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The large-j asymptotic behavior of the four-dimensional spin foam amplitude is investigated for the
extended spin foam model (Conrady-Hnybida extension) on a simplicial complex. We study the most
general situation in which timelike tetrahedra with timelike triangles are taken into account. The large-;
asymptotic behavior is determined by the critical configurations of the amplitude. We identify the critical
configurations that correspond to the Lorentzian simplicial geometries with timelike tetrahedra and
triangles. Their contributions to the amplitude are asymptotic phases, whose exponents equal the Regge
action of gravity. The amplitude may also contains critical configurations corresponding to nondegenerate
split signature 4-simplices and degenerate vector geometries. But vertex amplitudes containing at least one
timelike and one spacelike tetrahedra only give Lorentzian 4-simplices, while the split signature or

degenerate 4-simplex does not appear.
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I. INTRODUCTION

Spin foam models arise as a covariant formulation of loop
quantum gravity (LQG); for a review, see [1-5]. A spin foam
can be regraded as a Feynmann diagram with 5-valent
vertices, corresponding to quantum 4-simplices, as building
blocks of the discrete quantum spacetime. The boundary of a
4-simplex contains five tetrahedra. As one of the popular
spin foam models, the Lorentzian Engle-Pereira-Rovelli-
Livine/Freidel-Krasnov (EPRL/FK) model comes with a
gauge fixing within each tetrahedron such that in the local
frame the timelike normal vector of the tetrahedron reads
u = (1,0,0,0) in a4D Minkowski spacetime with signature
(—1,1,1,1), known as the “time gauge.” As a result, this
model is subject to the restriction that tetrahedra and
triangles are all spacelike [6], such that the tetrahedra lives
in a Euclidean subspace. As a result, such spin foam models
only correspond to a special class of 4D Lorentzian
triangulations. However, in the extended spin foam model
by Conrady and Hnybida, some tetrahedron normal vectors
are chosen to be spacelike u = (0,0,0, 1). As a result, the
model contains timelike tetrahedra and triangles which live
in 3D Minkowski subspaces [7-9].

The semiclassical behavior of spin foam models is
determined by its large-j asymptotics. Recently there have
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been many investigations of large-j spin foams, in par-
ticular, the asymptotics of EPRL/FK model [10-18], and
models with the cosmological constant [19,20]. It has been
shown that, in large-j asymptotics, the spin foam amplitude
is dominated by the contributions from critical configura-
tions, which gives the simplicial geometries and discrete
Regge action on a simplicial complex. The resulting
geometries from the above analysis only have spacelike
tetrahedra and spacelike triangles. Recently, the asymp-
totics of the Hnybida-Conrady extended model with a
timelike tetrahedron was investigated in [21]. The critical
configurations of the extended model give simplicial
geometries containing timelike tetrahedra. But the limita-
tion is that all the triangles are still spacelike within each
timelike tetrahedron.

In this paper, we extend the semiclassical analysis of the
extended model to general situations, in which we take into
account both timelike tetrahedra and timelike triangles. Our
work is motivated by the examples of geometries in
classical Lorentzian Regge calculus, and their convergence
to smooth geometries [22-24]. In all examples, the Regge
geometries contain timelike triangles. In order to have the
Regge geometries emerge as critical configurations from
spin foam model, we have to extend the semiclassical
analysis to contain timelike triangles.

In our analysis, we first derive the large-j integral form
of the extended spin foam model with coherent states for
timelike triangles. The large-j asymptotic analysis is based
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on the stationary phase approximation of the integral. The
asymptotics of the integral is a sum of contributions from
critical configurations.

Before coming to our main result, we would like to
mention some key assumptions for the validity of the result:
The following results are valid when we assume every
timelike tetrahedron contains at least one spacelike and one
timelike triangle. This is the case in all Regge geometry
examples mentioned above. Our results also apply to some
special cases when all triangles in a tetrahedron are time-
like. Moreover, all tetrahedra in our discussion are assumed
to be nondegenerate. Here we do not consider the critical
configurations with a degenerate tetrahedron. Finally, the
Hessian evaluated at every critical configuration is assumed
to be a nondegenerate matrix.

The main result is summarized as follows: First, for a
single 4-simplex and its vertex amplitude, it is important to
have boundary data satisfy the length matching condition
and orientation matching condition. Namely, (1) among
the five tetrahedra reconstructed by the boundary data (by
the Minkowski theorem), each pair of them are glued with
their common triangles matching in shape (matching their
three edge lengths), and (2) all tetrahedra have the same
orientation. The amplitude has critical configurations
only if these two conditions are satisfied, otherwise the
amplitude is suppressed asymptotically. The critical con-
figurations have geometrical interpretations as geometrical
4-simplices, which may generally have one of three
possible signatures: Lorentzian, split, or degnerate.

(i) When the 4-simplex has Lorentzian signatures: The
contribution at the critical configuration is given by a
phase, whose exponent is the Regge action with a
sign related to orientations, i.e., the vertex amplitude
gives asymptotically

A, ~ N e + N_e 5 (1.1)
up to an overall phase depending on the boundary
coherent state. The Regge action in the 4-simplex
reads Sy = ) A0, with Ay the area of triangle f.
0 relates to the dihedral angle ®; by 0, =7 — ©,.
The area spectrum is different between timelike and
spacelike triangles in a timelike tetrahedron.

ﬁ
A, = 2
! { YJ f
ny € Z, satisfies the simplicity constraint ny = ys;
where s, € R, labels the continuous series irreps of
SU(L,1). j; € Z/2 labels the discrete series irreps
of SU(1,1). N, are geometric factors that depend on
the lengths and orientations of the reconstructed
4-simplex.
(ii) The reconstructed 4-simplices have split signatures:
The vertex amplitude gives asymptotically

timelike triangle
e IAEE ()
spacelike triangle

A, ~ N, el 'Ss + N_e7r"'Ss (1.3)
up to an overall phase. Here Sy, = > As0; where
0 is a boost dihedral angle.

