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The gravitational wave memory effect is characterized by the permanent relative displacement of a pair
of initially comoving test particles that is caused by the passage of a burst of gravitational waves. Recent
research on this effect has clarified the physical origin and the interpretation of this gravitational
phenomenon in terms of conserved charges at null infinity and “soft theorems.” In this paper, we describe a
more general class of effects than the gravitational wave memory that are not necessarily associated with
these charges and soft theorems, but that are, in principle, measurable. We shall refer to these effects as
persistent gravitational wave observables. These observables vanish in nonradiative regions of a
spacetime, and their effects “persist” after a region of spacetime which is radiating. We give three
examples of such persistent observables, as well as general techniques to calculate them. These examples,
for simplicity, restrict the class of nonradiative regions to those which are exactly flat. Our first example is a
generalization of geodesic deviation that allows for arbitrary acceleration. The second example is a
holonomy observable, which is defined in terms of a closed loop. It contains the usual “displacement”
gravitational wave memory; three previously identified, though less well known memory effects (the proper
time, velocity, and rotation memories); and additional new observables. Finally, the third example we give
is an explicit procedure by which an observer could measure a persistent effect using a spinning test
particle. We briefly discuss the ability of gravitational wave detectors (such as LIGO and Virgo) to measure
these observables.
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I. INTRODUCTION

The gravitational wave memory effect has, historically,
been described as an enduring displacement between two
nearby observers that can arise after gravitational waves
pass by their positions. Zel’dovich and Polnarev [1] first
noticed the effect in a calculation in linearized gravity of the
fly-by of two astrophysical compact objects. It has also
been shown that the memory effect occurs in nonlinear
general relativity [2]; in this context, there is an additional
effect (known as nonlinear or sometimes null memory [3])
arising from perturbations generated by the effective stress
energy of the gravitational waves [4,5] (see also [6]). Even
earlier, Newman and Penrose [7] had found that, near null
infinity, surfaces of constant retarded time can have their
shear set to zero as one approaches either spacelike or
future timelike infinity, but not both; this is now understood
as an aspect of the gravitational wave memory effect.

In addition to the gravitational scattering of compact
objects, enduring displacements have been shown to occur
in other astrophysical contexts: for example, in neutrino
emission and kicks during core-collapse supernovae
(e.g., [8,9]), emission of matter during certain gamma-
ray bursts (e.g., [10,11]), and compact-binary mergers
(e.g., [12–14]). Braginsky and Grishchuk [15] and
Braginsky and Thorne [16] described the types of experi-
ments needed to detect gravitational wave bursts with
memory. Searches for these bursts have been carried out
using pulsar timing arrays, which have provided con-
straints on their frequency of occurrence [17,18]. It may
also be possible to detect the gravitational wave memory
with the LIGO and Virgo detectors, once the detectors
reach their design sensitivities [19].
There have also been recent developments in under-

standing the memory effect from a more theoretical
perspective. In particular, Strominger and collaborators
have described a relationship between the memory effect,
the soft theorem of Weinberg [20], and the supertranslation
relating two specific Bondi frames before and after a burst
of waves with memory (see the recent review [21], and
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references therein). Additional effects in electromagnetism
[22,23] and Yang-Mills theories [24] display this same
property of association with soft theorems and asymptotic
symmetries. These “triangles” of memory effects, soft
theorems, and the space of symmetries at null infinity
(or recently, at boundaries of spacetime in general, such as
the event horizon of a black hole [21,25–27]) have now
become a key feature in the discussion of memory effects in
the literature.
In this series of papers, we will be considering gener-

alizations of the memory effect, not motivated by these
theoretical considerations, but by what is measurable. We
consider the general class of what we call persistent
gravitational wave observables: namely, quantities that
are the results of measurements which a set of observers
can perform during some time interval, and that vanish if no
gravitational waves have passed by. Special cases of these
observables are memory observables, which we define as
persistent observables that are associated with symmetries
at spacetime boundaries. The idea of persistent observables
can be readily applied to contexts other than spacetime
boundaries: for example, exact gravitational plane waves
(e.g., [28,29]). One issue in making the notion of a
persistent observable precise is that there is no universal
definition of a “nonradiative” region of a spacetime in
which these observables would vanish, although such a
definition exists in particular contexts, such as near null
infinity, or in linearized gravity with a fixed background. In
each context there exists a precise definition of persistent
observables, but a persistent observable in one context may
not satisfy the requirement that it vanish for nonradiative
regions in another context, since the definitions of non-
radiative differ.
In this paper, we will be considering the context where

the spacetime is composed of three regions: two flat
regions, with a curved region sandwiched in between
containing gravitational waves. The persistent observables
in this case are the results of measurements that would yield
trivial results if this curved region were also flat; as such,
they can be thought of as “integrated measures of curva-
ture.” Applying them to the special case where the curved
region contains gravitational waves is what makes them
persistent gravitational wave observables. Although our
results are in general nonlinear, these observables measure
moments (in time) of the Riemann tensor and its derivatives
along an observer’s worldline when the curvature is weak.
In a subsequent paper, we will also consider observables

that are defined near null infinity, where there is also an
unambiguous notion of what one means by radiation. In
this context, the persistent observables can be expanded in a
series in 1=r, where r is the Bondi-Sachs radial coordinate
[30,31]. For the previously known persistent observables
discussed in Sec. II A, the memory observables (the
displacement, both leading and subleading) scale as 1=r,
whereas the persistent observables not associated with

symmetries and conserved quantities (the relative velocity,
rotation, and proper time observables) go as 1=r2. We will
check in a subsequent paper if this is also true for the new
persistent observables defined in this paper.
A brief summary of the structure of this paper is as

follows: first, in Sec. II, we describe the persistent gravi-
tational wave observables that we will be considering in
this paper and their relationship to previous observables in
the literature (particularly those in [32,33]). For conven-
ience, a simplified version of our results is presented in the
same section. We also briefly discuss how gravitational
wave detectors might measure these observables. The
derivations of our results, in terms of covariant bitensors,
are given in Secs. III and IV; the former provides a review
of techniques used in computations with covariant biten-
sors, and the latter gives the calculations themselves.
Further discussion and our conclusions are in Sec. V.
We use the conventions for the metric and curvature

tensors given in Wald [34], the conventions for taking the
dual of arbitrary tensors from Penrose and Rindler [35,36]
(reviewed in Appendix A), and the conventions for biten-
sors from Poisson’s review article [37]. We will use
lowercase Latin letters for abstract spacetime tensor indices
and capital Latin indices for tensor indices on an arbitrary
vector bundle. Lowercase Greek letters will be used to label
components with respect to a parallel transported basis. For
brevity, we are using a convention for bitensors where we
use the same annotations for indices as are used on the
points at which the indices apply (e.g., a, b at the point x
and a0, b0 at the point x0). If a bitensor is a scalar at some
point, we make the dependence on that point explicit.
Finally, for brevity, we will occasionally take powers of
order symbols, writing (e.g.) Oða; bÞ3 as shorthand
for Oða3; a2b; ab2; b3Þ.

II. PERSISTENT GRAVITATIONAL WAVE
OBSERVABLES

In this section, we will review previous examples of
persistent gravitational wave observables in the literature;
we then define our three new observables in Secs. II C, II D,
and II E; and finally, we give a brief discussion as to the
feasibility of their measurement in II F. As mentioned in the
Introduction, in all cases we assume that the regions before
and after the burst of gravitational waves are flat. A
summary of the different persistent observables that occur
in this paper is given in Table I.

A. Traditional persistent gravitational
wave observables

The archetypal persistent gravitational observable is
what we will call the displacement memory observable:
a change in proper distance between two initially comov-
ing, unforced, and nearby observers before and after a burst
of gravitational waves. Denote the curves that the two
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observers follow by γ and γ̄, and the initial and final proper
times of one of the observers by τ0 and τ1. At each of τ0 and
τ1, if γ̄ is close enough, there is a unique geodesic that
intersects both γ and γ̄ and is orthogonal1 to γ. We set the
affine parameter λ along these unique geodesics such that
they intersect γ at λ ¼ 0 and γ̄ at λ ¼ 1. The initial and final
separation vectors ξa and ξa

0
are then the tangent vectors to

these unique geodesics at γðτ0Þ and γðτ1Þ, respectively.
Given these definitions, the change in separation can

then be found explicitly by solving the geodesic deviation
equation. For initially comoving observers, this change is
given by

Δξμ ¼−
Z

τ1

τ0

dτ2

Z
τ2

τ0

dτ3Rμ
ανβðτ3Þ_γα _γβξνþOðξ2;R2Þ;

ð2:1Þ
where _γα is the tangent vector to the curve γ. In this
expression, and all those that follow which use Greek
indices, we are taking components on a basis that has been
parallel transported along the worldline.
There is another type of displacement memory observ-

able, one which depends instead on the initial relative
velocity _ξα of the two worldlines. This is the final relative
displacement of two observers with no initial rela-
tive displacement, but an initial relative velocity. An
explicit expression, derived in a manner similar to
Eq. (2.1), is given by

fΔξμ¼−
Z

τ1

τ0

dτ2

Z
τ2

τ0

dτ3

Z
τ2

τ3

dτ4Rμ
ανβðτ4Þ_γα _γβ _ξνþOðξ2;R2Þ:

ð2:2Þ

This we will call the subleading displacement memory
observable. It is called subleading because of the addi-
tional time integral in Eq. (2.2) as opposed to Eq. (2.1).
In the frequency domain, this time integral corresponds
to multiplication by frequency or energy, and thus the
quantity is subleading in the expansion in energy that is
used in the corresponding soft theorems [43]. The parts
of the gravitational waves that produce the subleading
displacement memory also arise at a higher order in the
post-Newtonian expansion than the parts that generate
the leading memory [41,44]. This observable has been
studied exclusively at null infinity, where it has been
understood in terms of its electric and magnetic parity
components, which are known as center of mass memory
[41] and spin memory [40], respectively. The total
subleading displacement is a memory observable, since
both the spin and the center of mass memories are
known to be associated with asymptotic symmetries (the
spin memory is known to be associated with a soft
theorem as well [40]).
Since the geodesic deviation equation has solutions

where the initially comoving observers have 4-velocities
that become different over time, it is natural to wonder
whether there could be a persistent relative velocity
observable given by a difference in the relative 4-velocities
before and after a burst of gravitational waves; this is
sometimes also referred to as the velocity memory in the
literature [6,28,38]. It takes the form

TABLE I. A summary of the persistent observables discussed in this paper. We provide the original reference for the observable (if it
was defined before this paper), the section of this paper in which the observable is defined, and the equation in which we give the value
of the observable (in the weak curvature limit). As a brief summary of the characteristics of these observables, we also give the number
of time integrals of the Riemann tensor which appear in these observables (in the weak curvature and plane-wave limits; see Sec. II F for
more details) and the known scaling near null infinity in both the linearized theory and in full general relativity. If the observable is
known to be associated with a known symmetry near a spacetime boundary (and so is a memory observable), that is indicated in the last
column.

Number of time
integrals of the
Riemann tensor

Scaling near I (if known)

Observable Reference
Definition
(Sec.)

Result
(Eq.)

Linearized
GR

Full
GR

Associated with
a known symmetry

Displacement [1] II A (2.1) 2 1=r 1=r Yes
Relative velocity [38] II A (2.3) 1 1=r2 � � � No
Relative rotation [32] II A (2.5) 1 1=r2 � � � No
Relative proper time [39] II A (2.6) 1 1=r2 � � � No
Subleading displacementa [40,41] II A (2.2) 3 1=r 1=r Yes
Curve deviation � � � II C (2.11), (2.12) 1–3b � � � � � � No
Holonomy � � � II D (2.21), (2.22) 1–3b � � � � � � No
Spinning test particle � � � II E (2.25), (2.26) 1–2 � � � � � � No

aSubleading displacement memory near null infinity includes the spin memory [40] and center of mass memory [41].
bWith acceleration, the number of time integrals is 4 and higher.

