravitational potential and could be illustrated by taking
a static spherical source of matter which could undergo an
internal transformation. If this transformation is accompa-
nied by a change of the equation of state, such as in the case
of matter-antimatter annihilation, that would obviously
result in a change in the active mass as the source of the
gravitational potential. On the other hand, such a change
should not affect the mass measurement by gravitational
means such as light bending or massive particle orbits
around such a source due to the spherical symmetry and
Birkhoff’s theorem. The original resolution to the paradox
was given by Misner and Putnam [17] who showed,
neglecting gravitational effects, that any change in the
pressure inside the source is compensated by the stress
changes on the boundary of the source, so that their
corresponding contributions to the active mass are canceled
out. Generalizing the result of Misner and Putnam, the
authors in [4] consider the same resolution in the case in
which gravitational effects are taken fully into account.
Also, it is noted that as long as Tolman’s paradox is
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concerned, starting from stationary Einstein field equations
for perfect fluids, the 3p term will be present in any general
relativistic analog of Poisson’s equation, including (22),
and hence, the same resolution would be effective for static
spacetimes.

IV. ACTIVE MASS AND GRAVITATIONAL
BINDING ENERGY FROM GENERAL

RELATIVISTIC ANALOGS OF
POISSON’S EQUATION

In this section, to better compare the above two relativ-
istic analogs of the Poisson equation, we apply them to
calculate the total active mass in different static and
stationary spacetimes.

A. Schwarzschild spacetime

The simplest interior solution of the Einstein field
equations for a static and spherically symmetric distribution
of matter (say, a star) is the interior Schwarzschild solution
which is obtained for a uniform density ρ ¼ const. The
metric of the interior Schwarzschild solution for a spherical
distribution with radius R for r ≤ R in Schwarzschild-type
coordinates is given by [6]

ds2¼ 1

4
ð3a0−aÞ2dt2−dr2

a2
− r2dΩ2; a2¼ 1−

8π

3
ρr2;

ð29Þ
where a0 ¼ aðRÞ. If ρ ¼ const, from the Tolman-
Oppenheimer-Volkoff (TOV) equation the pressure at a
radius r is found to be [6]

pðrÞ ¼ ρða − a0Þ
3a0 − a

; ð30Þ

which, as expected, vanishes at the surface of the star at
r ¼ R. On the other hand, from Birkhoff’s theorem the
spacetime geometry outside a spherically symmetric matter
distribution is necessarily static and is given by the
Schwarzschild line element

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2 − r2dΩ2: ð31Þ

From matching the two metric components at the star’s
surface (r ¼ R), we immediately find that

M ¼ 4π

3
R3ρ: ð32Þ

In other words, the mass parameter in the exterior
Schwarzschild solution is equal to the mass contained
within a coordinate radius R in Newtonian gravity.
However, one should be careful with this analogy in a
curved background with metric (29), where the volume

element of a spherical shell of thickness dr is given by
dV ¼ ffiffiffiffiffiffiffiffiffi−grr

p
4πr2dr. So, within a coordinate radius r̄, the

active mass producing the gravitational field is given by

M ¼ 4π

Z
r̄

0

ffiffiffiffiffiffiffiffiffi
−grr

p
ρactr2dr: ð33Þ

Now, looking for the active mass of a spherical distribution
producing Schwarzschild geometry in the EOS formu-
lation, we substitute for the active mass density from (24) to
arrive at

MEOS ¼ 4π

Z
R

0

ffiffiffiffiffiffi
g00

p ðρþ 3pÞ ffiffiffiffiffiffiffiffiffi
−grr

p
r2dr ¼ 4π

3
R3ρ≡M

ð34Þ

in which from Eqs. (29) and (30) we used the fact that for
the interior Schwarzschild solution,

ffiffiffiffiffiffi
g00

p ðρþ 3pÞ ¼ ρa
and

ffiffiffiffiffiffiffiffiffi−grr
p ¼ 1=a. In other words, in this case the EOS

active mass is equivalent to the mass parameter of the
external metric, which, in turn, is given by the Euclidean
volume and the Newtonian matter density.
Now, we calculate the gravitational active mass in the

GEM formalism based on (22) by substituting for the
gravitoelectric fields Eg of the interior and exterior
Schwarzschild geometries [using definition (15)] to find
the corresponding density as follows:

ρGEM ≡ ρþ 3p − E2
g=4π ¼

8<
:

2aρ
3a0−a

− M2r2

πR6ð3a0−aÞ2 r < R;

− M2

4πr4

�
1 − 2M

r

�
−1

r > R;

so that the gravitational active mass for the interior and
exterior solutions are found to be

Mint
GEM ¼

Z
R

0

ρGEMðr<RÞ
a

4πr2dr

¼ M

�
1 −

2M
R

�
−1
2

≈M þM2

R
þ 3

2

M3

R2
þ � � � ; ð35Þ

Mext
GEM¼

Z
∞

R

ρGEMðr>RÞ
ð1−2M=rÞ1=2 4πr

2dr¼M−M

�
1−

2M
R

�
−1
2

ð36Þ

in which the result of the first integral is expanded in terms
ofM=R ≪ 1 [18] to enable a comparison with the results of
other definitions of active mass. The (total) GEM active
mass obviously sums up to

MGEM ¼ Mint
GEM þMext

GEM ¼ M; ð37Þ

which shows that the total GEM active mass is equal to
EOS active mass, which was found to be the mass
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parameter in the exterior Schwarzschild metric. On the
other hand, if we only focus on the interior solution and the
corresponding active mass, then the extra terms starting
with M2

R could be taken as the (interior) gravitational binding

energy. To the leading order, this is larger than 3
5
M2

R , which
is the gravitational binding energy calculated in the
Newtonian approximation of the interior Schwarzschild
spacetime, with the constant matter density taken as the
only source of active mass [6].
Obviously, the above considerations show that the EOS

formulation of active mass does not accommodate such a
thing as gravitational binding energy.

B. de Sitter spacetime

To examine the above two different relativistic analogs of
Poisson’s equation and their corresponding formulas for the
active mass, we now turn to the cosmological case and the
important question of the energy content of the Universe
and its effect on the dynamics of the Universe. To do so, we
start with the simplest model, the de Sitter solution, which
by recent observations in the context of the ΛCDM model
seems to be the late time geometry of our Universe. In its
static form (i.e., in a noncomoving frame), it is given by

ds2 ¼
�
1 −

Λ
3
r2
�
dt2 −

�
1 −

Λ
3
r2
�

−1
dr2 − r2dΩ2: ð38Þ

One can think of the de Sitter metric as the solution to the
Einstein field equations in the presence of a perfect fluid
with equation of state ρ ¼ −p ¼ Λ=8π. Indeed, it was
shown that the de Sitter solution is the only spherically
symmetric, static one-element perfect fluid solution of
EFEs in a noncomoving frame [19]. Again, one could
use either of the potentials and the corresponding gravi-
tational active mass densities introduced in (27) or (28) (of
course, only in the presence of Λ). Employing the EOS
formulation from (28), we have ρEOS ¼

ffiffiffi
h

p ð−Λ=4πÞ so
that using (33) for a sphere with radius R, we end up with

MEOS ¼ 4π

Z
R

0

ffiffiffiffiffiffi
grr

p ffiffiffi
h

p �
−

Λ
4π

�
r2dr ¼ −

1

3
ΛR3; ð39Þ

whereas in the GEM formalism with potential (27), the
corresponding active mass density

ρGEM ¼ −
Λ
4π

−
1

4π

H4r2

1 −H2r2
; H2 ¼ Λ

3

leads, by integration up to a sphere of radius R, to the
following active mass contained in that sphere

MGEM ¼
Z

R

0

ffiffiffiffiffiffi
grr

p
ρGEM4πr2dr

¼ −
H2R3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2R2

p ≃ −
1

3
ΛR3 −

1

2
H4R5;

where we have employed expansion with respect to
HR ≪ 1. To the first order, the two results agree, and
the difference between the two active masses could be
traced back to the presence of the GEM energy density on
the right-hand side of (27). Obviously, the de Sitter space is
devoid of any matter in the usual sense, and active mass
here only accounts for the spacetime’s gravitational field
energy assigned to Λ as a dark fluid [19]. On the other
hand, since there is no notion of assembly in the case of
repulsive gravity represented by the cosmological constant,
calling the second term on the right-hand side of the above
equation gravitational dispersing energy seems to be more
appropriate.