(iii) The reconstructed 4-simplices are degenerate (vector
geometry) and there is a single critical point. The
asymptotical vertex amplitude is given by a phase
depending on the boundary coherent states.

It is important to remark that for a vertex amplitude con-
taining at least one timelike and one spacelike tetrahedron,
critical configurations only give Lorentzian 4-simplices,
while the split signature and degenerate 4-simplex do not
appear. The last two cases only appear when all tetrahedra
are timelike in a vertex amplitude. The situation is similar
to the Lorentzian EPRL/FK model, where the Euclidean
signature and degenerate 4-simplex appear because all
tetrahedra are spacelike.

Our analysis is generalized to the spin foam amplitude
on a simplicial complex K with many 4-simplices. We
identify the critical configurations corresponding to sim-
plicial geometries with all 4-simplices being Lorentzian
and globally oriented. The configurations come in pairs,
corresponding to opposite global orientations. Each pair
gives the following asymptotic contribution to the spin
foam amplitude (up to an overall phase)

N_ eS¢ + N_e 5 (1.4)

where

Sc= Y Argr+ Y A0 +pm) (L3

f bulk f boundary

is the Regge action on the simplicial complex, up to a
boundary term with p, € Z (p; is the number of
4-simplices sharing f minus 1). The additional boundary
term p A,z does not affect the Regge equation of motion.
Here the simplicial geometries and Regge action generally
contain timelike tetrahedra and timelike triangles. & is the
deficit angle. &, and 60, at timelike triangles are given by

£f=27z—Z®f(v), 0, :n—ZGf(v). (1.6)
f f

O (v) is the dihedral angle within the 4-simplex at v. It is a
rotation angle between spacelike normals of tetrahedra,
because the tetrahedra sharing a timelike triangle are all
timelike.

To obtain (1.4), we have assumed each bulk triangle is
shared by an even number of 4-simplices. This assumption
is true in many important examples of classical Regge
calculus.

This paper is organized as follows. In Sec. II, we write
the coherent states for timelike triangles in large-j approxi-
mation and express the spin foam amplitude in terms of the
coherent states. In Sec. III, we derive and analyze the
critical equations. The critical equations are reformulated in
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a geometrical form for a timelike tetrahedron containing
both spacelike and timelike triangles. Then in Sec. IV, we
reconstruct nondegenerate simplicial geometries from criti-
cal configurations. In Sec. V, the critical configurations for
degenerate geometries are analyzed. Finally, in Sec. VII, we
derive the difference between phases evaluated at pairs of
critical configurations corresponding to the oppositely
orientated simplicial geometries.

I1. SPIN FOAM AMPLITUDE IN TERMS OF
SU(, 1) CONTINUOUS COHERENT STATES

The spin foam models are defined as a state sum
model over the simplicial manifold X and its dual, which
consists of simplices o, tetrahedra z,, triangles f, edges,
and vertices (v, e, and f are labels for vertices, edges, and
faces on the dual graph, respectively). A triangulation is
obtained by gluing simplices ¢ with pairs of their bounda-
ries (tetrahedrons 7). The phase space associated with
manifold K is
Py = T*SL(2,C)E, (Z}J, hy) € T*SL(2,C) (2.1)
for a Lorentzian model, where L is the number of triangles,
h; € SL(2,C) is the holonomy along the edges, and

¥/ € 8l(2,C) is its conjugate momenta. s can be
decomposed as

hf = H YGevGve'

vCof

(2.2)

where g,, € SL(2,C) and g, = g,,~". T}/ is subject to the
simplicity constraint

Y
14y

() (1 =y%)Zs;,) =0 (2.3)

where u, is a 4-normal vector associated to each tetrahe-
dron ¢,, y is areal number known as the Immirizi parameter,
and * is the Hodge dual operator. Geometrically, the
simplicity constraint implies that each triangle f in tetra-
hedron ¢, is associated with a simple bivector

/4

By =—"—
f 1+y2

(1 =y%)Zy. (2.4)

The state sum is defined over all the quantum states of
the physical Hilbert space on a given /C, given as
Z(IC) = Z Hﬂf(‘,f)HAv(Jf’ ie)'
J f v

(2.5)

AK) =Y T w0y /§ e [Td0.. 1] /S AN (¥, (Nep) DO (G0, 00) [y, (N rp)).
o f ' e (e.f)

Here, J = ;'f represents the combination of labels of the
SL(2,C) irreps associated to each triangle. i, is the
intertwiner associated with each tetrahedron

ie (S IHVG[VJ] ® ® VJ4] (26)

which impose the gauge invariance. The vertex amplitude
A,(Jy.i,) associated with each 4-simplex o, captures the
dynamics of the model, while the face amplitude (/) is a
weight for the J sum.

Usually a partial gauge fixing is taken to the above
models, which correspond to pick a special normal u for
all of the tetrahedra V,,u, = u. As a result, the inter-
twiners associated with each tetrahedron defined above are
replaced by the intertwiners of the stabilizer group H € G.
There are two different gauge fixings:

(i) u=(1,0,0,0), H= SU(2), EPRL/FK models.