1Note that orthogonality is necessary to ensure that the
geodesics are unique. There are different definitions of these
geodesics that intersect γ and γ̄, which are called correspond-
ences in [42]; we will not be using this particular correspondence
past Sec. II B, instead using one which we will define in Sec. II C.
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Δ_ξμ ¼ D
dτ1

Δξμ ¼ −
Z

τ1

τ0

dτ2Rμ
ανβðτ2Þ_γα _γβξν þOðξ2;R2Þ:

ð2:3Þ

This effect is unavoidable in going between two regions
that are initially and finally flat, at least for nonlinear plane
waves [45] (for a more recent discussion, see [29,46,47]). It
has been suggested, moreover, that this relative velocity is
in principle measurable for bursts generated by astrophysi-
cal sources [38]. Note that in the case where the final
relative velocity is nonzero, the displacement memory will
no longer be independent of the final time τ1, even after the
burst of gravitational waves has passed.
Similarly, the observers can parallel transport orthonor-

mal tetrads along their respective worldlines, and the tetrads
are related to each other by a linear transformation that is
influenced by the burst of gravitational waves. The four-
dimensional matrix representing this linear transformation
is in general a Lorentz transformation; thus, we will call the
effect a persistent Lorentz transformation observable. This
matrix can be written as

Λμ
ν ¼ δμν þ ΔΩμ

ν; ð2:4Þ

where

ΔΩμ
ν ¼

Z
τ1

τ0

dτ2Rμ
ναβðτ2Þξα _γβ þOðξ2;R2Þ: ð2:5Þ

Note this effect includes the relative velocity observable in
the form of a boost (when contracted into _γν), as well as a
relative rotation observable. The relative rotation observ-
able could be inferred, for example, from integrating the
equation of differential frame dragging (or differential
Fokker precession) [48,49] once in time, although as far
as we can tell no one has taken this approach before.
Finally, one might wonder if nearby geodesic observers

measure the same amount of proper time elapsed along
their worldlines after a burst of gravitational waves passes
by their locations. This proper time difference will depend
on how the observers make their correspondence, in the
sense of Footnote 1. Recall that the separation vectors
defined above are tangents to unique geodesics that
intersect both γ and γ̄ and are orthogonal to γ. Suppose
that the two observers synchronize their clocks such that
the first of these geodesics (defining the initial separation)
passes through γðτ0Þ and γ̄ðτ0Þ. Then, the second of these
geodesics (defining the final separation) will pass through
the points γðτ1Þ and γ̄ðτ1 þ ΔτÞ; the proper time difference
is this quantity Δτ. Strominger and Zhiboedov considered
this observable in [39], which we will call the persistent
relative proper time observable. Performing a similar
calculation as that which yields Eq. (2.1), we find that

Δτ ¼ 1

2

Z
τ1

τ0

dτ2Rαβγδðτ2Þξα _γβξγ _γδ þOðξ3;R2Þ: ð2:6Þ

Near null infinity, the displacement memory scales with
the Bondi-Sachs radial coordinate r as 1=r (see, e.g., [21]).
We are not aware of calculations of the scaling of the
relative velocity, rotation, and proper time observables with
r near null infinity, but otherwise in full generality.
Specializing to linearized gravity, however, we can make
use of the results of [3] to argue that these three persistent
observables scale as 1=r2 (i.e., the term in the expansion at
1=r vanishes).2 In a future paper, we will study in greater
detail the scaling with r of these persistent observables and
the new observables defined below.
Note that the persistent relative proper time, relative

velocity, and relative rotation observables have all been
called “memories” previously in the literature. Since they are
not associated with symmetries at boundaries of spacetime,
wewill be referring to them simply as persistent observables.
The observables we have discussed so far are all defined

in a context where there are two flat regions of spacetime
separated in time by a region with curvature. One can also
consider situations where there are two flat regions that are
spatially separated, as for example occurs when consider-
ing the effects of intervening curvature on the propagation
of null rays from sources to observers in astronomical
observations. In this context, a number of nonlocal observ-
ables can be defined (related to lensing, frequency shifts,
etc.) (see, e.g., [28,51–53]) which bear some similarities to
the observables discussed here.

B. Generalized holonomy

In [32], a covariant observable was introduced that
encodes the four persistent gravitational wave observables
of Sec. II A (displacement, velocity, proper time, and
rotation) in a single vector. We now review this observable,
which was called the generalized holonomy in [32]. The
generalized holonomy is based on the solutions χa of an
affine transport law along a curve with tangent vector ka,
which are given by solving the following differential
equation along this curve:

ka∇aχ
b ¼ −kb: ð2:7Þ

If one solves Eq. (2.7) with a given initial χa at some point
x, then the final χa

0
at some point x0 along the curve can be

written as follows:

χa
0 ¼ ga

0
aχ

a þ Δχa0 : ð2:8Þ
The homogeneous solution ga

0
aχ

a corresponds to parallel
transport of the given initial vector χa. Here ga

0
a denotes the

2For spacetimes that are not asymptotically flat in the usual
sense, see [50] for an example where the relative velocity does not
have this scaling.
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parallel propagator, which we define in more detail in
Sec. III B. The inhomogeneous solution Δχa0 generalizes
the notion of a separation vector between two points in flat
spacetime. In a curved spacetime, Δχa0 and ga

0
a depend on

the curve connecting the points x and x0.
Consider now a closed curve composed of two initially

comoving timelike geodesics γ and γ̄ and two spatial
geodesics connecting γ and γ̄ at the initial and final points
of γ and γ̄. Furthermore, assume that these spatial geodesics
are both orthogonal to γ at their respective points of
intersection with γ. Solve Eq. (2.7) around this curve by
starting at the initial point of γ, evolving forwards along γ,
then along the geodesic connecting the final points, then
backwards along γ̄, and then finally along the geodesic
between the initial points (this is the same orientation as
given in Fig. 2, which is introduced in Sec. II D). The
solution (2.8) defines a mapping

χa → Λa
bχ

b þ Δχa; ð2:9Þ

called the generalized holonomy in [32], where Λa
b is the

usual holonomy around this curve [as in Eq. (2.4)]. The
quantities Δχa and Λa

b are the generalized holonomy
observables. It was shown in [32] that this generalized
holonomy encodes the displacement memory, in addition to
the persistent relative velocity, rotation, and proper time
observables. Specifically, the homogeneous solution enc-
odes exactly the persistent Lorentz transformation observ-
able ΔΩμ

ν (in components with respect to a parallel
transported basis), while the inhomogeneous solution enc-
odes the displacement memory Δξμ, the persistent Lorentz

transformation observable, and the persistent relative proper
time observable Δτ. Explicit expressions are given by3

Λμ
ν ¼ δμν þ ΔΩμ

ν; ð2:10aÞ

Δχμ ¼ −ΔΩμ
ν½ξν þ Δξν þ ðτ1 − τ0Þ_γν� þ Δτ_γμ − Δξμ:

ð2:10bÞ

C. Curve deviation

We now define our first new persistent observable—
which we call curve deviation—as a generalization of
geodesic deviation (which forms the basis of the displace-
ment memory observables). Consider two timelike curves γ
and γ̄ that pass through the region of gravitational waves, as
depicted in Fig. 1. Let τ0 denote a value of the affine
parameter along γ and γ̄ before the gravitational waves have
passed, and let τ1 be a value of this affine parameter after
the passage of the waves. The given variables in this
problem are the initial separation ξa and initial relative
velocity _ξa at x≡ γðτ0Þ, as well as the accelerations ̈γa and
̈γ̄ā at all values of τ along the curves (recall that we are
using Latin indices to denote abstract indices). At all later
times τ, we define the separation vector as tangent to the
unique geodesic that connects γðτÞ and γ̄ðτÞ. Note that this
is not the same definition as in Sec. II A, where the
separation was defined to always be orthogonal to _γa.
Since this definition connects two points on γ and γ̄ based

FIG. 1. Two curves that have some initial separation ξa and
relative velocity _ξa, as well as accelerations ̈γa00 and ̈γ̄ā00 . The curve
deviation observable Δξa0CD is given by the difference between the
measured final separation and the final separation that would be
predicted if the gray region (containing gravitational waves) were
also flat.

FIG. 2. A loop about which observers can compute a holonomy
that measures the effect of a burst of gravitational waves. The
quantities Pa and Jab are transported around this loop using
Eq. (2.15) (with some set of parameters ϰ) in the directions

shown, thereby yielding the observables P
ϰ
a and J

ϰ
ab.

3Note that this result is not the same equation as that given in
[32] [their Eq. (3.20)], because we are using a different initial
point and direction for traversing the loop. The two results are
consistent.
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upon having the same proper time, it is called the
isochronous correspondence, which is in contrast to the
normal correspondence which was used in Sec. II A. For
further discussion, see Sec. IVA.
The curve deviation observable Δξa0CD at x0 ≡ γðτ1Þ is the

difference between the actual, measured separation, and the
separation predicted from the observers’ measured accel-
erations on a parallel transported basis, assuming that the
region is flat. Thus, this observable will vanish in flat
spacetimes, even for arbitrarily accelerating curves.
Our observable has, in general, a nonlinear dependence

on the initial separation and relative velocity, as well as the
accelerations. For simplicity, we parametrize the linear and
quadratic dependence by the following quantities:

Δξa0CD ≡ ½ΔKa0
b þ La0

bcξ
c þ Na0

bc
_ξc þOðξ; _ξÞ2�ξb

þ ½ðτ1 − τ0ÞΔHa0
b þMa0

bc
_ξc þOðξ; _ξÞ2�_ξb

þ
Z

τ1

τ0

dτ2ðτ1 − τ2ÞΔHa0
b00 fgb00 b̄00 ½1þOðξ; _ξÞ2� ̈γ̄b̄00

− ½1þOðξ; _ξÞ2�γ̈b00 g þOð̈γ ̈γ̄Þ2: ð2:11Þ

Above we defined x00 ≡ γðτ2Þ and ga
00
ā00 as the bitensor

which parallel transports vectors at x̄00 ≡ γ̄ðτ2Þ to x00. The
bitensors ΔKa0

a, ΔHa0
a, La0

bc, Ma0
bc, and Na0

bc vanish in
flat spacetime and are determined by the curve γ (and
therefore depend, implicitly, on the acceleration ̈γa). Here,
as mentioned in the Introduction, we are using Oðξ; _ξÞ2 as
shorthand for Oðξ2; ξ · _ξ; _ξ2Þ. A derivation of this result is
given in Sec. IVA, and explicit expressions for all of the
bitensors that this expression defines are given in
Eq. (4.13). The following are expressions for the bitensors
in Eq. (2.11) that are valid to linear order in the Riemann
tensor:

ΔKα
β ¼−

Z
τ1

τ0

dτ2

Z
τ2

τ0

dτ3Rα
γβδðτ3Þ_γγðτ3Þ_γδðτ3ÞþOðR2Þ;

ð2:12aÞ

ΔHα
β ¼ −

1

τ1 − τ0

Z
τ1

τ0

dτ2

Z
τ2

τ0

dτ3

Z
τ2

τ3

dτ4Rα
γβδðτ4Þ_γγðτ4Þ_γδðτ4Þ þOðR2Þ; ð2:12bÞ

Lα
βγ ¼ −

1

2

Z
τ1

τ0

dτ2

Z
τ2

τ0

dτ3f½∇ðϵRα
γÞβδ�ðτ3Þ þ ½∇ðϵRα

βÞγδ�ðτ3Þg_γδðτ3Þ_γϵðτ3Þ þOðR2Þ; ð2:12cÞ

Nα
βγ ¼−

Z
τ1

τ0

dτ2

Z
τ2

τ0

dτ3

�Z
τ2

τ3

dτ4f½∇ðϵRα
γÞβδ�ðτ4Þþ½∇ðϵRα

βÞγδ�ðτ4Þg_γϵðτ4Þ_γδðτ4Þþ2Rα
γβδðτ3Þ_γδðτ3Þ

�
þOðR2Þ; ð2:12dÞ

Mα
βγ ¼

Z
τ1

τ0

dτ2

Z
τ2

τ0

dτ3

Z
τ2

τ3

dτ4

�
1

2

Z
τ4

τ3

dτ5f½∇ðϵRα
γÞβδ�ðτ5Þ þ ½∇ðϵRα

βÞγδ�ðτ5Þg_γδðτ5Þ_γϵðτ5Þ − 2RαðγβÞδðτ4Þ_γδðτ4Þ
�

−
1

2

Z
τ1

τ0

dτ2

Z
τ1

τ2

dτ3

Z
τ3

τ0

dτ4

Z
τ3

τ4

dτ5f½∇ðϵRα
γÞβδ�ðτ5Þ þ ½∇ðϵRα

βÞγδ�ðτ5Þg_γδðτ5Þ_γϵðτ5Þ þOðR2Þ: ð2:12eÞ

Note that the first of these expressions is very similar to
Eq. (2.1), and the second is very similar to Eq. (2.2). As in
those equations, since we are integrating tensor fields, we
note that we are considering the components along a
parallel transported basis, which are denoted with Greek
indices. In these expressions, the parallel transported
components of the 4-velocity are not constant functions
of proper time, as γ is not necessarily geodesic.

D. Holonomies of linear and angular momentum

Our next observable is based on an extension of the
affine transport law reviewed in Sec. II B, and it is
motivated by the fact that this transport law also defines
a means of relating linear and angular momenta at different
points [32]. Here, we mean either the linear and angular

momentum of some extended body or the linear and
angular momentum of the spacetime itself. There are a
variety of prescriptions by which an observer could define
linear and angular momentum, but what we will be
considering in this paper is how the observer would
sensibly transport these quantities from point to point.
As a motivating example, consider a freely falling body

in flat spacetime. Stated in terms of affine transport, an
observer at some point x would measure the total linear and
angular momentum of the body (about her location) to be

Pa≡gaa0Pa0 ; Jab≡gaa0gbb0Sa
0b0 þ2Δχ½aPb�; ð2:13Þ

respectively, where Sa
0b0 and Pa0 are the intrinsic angular

momentum and linear momentum of the body, andΔχa and
gaa0 are the inhomogeneous and homogeneous solutions to
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Eq. (2.7) given in Eq. (2.8). The curve along which
Eq. (2.7) is being solved is the geodesic orthogonal to
the observer’s worldline that goes from a point x0 on the
body’s center of mass worldline to x. The first term in this
expression is the intrinsic angular momentum, and the
second term is the orbital angular momentum, as it depends
on the separation of the observer relative to the body.
Parallel propagators appear in this expression to reflect the
fact that Pa0 and Sa

0b0 , as tensor fields, are only defined on
the worldline of the freely falling spinning body.
A crucial feature of this example is that (when the

intrinsic linear and angular momentum of the body are
conserved) the constructed Pa and Jab obey the following
coupled differential equations along an arbitrary curve with
tangent vector ka:

ka∇aPb ¼ 0; ð2:14aÞ

ka∇aJbc ¼ 2P½bkc�: ð2:14bÞ
These differential equations capture the “origin depend-
ence” of angular momentum in special relativity: that is, as
we shift the origin (along some curve with tangent ka)
about which we are measuring the angular momentum,
Eq. (2.14) tells us how the linear and angular momentum
change. This origin dependence is a crucial feature of
angular momentum, and so one could consider Eq. (2.14)
as the definition of how linear and angular momentum
should be transported in curved spacetimes (as was done in
[32]), irrespective of the particular example used to derive
this equation. Unlike in flat spacetime, this transport
depends on the curve that is used between the two points.
Solving Eq. (2.14) around a closed loop gives a map

from the space of Pa and Jab to itself, which can be written
in terms of the quantities Δχa and Λa

b from the generalized
holonomy. In this paper, as in [33], we will describe a
generalization of this procedure for transporting linear and
angular momentum; as the space of Pa and Jab is ten-
dimensional, our observable is a 10 × 10 matrix. As a
generalization of [33], instead of Eq. (2.14), we solve the
following differential equations along our curve:

kb∇bPa ¼ −K
ϰ

a
bcdkbJcd; ð2:15aÞ

kc∇cJab ¼ 2P½akb�: ð2:15bÞ

Here ϰ ¼ ðϰ1; ϰ2; ϰ3; ϰ4Þ is a collection of constant param-

eters, and the tensor K
ϰ

ab
cd is defined by

K
ϰ
ab

cd ¼ ϰ1Rab
cdþϰ2δ

a½cRb
d� þϰ3δ

b½cRa
d� þϰ4Rδa½cδbd�:

ð2:16Þ

Two special cases of this transport law have been consid-
ered in previous work: ϰ ¼ ð0; 0; 0; 0Þ, which was studied
in [32], and ϰ ¼ ðκ; 0; 0; 0Þ, which was studied in [33].