C. Schwarzschild–de Sitter spacetime

To account for both notions of assembly and dispersion,
in this section we consider the contributions of the energy
density and the cosmological constant to the active
mass density in the context of interior and exterior
Schwarzschild–de Sitter (SdS) solutions. Following the
same scenario applied to the de Sitter solution in the
previous section, the interior solution of Einstein’s equa-
tions in the presence of the cosmological constant for a
static and spherically symmetric configuration of uniform
density can be obtained by substituting ρeff ¼ ρþ Λ=8π
and peff ¼ p − Λ=8π for ρ and p, respectively, in a typical
internal Schwarzschild solution. In this way, the line
element of an interior SdS spacetime is given by [20]

ds2 ¼
�
3ρa0 − ðρ − Λ=4πÞa

2ðρþ Λ=8πÞ
�
2

dt2 −
dr2

a2
− r2dΩ2;

a2 ¼ 1 −
1

3
ð8πρþ ΛÞr2: ð40Þ

Similarly, from the modified TOV equation and the
assumption that at the surface of the sphere, the pressure
p is zero [i.e., pðRÞ ¼ 0], the pressure at a radius r is given
by the following relation [20]:

p ¼ ρðρ − Λ=4πÞða − a0Þ
3ρa0 − ðρ − Λ=4πÞa : ð41Þ

As in the Schwarzschild case, matching the above interior
SdS solution with the exterior SdS

ds2 ¼
�
1 −

2M
r

−
Λ
3
r2
�
dt2

−
�
1 −

2M
r

−
Λ
3
r2
�

−1
dr2 − r2dΩ2 ð42Þ
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at the surface of the configuration (i.e., r ¼ R), we end up
with a similar relation as in (32). Again, one could employ
the relations (27) and (28) to calculate the active mass
generating the gravitational field in SdS spacetime in both
formalisms. Starting with the EOS formalism and the active
mass density (28) and substituting for the pressure inside
the configuration from (41), we arrive at the following
active mass up to a coordinate radius r̄ > R,

MEOS ¼ 4π

Z
r̄

0

ffiffiffiffiffiffi
g00

p ðρþ 3p − Λ=4πÞ ffiffiffiffiffiffiffiffiffi
−grr

p
r2dr

¼ 4π

Z
R

0

ðρ − Λ=4πÞr2drþ 4π

Z
r̄

R
ð−Λ=4πÞr2dr

¼ M −
1

3
Λr̄3: ð43Þ

Noting that here M is the mass parameter in the exterior
Schwarzschild–de Sitter solution, as expected, up to the
coordinate radius of the star (i.e., at r ¼ R), the active mass
is the summation of the results (34) and (39).
To calculate the GEM active mass, we start with the

GEM active mass density (27), which in this case takes the
following form

ρGEM¼

8>><
>>:

2ðρ−Λ
4πÞðρþΛ

8πÞa
3ρa0−ðρ−Λ

8πÞa
− 1

4π

�
ðρ−Λ

4πÞ8π3 ðρþΛ
8πÞr

3ρa0−ðρ−Λ
8πÞa

�
2

; r<R;

− 1
4π

�
M
r2−

Λ
3
r
�
2
�
1− 2M

r − 1
3
Λr2
�
−1
; R<r<RH

ð44Þ
in which RH ¼ 2ffiffiffi

Λ
p cos ½1

3
cos−1ð3M ffiffiffiffi

Λ
p Þ þ π

3
� is the de Sitter

horizon. The gravitational active mass up to a coordinate
radius r̄ > R is given by

MGEM ¼
Z

R

0

ρGEMðr<RÞdV þ
Z

r̄

R
ρGEMðr>RÞdV;

dV ¼ 4πr2dr
ffiffiffiffiffiffiffiffiffi
−grr

p
: ð45Þ

At coordinate radii r̄ where both M
r̄ ≪ 1 and r̄

RH
≈ r̄

ffiffiffiffi
Λ

p
≪ 1

are satisfied, the above integrals could be calculated to yield

MGEM ¼ M þM2

r̄
−
1

3
ΛR3 −

8

15
MΛR2 −

113

70
ΛRM2

þ 1

3
MΛr̄2 þ 3

2
Λr̄M2 þ higher orders: ð46Þ

It is noted that terms including mass alone source
the attractive gravity, but those including both the cosmo-
logical constant and mass could account for both gravita-
tional binding and dispersing energies.