(i) u=(0,0,0,1), H=SU(1,1), the Conrady-

Hnybida extension.
which, after imposing the quantum simplicity constraint
(2.3), lead to the following conditions [6,7,25]:
(i) u=(1,0,0,0), spacelike triangles

p=yn,  n=j (2.7)
(ii)) u = (0,0,0,1), spacelike triangles
p=yn, n=j (2.8)

(iii)) u = (0,0,0,1), timelike triangles

s :%\/nz/yz -1. (29)

Here (p € R,n € Z/2) are the labels of SL(2,C) irreps,
Jj € N/2 is the label of SU(2) irreps or the SU(1,1) discrete
series, and s € R is the label of the SU(1, 1) continous
series, and we will give a brief introduction of SU(1,1) and
SL(2, C) representation theory later. As a result, the area
spectrum is given by

p=-nfy,

% timelike triangle
Ap=1q2 SRR (200
vjr spacelike triangle

The spin foam vertex amplitude can be expressed in the
coherent state representation:

(2.11)
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Here N is the unit vector in a sphere or hyperboloid
which labels the coherent states |¥,,) of SL(2,C) in the
unitary irrep H, ). By SU(1,1) the decomposition of the
SL(2, C) unitary irrep, the SL(2, C) irrep is isomorphic to a
direct sum of irreps of SU(1,1). The area of timelike
triangles is related to SU(1,1) spin s and the Immirzi
parametery by Ay =y s% + 1/4, which is consistent with
the spectrum from a canonical approach [7,26]. However,
the solution of the quantum simplicity constraint (2.3) on
timelike triangles that induced a Y map where the physical
Hilbert space H € H,, is isomorphic to the continuous
series of SU(1,1) with spin s fixed by (2.9). As a result, the
area spectrum is now given by

n.
Af:y«/s2+1/4:7f

which is quantized.

In the following, we first give a brief introduction of the
SU(1,1) and SL(2, C) representation theory. Then we write
the SL(2,C) states explicitly using continuous SU(1, 1)
coherent states in terms of spinor variables. Finally, we
derive the integral from of the spin foam amplitude on
timelike triangles with a spin foam action.

(2.12)

A. Representation theory of the SL(2,C)
and SU(1, 1) groups

The SL(2, C) group has six generators J' and K’ with
commutation relation

07 = el J% I K] = €] KX,
(K, K] = =€l J-. (2.13)

The unitary representations of the group are labeled by
pairs of numbers (p € R,n € Z,) from the two Casimirs

- o d 1
C, =2(*-K%) =5 =p*=4)
C, = —4J - K = np. (2.14)

The Hilbert space H,, ) of unitary irrep of SL(2, C) can be

represented as a space of homogeneous functions
F:C?\{0} — C with the homogeneity property
F(ﬂZhﬁZz) —_ /}ip/2+n/2—1ﬁ*i/)/2—n/2—1F(Zl’ Zz)- (2'15)
The inner product in M, ,) is given by
(FlF) = [ sl Re)  @16)
1

where 7z: C*\{0} —» CP,. w is the SL(2,C) invariant
2-form defined by

= % (ZZdZI - ZleQ) AN (ngZl - ZleQ) (217)

SU(1,1) group is a subgroup of SL(2, C) with generators
F=(B K K*. Fand G=iF = (K3 —J',—J?) trans-
form as Minkowski vectors under SU(1,1). The Casimir
reads Q = (J3)? — (K')? — (K,)?. The unitary representa-
tion of the SU(l,1) group is usually built from the

eigenstates of J3 which are labeled by j, m:

<Jm‘Jm/> = Sy’ (218)
where m is the eigenvalue of J° and j is related to the
eigenvalues of the Casimir Q.

The unitary irrep of SU(1,1) contains two series: the
discrete series and continuous series. For the discrete series,
one has

1 3
ith j=—-—=,-1,—5,....
with 5 5

(2.19)

Qljm) = j(j+ 1)|jm),

The eigenvalue m of J3 takes the values

m=j,j—1j-2...
(2.20)

m=—j,—j+1,—j+2.... or

The Hilbert spaces of spin j are denoted by Df with
m = 0. For the continuous series, Q takes the continuous
value

Qljm) = j(j + 1)|jm) (2.21)
where j = —1/2 + is and s is a real number s € R ;. Thus,
in the continuous case, we can use s instead of j to
represent the spin. The eigenvalues m takes the values

1 3
m=4+—,+—,....

=0,£1,%£2,...
m or > 5

(2.22)

The irreps of this series are denoted by C¢ where
e =0,1/2 corresponds to the integer m and half-integer
m, respectively.

Instead of |jm), one may also choose the generalized
continuous eigenstates |jlc) of K! as the basis of the irrep
Hilbert space [27]:

(A6 | jac) = 8(A—X)8,y (2.23)
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where ¢ = 0, 1 distinguish the twofold degeneracy of the
spectrum and 4 here is a real number. For continuous series
irreps, Casimir Q takes

Oljta) = it + Vlite) ==+ 3 ) ide). (224

B. Unitary irreps of SL(2,C) and the decomposition
into the SU(1, 1) continuous state

The Hilbert space H,, can be decomposed as a
direct sum of irreps of SU(1,1). The decomposition can
be derived from the homogeneity property and the
Plancherel decomposition of SU(1,1). As shown in [28],
the functions F in the SL(2,C) Hilbert space satis-
fying (2.15) can be described by pairs of functions
f*:SU(1,1) » C,a = +1 via

F(z1,20) = Va(alz, 2)) P77 f4(v* (21, 22)),  (2.25)
where v* is the induced SU(1,1) matrix
| <Z1 zz>’ g1
VeIla (2.26)

-
BT - T
—(z,z) 2 2

with (z,z) = 77632 = Z,2; — %22, being the SU(1,1) invari-
ant inner product. Here «a is a signature

Lzl >z
a:{ al > lzal -
-1zl <z
Then H(,, is isomorphic to the Hilbert space

L?(SU(1,1)) @ L?>(SU(1,1)) with the inner product

(HADIFE 1) Z/dvf“(v fa) (228)

where dv is the SU(1,1) measure.
The function f in SU(1,1) continuous series representa-
tions with a continuous basis reads

(1) = { V2j (D] ), (0(2)),0),  a=1 229)
" V10,0, ,,(0(2). a=-1"

Notice that here we assume s # 0. D{;1 , 1s the Wigner matrix
with mixed bases (2.18) and (2.23)
D},;,(v) = (j.m|v(z)]j. 4 0). (2.30)

Recall the quantum simplicity constraint (2.9),

1
p=-nly, s:E\/nz/yz—l. (2.31)
Asymptotically, when s > 1, we have
pr—2s~—" (2.32)
14

Since n is discrete, s and p are also discrete. Using the
representation matrix of the continuous series of SU(1,1),
and some transformations of the hypergeometric function
and asymptotic analysis, we prove that when n > 1 and
A = —s (the detailed derivation is shown in Appendix A),

1
D], (v) = ———
sly + 3(210)|
~ i vy — 7—is W —5—is
X Tja
() (55)
(B (EIE) Y
V2 V2
where \ﬁTj =2 Sn/2 M/Tia are some phases:

TiT_i: 1 /2.1 The detailed definitions of S£ /2ms0 and
7', are given in (A8) and (A46).