Our holonomy observable will be given by solving
Eq. (2.15) around a closed loop. This gives us a curve-
dependent observable (in the form of a matrix at a given
point) describing how the final linear and angular momen-

tum, which we denote by P
ϰ
a and J

ϰ
ab, depend on the initial

linear and angular momentum, which we denote by Pa and
Jab. We call this matrix the holonomy, and it can be
decomposed into four components:

 
P
ϰ
a

J
ϰ
ab

!
¼

0
B@ Λ

ϰ

PP
a
c Λ

ϰ

PJ
a
cd

Λ
ϰ

JP
ab

c Λ
ϰ

JJ
ab

cd

1
CA� Pc

Jcd

�
: ð2:17Þ

This observable depends on the curve used in its definition.
For example, in [33], this holonomy was computed for
infinitesimal square loops. In this paper, the holonomy will
be computed for the case of a narrow loop, as in Fig. 2,
where two of the edges are much shorter than the curves γ
and γ̄.
The dependence on the curve is apparent in two ways.

First, the holonomy depends on the separation vector ξa

throughout the curved region, so it depends on the initial
separation, relative velocity, and the accelerations of the
curves. This will be made more concrete in Eq. (2.21) (for
the weak curvature case), Eq. (3.40) (in general), and in the
discussion in Sec. III C 2. Second, even given the curves γ
and γ̄, the holonomy depends on the choices of initial and
final points on γ that define the closed curve. However, it
must be noted that becausewe have assumed that the regions
are flat before and after the burst of gravitational waves, the
dependence on the start or end of the loop is in some sense
“trivial”: namely, it is only related to the usual origin
dependence of angular momentum in special relativity.
We now consider particular values of ϰ. As mentioned

above, the holonomy for ϰ ¼ ð0; 0; 0; 0Þ can be written in
terms of Λa

b and Δχa:

Λ
∘
PP

a
c ¼ Λa

c; Λ
∘
PJ

a
cd ¼ 0; ð2:18aÞ

Λ
∘
JP

ab
c ¼ 2Δχ½aΛb�

c; Λ
∘
JJ

ab
cd ¼ Λ½a

cΛb�
d: ð2:18bÞ

Thus, the value of this holonomy has already been
effectively computed in [32], and (as noted in Sec. II B)
the components of this holonomy describe the usual dis-
placementmemoryobservable, aswell as the relativevelocity
and rotation observables. We will be computing this observ-
able again, using a different framework, in Sec. IV B 1.
In addition to the case of ϰ ¼ ð0; 0; 0; 0Þ, which we will

refer to as affine transport, we also consider the case
ϰ ¼ ð1=2; 0; 0; 0Þ, which we will refer to as dual Killing
transport. The holonomy of dual Killing transport
describes how the space of symmetries changes because
of the burst of gravitational waves. This is due to the
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relationship between the transport law in Eq. (2.15) with
ϰ ¼ ð1=2; 0; 0; 0Þ and the Killing transport equations which
determine how Killing vector fields can be determined from
initial data at a point. This can be seen as follows: for any
Killing vector field ξa, define ωab ≡∇½aξb�. The Killing
transport equations can then be written as

∇aξb ¼ ωab; ð2:19aÞ

∇aωbc ¼ Rd
abcξd: ð2:19bÞ

This implies that, for Pa and Jab transported along a curve
by dual Killing transport,

Q ¼ Paξa þ
1

2
Jabωab ð2:20Þ

is a constant (see, e.g., [54]).
This association between linear and angular momentum

and Killing vector fields allows us to think of the holonomy
in a slightly different way. The Killing transport equa-
tions (2.19) can be used to transport an element of the space
of symmetries in the flat region before the burst along the
curve γ by contracting the free index a with _γa (to yield
ordinary differential equations along γ). This gives an
element of the space of symmetries in the region after
the burst, thus providing a linear map between the spaces of
symmetries before and after the burst. This map is
independent of the initial and final points along γ between

which this transport is carried out, so long as the points are
within the flat regions. There is a corresponding map along
γ̄ that maps the space of symmetries after the burst to the
space of symmetries before. Composing these maps yields
a holonomy that is, in a sense, “dual” to the holonomy
discussed in this section. This holonomy maps from the
space of initial Killing vector fields to the space of final
Killing vector fields and is independent of the choices of
initial and final points on the curves γ and γ̄. However, the
components of this map on a basis that is determined by the
initial point (that is, components of angular momentum
about the initial point on γ) or the final point depend on
those choices.
Finally, there is a third relevant value of ϰ, namely

ϰ ¼ ð−1=4; 1=2; 0; 0Þ. This is the value of ϰ that is most
interesting near null infinity, as discussed in [33], since it
turns out that the holonomy with this value of ϰ is trivial in
an asymptotic sense in stationary regions. We will be
discussing this in more detail in a future paper.
In summary, the holonomy observable discussed in this

section provides a persistent gravitational wave observable
which we will compute in this and subsequent papers. Our
final result for the value of the matrix in Eq. (2.17) is in
Eq. (4.26) for the case of affine transport and (4.35) for the
case of dual Killing transport. For a general set of
parameters ϰ, our results are given in Eqs. (4.20) and
(4.21). For convenience, we list our results in the weak
curvature limit below for general ϰ:

0
BB@

Λ
ϰ

PP
α
μ Λ

ϰ

PJ
α
μν

Λ
ϰ

JP
αβ

μ Λ
ϰ

JJ
αβ

μν

1
CCA¼

 
δαμ 0

0 δ½αμδβ�ν

!
þ
Z

τ1

τ0

dτ2

8><
>:
0
B@ Ω

PP
α
μκðτ1;τ2Þ Ω

PJ
α
μνκðτ2Þ

Ω
JP

αβ
μκðτ1;τ2Þ Ω

JJ
αβ

μνκðτ1;τ2Þ

1
CAξκþ

Z
τ1

τ2

dτ3

0
B@ Ω

PP
α
μκðτ1;τ3Þ Ω

PJ
α
μνκðτ3Þ

Ω
JP

αβ
μκðτ1;τ3Þ Ω

JJ
αβ

μνκðτ1;τ3Þ

1
CA_ξκ

þ½ ̈γ̄ κðτ2Þ− γ̈ κðτ2Þ�
Z

τ1

τ2

dτ3

Z
τ1

τ3

dτ4

0
B@ Ω

PP
α
μκðτ1;τ4Þ Ω

PJ
α
μνκðτ4Þ

Ω
JP

αβ
μκðτ1;τ4Þ Ω

JJ
αβ

μνκðτ1;τ4Þ

1
CA
9=
;þOðξ; _ξÞ2þOðR;∇RÞ2; ð2:21Þ

where

Ω
PP

α
μκðτ1; τ2Þ ¼

�
Rα

μκλðτ2Þ þ 4K
ϰ

αðμjλjκÞðτ2Þ þ 2

Z
τ1

τ2

dτ3½∇κK
ϰ

α
σμλ�ðτ3Þ_γσðτ3Þ

�
_γλðτ2Þ; ð2:22aÞ

Ω
PJ

α
μνκðτ1Þ ¼ 2½∇½κK

ϰ
α
λ�μν�ðτ1Þ_γλðτ1Þ; ð2:22bÞ

Ω
JP

αβ
μκðτ1; τ2Þ ¼ 8

Z
τ1

τ2

dτ3(δ½αρ _γβ�ðτ2Þ
�
½∇½κK

ϰ
ρ
λ�μζ�ðτ3Þ

Z
τ2

τ0

dτ4 _γζðτ4Þ − K
ϰ

ρðμjλjκÞðτ3Þ −
1

2

Z
τ1

τ3

dτ4½∇κK
ϰ

ρ
σμλ�ðτ4Þ_γσðτ4Þ

�

þ 1

4
_γσðτ2Þ½δ½αμRβ�

σκλðτ3Þ þ 4δ½α½κK
ϰ

β�
λ�μσðτ3Þ�)_γλðτ3Þ; ð2:22cÞ
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Ω
JJ

αβ
μνκðτ1;τ2Þ¼ 2_γ½αðτ2Þ

Z
τ1

τ2

dτ3½∇κK
ϰ
β�
λμν�ðτ3Þ_γλðτ3Þ

þ2½δ½α½μRβ�
ν�κλðτ2Þþδ½ακK

ϰ
β�
λμνðτ2Þ�_γλðτ2Þ:

ð2:22dÞ

The explicit expressions for affine transport [ϰ¼
ð0;0;0;0Þ] and dual Killing transport [ϰ ¼ ð1=2; 0; 0; 0Þ]
are apparent, and are given in more detail in Secs. IV B 1
and IV B 2. These expressions are quite complicated for the
case of general ϰ, even in this weak curvature limit. In the
case of affine transport, we know that the results are far
simpler, and that there are fewer independent components.
In Appendix D, we will consider a way of decomposing the
holonomy into different parts, which may aid in under-
standing the meaning of the large number of components in
the holonomy. In the case of affine transport, this decom-
position makes the reduction in the number of independent
components manifest.

E. Observables involving a spinning test particle

The holonomy given in the previous section is a power-
ful mathematical map for determining how a radiative
region has affected how an observer keeps track of some
angular momentum that she has measured. However, it is
an abstract quantity. In particular, it depends on a closed
curve that intersects the curved region, and it could be
difficult to measure in practice for some arbitrary curve.
The curve deviation observable given in Sec. II C is a more
realistically observable quantity, but it also requires the
observers to measure their acceleration at all times. A more
ideal observable would be one that would only require
measurements before and after the burst of gravitational
waves. An example of such an observable is given by the
following procedure. An unaccelerated observer measures
the linear momentum and intrinsic spin of a comoving test
particle, in addition to its separation from the observer. The
observer and the test particle then travel along their own
worldlines, and after the burst of gravitational waves, the
separation, linear momentum, and intrinsic spin of the test
particle are measured again. The procedure is depicted in
Fig. 3, where we denote the worldlines of the observer and
spinning test particle by γ and γ̄, respectively. The
differences between the initial and final separations, linear
momenta, and spins per unit mass are the natural observ-
ables in this procedure.
We note that both the linear momentum and the intrinsic

spin are tensors, and therefore, unless the initial and final
separations are zero, we must specify a prescription for
transporting these tensors away from the worldline of the
spinning particle. The convention which we use is that both
are parallel transported along a curve connecting the two
worldlines. Since the regions before and after the burst are
flat, this procedure is independent of the particular curves
used. Moreover, the measurements of linear momentum,

intrinsic spin, and the separation are all tensors at specific
points along the observer’s worldline, so they must be
parallel transported along the observer’s worldline to some
common point in order to be compared.
Note that this procedure is qualitatively similar to the

holonomy for dual Killing transport, as the linear and
angular momentum of the spinning test particle evolve
along its worldline according to the Mathisson-Papapetrou
equations [55,56]:

_̄γb̄∇b̄p
ā ¼ −

1

2
Rā

b̄ c̄ d̄
_̄γb̄jc̄ d̄; ð2:23aÞ

_̄γc̄∇c̄jā b̄ ¼ 2p½ā _̄γb̄�: ð2:23bÞ

Here pā and jā b̄ are the linear and angular momentum of
the spinning particle when measured about γ̄ðτÞ. These
equations are precisely the transport law for pā and jā b̄

using dual Killing transport. However, note that pā and jā b̄

are parallel transported along the geodesics connecting the
two worldlines during the measurement process, and when
the observer compares her initial and final measurements.
This observable, therefore, cannot be understood in terms
of a holonomy, as different transport laws are used along
different portions of the loop.
The second difference between this procedure and the

holonomy is that the holonomy can be computed around an
arbitrary loop, whereas in this procedure the worldlines γ
and γ̄ are more constrained. The curve γ̄ here refers to a
“reference worldline” for the spinning test particle. This
worldline is arbitrary, in a sense, and refers to the center of
mass of the particle defined by certain spin-supplementary