V. ACTIVE MASS OF A ROTATING STAR

To examine the active mass in physically interesting
stationary spacetimes, we do not have that much choice,
and obviously the main example should include a rotating
source with the external geometry described by the Kerr

metric. To distinguish between any two different active
mass definitions, we need to match this metric with an
interior Kerr metric at the surface of the source. There are a
few analytic interior Kerr solutions, none of which reduce
to the well-known interior Schwarzschild solutions when
the angular momentum parameter is set equal to zero. To
this end, we choose an analytic interior Kerr metric
introduced by Gürses and Gürsey in [21], which matches
the Kerr metric on the surface of an oblate spheroidal
source. In Boyer-Lindquist coordinates, this solution is
given by the following line element,

ds2 ¼
�
Δ − a2sin2θ

ρ2

�
dt2 þ 4afsin2θ

ρ2
dtdϕ −

ρ2

Δ
dr2

− ρ2dθ2 −
Bsin2θ
ρ2

dϕ2 ð47Þ

in which

cρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 − 2fðrÞ;
Σ ¼ ðr2 þ a2Þ2 − a2Δsin2θ; ð48Þ

where a is the angular momentum parameter (per unit
mass) introduced in the Kerr metric. This metric matches
the Kerr metric at the hypersurface r ¼ R, denoting the

spheroid x2þy2

R2þa2 þ z2

R2 ¼ 1 only with the function fðrÞ sat-
isfying the boundary conditions

fðRÞ ¼ MR; f0ðRÞ ¼ M; ð49Þ
where the prime denotes the differentiation with respect
to r, and M is the (exterior) Kerr mass parameter. From
Einstein field equations, the corresponding stress-energy
tensor is given by

Tμν ¼ ðDþ 4HÞuμuν − ðDþ 4HÞðρ2=ΔÞmμmν

− ðDþ 2HÞgμν; ð50Þ

where

uμ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δ=ρ2

q
ð1; 0; 0;−asin2θÞ;

mμ ¼ ð0;−1; 0; 0Þ;
D ¼ −f00=8πρ2;

H ¼ ðrf0 − fÞ=8πρ: ð51Þ
Now that we have a more general energy-momentum tensor
in the Boyer-Lindquist coordinate system, to calculate the
gravitational active mass in the GEM formulation based on
the active density, we need to go back to the original
Einstein field equations that led to (17), namely,
R00 ¼ 8πðT00 − 1

2
g00TÞ. Using this form to extract the

energy-matter content of the GEM active mass density,
we end up with
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ρGEMðr < RÞ ¼
�
2T00

g00
− T

�
−

1

4π
ug; ð52Þ

from which by substituting for T00 and T from the energy-momentum tensor (50), we are led to the following active mass
density in the GEM formalism,

ρGEM ¼ Dþ 2ΔðDþ 4HÞ
ðΔ − a2sin2θÞ − ðDþ 4HÞΔB − Δa2sin2θðΔ − a2sin2θÞ

BðΔ − a2sin2θÞ −
1

4π

�
1

2
g00Bg

2 þ Eg
2

�
: ð53Þ

Using the definitions of the gravitoelectromagnetic fields (14) and (15) for the Kerr metric and after a lengthy but
straightforward calculation, we end up with the following results for the squares of the GE and GM fields,

Eg
2 ≡ γαβEgαEgβ ¼

a4fðrÞ2sin2θ
ðr2 þ a2cos2θÞða2 þ r2 − 2fðrÞ − a2sin2θÞ2

þ ð4rfðrÞ − ða2 þ 2r2 þ a2 cos 2θf0ðrÞÞ2Þ
4ðr2 þ a2cos2θÞða2 þ r2 − 2fðrÞÞða2 þ r2 − 2fðrÞ − a2sin2θÞ2 ; ð54Þ