The m = —n/2 case in (2.29) can be obtained by the
relation

D% ,(v) = =(=1)%e7*" D% (D). (2.34)
When a = 1, we would like to write elements of v* €

SU(1, 1) introduced in (2.26) as

vy -0y  (Z.1) vty (z,15)
V2 _\/<z,z>’ V2 (z.7) (2:35)
where
L
f =z = (L) @)

Notice that (I3, [) = (I5.1l5) = 0, (I5. 1) = 1; thus, they

form a null basis in C?. Similarly, for @ = —1, we have
V2 —(z.2) V2 V=2

'Here we ignore the regulator in (A43) for the zero points of
|y + (9, v,)| since it will appear naturally as the integration
contribution from this 1/2 singularity in the inner product. One
can check Appendix A for details.

084040-5



HONGGUANG LIU and MUXIN HAN PHYS. REV. D 99, 084040 (2019)

With this notation, we finally obtain

(o) \/"an/2+a+1
F—s,d,a(Z) —
Vsva(z,z)y/|aly —i)(z,2) +2ia(z. ;) (I . 2)]
i ip/2+is((]1+ = <Z l+> : 2l ip/2—=is( (1= 3\ (5 ]—\)is <Z’16> 2
x (T (ale.2)) P20 (15, 2) (2 1) (72 ) = Flo(alz, )20 (g 2) (2 ) (220 ) 7). (2.38)
<107 Z) <10vZ>
One can check the homogeneity property (2.15):
F(Az) = /1”’+iﬂ/2‘1/_1‘m+ip/2‘1F(z). (2.39)

The coherent state is built from the reference state A = —s, and we choose ¢ = 1, according to [8]

) () — plon) (5) P \/Egm _soq A
a0 = PO = =9 + 3 P 2]
" <Tj+1<z’Z>""/2*“<<l*,z><z, z+>>‘”<§fifzi>2—T’;1<z,z>fﬂ/2-“<<z-,z><z, z->>“(<z’ lz>>) (2.40)

where § € SU(1,1), and I* = §~'"[F is defined though

(05.92) = (77", 2) = (1I%.2). (2.41)

C. Spin foam amplitude

Now we can write down explicitly the inner product between the coherent states appearing in the amplitude (2.11) by
inserting (2.40) and using (2.16):

P n (pyn P (psny)
(73| Dr) (g, geb)l‘l’gcﬂsf Z / ., ng&(; (9,020 ) Y5050 (GerZur)
w
i (Npye Ny Ny Ny ) (242)
CP/{Z2,2)=0 Nyefllye' f

where N are some normalization factors, and @ is the SL(2, C) invariant measure defined in (2.17). The exponents read

S?}fﬂ: = Sve’fﬂ: - S'uef:tv Svfxi = Sbe’fﬁ: - Svef:F (243)
with
<Z’L€f le > . .
Svefi =Sy ylnuif—; + iln <Zvefs lgif><lztf’ Zvef> + 1(_1 + 1) In <Zvefv Z1)ef> (244)

where Z,.; = gleZ, /- I;; here is defined as I* = v(N,,)~'"lg with [ defined in (2.36), and v(N,,) € SU(1, ) which
encodes the unit normal. (Z,, ¢, Z,. ) has the same sign as (Z,.r,Z,.s). The integrand is invariant under the following
gauge transformations:

Gve = GvYve» va - Avf(ngf)_lzvf (245)
gve - Svegve’ SUL’ = :tl (2.46)
Gre = GueVes Ly = vl (2.47)

where g, € SL(2,C), », € SU(1, 1), and 4,; € C\{0}.

084040-6



ASYMPTOTIC ANALYSIS OF SPIN FOAM AMPLITUDE ...

PHYS. REV. D 99, 084040 (2019)

It is worth pointing out that both S,,; and S, are
purely imaginary, and they are all proportional to s, which
will be uniform scaled later to derive the asymptotics. The
real valued function % is given by

2z f><Z f,l+>
oey = |<Zuef’Zvef>|\/’7 -1+ ef<ZU€f - v;> ef
vefs Lye

(2.48)

hyes can be 0 when we integrate over z on CP; and
SL(2, C) group elements g in (2.11), and the zeros of & are
exactly the points where we define the principle value, i.e.,
at (Z,Z) = 0. However, as shown in Appendix B, the
singularities due to A are of half order; thus, the final
integral remains finite at these points.

ITI. ANALYSIS OF CRITICAL POINTS

As we show above, the actions S, ¢, and S, 7., are purely
imaginary, and they are proportional to s;. Thus, we can
use stationary phase approximation to evaluate the ampli-
tude in the semiclassical limit where s is uniformly scaled
by a factor A — oo. Note that the denominator % defined by
(2.48) in (2.42) contains a 1/2 order singular point at
(Z,Z) = 0, as shown in Appendix B. Then the integral is of
the following type:

1
I= [ dx ASR)., 3.1
=t (1)

Here g is an analytic function which does not scale with A.
There are two different asymptotic equations for such a
type of integral according to the critical point x,. located
exactly at the branch point x, or away from it. According to
[29], if x,. is located exactly at x(, the leading order
contribution will locate at the critical points (which is
also the branch points), and the asymptotic expansion is
given by

in(u—2)/8 2
e
I~ glx) (

1/4
r(3/4) A|detH(xC)|) e (32)

where H(x.) is the Hessian matrix at x., and u =
sgndet H(x,).