FIG. 3. An observer (left curve, γ) measuring properties of a
spinning test particle (right curve, γ̄). The test particle has some
measured separation ξa, linear momentum pa, and intrinsic spin
sa before a burst of gravitational waves. After the burst, these
quantities are all measured again and compared with their values
before the burst, yielding Δξa0 , Δpa0 , and Δsa0 .
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conditions (for a review, see [57] and the references
therein). We will discuss our choice of spin-supplementary
condition further in Sec. IV C, as it is crucial for determin-
ing the acceleration of the spinning particle and therefore
the exact shape of the loop. Related to our choice of spin
supplementary condition is our definition of the intrinsic
spin per unit mass, which we discuss in the same section.
Explicitly, we denote our observables, the differences

between initial and final separation, measured linear
momenta, and measured intrinsic spins per unit mass of
the test particle, by Δξa0S , Δpa0 , and Δsa0 , respectively.
These are functions of the initially measured 4-momentum
pa, initial intrinsic spin per unit mass sa, and initial
separation ξa. We expand both in the separation and in
the intrinsic spin, assuming that the size of the body, which
is characterized by the spin per unit mass, is small as well.
That is, our approximation is that

jξj≳ jsj ≫ m; ð2:24Þ

wherem is the mass of the particle. The assumption that the
spin per unit mass is much larger than the mass is necessary
in order to neglect the effects of self-force on the test particle.
To second order in separation, but first order in intrinsic

spin, we can write

Δξa0S ≡ ½ΔKa0
b þ La0

bcξ
c þOðξ2Þ�ξb

þ ½ϒa0
b þ Ψa0

bcξ
c þOðξ2Þ�sb þOðsÞ2; ð2:25aÞ

Δpa0 ¼ m
D
dτ1

Δξa0S þOðsÞ2; ð2:25bÞ

Δsa0 ≡ ½Σa0
bcξ

c þOðξ2; sÞ�sb: ð2:25cÞ

The first of these expressions can be considered as
definitions of ϒa0

b and Ψa0
bc, and the third as a definition

of Σa0
bc. These are all bitensors determined by the curve γ

whose explicit forms will be calculated in Sec. IV C. The
quantities ΔKa0

b and La0
bc are the same as those introduced

in Sec. II C, and their values are given in Sec. IVA.
Equation (2.25b) is a result that will be proven in
Sec. IV C. Our final expressions for these observables
are given in Eq. (4.47); assuming weak curvature, we find
that these expressions are given by

Σα
βγ ¼ −

Z
τ1

τ0

dτ2Rα
βγδðτ2Þ_γδ þOðR2Þ; ð2:26aÞ

ϒα
β¼−

Z
τ1

τ0

dτ2

Z
τ2

τ0

dτ3ðR�Þαγβδðτ3Þ_γγ _γδþOðR2Þ; ð2:26bÞ

Ψα
βγ ¼ −

Z
τ1

τ0

dτ2

Z
τ2

τ0

dτ3½∇γðR�Þαδβϵ�ðτ3Þ_γδ _γϵ þOðR2Þ:

ð2:26cÞ

These expressions are much simpler than the corresponding
expressions for the holonomy, or for curve deviation,
primarily because the motion of the spinning body is
already specified, which requires that the relative velocity
and accelerations are given by very particular forms.

F. Feasibility of measurement

All of the persistent observables in this paper are (in
principle) measurable by some sort of detector, because
these observables are defined in terms of a procedure that
an observer can physically carry out. For curve deviation
and our observable involving a spinning test particle, these
procedures are relatively straightforward to perform. The
former requires only a means of measuring separation
and for the observers to keep track of their respective
accelerations, while the latter only requires a method by
which an observer can measure the momentum and spin of
a particle in addition to the separation. The holonomy
observable is somewhat more complex, as it requires the
two observers to measure the local curvature of spacetime
(potentially by carrying around small gravitational wave
detectors themselves). The observers could then use the
measured curvature to evolve the quantities Pa and Jab

according to Eq. (2.15), and finally compare their results at
the end.
A far simpler method that one could use to measure these

persistent observables, without constructing new types of
detectors, would be to take advantage of the fact that the
values of these persistent observables can be written, in the
weak curvature limit, in terms of integrals of the Riemann
tensor (and its derivatives) along the worldline of one of the
observers. For observers far from an astrophysical source of
gravitational waves, the weak-curvature limit is expected to
be valid. Moreover, when the observer is far enough from
the source, the gravitational waves can be well approxi-
mated by plane waves, so the derivatives of the Riemann
tensor can be expressed solely in terms of derivatives with
respect to retarded time. At fixed radius, retarded time is an
affine parameter for the worldline of the observer, which
allows terms involving integrals of the derivatives of the
Riemann tensor to be written in terms of the Riemann
tensor evaluated at the end points. Gravitational wave
detectors measure the components of the Riemann tensor,
and these components can be integrated in time while the
gravitational waves are passing by. Having made these
measurements of the integrated Riemann tensor, gravita-
tional wave detectors could then use our weak curvature
results to deduce what the value of any of the persistent
observables in this paper would have been if the detector
had, in fact, been carrying out the operations by which
these observables are defined.
In this regime, and in the case where there is no

acceleration, the weak curvature results in the preceding
sections; that is, Eqs. (2.12), (2.26), and (2.21) [when
combined with Eq. (2.22)] involve only one, two, and three
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time integrals of the Riemann tensor along the worldline of
the detector (allowing for acceleration terms, these results
include more time integrals of the Riemann tensor).
Coincidentally, these numbers of time integrals of the
Riemann tensor have appeared in previous discussions
of persistent gravitational wave observables: one time
integral for the relative proper time, velocity, and rotation
observables [Eqs. (2.6), (2.3), and (2.5)], two for the
displacement memory [Eq. (2.1)], and three for the sub-
leading displacement memory [Eq. (2.2)]. As such, in the
limit discussed in this section, the only new information
contained in these observables is the higher time integrals
of the Riemann tensor that arise in the holonomy and curve
deviation when there are acceleration terms. In situations
where this limit is not appropriate, such as general non-
linear gravitational wave spacetimes, the observables pre-
sented in this paper are not degenerate with those
previously discussed in the literature.

III. REVIEW OF TECHNIQUES OF
COVARIANT BITENSORS

In this section, we provide a review of techniques that we
will be using in this paper to compute the results provided
in Sec. IV. In the following three subsections, we follow the
formalisms of [33] for introducing the idea of using a
connection on a vector bundle to understand linear and
angular momentum transport, [37] for a brief review of
bitensors, and [58] for computations of holonomies.

A. The linear and angular momentum bundle

In this section, we use the notion of vector bundles,
notably the idea of a direct- (orWhitney-) sum bundle E1 ⊕
E2 of two vector bundles E1 and E2. This is the vector
bundle obtained by taking, at each point in our manifold,
the direct sum of the two vector spaces associated with E1

and E2 at that point. As described in [33], the “linear and
angular momentum bundle,” which we call A, is given by

A ¼ TM ⊕ Λ2TM; ð3:1Þ

where TM is the tangent bundle and Λ2TM is the bundle
of antisymmetric rank (2,0) tensors, or bivectors (dual two-
forms). We write a section of this bundle as

XA ¼
�

Pa

Jab

�
; ð3:2Þ

for some tensor fields Pa and Jab. For any quantity that is
part of a matrix on this vector bundle, we denote the various
components as follows:

AA
C ≡

0
B@ A

PP
a
c A

PJ
a
cd

A
JP

ab
c A

JJ
ab

cd

1
CA: ð3:3Þ

This is exactly how the various components of the
holonomy were denoted in Eq. (2.17).
There is furthermore the notion of a connection on this

bundle. The connection that we are typically concerned
with is given by rewriting Eq. (2.15) as

0 ¼ ka∇ϰ aXB ≡ ka∇aXB þ kaC
ϰ

B
CaXC; ð3:4Þ

where ∇a denotes the natural extension of the Levi-Civita
connection to the angular momentum bundle, and

C
ϰ

A
Ce ¼

 
0 K

ϰ
a
ecd

2δ½aeδb�c 0

!
: ð3:5Þ

Most of what follows in this section can be applied to any
connection, so we proceed in full generality, using ∇̂a and
∇̌a as arbitrary connections. We will also use capital Latin
indices for indices on a generic bundle. Throughout this
paper we add a diacritical mark above the core symbol of
any tensor that depends on a given connection with the
same diacritic above the connection; for example, the
parallel propagator ĝA

0
A [Eq. (3.6)] is defined with respect

to the connection ∇̂a. Furthermore, for quantities that
depend on two connections, we add both diacritics
above the core symbol for the diacritical marks associated
with the two connections; for example, the connection

coefficient ˆ̌CA
Bc [Eq. (3.16)] is defined with respect to ∇̂a

and ∇̌a.

B. Bitensors on vector bundles

In this section we define the parallel propagators γ ĝA
0
A

and γ ĝAA0 , which are bitensors at x≡ γðτÞ and x0 ≡ γðτ0Þ,
and are defined with respect to a connection ∇̂a on some
arbitrary vector bundle on our manifold. We then find
expressions to relate parallel propagators that are defined
with respect to different connections.
To construct the parallel propagator, consider a basis of

vectors at x ¼ γðτÞ denoted by fðêΓÞAjΓ ¼ 1;…; dg and
the basis of one-forms dual to this basis denoted by
fðω̂ΓÞAjΓ ¼ 1;…; dg. Now, parallel transport both ðêΓÞA
and ðω̂ΓÞA along γ from γðτÞ to γðτ0Þ, with respect to the
connection ∇̂a, to yield ðêΓÞA0

and ðω̂ΓÞA0 . From these
tetrads, we can define the parallel propagators by

γ ĝA
0
A ≡Xd

Γ¼1

ðêΓÞA0 ðω̂ΓÞA; ð3:6Þ
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with the parallel propagator γ ĝAA0 defined by switching A
and A0. Note that this is not the usual parallel propagator
defined in, say, [37], as the bases are parallel transported
along a specific curve. This is the significance of the
subscripted γ that is added to the left of the g. Moreover,
this definition allows for connections that are not metric
compatible, and does not require these bases to be either
orthogonal or normalized with respect to any metric.
As the bases were parallel transported with respect to ∇̂a,

the parallel propagators satisfy

_γb∇̂bγ ĝA
0
A ¼ 0; _γb

0∇̂b0 γ ĝA
0
A ¼ 0: ð3:7Þ

A similar result holds for γ ĝAA0. Note that this means that
YA0 ðτÞ≡ XA

γ ĝA
0
A is the unique solution to the differential

equation

_γb
0∇̂b0YA0 ðτÞ ¼ 0; ð3:8Þ

with boundary condition YAðτÞ ¼ XA. A similar result
holds for YA0 ðτÞ≡ XAγ ĝAA0. Moreover, one can show that

γ ĝAA0 γ ĝA
0
B ¼ δAB; ð3:9Þ

as well as the same result with primed and unprimed indices
switched.
Now, consider two points in a convex normal neighbor-

hood, that is, in a small enough region such that there is a
unique geodesic Γðx;x0Þ satisfying

Γðx;x0Þð0Þ ¼ x; Γðx;x0Þð1Þ ¼ x0: ð3:10Þ

In this neighborhood, we can define the other bitensor
which we will be using, Synge’s world function σðx; x0Þ, as
half of the squared distance along Γðx;x0Þ:

σðx; x0Þ ¼ 1

2

Z
1

0

dλga00b00 _Γa00
ðx;x0Þ _Γ

b00
ðx;x0Þ; ð3:11Þ

where x00 ≡ Γðx;x0ÞðλÞ. The derivatives of Synge’s world
function are denoted by appending indices onto σðx; x0Þ:

∇a1 � � �∇anσðx; x0Þ≡ σan���a1ðx; x0Þ: ð3:12Þ

These indices can be indices at either x or x0. Note that (as
shown, for example, in [37])

σaðx0Þ ¼ − _Γa
ðx;x0Þ; σa

0 ðxÞ ¼ _Γa0
ðx;x0Þ: ð3:13Þ

This shall be our primary use for Synge’s world function,
since it provides a notion of separation vector between two
nearby points.
In a convex normal neighborhood, we can also define the

usual parallel propagator ĝA
0
A by

ĝA
0
A ≡ Γðx;x0Þ ĝ

A0
A: ð3:14Þ

This bitensor satisfies

σbðx0Þ∇̂bĝA
0
A ¼ σb

0 ðxÞ∇̂b0 ĝA
0
A ¼ 0; ð3:15Þ

with again a similar result holding for ĝAA0.
Now, consider the case where we have two connections,

∇̂a and ∇̌a, defined on this vector bundle. Define

ð∇̂b − ∇̌bÞXA ≡ ˆ̌CA
CbXC; ð3:16Þ

where clearly ˆ̌CA
Bc ¼ − ˇ̂CA

Bc. Note that γ ĝA
0
A satisfies

d
dτ0

ðγ ǧAA0 γ ĝA
0
BÞ ¼ −γ ǧAA0

ˆ̌CA0
C0d0 _γ

d0
γ ĝC

0
B: ð3:17Þ

Thus, γ ĝA
0
A is a solution to the following integral equation:

γ ĝA
0
B ¼ γ ǧA

0
A

�
δAB −

Z
τ0

τ
dτ00 γ

ˆ̌A A
B00 γ ĝB

00
B

�
; ð3:18Þ

where x00 ≡ γðτ00Þ and

γ
ˆ̌A A

B0 ≡ γ ǧAA0
ˆ̌CA0

B0c0 _γ
c0 : ð3:19Þ

By the same logic, we can show that

γ ĝAB0 ¼ γ ǧAA0

�
δA

0
B0 þ

Z
τ0

τ
dτ00γ

ˆ̌A A0
B00 γ ĝB

00
B0

�
: ð3:20Þ

We typically solve Eqs. (3.18) and (3.20) iteratively, either
by truncating the expansion based on a particular approxi-

mation scheme or by exploiting the fact that γ
ˆ̌A A

B0 is
nilpotent in some circumstances.
With these basic bitensors defined, we now consider

holonomies.