and

Bg
2 ≡ γαβBgαBgβ ¼

2a2ðr2 þ a2cos2θÞcsc2θða2 þ r2 − 2fðrÞ − a2sin2θÞ
ða2 þ 2r2 þ a2 cos 2θÞ3

×

 
64ða2 þ r2 − 2fðrÞÞfðrÞ2sin22θ
ða2 þ 2r2 þ a2 cos 2θ − 4fðrÞÞ4 þ

sin4θð−4rfðrÞ þ ða2 þ 2r2 þ a2 cos 2θÞf0ðrÞÞ2
ða2 þ r2 − 2fðrÞ − a2sin2θÞ4

!
: ð55Þ

Now, the active mass of the Kerr spacetime for the interior region is given by

MGEMðr < RÞ ¼
Z

ρGEMdv ¼
Z

R

0

Z
π

0

Z
2π

0

ρGEM
ffiffiffi
γ

p
drdθdϕ: ð56Þ

As was noticed, to calculate the above integral, we still need one more ingredient and that is the exact form of the fðrÞ
function. There are different choices for this function satisfying the boundary condition (49). To this end, we choose fðrÞ
such that in the a ¼ 0 limit, the g00 of the interior Kerr metric reduces to that of the interior Schwarzschild metric [22]. This
choice yields

fðrÞ ¼ r2

4

�
Mr2

R3
þ 9M

R
þ 3

�
1 −

2M
R

�
1=2
�
1 −

2Mr2

R3

�
1=2

− 3

�
: ð57Þ

The integration over the coordinates covering the interior of the spheroidal leads to the following active mass for the interior
region [23]

MGEMðr < RÞ ¼ M þM2

R
þ 3

2

M3

R2
þ 2

M2a2

R3
−
91

15

M3a2

R4
þ higher orders: ð58Þ

Obviously, to have the Kerr active mass, this should be added to the active mass contribution from the exterior solution. The
Kerr metric in Boyer-Lindquist coordinates is given by the following line element,

ds2 ¼
�
1 −

2Mr
ρ2

�
dt2 þ 4Marsin2θ

ρ2
dtdϕ −

ρ2

Δ
dr2 − ρ2dθ2 −

�
r2 þ a2 þ 2Ma2rsin2θ

ρ2

�
sin2θdϕ2; ð59Þ

where

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð60Þ

In the case of the exterior Kerr metric, we obtain the corresponding gravitoelectromagnetic fields,
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Eg
2 ¼ m2ρ2

ðΔÞð2mr − ρ2Þ2 þ
4a4m2r2cos2θsin2θ
ρ2ðρ2 − 2mrÞ2 ð61Þ

and

B2
g ¼

a2m2ðΔÞðρ2 − 2mrÞðða2 − 2r2 þ a2cos22θÞsin4θ þ 4Δr2sin22θÞ
4ðρ2 − 2mrÞ4ð4m2a2r2sin4θ þ ðρ2 − 2mrÞsin2θðρ2ða2 þ r2Þ þ 2ma2rsin2θÞÞ ; ð62Þ

which upon substitution in the exterior active mass density ρGEMðr > RÞ ¼ − 1
4π ug and computing the following integral

MGEMðr > RÞ ¼ −
1

4π

Z �
1

2
g00Bg

2 þ Eg
2

�
dv ¼ −

1

4π

Z
2π

0

Z
π

0

Z
∞

R

�
1

2
g00Bg

2 þ Eg
2

� ffiffiffi
γ

p
drdθdϕ; ð63Þ

and after expansions with respect to a
R and M

R , we end up with

MGEMðr > RÞ ¼ −
M2

R
−
3

2

M3

R2
−
M3a2

4R4
þ higher orders: ð64Þ

Therefore, the (total) active mass of the Kerr metric sums up to be

MGEM ¼ MGEMðr < RÞ þMGEMðr > RÞ ¼ M þ 2
M2a2

R3
−
379

60

M3a2

R4
þ higher orders terms; ð65Þ

which in the limit a ¼ 0 is equal to the Schwarzschild active
mass. At first sight, this may not be expected because the
chosen interior Kerr metric does not reduce to the interior
Schwarzschild metric in the limit when the rotation param-
eter is set to zero. But one should recall that we also chose
fðrÞ such that the g00 of the interior Kerr metric reduces to
that of the interior Schwarzschild metric for a ¼ 0.