As we explain in the following sections, the critical
points of Eq. (2.42) are always located at the branch points,
when every tetrahedron containing the timelike triangle f
also contains at least one spacelike triangle. It is quite
generic to have every tetrahedron contain both timelike and
spacelike triangles in a simplicial geometry. In addition, in
case that we consider tetrahedra with all triangles timelike,
for a single vertex amplitude, the critical point is again
located at the branch points, when the boundary data give
the closed geometrical boundary of a 4-simplex (i.e., the

tetrahedra at the boundary are glued with shape matching).
We do not consider the possibility other than (3.2).

A. Equation of motion

Since both S, and S, are purely imaginary, their
critical points or, namely, critical configurations, are
solutions of equations of motion. The equations of motion
are given by the variations of S with respect to spinors z,
SU(1,1) group elements v, and SL(2, C) group elements g.

Before calculating the variation, we would like to
introduce a decomposition of spinor Z. We first introduce
following lemmas:

Lemma IIL.1: Givenaspecific /" satisfying (I*, ") = 0,
there exists 1, s.t. <l+,7‘> =1, (7‘,7‘) = 0. For two ele-
ments 71_ and 75 satisfying the condition, they are related by

Ir =1; +iglt,  n€ER. (3.3)

This is easy to proof since (I~ +inl*, 1~ +inlt) =
(Y 4+ (05,5 —ig(it, T7) +ig(I=, It) and (I, T+
gl = (1", 17) +in(I*, It).

Lemma IIL2: For a given [* and [~ defined by
Lemma IIL1, /T and I~ form a null basis in two-
dimensional spinor space.

This lemma is proved by using the fact that given /" and
I, there exists a SU(1,1) element §, such that [T = glg and
I~ = gly, and the fact that I and I5 forms a null basis.

With Lemma II1.2, for a given [T or [~, we have

Theorem IIL3: For a given /© and [~ defined by
Lemma IIL.1, spinor Z,,, always can be decomposed as

Zvef = Z:L'ef(zjf =+ aveflzztf) (34)
where . € C and a,,; € C.
At the vertex v, from the action S,,r, (S,.r-), we only

have It (I7) entering the action; thus, we can choose
arbitrarily I7, . to form a basis. By Lemma IIL1, we can

always write I}, =TT, +iS(a,ep) 15 sit.,

Zvef = é’vef(li!:ef + m(“nef)&f)' (35)
J(a) is basis dependent. It is easy to check that if we
replace Z inside the action (2.43) by the decomposition
(3.4), the action is independent of J(«), which means that
J(a) is a gauge freedom.

We will drop the tilde on  in the following. One should
keep in mind that we have the freedom to choose the I~ (I1)
such that for some vertices v, J(a,.r) = 0.

From the decomposition of Z,,;, there is naturally a

constraint. By the fact of Z,,, = gZezyf, we have

ZL'f = gb_‘elTZvef = g;el/TZve’f- (36)
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In terms of the decomposition of Z,,

e (12 + aepll,) = if Gour (5 + ). (3.7)
This can be written as
ooy
Gued (157 + yeflly) = » e U T erlly)  (3.8)
where we used the antilinear map J:
J(a,b)" = (=b,a), JgI=' = —Jgl =g ', (3.9)

1. Variation with respect to z

From the definition of the SU(1,1) inner product, for
arbitrary spinor u we have
|

6:(u,Z) = 6:(u'ng'z) = (gnu)’éz,
8.(Z.u) = 6,((¢"2) nu) = (62)" (gnu).

Then it is straightforward to see the variation of §,,.f
leading to

(3.10)

) (gveﬂzvef)T

I’lf . (gw'llff)T .
8:Spers = (5 Fisy | 7~ —ilpyp £5p) - ——
7Pvef+ <2 18 > <lztf’ bef> l(pf 5t <Zvef,zvef>
(3.11)
and
5ZS — _525‘ (312)

which comes from the fact that S is purely imaginary. With
the definition of S, in (2.43), after inserting the decom-
position, we obtain the following equations:

. gvenlj gve’nlz . _
8Syp = (r = 1)Sf< 7 - ¢ L) =0 with Z=¢(m+al?) (3.13)
vef ve'f
GuelMyef Gue'MMye' f ) . + _
08, = —is - =0 with Z={(I"+al) (3.14)
! / (% (avej)gbef %(01 e’f)gve 'f
gve’rlle velltve .
8y ps = —(y —i)sp el i, T with Z, = (I +alt) & Z, = (I +al”)  (3.15)
‘ Cve 'f Eh(azef)z:vef
8Supe = (r =15y 2L g, I g with 7z, = (7 +alt) & Zy = (I +al”)  (3.16)
Cvef )t(aw’j)z:te’f
|
where SU(1,1) group, we have v/~! = e y=!. The variation is
s then given by
Nyer 3= Lop +1(yR(@per) + I(aper)) 7 (3.17)
Sv7l = ¢ Fip1, Sv™1T = g7 1T (FIT, 3.18
Note that n,,; here satisfies Lemma III.2 and can form a v ant v e () ( )
basis with [, gi in S,.r_. . .
SIS WL ey BVEILIR Svey Thus, for arbitrary spinor u#, we have
2. Variation with respect to SU(1,1) group elements v, i . gt
Since I* = v~1T[F with v € SU(1, 1), the variation with B, m) = 8u, v mo) = €‘<u’ v iMo)
respect to [ is the variation with respect to the SU(1,1) 8(m,u) = (v ™" mg, u) = € (v Fimg, u). (3.19)
group element v. If we consider a small perturbation of v
which is given by v/ = ve™“, where F' are generators of ~ When S, = S,,/+ — Syep+, the variation reads
|
iy . <Zv’ef9 ”FTli> <Zvef» _”F1 li>
oS =¢€'| = Fisy —
2 <Zv’ef’lef> <Zvef’lef>
—1f ot —1F ot gt
(n v, Flly,Z,, v, Fily,Zy,
+ ¢ (—'fiisf> << > = 0 Zoer) _< ! E - f>> (3.20)
2 <lef7Z‘U€f> <lef’Zv’ef>
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While S,r = Syep+ — Syef+, We have