C. Holonomies of transport laws

In terms of bitensors, the holonomy of a connection ∇̂a
around some closed curve C is given by

CΛ̂
A
B ¼ Cĝ

A
B: ð3:21Þ

If the closed curve is only piecewise smooth, composed of
smooth paths P1;…;Pn with end points x0;…; xðnÞ, then
we write

CΛ̂
A
B ¼ Pn

ĝA
BðnÞ � � � P1

ĝB
0
B
: ð3:22Þ

In the next few sections, we will find expressions for the
holonomies for various shapes, for an arbitrary connec-
tion ∇̂a.
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1. Nongeodesic polygons

First, following [58], we show that the holonomy around
a (nongeodesic) triangle is given by expressions involving
the Riemann tensor associated with the connection on the
vector bundle. Explicitly, consider the triangle depicted in
Fig. 4, where two edges are segments of arbitrary curves γ
and γ̄ that meet at a point x≡ γð0Þ≡ γ̄ð0Þ. Join x0 ≡ γðϵÞ
and x̄0 ≡ γ̄ðϵ̄Þ by the unique geodesic between them.
Now, the holonomy around this triangle is given by

△
Λ̂A

Bðγ; γ̄; ϵ; ϵ̄Þ≡ γ ĝAĀ0 ĝĀ
0
B0 γ ĝB

0
B: ð3:23Þ

Expanding the holonomy in a Taylor series in ϵ and ϵ̄ as

△Λ̂ A
Bðγ; γ̄; ϵ; ϵ̄Þ≡

X∞
m;n¼0

ϵmϵ̄n

m!n! △ Λ̂
m;n

A
Bðγ; γ̄Þ; ð3:24Þ

we find that

△ Λ̂
m;n

A
Bðγ; γ̄Þ ¼

∂mþn

∂ϵm∂ϵ̄n Λ
A
Bðγ; γ̄; ϵ; ϵ̄Þj

ϵ¼0;ϵ̄¼0

¼ ½ð_γc0∇̂c0 Þmð _̄γd∇̂dÞnĝAB0 �x0→x: ð3:25Þ

The brackets denote coincidence limits, which are limits of
a bitensorial expression as one of the points approaches the
other. A brief review of coincidence limits is given in
Appendix B, which is based on parts of Poisson’s review
article [37]. Keeping terms to only quadratic order yields
[using the expressions for the coincidence limits of parallel
propagators from Eq. (B3)]

△Λ̂ A
Bðγ; γ̄; ϵ; ϵ̄Þ ¼ δAB −

1

2
ϵϵ̄_γc _̄γdR̂A

Bcd þOðϵ; ϵ̄Þ3;
ð3:26Þ

where R̂A
Bcd is the curvature tensor defined with respect to

the connection ∇̂a and is defined by

2∇̂½c∇̂d�XA ≡ R̂A
BcdXB: ð3:27Þ

For two connections ∇̂a and ∇̌a, their curvature tensors are
related by

R̂A
Bcd ¼ ŘA

Bcd þ 2∇̌½c
ˆ̌CAjBjd� þ 2 ˆ̌CA

E½c
ˆ̌CEjBjd�: ð3:28Þ

Note that Eq. (3.26) does not contain any acceleration terms
at this order; moreover, it reduces to the results of [58] for
the metric-compatible connection on the tangent bundle.
Now, we consider the holonomy around a square, such as

that given in Fig. 5: this square is determined by two
arbitrary curves γ and γ̄, with the pairs of initial and final
points, respectively, connected by the unique geodesics
between them. The initial points are labeled x ¼ γð0Þ and
x̄ ¼ γ̄ð0Þ, and the final points are labeled x0 ¼ γðϵÞ and
x̄0 ¼ γ̄ðϵÞ, and we assume that ϵ is small. We define two
“separation vectors”

ξaðx̄Þ≡−σaðx̄Þ¼gaāσāðxÞ; ψaðx̄;ϵÞ≡−σaðx̄0Þ: ð3:29Þ

In terms of these quantities, the holonomy around this
square is given by

□Λ̂A
Bðγ; γ̄; ϵÞ≡ ĝAĀ △ðΛ̂−1Þ ĀC̄ðγ̄;Γðx̄;xÞ; ϵ; 1ÞĝC̄C △Λ̂C

Bðγ;Γðx;x̄0Þ; ϵ; 1Þ
¼ δAB −

ϵ

2
½_γcψdðx̄; ϵÞR̂A

Bcd þ ĝAĀĝ
B̄
B _̄γ

c̄gd̄dξdðx̄ÞR̂Ā
B̄ c̄ d̄ þOðξ;ψÞ2� þOðϵ2Þ: ð3:30Þ

FIG. 5. A nongeodesic square, with two sides γ and γ̄ that are
arbitrary curves (with equal affine parameter length ϵ), and where
the other two sides are the unique geodesics between the two
initial and final points, respectively. A third unique geodesic
forms the diagonal. We denote the tangents (normalized such that
the total affine parameter lengths are 1) to these unique geodesics
at x by ξa and ψa.

FIG. 4. A nongeodesic triangle (generalizing Fig. 3 of [58]),
where the two sides γ and γ̄ are arbitrary curves (with affine
parameter lengths ϵ and ϵ̄), and where the third side is formed by
joining the two end points by the unique geodesic extending
between them.
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Note that we have traversed this loop in a way such that we
can use Eq. (3.26), which was only established with two of
the sides of the triangle being nongeodesic. First, note that
the second term within square brackets in Eq. (3.30) has the
following coincidence limit:

ĝAĀĝ
B̄
BR̂

Ā
B̄ c̄ d̄ ¼ gcc̄gdd̄R̂

A
Bcd þOðξÞ: ð3:31Þ

Next, the expansion for ψaðx̄; ϵÞ to lowest order in ϵ can be
derived by noting that ψaðx̄; 0Þ ¼ ξaðx̄Þ:

ψaðx̄; ϵÞ ¼ ξaðx̄Þ þOðϵÞ: ð3:32Þ

Plugging these expressions into Eq. (3.30) gives

□Λ̂A
Bðγ; γ̄;ϵÞ¼ δAB−

ϵ

2
ð_γcþgcc̄ _̄γc̄Þξdðx̄ÞR̂A

BcdþOðϵ2;ξ2Þ:
ð3:33Þ

2. Narrow loops

Finally, consider the holonomy about the loop in Fig. 6,
which we will denote by Λ̂A

Bðγ; γ̄; τ0Þ. This is a curve
defined by two nearby, timelike, and affine-parametrized
curves γ and γ̄, which are connected at the points γðτÞ and
γ̄ðτÞ, as well as the points γðτ0Þ and γ̄ðτ0Þ. Here, we are
explicitly using the isochronous correspondence mentioned
in Sec. II C above (see [42] for a review; we follow their
conventions and general argument), where the separation
vector connects points with equal values of affine param-
eter. For convenience, we assume that this shared affine
parameter is the proper time of both worldlines, and thus is
fixed up to an additive constant (which can be set initially
by requiring ξa _γa ¼ 0, for example).
The separation vector ξaðx̄Þ in Eq. (3.29) is now a

function of proper time along one of the worldlines, which
we will simply denote by

ξa ≡−σa½γ̄ðτÞ�; ð3:34Þ

for any τ along the worldline (note that, as usual, we
suppress the dependence of the derivative of Synge’s world
function on γðτÞ, since that is apparent from the index). We
further define

_ξa ≡ ð_γb∇b þ _̄γb̄∇b̄Þξa; ð3:35Þ

which yields, from Eq. (B2),

_ξa¼ gaā _̄γā− _γaþ1

6
Ra

cbdξ
cξdðgbb̄ _̄γb̄þ2_γbÞþOðξ3Þ:

ð3:36Þ

Inverting this equation to first order, and then plugging in
that solution to invert it to second order, we find that

_̄γā ¼ gāa

�
_γa þ _ξa −

1

6
Ra

bcdξ
bð3_γc þ _ξcÞξd

�
þOðξ3Þ:

ð3:37Þ

We now continue with the calculation of the holonomy.
For any τ0 along the worldline, and a given ϵ, we have

Λ̂A
Bðγ; γ̄; τ0 þ ϵÞ ¼ Λ̂A

Cðγ; γ̄; τ0Þ γ ĝCC0 □Λ̂C0
D0 ðγ; γ̄; ϵÞ γ ĝD

0
B.

ð3:38Þ

Taking the limit ϵ → 0, we find the following differential
equation for the holonomy of a narrow loop:

d
dτ0

Λ̂A
Bðγ; γ̄;τ0Þ

¼ Λ̂A
Eðγ; γ̄;τ0Þγ ĝEE0 γ ĝB

0
BR̂

E0
B0c0d0ξ

c0 _γd
0 þOðξ; _ξÞ2. ð3:39Þ

This differential equation can be solved iteratively. Keeping
terms at first order in ξa and _ξa, we find

Λ̂A
Bðγ; γ̄;τ0Þ−δAB

¼
Z

τ0

τ
dτ00 γ ĝAA00R̂A00

B00c00d00ξ
c00 _γd

00
γ ĝB

00
BþOðξ; _ξÞ2: ð3:40Þ

This concludes our discussion of the holonomies of
arbitrary connections, and we turn to applications of these
results for calculations of persistent observables.

IV. COMPUTATIONS OF PERSISTENT
OBSERVABLES

In this section, we provide explicit expressions for all
of the persistent observables in Sec. II, which we give
using the formalism of covariant bitensors reviewed in the

FIG. 6. Two nearby worldlines γ and γ̄, joined by unique
geodesics between the start and end points of γ and γ̄, respec-
tively. The separation vector between the two worldlines is
denoted by ξa.
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previous section. In a subsequent paper in this series, we
will give explicit expressions that are valid in particular
spacetimes, essentially by determining the values of the so-
called fundamental bitensors in terms of which the final
results of this section are given. Results that are valid,
assuming weak curvature, were given in Sec. II.
Throughout this section, we use the convention that

x≡ γðτ0Þ, x̄≡ γ̄ðτ0Þ, and in general,

xðnÞ ≡ γðτnÞ; x̄ðnÞ ≡ γ̄ðτnÞ; ð4:1Þ

where xðnÞ is x with n primes. When considering some
arbitrary τ, we also use x and x̄ for convenience.

A. Curve deviation

The original memory observable considered in [1] was
based on the evolution of the separation vector between two
nearby geodesics. In this section,we review the computation
of this separation vector in terms of the initial separation and
its derivative, as well as the accelerations of the worldlines.
This forms the basis of the curve deviation observable
introduced in Sec. II C. By Eq. (3.40), this is also necessary
to calculate the holonomy, as well as the persistent observ-
able involving a spinning particle (as we will discuss in
Sec. IV C). We carry out this calculation to second order in
ξa and _ξa.
To begin, we take another derivative of Eq. (3.37):

̈γ̄ā ¼
�
_γa þ _ξa −

1

2
Ra

bcdξ
b _γcξd

�
ð_γe∇e þ _̄γē∇ēÞgāa

þ gāa

��
δab −

1

2
Ra

cbdξ
cξd
�̈
γb þ

�
δab −

1

6
Ra

cbdξ
cξd
�̈
ξb −

1

2
ðξd _γe∇eRa

bcd þ 2_ξdRaðbjcjdÞÞξb _γc
�
þOðξ; _ξÞ3: ð4:2Þ

Using the coincidence limits of derivatives of the parallel propagators in Eq. (B3), we have that

ð_γb∇b þ _̄γb̄∇b̄Þgāa ¼ gāc

�
Rc

abd

�
_γd þ 1

2
_ξd
�
þ 1

2
_γdξe∇eRc

abd

�
ξb þOðξ; _ξÞ3: ð4:3Þ

Thus, Eq. (4.2) can be written as

̈γ̄ā ¼ gāa

��
δab −

1

2
Ra

cbdξ
cξd
�̈
γb þ

�
δab −

1

6
Ra

cbdξ
cξd
�̈
ξb

þ
�
Ra

cbd

�
_γc _γd þ 1

2
_γc _ξd þ _ξc _γd

�
þ 1

2
_γc _γdξe∇eRa

cbd −
1

2
_γcξd _γe∇eRa

bcd − _γc _ξdRaðbjcjdÞ

�
ξb
�
þOðξ; _ξÞ3; ð4:4Þ

which can be solved for ̈ξa:

̈ξa ¼ −Ra
cbd _γ

c _γdξb − 2Ra
cbdξ

b _ξc _γd −∇ðeRa
cÞbdξbξc _γd _γe

þ
�
δab þ

1

6
Ra

cbdξ
cξd
�
gbb̄ ̈γ̄b̄

−
�
δab −

1

3
Ra

cbdξ
cξd
�̈
γb þOðξ; _ξÞ3: ð4:5Þ

To solve this differential equation, we first define the
solutions to its homogeneous, linearized version, which are
given by

ξa
0 ¼ γKa0

aξ
a þ ðτ1 − τ0Þ γHa0

a
_ξa; ð4:6Þ

where γKa0
a and γHa0

a are known as Jacobi propagators
(as defined in, for example, [42]). It is conventional not to
absorb the factor of τ1 − τ0 into the definition of γHa0

a, as it
is convenient for defining the Jacobi propagators in terms

of Synge’s world function. Here, note that we are instead
defining γKa0

a and ðτ1 − τ0Þ γHa0
a to be the solutions to the

equation

D2

dτ21
Aa0

a ¼ −Ra0
c0b0d0 _γ

c0 _γd
0
Ab0

a; ð4:7Þ

with boundary conditions

γ Ka0
bjτ1¼τ0

¼ D
dτ1

½ðτ1 − τ0Þ γ Ha0
b�
���
τ1¼τ0

¼ δab; ð4:8aÞ

D
dτ1

γ Ka0
bj
τ1¼τ0

¼ ðτ1 − τ0Þ γ Ha0
b

���
τ1¼τ0

¼ 0: ð4:8bÞ

To solve Eq. (4.5) to second order, we note that we can
insert the linear solution into this nonlinear equation, which
now becomes an inhomogeneous, linear differential equa-
tion with a source term:
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̈ξa0 ¼ −Ra0
c0b0d0 _γ

c0 _γd
0
ξb

0 þ Sa
0 ½ξ; _ξ; γ̈; ̈γ̄� þOðξ; _ξÞ3; ð4:9Þ

where Sa
0 ½ξ; _ξ; γ̈; ̈γ̄� is a function of the initial ξa and _ξa. The

solution to this equation, valid to second order, is given by

ξa
0 ¼ γKa0

aξ
a þ ðτ1 − τ0Þ γHa0

a
_ξa

þ
Z

τ1

τ0

dτ2ðτ1 − τ2Þ γHa0
a00Sa

00 ½ξ; _ξ; γ̈; ̈γ̄� þOðξ; _ξÞ3:

ð4:10Þ

For brevity, we merely check whether the solution in
Eq. (4.10), which can be derived using techniques similar
to those in Sec. III B, satisfies Eq. (4.9). To verify this
solution, note that, applying the Leibniz integral rule twice,
we see

D2

dτ21

Z
τ1

τ0

dτ2ðτ1 − τ2ÞγHa0
a00S

a00 ½ξ; _ξ; γ̈; ̈γ̄�

¼ D
dτ1

½ðτ1 − τ2ÞγHa0
a00 �Sa

00 ½ξ; _ξ; γ̈; ̈γ̄�
���
τ2¼τ1

þ
Z

τ1

τ0

dτ2
D2

dτ21
½ðτ1 − τ2ÞγHa0

a00 �Sa
00 ½ξ; _ξ; γ̈; ̈γ̄�

¼ −Ra0
c0b0d0 _γ

c0 _γd
0
Z

τ1

τ0

dτ2ðτ1 − τ2ÞγHb0
b00S

b00 ½ξ; _ξ; γ̈; ̈γ̄�

þ Sa
0 ½ξ; _ξ; γ̈; ̈γ̄�; ð4:11Þ

by the boundary conditions in Eq. (4.8) and by Eq. (4.7).
Thus, we find that Eq. (4.10) gives a solution to Eq. (4.5)
for arbitrary initial conditions.
We have therefore computed the solutions to the gen-

eralization of the geodesic deviation equation (where
there are acceleration terms) to second order in the
separation and its derivative. This allows us to derive the
explicit form of the curve deviation persistent observable,
which is defined as

Δξa0CD≡ξa
0 − γga

0
a½ξaþðτ1− τ0Þ_ξa�

−
Z

τ1

τ0

dτ2

Z
τ2

τ0

dτ3 γga
0
a000 ½ga000 ā000 ̈̄γā000 − γ̈a

000 �: ð4:12Þ

Using the same notation as in Eq. (2.11), we find that

ΔKa0
b ¼ γKa0

b − γga
0
b; ð4:13aÞ

ΔHa0
b ¼ γHa0

b − γga
0
b; ð4:13bÞ

La0
bc¼−

Z
τ1

τ0

dτ2ðτ1−τ2ÞγHa0
a00 γKb00 ðbj _γd

00

×

�
∇ðe00Ra00

c00Þb00d00 _γe
00
γKc00 jcÞþ2Ra00

c00b00d00
D
dτ2

γKc00 jcÞ

�
;

ð4:13cÞ

Na0
bc ¼ −

Z
τ1

τ0

dτ2ðτ1 − τ2Þ γHa0
a00 _γ

d00
�
ðτ2 − τ0Þð∇ðe00Ra00

c00Þb00d00 þ∇ðe00Ra00
b00Þc00d00 Þ_γe00 γKb00

b γHc00
c

þ 2Ra00
c00b00d00

�
γKb00

b
D
dτ2

½ðτ2 − τ0Þ γHc00
c� þ ðτ2 − τ0Þ γHb00

c
D
dτ2

γKc00
b

��
; ð4:13dÞ

Ma0
bc ¼−

Z
τ1

τ0

dτ2ðτ1− τ2Þðτ2− τ0Þ γHa0
a00 γHb00 ðbj _γd

00
�
ðτ2− τ0Þ∇ðe00Ra00

c00Þb00d00 _γe
00
γHc00 jcÞ þ2Ra00

c00b00d00
D
dτ2

½ðτ2− τ0ÞHc00 jcÞ�
�
:

ð4:13eÞ

Again, we note that we are making the assumption that
the separation vector is defined using the isochronous
correspondence introduced in Sec. III C 2. This is in
contrast to the “normal” correspondence, where the sep-
aration vector is always orthogonal to the 4-velocity of one
of the worldlines. As was noted in Sec. II A, in the normal
correspondence, there can be a difference between the final
proper times along the worldlines (an effect which is absent
in the isochronous correspondence). However, using the
isochronous correspondence, as we have done throughout
most of this paper, does not mean that we have lost any
information: here, the difference in proper time is encoded
instead in the nonorthogonality of the final separation.

B. Holonomies

We now consider the computation of the holonomy of
transport of linear and angular momentum using Eq. (2.15).

As in Eq. (3.4), we denote by ∇ϰ a the connection on the
angular momentum bundle for arbitrary ϰ.

First, we calculate R
ϰ
A
Bcd. Note that any tensor

Zabcd ¼ Va½cWd�b, where Vab and Wab are symmetric,
satisfies

Zabcd ¼
1

2
ðVacWdb − VadWbcÞ ¼

1

2
ðVacWdb − VdaWcbÞ:

ð4:14Þ

FLANAGAN, GRANT, HARTE, and NICHOLS PHYS. REV. D 99, 084044 (2019)

084044-16



Both expressions on the right-hand side of this equation are
differences of cyclic permutations of bcd and acd, respec-
tively, so they vanish under cyclic permutation:

Za½bcd� ¼
1

3
ðZabcd þ Zacdb þ ZadbcÞ ¼ 0; ð4:15Þ

Z½ajbjcd� ¼
1

3
ðZabcd þ Zcbda þ ZdbacÞ ¼ 0: ð4:16Þ

Thus, we find that K
ϰ

abcd satisfies the first Bianchi
identity,

K
ϰ

a½bcd� ¼ K
ϰ

½ajbjcd� ¼ 0 ð4:17Þ

(note that this is true even though K
ϰ

abcd ∝K
ϰ

bacd). This
gives

2K
ϰ

a½cd�b ¼ K
ϰ

acdb þ K
ϰ

adbc ¼ −K
ϰ

abcd; ð4:18Þ
and so we find

R
ϰ
A
Cef ¼

0
B@Ra

cef−2K
ϰ
a
cef 2∇½eK

ϰ
a
f�cd

0 2δ½a½cRb�
d�efþ4δ½a½eK

ϰ
b�
f�cd

1
CA:

ð4:19Þ
Given the parallel propagators with respect to ∇ϰ a, the

generic holonomy for any value of ϰ will be

Λ
ϰ

A
Cðγ; γ̄; τ1Þ ¼

�
δac 0

0 δ½adδb�d

�
þ
Z

τ1

τ0

dτ2ξ½e
00
_γf

00�

0
B@ Ω

ϰ

PP
a
ce00f00 ðγÞ Ω

ϰ

PJ
a
cde00f00 ðγÞ

Ω
ϰ

JP
ab

ce00f00 ðγÞ Ω
ϰ

JJ
ab

cde00f00 ðγÞ

1
CAþOðξ; _ξÞ2; ð4:20Þ

where we have used Eq. (3.40) to arrive at Eq. (4.20), and we have defined

Ω
ϰ

PP
a
ce0f0 ðγÞ¼ γ g

ϰ

PP

a
a0 ½ðRa0

c0e0f0 −2K
ϰ
a0
c0e0f0 Þ γ gϰ

PP

c0
cþ2∇e0K

ϰ
a0
f0c0d0 γ g

ϰ

JP

c0d0
c�þ2 γ g

ϰ

PJ

a
a0b0 ½δa0c0Rb0

d0e0f0 þ2δa
0
e0K

ϰ
b0
f0c0d0 � γ gϰ

JP

c0d0
c;

ð4:21aÞ

Ω
ϰ

PJ
a
cde0f0 ðγÞ¼ γ g

ϰ

PP

a
a0 ½ðRa0

c0e0f0 −2K
ϰ
a0
c0e0f0 Þ γ gϰ

PJ

c0
cdþ2∇e0K

ϰ
a0
f0c0d0 γ g

ϰ

JJ

c0d0
cd�þ2 γ g

ϰ

PJ

a
a0b0 ½δa0c0Rb0

d0e0f0 þ2δa
0
e0K

ϰ
b0
f0c0d0 � γ gϰ

JJ

c0d0
cd;

ð4:21bÞ

Ω
ϰ

JP
ab

ce0f0 ðγÞ¼ γ g
ϰ

JP

ab
a0 ½ðRa0

c0e0f0 −2K
ϰ
a0
c0e0f0 Þ γ gϰ

PP

c0
cþ2∇e0K

ϰ
a0
f0c0d0 γ g

ϰ

JP

c0d0
c�þ2 γ g

ϰ

JJ

ab
a0b0 ½δa0c0Rb0

d0e0f0 þ2δa
0
e0K

ϰ
b0
f0c0d0 � γ gϰ

JP

c0d0
c;

ð4:21cÞ

Ω
ϰ

JJ
ab

cde0f0 ðγÞ¼ γ g
ϰ

JP

ab
a0 ½ðRa0

c0e0f0 −2K
ϰ
a0
c0e0f0 Þγ gϰ

PJ

c0
cdþ2∇e0K

ϰ
a0
f0c0d0 γ g

ϰ

JJ

c0d0
cd�þ2γ g

ϰ

JJ

ab
a0b0 ½δa0c0Rb0

d0e0f0 þ2δa
0
e0K

ϰ
b0
f0c0d0 � γ gϰ

JJ

c0d0
cd:

ð4:21dÞ

In most cases, we cannot analytically solve for these
parallel propagators nonperturbatively in the Riemann
tensor. The results presented in Sec. II are perturbative,
assuming the curvature is weak along the worldline. In such
a case, solutions to Eq. (3.18) can be truncated at a low
order in the Riemann tensor.

1. Affine transport holonomy

Now, we specialize to the case of affine transport. We

denote by ∇∘ a the connection on the linear and angular
momentum bundle that is used for affine transport. The
parallel propagator with respect to this connection has an

explicit solution, since the iterative solutions to Eqs. (3.18)

and (3.20) truncate by the nilpotence of γA
∘
A
B0 to yield

γg
∘ A0

A¼
0
@ γga

0
a 0

−2
R
τ1
τ0
dτ2 γg½a

0
a00 γgb

0�
a _γ

a00
γg½a

0
a γgb

0�
b

1
A; ð4:22aÞ

γg
∘ A

A0 ¼
 

γgaa0 0

2
R
τ1
τ0
dτ2 γg½aa00gb�a0 _γa

00
γg½aa0 γgb�b0

!
: ð4:22bÞ

Thus, we have that
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γg
∘ A

A0 γg
∘ C0

CR
∘
A0
C0e0f0 ¼

0
@ γgaa0 γgc

0
cRa0

c0e0f0 0

2δ½ac γgb�b0Rb0
g0e0f0

R
τ1
τ0
dτ2 γgg

0
g00 _γ

g00 2δ½a½c γgb�jb0j γgd
0
d�Rb0

d0e0f0

1
A ð4:23Þ

which yields, by Eq. (3.40) and an integration by parts,

Λ
∘
A
Cðγ; γ̄; τ1Þ ¼

0
@ Λa

cðγ; γ̄; τ1Þ 0

2
R
τ1
τ0
dτ2
R
τ1
τ2
dτ3δ½ac γgb�b000Rb000

g000e000f000 γgg
000
g00 _γ

g00 _γe
000
ξf

000
2δ½a½cΛb�

d�ðγ; γ̄; τ1Þ

1
AþOðξ; _ξÞ2: ð4:24Þ

Now, we also have that

_γa
00 ¼ γga

00
a000 _γ

a000 −
Z

τ3

τ2

dτ4 γga
00
a0000 ̈γa

0000
; ð4:25Þ

and so we find that Eq. (4.24) becomes

Λ
∘
PP

a
cðγ; γ̄; τ1Þ ¼ Λa

cðγ; γ̄; τ1Þ þOðξ; _ξÞ2; ð4:26aÞ

Λ
∘
JP

ab
cðγ; γ̄;τ1Þ¼ 2δ½acδb�e

�
γgee0 ½ðτ1− τ0Þ_ξe

0
−ξe

0 �þξe

−
Z

τ1

τ0

dτ2

Z
τ1

τ2

dτ3 γgee000
�
ge

000
ē000 ̈̄γē

000 − γ̈e
000 þ γ̈f

000
Z

τ1

τ3

dτ4 γge
000
e0000 γg

f0000
f000Re0000

f0000g0000h0000 _γ
g0000ξh

0000
��

þOðξ; _ξÞ2;

ð4:26bÞ

Λ
∘
JJ

ab
cdðγ; γ̄; τ1Þ ¼ 2δ½a½cΛb�

d�ðγ; γ̄; τ1Þ þOðξ; _ξÞ2: ð4:26cÞ

Note that the first two terms in the expression for

Λ
∘
JP

ab
cðγ; γ̄; τ1Þ are related to the displacement memory

observable, as they are written in terms of ξa
0
. The

remaining terms measure the acceleration of the worldlines
and additional time integrals of the Riemann tensor. Both

Λ
∘
PP

a
cðγ; γ̄; τ1Þ and Λ

∘
JJ

ab
cdðγ; γ̄; τ1Þ depend upon just the

usual holonomy, and therefore, they contain the same
information as the Lorentz transformation observable.