VI. CONCLUSION

In the present study, after a brief introduction to the 1þ 3
(threading) formulation of spacetime decomposition, the
analogs of Poisson’s equation in Einstein’s GR and its
modification, i.e., in the presence of a positive cosmologi-
cal constant, are considered. Two different formalisms, one
based on gravitoelectromagnetism and the resultant quasi-
Maxwell form of the EFEs and the other one introduced by
Ehlers et al. in [3], are applied to different static and
stationary spacetimes and the corresponding potentials and
Poisson’s equations are compared. Calculating the active
mass (density) in both formalisms, it is shown that while in
the case of GEM formalism one can identify the so-called
gravitational binding/dispersing energy, the EOS formalism
does not accommodate such a concept. In the case of the
Schwarzschild metric, it is found that in the GEM formal-
ism the gravitational binding energy is larger than its
value in the Newtonian approximation of the interior
Schwarzschild solution. It is also shown that the inclusion
of the cosmological constant leads to a positive binding
energy (called gravitational dispersing energy) as expected

from the repulsive nature of gravity associated with the
cosmological constant.
Noting that the EOS definition is confined to static

spacetimes,we extend the calculation ofGEMactive density
to the case of stationary spacetimes.As a prototype example,
we study the Kerr solution with a special choice for an
interior solution matching the Kerr solution on a spheroidal
hypersurface. It is found that the Kerr active mass finds
contributions proportional to the rotation parameter but
reduces to the active mass of Schwarzschild metric for
a ¼ 0. This is a direct consequence of the fact that the
interiorKerr is chosen such that its g00 component reduces to
that of the interior Schwarzschild solution in the same limit.
It should be noted that (local) mass is not a well-defined
quantity in GR, and as such, there are different definitions of
mass in the literature [24]. Alternative definitions of the so-
called quasilocal mass, among many, include Komar [25],
ADM [26], Bondi-Sachs [27], Penrose [28], Brown-York
[29], and Hawking-Horowitz [30] masses. These defini-
tions, although they may or may not coincide for different
spacetimes according to the spacetime properties, all share
the same fact that they are defined geometrically in terms of
integrals over closed 2-surfaces at spatial or null infinity
[31]. For example, one can define the effective mass of the
Kerr metric through a modification of the Komar mass as
follows [32]:

Meff ¼ M −
4M2a2

r3
þM3a2

6r4
þ � � � : ð66Þ
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Another example is the quasilocal mass of the Kerr space-
time in the context of Brown-York quasilocal energy [29]. In
the slow rotation limit of the Kerr black hole for
a constant radius surface r ¼ r0 with r0 ≫ M, it is given
by [33]

E ¼ M þM2

2r0
þ M3

2r02
þ 5M4

8r03
−
7M2a2

6r03
þO

�
a4

r03

�
: ð67Þ

Obviously, unlike the activemass calculationwhich requires
the interior Kerr solution, both of the above calculations are
made using only the exterior Kerr metric.
To lift any ambiguities, it should be noted that the above

definitions of quasilocal mass are based in one way or
another on the 3þ 1 (or slicing) decomposition formalism
and the corresponding Hamiltonian formulation of GR so
that the asymptotic two-dimensional (spatial or null)
structure of the spacetime determines the mass of the
spacetime. On the other hand, in the 1þ 3 (or threading)
decomposition formalism and in analogy with Poisson’s
equation, it is a 3-volume integral over the active density
which determines the active mass in stationary spacetimes.
As we point out, since in a curved background we do not

have a consistent local covariant definition of energy (or
mass) to which the property of conservation or noncon-
servation could be assigned, people have tried to construct

the so-called energy-momentum pseudotensor for the
gravitational field to be able to account for the conservation
of matter energy including the gravitational field. In this
regard, it would be interesting to look for the rela-
tion between the GEM energy density discussed here
and the components of proposed pseudotensors such as
the Landau-Lifshitz energy-momentum pseudotensor [7].
Finally, now that we have a general relativistic analog of
Poisson’s equation for stationary spacetimes, using the
methodology employed in [4], one could look for the effect
of the pressure term in stationary spacetimes and in
particular whether or not there exists any specific relation
between the pressure changes inside the source and stress
changes on its boundary. Obviously, this would be very
interesting to consider in the case of a rotating body
represented by an interior Kerr metric and the correspond-
ing equation of state.
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