58 = ¢t (nf) <<Zvefa _]’F li> <Zv’ef’ _I'F l;> <7j;jl'TF:'rlE)t’Zvef> _ <7je_j]'TF:'rl(T’Zv’ef>>
2 <Z1;ef’ lef> <Zl/ef7 l:F> <lz'tf’zvef> <lj:vaU’ef>
o (Lt VG ) g ) i )
! <leif’ vef> <lef’Z7J ef> <Zv'ef’ lef) < vefr leif>
Since F' = 1/2(ic3, 01,0, ) are SU(1,1) generators, we have
i 1 0 1 i
F Wi:L( )( ):—ﬁ 3.22
(F)'lo 2valo —1 ) g ) =2l (3.22)
1 /0 1 1
FO)IF = —— =47 3.23
@i =25 (1 o) (L) = *3t (3.23)
1 /0 —i 1 1
)l = —— =F-I. 3.24
=25 (0 ) (L) - 738 (3.24
Then in the first case we are only left with one equation, which reads
Zyers il Z e ,il; il Z,. ilr.Z,.
0_<"f¢1sf)<< ! j[f>_< ! i>)+<ﬂiisf>(< L f>—<if f>>. (3.25)
2 <Zﬂ’ef’ lef> < 1/ej1lef> 2 <lef7 bef> <lef’Z1}’ef>

After inserting the decomposition Z = {(IF + al*),
correspondingly, we get

ne . _ _ nge .
0= <2f + 1sf> (av’ef - avef) + <2f + 1sf> (av’ef - avef)

=205 ;YN (e — Aper) 218, I(Aper — Ayrer)- (3.26)
The solution reads
ygt(aﬂef) + ?S(a1fef') = }/m(av’ef) F i‘S((Zv’ef)' (327)

Here J(a) is the decomposition of Z with respect to l;Ff
specified by v,r. Note that in this case, we only have
ljf(l;f) in the action; thus, there is an ambiguity of v,.
However, changing v,, corresponds to adding the same

|
<Z1)’ef’ > <
0= ( Zuer 1) 2
ol (z
0= << z

The equations give the solutions

ym(av’ef) + %(av’ef> =0,
ym(avef) + S(avef) =0,

bef7

Lef’ e,

v’ef7 >

+ N
vefs ef>

)

™)
=)
2y i (i

[
constant to both J(a,) and J(«a)); thus, the relation is kept

unchanged. After absorbing J(a) into 7 by a redefinition,
the equation actually tells us that

- Eﬁ(az/ef»l;:f

which fixes the transformation of /,, + between vertices and
removes the ambiguity between different vertices » in the
bulk. With this redefinition, it is easy to see that n,,,
defined in (3.17) satisfies n,,r = n,.; thus, we ignore the
v variable and define

lv;ef ngf = iy(m(avef) (328)

Ref *= Nyef = Nyyef- (329)

In the mixing case there will be two different equations
for F, and F3, which lead to

< vefs > < vef> >
< vefv > < 1)ef’ ef>) (330)
< vef7 > — i < vefs >
< vef’ e > < Lef’ ef>) (331)

with Zy’ef o gv’ef(leif + av'efljf)
with Z'l)gf == Cvef(lz:f + avefl;tf)'
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Here [T and [~ completely fix the group element v. a
corresponds to the decomposition of Z with these /™ and /™.
The 1, in this case is simply n,.; = 1.

3. Variation with respect to SL(2,C) elements g
With the small perturbation of g, which is given by

¢ = gel, the variation ofthe SL(2,C) group element g is
given by

59 = gL, 69" =—L'g" (3.32)

where L is a linear combination of SL(2,C) generators,
L =¢,F +&G = (¢ +ié,)F. Here the F’s are the
SU(1,1) lie algebra generators defined as above, and we

-l ) - (o) (57)

—ilos £ Sf)(

where ¢€,7(v) = %1 is determined according to the face
orientation that is consistent with the edge e or the opposite
(up to a global sign). We have

€€f(1}) €ef(v)

We write €,7(v) = +1 in the following for simplicity, and
recover general € at the end of the derivation.
From the property of the SU(1,1) generator,

= —e,4(v), = —¢,(v).  (3.35)

nFn = —F" (3.36)

we have

(FZ,u) = =Z'"Fnu = =Z'nF'u = —(Z,F'u).  (3.37)

Then (3.34) can be written as

n Z?}e ’F+lei
S (%) (—< —
—\2 (Zyer  15)

ef’

and

TE +
5= (L) BTy (Y, S 2
7 2 ) < vef> l;tf> 2 <leif, Uef>

<Zvef’ F wa) _

<Zvefvzvef> (339)

After inserting the decomposition of Z and the solution of
the simplicity constraint, we have the following equations:
For both S, (3.38) becomes

2
<L Z1;ef7Zvef> +< 1ef’L Zvef ))
<Z1)ef’Zvef

use the fact that in spin-1/2 representation G = iF. Then
for arbitrary u, we have
8(u.Z) = 5(u.g'z) = (u.L'g'z) = (u. L'Z)
Z,u) = 8(g'z,u) = (LTg'2) qu = (L' Z, u). (3.33)
The variation leads to

(3.34)

[
0 — 6[:51

= :{:212sf

yRe( Lef) + S(avef))lgf,F li>
(3.40)

(3.39) will leads to different equations for different actions
S.. due to the appearance of the (Z,.;, F'Z,,) term. The
variation of S, reads

0 - 5GS+

= _ZVZS f<

(2 ) = Slaep) ) P ).