2. Dual Killing transport holonomy

The holonomy for dual Killing transport similarly has a
nonperturbative solution, because the parallel propagators
with respect to this connection are related to the Jacobi
propagators (assuming that γ is geodesic). To see how,
suppose that we have some ξa and Fab defined as tensor
fields along γ such that

YA ≡ ð ξa Fab Þ; _γb∇1=2bYA ¼ 0; ð4:27Þ

where ∇1=2a is the connection associated with dual Killing
transport. This implies ξa and Fab satisfy

_γb∇bξa ¼ 2_γbFba; ð4:28aÞ

_γc∇cFab ¼
1

2
Rd

cabξd _γ
c: ð4:28bÞ

Then we have that (as γ is geodesic)

ð_γc∇cÞð_γd∇dÞξa ¼ −Rb
cad _γ

c _γdξb: ð4:29Þ
Note that by raising a (which commutes with _γb∇b), we
obtain the linearized version of the geodesic deviation
equation. The Jacobi propagators therefore give the sol-
ution to Eq. (4.29). By using (4.7), we have

ξa0 ¼ γKa0
aξa þ 2ðτ1 − τ0Þ_γa γHa0

bFab ð4:30Þ
(this follows from the fact that gaa0 ¼ ga0b0gabgb

0
b, again a

consequence of the compatibility of the metric and the Levi-
Civita connection). Integrating Eq. (4.28b), we find that

Fa0b0 ¼ γgaa0 γgbb0Fabþ
1

2

Z
τ1

τ0

dτ2 γga
00
a0 γgb

00
b0Rc00

d00a00b00 _γ
d00ξc00 :

ð4:31Þ
Equations (4.30) and (4.31) give ξa0 and Fa0b0 as linear
functions of ξa and Fab, and we can use them to write the
parallel propagator as follows:
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γ g
1=2 A

A0 ¼
0
@ γKa0

a 1
2

R
τ1
τ0
dτ2 γKc00

aRc00
d00a00b00 _γ

d00
γga

00
a0 γgb

00
b0

2ðτ1 − τ0Þ_γ½a γHa0
b�

γg½aa0 γgb�b0 þ
R
τ1
τ0
dτ2ðτ2 − τ0Þ_γ½a γHc00

b�Rc00
d00a00b00 _γ

d00
γga

00
a0 γgb

00
b0

1
A: ð4:32Þ

It is possible to invert this matrix, but a simpler approach is to switch τ0 with τ1, which yields

γ g
1=2 A0

A ¼
0
@ γKa

a0 − 1
2

R
τ1
τ0
dτ2 γKc00

a0Rc00
d00a00b00 _γ

d00
γga

00
a γgb

00
b

−2ðτ1 − τ0Þ_γ½a0 γHa
b0�

γg½a
0
a γgb

0�
b þ

R
τ1
τ0
dτ2ðτ1 − τ2Þ_γ½a0 γHc00

b0�Rc00
d00a00b00 _γ

d00
γga

00
a γgb

00
b

1
A: ð4:33Þ

Note that, to zeroth order in the Riemann tensor, these two equations agree with Eq. (4.22).
To complete the calculation of the holonomy for dual Killing transport, we further simplify our expression for R

1=2
A
Bcd.

Note that R
1=2

PP
a
cef ¼ 0, and

2∇½eRjajf�cd ¼ ∇eRafcd þ∇fReacd ¼ ∇aRefcd; ð4:34Þ

by the second Bianchi identity, so R
1=2

PJ
a
cef ¼ 1

2
∇aRefcd ¼ 1

2
∇aRcdef. Using the same notation as in Eq. (4.20), we obtain our

final result in terms of the parallel and Jacobi propagators and the curvature along the worldline:

Ω
1=2

PP
a
ce0f0 ðγÞ¼−2ðτ1− τ0Þ

�
1

4
γKa0

a∇a0Re0f0c0d0 þ
Z

τ1

τ0

dτ2 γKg00
aRg00

h00a00b00 _γ
h00

γgb
00
b0 γga

00
½c0Rb0

d0�e0f0 þ ð½c0d0�↔ ½e0f0�Þ
�
_γc

0
γHc

d0 ;

ð4:35aÞ

Ω
1=2

PJ
a
cde0f0 ðγÞ ¼

�
1

4
γKa0

a∇a0Re0f0c0d0 þ
Z

τ1

τ0

dτ2 γKg00
aRg00

h00a00b00 _γ
h00

γgb
00
b0 γga

00
½c0Rb0

d0�e0f0 þ ð½c0d0� ↔ ½e0f0�Þ
�

×

�
γgc

0
c γgd

0
d þ

Z
τ1

τ0

dτ2ðτ1 − τ2Þ_γc0 γHg00
d0Rg00

h00c00d00 _γ
h00

γgc
00
c γgd

00
d

�
; ð4:35bÞ

Ω
1=2

JP
ab

ce0f0 ðγÞ ¼ −2ðτ1 − τ0Þ
�
1

2
ðτ1 − τ0Þ_γ½a γHa0

b�∇a0Re0f0c0d0

þ 2

�
γg½aa0 γgb�b0 þ

Z
τ1

τ0

dτ2ðτ2 − τ0Þ_γ½a γHg00
b�Rg00

h00a00b00 _γ
h00

γga
00
a0 γgb

00
b0

�
δa

0
½c0Rb0

d0�e0f0

þ ð½c0d0� ↔ ½e0f0�Þ
�
_γc

0
γHc

d0 ; ð4:35cÞ

Ω
1=2

JJ
ab

cde0f0 ðγÞ ¼
�
1

2
ðτ1 − τ0Þ_γ½a γHa0

b�∇a0Re0f0c0d0

þ 2

�
γg½aa0 γgb�b0 þ

Z
τ1

τ0

dτ2ðτ2 − τ0Þ_γ½a γHg00
b�Rg00

h00a00b00 _γ
h00

γga
00
a0 γgb

00
b0

�
δa

0
½c0Rb0

d0�e0f0

þ ð½c0d0� ↔ ½e0f0�Þ
��

γgc
0
c γgd

0
d þ

Z
τ1

τ0

dτ2ðτ1 − τ2Þ_γc0 γHg00
d0Rg00

h00c00d00 _γ
h00

γgc
00
c γgd

00
d

�
: ð4:35dÞ

Here “þð½c0d0� ↔ ½e0f0�Þ” means “add all the previous
terms in the sum, but with ½c0d0� and ½e0f0� switched.”
This concludes our calculation of the holonomy observ-

ables. In a subsequent paper in this series, we will be
considering this expression in the nonperturbative regime
in spacetimes where the Jacobi propagators are known, in
particular in plane wave spacetimes.

C. Spinning particles

We now consider the procedure outlined in Sec. II E:
an observer measures the separation ξa from an initially
comoving spinning test particle, as well as its linear
momentum pa and spin per unit mass sa. At some
later point in time, the observer performs these mea-
surements again. The persistent observables in this case
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are the differences between the initial and final
measurements.
In order to compute these observables, we need to

determine the worldline of the spinning particle. First,
note that the Mathisson-Papapetrou equations [Eq. (2.23)]
do not form a fully determined system of equations, as they
contain 13 variables (four in pā, six in jā b̄, and three in _̄γā),
but only 10 equations. To solve for all of these variables (in
particular _̄γā), we would need three more equations, which
are given by so-called spin-supplementary conditions. A
commonly used spin supplementary condition is the
Tulczyjew condition [59], which is given by enforcing

jā b̄pb̄ ¼ 0 ð4:36Þ

along the worldline, for all τ. This says that the mass dipole
moment, measured in the rest frame determined by pa, is
zero. This lends itself to a convenient definition of intrinsic
spin per unit mass:

sā ≡ −
1

2pēpē
ϵā b̄ c̄ d̄pb̄jc̄ d̄: ð4:37Þ

At this point, we refer the reader to a derivation of the
acceleration of the spinning particle that we give in
Appendix C, and merely present the results here. First,
the intrinsic spin per unit mass is merely parallel trans-
ported along γ̄ to order spin squared:

sā
0 ¼ γ̄gā

0
āsā þOðsÞ2: ð4:38Þ

Moreover, at all times τ along the worldline, the momentum
pā is related to the 4-velocity _̄γā by

pā ¼ m _̄γā þOðsÞ2; ð4:39Þ

where the mass m is constant (again to order spin
squared). Finally, the acceleration of the spinning particle
is given by

̈γ̄ā ¼ −ðR�Þāc̄ b̄ d̄ _̄γc̄ _̄γd̄sb̄ þOðsÞ2: ð4:40Þ

At this point we can compute the observables discussed in
Sec. II E. These are given in terms of the initially measured
momentum pa and intrinsic spin sa, which are given by

pa ¼ mgaā _̄γā ¼ m_γa; sa ¼ gaāsā; ð4:41Þ

assuming the observer and spinning particle are initially
comoving. For the intrinsic spin, we have that

Δsa0 ¼ ðga0 ā0 γ̄gā0 āgāa − γga
0
aÞsa þOðsÞ2

¼ γga
0
a½ðΛ−1Þabðγ; γ̄; τ1Þ − δab�sb þOðsÞ2; ð4:42Þ

because the spin is parallel transported throughout the
procedure to measure this persistent observable. Thus, a
nonzero Δsa arises because of a nontrivial holonomy.
The separation evolves using the general curve deviation

equation (4.5). Unlike in the case of the curve deviation
observable, the observer does not compare the final
separation with the predicted separation in flat space, but
instead with the initial separation

Δξa0S ≡ ξa
0 − γga

0
aξ

a: ð4:43Þ

Note that, for the momentum, Eq. (3.37) implies that

Δpa0 ¼ mð_ξa0 þ _γa
0 Þ − γga

0
apa þOðsÞ2

¼ m_ξa
0 þOðsÞ2 ¼ m

D
dτ1

Δξa0S þOðsÞ2; ð4:44Þ

which proves Eq. (2.25b); therefore, the computation of
Δpa0 is trivial once Δξa0S is known.
To compute Δξa0S , we first need to calculate the accel-

eration of the spinning test particle to the relevant order:

ga
0
ā0 ̈̄γā

0 ¼−ga0 ā0 ðR�Þā0 c̄0b̄0d̄0 _̄γc̄0 _̄γd̄0 γgb̄0 b̄gb̄bsbþOðsÞ2
¼−½ðR�Þa0c0b0d0 þξe

0∇e0 ðR�Þa0c0b0d0 þOðξ2Þ�
× ½_γc0 _γd0 þ2_γðc0 _ξd

0Þ þOðξ2Þ� γgb0eðΛ−1Þebðγ; γ̄;τ1Þsb
þOðsÞ2: ð4:45Þ

To derive Eq. (4.45), we have used the definition of the
holonomy, Eq. (3.37), and the coincidence limit of the
Riemann tensor. Now, we use Eq. (3.40) and the solution to
the geodesic equation in Eq. (4.10) to write Eq. (4.45) in
terms of ξa and sa:

ga
0
ā0 ̈γ̄ā

0 ¼ −
�
ðR�Þa0c0b0d0 γgb0b _γc0 þ

�
γKc0

c∇c0 ðR�Þa0d0b0e0 _γe0 γgb0b

− ðR�Þa0 ðc0je0jd0Þ
Z

τ1

τ0

dτ2Re00
b00f00g00 ð γge0e00 γgb00b _γc0 þ 2_γb

00
γgc

0
e00 γge

0
bÞ_γg00 γKf00

c

�
ξc þOðξ2Þ

�
sb _γd

0 þOðsÞ2: ð4:46Þ

Using Eq. (4.10), we find that our observables [using the notation in Eq. (2.25)] are given by
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Σa0
bc ¼ −

Z
τ1

τ0

dτ2 γga
0
a00Ra00

b00c00d00 γgb
00
b γKc00

c _γ
d00 ; ð4:47aÞ

ϒa0
b ¼ −

Z
τ1

τ0

dτ2ðτ1 − τ2Þ γHa0
a00 ðR�Þa00c00b00d00 _γc00 _γd00 γgb00b; ð4:47bÞ

Ψa0
bc ¼ −

Z
τ1

τ0

dτ2ðτ1 − τ2Þ γHa0
a00

�
γKc00

c∇c00 ðR�Þa00d00b00e00 _γe00 γgb00b

− ðR�Þa00 ðc00je00jd00Þ
Z

τ2

τ0

dτ3Re000
b000f000g000 ð γge00e000 γgb000b _γc00 þ 2_γb

000
γgc

00
e000 γge

00
bÞ_γg000 γKf000

c

�
_γd

00
: ð4:47cÞ

As these results are given in terms of the Riemann tensor
and the fundamental bitensors (parallel and Jacobi propa-
gators), they can be computed with relative ease in space-
times in which these bitensors are known.

V. DISCUSSION

In this paper, we have introduced quantities that we
called persistent gravitational wave observables, which
are effects that share with the gravitational wave memory
effect the feature of persistence after a burst of gravitational
waves, but which are not necessarily associated with
symmetries and conserved quantities at boundaries of
spacetime. After reviewing many of the currently known
persistent observables from the literature, we presented
three new observables:
(1) the difference between the separation of two accel-

erating curves from the result expected in flat space,
which we called “curve deviation,”

(2) the path dependence (or “holonomy”) for two differ-
ent methods for relating linear and angular momen-
tum at different points (one inspired by how linear
and angular momentum transform under a change of
origin in flat space, and the other by the relationship
between linear and angular momentum and Killing
vectors), and

(3) the difference between the initial and final separa-
tions, 4-momentum, and spin of a spinning test
particle that is initially comovingwith some observer.