(3.41)

while the variation of S_ reads

nLefaFnbef
6GS —212 f Re avef +2}’ZSf nwf,Fl >

(3.42)
4. Summary

As a summary, after we introduce the decomposition of
Z as (3.4),

Lef é,bef( ef + aveflef) (343)
and a spinor n as (3.17)
nvef = l:f =+ i<ym(avef) + %(avef»le_f (344)

the equation of motion is given by the following
equations:
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(i) parallel transport equations

Gl Goenl)s f
Syf+: vellef _ Jveillef ’ (l— + aveflef) §1ef l”r(l— + ave’fl:ref) (3.45)
Cz;ef Z.:ve’f é,wf
. GvellMyey  Gue'NMMye'f —1F gvef —lT _
Syf_ ’ m(aﬂef)Zvef B m<ave’f)5ve’f , g (l+ " ab@f ZEf) C1 ef W (l+ " aw/flvef) (346)
s gve’/[nvef _ _(1 +17/) gve/rll:/f g—lT(l +a I- ) Cl)ef —h(l_ +a, l+ ) (3 47)
o N (Aper)Cver Coep e el Coer Ire ves el .

Syt —(141p) Guelthver __Guees G (I, + ayesl;) = Coes 1 (15, + sz, (3.48)

v Z.:vef m(ave’f)élve’f 7 W veltef Cvef M ve'Svef

Here S, = Syops
and S, ¢y
(i1) vertices relations

- Svefi» Svfxi = Sve’fi
Sef:i:: ym(avef) +
Sefix 7/%( 187") +

(ii1) closure constraints

0==2i Y spll;-

f/WS+

(7§R< Lef) -

_ (1 (e Fngy)
0:—27 Z Sf<lef—l<y%( vef) ( 1ef)>l:f?F}l+>+2 Z 1Sf§}{(7f>

f/WSJr(x)

— Syeps With S,.¢4 is the action given in (2.44), the same for S,

For given spinors [~ and [*, there is a 3-vector v’ associated to them

From which we can define a SU(1,1) valued bivector in spin-1/2 representation

V =20 FilF)F = =217 (FY gl FF =

‘@S(avef) = y'(}%(av’ef) + LKNV(O!L"ef) (349)
S(avef) = ysﬁ(av’ef) + S(av'ef) =0 (350)
ey FILLG) +21 > splneg FIZ,) (3.51)
FIWS_()
78y (g Fllp) (3.52)
fIwS_y
B. Bivector representation
vt =2(I", F'l7). (3.53)
1 . 1
—E(l+)‘aml_ai =~ ® (I")" + 3 (I, 7)1, (3.54)

where we use the fact that yFy = —F' and is the com-
pleteness of the Pauli matrix. Since (I, FI") =
—(I*,FI7),
. L1
V ==2(I",FI")F,=nl" ® (I") —§<l+, I7)I,. (3.55)
From the fact
K'=-K; =J" Ji= g =L i 3.56
=—K;=J7, —i—§€jk' (3.56)

where Ji = *K'. We have in the spin-1/2 representation,
* —1i and J' = iK'. The bivector can be encoded into a
SL(2, C) bivector that in spin-1 representation reads

0 -1 =% 0

b0 0 0
v = 3.57
2 0 0 0 ( )

0O 0 0 0

Then (V) reads
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0 0 0 0
0 0 0 —p?
(V) = 0 0 )l = (véf Au')
-0 2 =t 0
(3.58)

where the encoded 4-vector vﬁf = (10, =22, 2',0),
ul =(0,0,0,1). Clearly one can see that
I (Al 1
ol =i((I7)61|1T) + uf) (3.59)
where 6 = (00, —01,—0>7, —63).

Since (I, F'I7) = (I, v'F'v~'7[5), in this sense, v; is
nothing else but the SO(1,2) rotation of 3-vector v, =
(0,0,1) with group element v~!7.

Similarly, we can define

WE = 2i(I*, FIIF)F = —igl* @ (I*)T  (3.60)

with

W = wjf A, wr = (IF|6!|1%). (3.61)
Here w7/ is a null vector wi/w®, = 0.
We introduce SO(1,3) group elements G given by
G = ﬂ(gve) (362)
where 7: SL(2,C) — SO(1, 3). Since the action (2.43) is
invariant under the transformation g,, — +g,., tWo group
elements related to g,, are gauge equivalent if they satisfy

Gve = Gvelsve» Spe = {07 1}

(3.63)
where [ is the inversion operator. With this gauge trans-
formation, we can always assume G,, € SO, (1, 3).

We can write the critical equations in terms of bivectors.
The detailed analysis is in Appendix C. Given any solution
to the critical equations, we can define a bivector as

Xvef - —21<l_, Fil+>Fi - idvef<l+, Fil+>Fl'

= Vef - (S<avef) + SR(avef)*)vvjf (364)
or
: o i+vy .
X,or = =2i(n, FVF, ———— " _(n Fin
! < > (1 + yz)gt(avef) < >
1 —yx

Fie—y, - T e 3.65
’ T+ PR () (363)

corresponding to their action, which is composited by
Syeps Or Syop_. Here V,; is a spacelike bivector and W, is

a null bivector. In spin-1 representation, we can express the
above bivector as

XL = ()0 A 11],p) (3.66)
where
B Ve — %(avef)W:f’ Svef+
Uvef = I A S (367)
Vef = T (@) Wer»  Pvef-
5 u—+ S}t(azef)wjfv Svef+
Upefr = + I D g (368)
U T M (aey) Wer» Dvef=
with
—2i<le_-,Fil: )y Sue
vy ={ il o Ge)
—21<1’lef,F lef> Svef—
2L FIIL), Sy
Wi = { ey ,~ f s (3.70)
2<nef’Fnef> S1)ef—

The bivector X,,, satisfies the parallel transport
equation:

GoeXverGre = Gue X oo 1Ty (3.71)
This corresponds to
Xp(0) = 9ueXpesen = vy (0) ANLD)  (372)
where
”if(”) = Gpelyef, NL(0) = Gl (3.73)

The closure constraint in terms of the bivector variable then
reads

2> veor(v)spXp(v) = eor(0)By(v) =0 (3.74)
f f

where By = 2ys;X; = n;X; with B} = —n7. Note that the
closure constraint is composed by two independent equa-
tions enrolling ¥ and w™