These observables measure the effects of the gravitational
waves in a context where the spacetime transitions from a
flat region, to a burst of gravitational waves, and then to
another flat region.
We then provided the machinery with which one can

calculate these observables in an arbitrary spacetime (which
included reviewing the very powerful technique of covar-
iant bitensors for understanding how tensor fields evolve
along curves). Extending the results of [42,58], we used
these techniques to compute the holonomy with respect to
an arbitrary connection around a variety of curves, as well
as the evolution of the separation vector between two
arbitrary worldlines. We then used these holonomies and
the separation vector to compute our final results, which are

in Eqs. (4.13) for curve deviation, Eqs. (4.26) and (4.35) for
two different methods of relating angular momentum at
different points, and Eq. (4.47) for the observables from a
spinning test particle. Here, in order to make calculations
tractable analytically, we made the simplifying assumption
that the worldlines were close.
A strength of these results are that they are not

specialized to a particular spacetime. Our results are written
in terms of the “fundamental bitensors,” which are sol-
utions to the equations of parallel transport (the parallel
propagators) and linear geodesic deviation (the Jacobi
propagators). These bitensors are known in a handful of
spacetimes; we will use this fact in a future paper to derive
more explicit expressions in exact, nonlinear plane-wave
spacetimes, in which these bitensors are known [60]. In
spacetimes where the geodesic equation has explicit sol-
utions, these persistent observables can even be computed
without assuming that the neighboring worldlines are close.
We also presented explicit expressions assuming that the

curvature is small where these observables are being
measured, so we may linearize in the spacetime curvature.
This provides a connection to previous memory observ-
ables, which are typically discussed in this regime. These
last results, where we linearize in the Riemann tensor, are
important for discussing one possibility for measuring
these persistent observables. Our results were given only
in terms of various integrals, or alternatively, moments, of
the Riemann tensor (and its derivatives) with respect to
proper time. Moreover, in the limit where the gravitational
waves are plane waves, these linearized results simplify
even further, and they can be written entirely in terms of
one, two, and three time integrals of the Riemann tensor,
when there is no acceleration, and more time integrals,
otherwise. As gravitational wave detectors effectively
measure the Riemann tensor along their worldlines, these
integrals of the Riemann tensor are (in principle) measur-
able. This would allow for our persistent observables to be
measured indirectly.
Finally, a natural regime to study persistent gravitational

wave observables is near future null infinity; of particular
interest are their falloffs in 1=r near null infinity. Here, the
context that is relevant for studying persistent observables
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is spacetimes that possess two nonradiative regions that are
separated by a radiative region. As the two nonradiative
regions are no longer flat, it is possible that the observables
in this paper will also measure parts of the spacetime
curvature not related to the gravitational waves, and so will
not qualify as persistent gravitational wave observables in
this context. In a future paper, we will discuss the persistent
gravitational wave observables that arise near null infinity.
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APPENDIX A: DUALIZATION OF
ARBITRARY TENSORS

Following Penrose and Rindler [35,36] we define left
and right duals of tensors acting on either the first or last
two indices:

ð�ZÞabc1���cs ≡
1

2
ϵabdeZde

c1���cs ; ðA1aÞ

ðZ�Þa1���asbc ≡
1

2
Za1���as

deϵdebc: ðA1bÞ

In addition to this standard definition, they define another
type of dual, which acts on the first or last indices,

ð†ZÞabcd1���ds ≡ ϵeabcZe
d1���ds ; ðA2aÞ

ðZ†Þa1���asbcd ≡ Za1���as
eϵebcd; ðA2bÞ

and a dual acting on the first or last three indices,

ð‡ZÞab1���bs ≡
1

6
ϵcdeaZcde

b1���bs ; ðA3aÞ

ðZ‡Þa1���asb ≡
1

6
Za1���as

cdeϵcdeb: ðA3bÞ

With these definitions, we have that

��Zabc1���cs ¼−Z½ab�c1���cs ; Z��
a1���asbc ¼−Za1���as½bc�; ðA4Þ

‡†Zab1���bs ¼ Zab1���bs ; Z†‡
a1���asb ¼ Za1���asb; ðA5Þ

†‡Zabcd1���ds ¼Z½abc�d1���ds ; Z‡†
a1���asbcd¼Za1���as½bcd�: ðA6Þ

In four dimensions, these are the only useful definitions of
duals of arbitrary tensors.

APPENDIX B: COINCIDENCE LIMITS

In this appendix, we briefly review coincidence
limits and give expressions for coincidence limits that
we have used earlier in this paper. The coincidence limit of
a bitensor TA1���ArB0

1
���B0

s
(where capital letters denote arbi-

trary bundle indices) is given by

½TA1���ArB0
1
���B0

s
�
x0→x

≡ lim
x0→x

ĝB
0
1B1

� � � ĝB0
s
Bs
TA1���ArB0

1
���B0

s
; ðB1Þ

for some parallel propagator ĝA
0
A; it is trivial to show that

this is independent of the parallel propagator that is used,
which is why there is no parallel propagator on the left-
hand side. By convention, the indices inside the coinci-
dence limit that are associated with the point whose limit is
being taken (in this case x0) are treated as if they were at
the limiting point (in this case x) for expressions outside of
the brackets. We use this notation throughout, following the
review article of Poisson [37]; simple examples can be seen
below in Eq. (B2).
We now list the coincidence limits we have used in this

paper. A general procedure for computing these coinci-
dence limits is outlined in [37]. These expressions can also
be found in [58]. For Synge’s world function, the relevant
coincidence limits are

δab ¼ ½σab�x0→x ¼ −½σab0 �x0→x; ðB2aÞ

0 ¼ ½σabc0 �x0→x ¼ ½σab0c0 �x0→x; ðB2bÞ

−
2

3
RaðcjbjdÞ ¼ ½σabc0d0 �x0→x ¼ 2½σab0ðc0d0Þ�x0→x; ðB2cÞ

while for the parallel propagator, they are

0 ¼ ½∇̂cĝA
0
B�x0→x ¼ ½∇̂c0 ĝA

0
B�x0→x; ðB3aÞ

1

2
R̂A

Bcd ¼ ½∇̂c0∇̂d0 ĝA
0
B�x0→x ¼ ½∇c0∇dgA

0
B�x0→x

¼ −½∇̂c∇̂d0 ĝA
0
B�x0→x ¼ −½∇̂c∇̂dĝA

0
B�x0→x; ðB3bÞ

2

3
∇̂ðcR̂AjBjdÞe ¼ ½∇c0∇d0∇e0 ĝA

0
B�x0→x

¼ 2½∇ðc0∇d0Þ∇eĝA
0
B�x0→x: ðB3cÞ

Moreover, for any bitensor Ta1���arb01���b0s [58],

½Ta1���arb01���b0s �x0→x
¼ ½Ta0

1
���a0rb1���bs �x0→x

: ðB4Þ

All of the coincidence limits which are needed in this paper
can be derived from using this property of coincidence
limits, Eqs. (B2), and (B3).
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APPENDIX C: SOLUTION TO THE
MATHISSON-PAPAPETROU EQUATIONS

In this section, we review the solution to the Mathisson-
Papapetrou equations, to linear order in the spin, by adapting
a proof from [61]. Throughout this derivation, for conven-
ience, we denote the worldline of the spinning particle by Γ,
and use unadorned indices at ΓðτÞ (where τ is arbitrary).
To begin, define the following notions of mass and

mass ratio,

MðτÞ≡ −pa _Γa; mðτÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−papa

p
; ðC1Þ

μðτÞ≡MðτÞ=mðτÞ; ðC2Þ

and the “dynamical” 4-velocity

Ua ≡ pa=mðτÞ: ðC3Þ

The definition of intrinsic spin per unit mass in Eq. (4.37)
obeys the equation

sapa ¼ 0: ðC4Þ

By the Tulczyjew condition, sa and pa are equivalent
to jab, as

ϵabcdpcsd ¼ −
1

2
ϵdabcUcϵdefgUejfg

¼ 3U ½ajbc�Uc

¼ −jab: ðC5Þ

Thus, we have that Eq. (2.23) can be rewritten as

_Ua ¼ −½ _mðτÞ=mðτÞ�Ua þ ðR�Þabcd _ΓbUcsd; ðC6aÞ

_sa ¼ −½ _mðτÞ=mðτÞ�sa þ UaðR�Þbcdesb _ΓcUdse; ðC6bÞ

where we have used Eq. (C5) and the orthogonality of Ua

and _Ua. On contracting the first equation with pa, we obtain

_mðτÞ ¼ −ðR�Þabcdpa _ΓbUcsd; ðC7Þ

so the second equation reads

_sa ¼ 2sðaðR�ÞbcdeUbÞ _ΓcUdse: ðC8Þ

Now, we suppose that sa is initially small, so we can
linearize in it. Because its derivative is also small, in fact
Oðs2Þ, we can linearize in sa along the entire worldline of
the particle. Using Eq. (2.23b), as well as the derivative of
the Tulczyjew condition, we have that

_Γa ¼ μðτÞUa þ ϵabcd _pbUcsd

¼ μðτÞUa þOðs2Þ
¼ Ua þOðs2Þ; ðC9Þ

where in the second line we have used Eq. (2.23a) and in
the third line we have used the fact that μðτÞ is set by
normalizing _Γa _Γa ¼ UaUa ¼ −1. From Eq. (C7), we there-
fore have that

_mðτÞ¼−mðτÞðR�ÞabcdUaUbUcsdþOðs2Þ
¼Oðs2Þ: ðC10Þ

Putting together Eqs. (C6a), (C9), and (C10), we find that
the acceleration of the spinning particle is given by

Γ̈a ¼ −ðR�Þacbd _Γc _Γdsb þOðs2Þ: ðC11Þ

APPENDIX D: ALGEBRAIC DECOMPOSITION
OF HOLONOMIES

In this section, we present a method of reducing the
holonomy observable in Sec. II D into more manageable
pieces. Our method is purely algebraic and applies to
general matrices on the linear and angular momentum
bundle. Consider first any matrix AA

B, which we break into
components as in Eq. (3.3). We now perform an algebraic
decomposition of each of these pieces:

A
PP

a
b ≡ A

½PP�
a
b þ A

hPPi
a
b þ

1

4
A
PP
δab; ðD1aÞ

A
PJ

a
bc ≡ 2A

PJ
½bδac� þ ð † A

‡PJ
Þ abc þ A

hPJi
a
bc; ðD1bÞ

A
JP

ab
c ≡ 2A

JP
½aδb�c þ ð † A

‡JP
Þ abc þ A

hJPi
ab

c; ðD1cÞ

A
JJ

ab
cd≡2δ½a½cA

JJ
b�
d� þ A

½JJ�
ab

cdþ A
hJJi

ab
cdþ A

�JJ
ϵabcd: ðD1dÞ

We also decompose A
JJ

a
b in the second-to-last line as

A
JJ

a
b ≡ A

½JJ�
a
b þ A

hJJi
a
b þ

1

4
A
JJ
δab:

These algebraically irreducible pieces have the following
properties:
(1) A

½PP�
a
b and A

½JJ�
a
b are antisymmetric, and have 6

independent components each;
(2) A

hPPi
a
b and A

hJJi
a
b are symmetric and trace-free, and

have 9 independent components each;
(3) A

hJPi
ab

c and A
hPJi

a
bc are trace-free on all indices and

satisfy
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A
hPJi ½abc�

¼ A
hJPi ½abc�

¼ 0; ðD2Þ

implying they have 16 independent compo-
nents each;

(4) A
½JJ�

ab
cd is trace-free on all indices and antisymmetric

on interchange of the first two and last two indices,
so it has 9 independent components; and

(5) A
hJJi

ab
cd is trace-free on all indices, symmetric on

interchange of the first two and last two indices, and
satisfies

A
hJJi ½abcd�

¼ 0; ðD3Þ

giving it 10 independent components.
The following results show how to construct the algebrai-
cally irreducible pieces from the full matrix AA

B:

A
½xx� ab

¼ A
xx

½ab�; ðD4aÞ

A
xx
¼ A

xx
a
a; ðD4bÞ

A
hxxi ab

¼ A
xx

ðabÞ −
1

4
gabA

xx
; ðD4cÞ

A
JJ

a
b ¼ A

JJ
ac

bc þ
1

6
A
JJ

cd
cdδ

a
b; ðD4dÞ

where x is either P or J,

A
PJ

a ¼ −
1

3
A
PJ

b
ba; ðD5aÞ

A
JP

a ¼ −
1

3
A
JP

ab
b; ðD5bÞ

A
‡xy a

¼ ð ‡A
xy
Þ a; ðD5cÞ

A
hPJi

a
bc ¼ A

PJ
a
bc − A

PJ
½bδac� þ ϵabcd A‡PJ

d; ðD5dÞ

A
hJPi

ab
c ¼ A

JP
ab

c − A
JP

½aδb�c þ ϵabcd A‡JP
d; ðD5eÞ

where x ≠ y is either P or J, and

A
½JJ�

ab
cd ¼

1

2
ðA
JJ

ab
cd − A

JJ
cd

abÞ − 2δ½a½c A½JJ�
b�
d�; ðD6aÞ

A
�JJ

¼ −
1

24
ϵabcdA

JJ
abcd; ðD6bÞ

A
hJJi

ab
cd ¼

1

2
ðA
JJ

ab
cd þ A

JJ
cd

abÞ − 2δ½a½c A½JJ�
b�
d�

−
1

2
δ½a½cδb�d�A

JJ
− A

�JJ
ϵabcd: ðD6cÞ

There are two main uses of this decomposition. The first
is that many of these pieces have a physically relevant
meaning. For example, assuming that Jab ¼ 0, then A

½PP�
a
b,

A
hPPi

a
b, and A

hPPi
can be understood as an infinitesimal

rotation, shear, and expansion of Pa, respectively (the latter
two transformations change the rest mass PaPa). As
another example, A

JP
a is the term that contributes to the

change in Jab in flat spacetime from a change of origin.
The second main use of this decomposition is that certain

of these irreducible pieces may vanish for particular
matrices; this could make it easier to compute the number
of independent components that these matrices have. For
example, in the case where AA

B ¼ δAB − Λ
∘
A
B, we can

easily see from Eq. (4.24) that the only nonzero pieces
are A

½PP�
a
b ¼ A

½JJ�
a
b and A

JP
a; thus, the holonomy has

only 10 independent components. Similarly, if we set

AA
B ¼ R

ϰ
A
Bcd _γ

c _̄γd (an infinitesimal version of the holon-
omy for arbitrary ϰ), we can easily show from Eq. (4.19)

and the symmetries of K
ϰ

abcd in Eq. (4.17) that

A
JP

ab
c ¼ 0; ðD7aÞ

A
PP

¼ A
JJ

¼ A
�JJ

¼ 0; ðD7bÞ

A
‡PJ

a ¼ 0: ðD7cÞ

This matrix then can have at most 69 independent compo-
nents (it has fewer, but the algebraic decomposition only
gives us an upper bound). For the general case of the
holonomy for arbitrary ϰ around a narrow loop, the
algebraic decomposition gives no additional information
about the number of independent components.
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