Zeef(v)bvef =0,
f
Zf:eef(v)m(avef)wzf =0, Svef+

i . (3.75)
Zf:eef(v)(s}t(avef) lwz_f - 07 Svef—
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C. Timelike tetrahedron containing both spacelike
and timelike triangles

The timelike tetrahedron in a generic simplicial geom-
etry contains both spacelike and timelike triangles. For
spacelike triangles, the irreps of SU(1,1) are in the discrete
series, in contrast to the continuous series used in timelike
triangles. The simplicity constraint is also different from
(2.9). This leads to different face actions on triangles with a
different signature, and the total action is expressed by
the sum of these actions. The action on the spacelike
triangle and corresponding critical point equations have

|

5pS ==2i Y syl

f/WS+

+20 > sp(ng FIZ)
f/WS—(x) f/WSsp

(th (avef)

-2 e FlEs) =0

already been derived in [21]. The results are reviewed in
Appendix D.

The variations with respect to z,, and v, give equations
of motions (3.71) for timelike triangles and (D20) for
spacelike triangles, respectively. In addition, for timelike
triangles, solutions should satisfy (3.27), (3.32), or (3.32).

The variation with respect to the SL(2, C) group element
gve Involves all faces connected to e, which may include
both spacelike and timelike triangles. In general, from
(3.40)—(3.42) and (D13)—(D14), the action including differ-
ent types of triangles gives

(avef))lef’ F' l+ >

: ] n X
—2}/ Z Sf<le_f—1<;fh<avef)_‘S<avef)>lef’Fl >

f/wS+

F'n )
ef? ef
+2 Z 1sf N(a +ysp(n Uef,Fl

FIwS_«

The summation of the two equations leads to

L+72) D7 slape )l FLp) + > st

fIwS )

This equation only involves timelike triangles. Since
who = (15, F'L) (orwl] = (n.p, Fingp) inthe S_y case)
are null vectors, the above equation implies summing over
null vectors equal to 0. In a tetrahedron that contains both
timelike and spacelike triangles, the number of timelike
triangles, which is also the number of null vectors here, is
less than 4. If one has less than 4 null vectors summed to 0 in
four-dimensional Minkowski space, then they are either trivial
or collinear. The only possibility to have a nondegenerate
tetrahedron from (3.78) is for all the timelike faces to be in the
action S, and set )t (a) = 0. The solution reads

N (avef) =0

It means that in order to have a critical point, the action
associated to each triangle f of the tetrahedron 7, must
be S, or S, ,; other actions do not have stationary point.
The closure constraint is now given by (3.76) minus (3.77)

=20 Y sp(lo +iS(ane)l FlIG) =0
f/WS+(x

_2Z]f Ef’ =0.

f/WSvp

& Ve Sp=S.. (3.79)

(3.80)

(3.76)
+2ip Y (e FTES) = 0. (3.77)
f/WSﬂp
5F e
ey Fey) _ (3.78)

SIwS_x

The parallel transport equations for timelike triangles still
keep the same form as (3.13)-(3.15). After we impose
condition (3.79), the parallel transport equation becomes

gvel:f ® (le_f + is(avefﬂ:fﬁgev

= gve’lj;/f ® (lg_lf + N (ave/f)l:;f)%ge’v' (381)
One recogmzes the same composition of spinors /.
i3(a wf) in (3.80) and (3.81). This is exactly the spmor
satlsfymg Lemma II.1. Recall (3.27), coming from the
variation with respect to SU(1,1) group elements v,;, we
have

(3.82)

S(avef) = S(%/ef)

in the S, case or J(a,,) = 0in the S, case, respectively.
However, recall that for the S case, there is an ambiguity
in defining I~ and 3(e) from Lemma III.1. This ambiguity
does not change the action, and gives the same vector
v = (lef, F'I};). Thus, we can always remove the (@)
by a redeﬁnltlon of [7,, which does not change the
geometric form of the critical equations. With (3.82), this

084040-13



HONGGUANG LIU and MUXIN HAN

PHYS. REV. D 99, 084040 (2019)

redefinition will extended to both end points of the edge e.
Thus, we always make the choice that J(a,.;) = 0 and
drop all J(a,,s) terms in (3.80) and (3.81).

In the bivector representation, we can build bivectors for
timelike triangles,

Xop = *(vep A ), (3.83)

with v,, a normalized vector defined by vgf =i( (l:f X
&'|l7;) — u'). The parallel transportation equation implies
we can define a bivector X ,(v) independent of e

Xf(U) = GDeXefGev' (384)
Clearly in this case we have
N, -X;(v) =0, with N,=G,u (3.85)

For spacelike triangles, the bivector is defined in (D18). One

can see they have exactly the same form as in the timelike

case and follow the same condition, except now véf =

(E5l6"1E5) — (E5/1162,)u” instead. With bivectors X, and
X, (3.80) becomes [after recover the sign factor €, /()]

D e (0)sXp(v) = D eop(v)jpXy(v) =0. (3.86)

f/WSJr(x) f/WSS[,

In summary, the critical equations for a timelike tetra-
hedron with both timelike and spacelike triangles implies a
nondegenerate tetrahedron geometry only when timelike
triangles have the action S (,). Suppose we have a solution
(J£+ Gves Zuf), one can define bivectors

Bef = 2Aerf = 2'Af * (vef VAN M) (387)

where
- (Il = u)
v (Eslal|Es) — (&5, &5 )u’ for spacelike case
(3.88)

for timelike triangle

and

A = ng/2
f i ;= ynf/ 2 for spacelike triangle'

for timelike triangle
(3.89)

X =V 4+ (3(a) + R(a)x)WH = X + R(a)(C + Cx)W+

We define B,;(v) as

By(v) == G,.B,¢G,,. (3.90)
The critical point equations imply
B,¢(v) = Bys(v) = Bs(v) (3.91)
N,-By(v) =0 (3.92)
> ees(v)By(v) =0 (3.93)
fet.

where N. = G,u', €,;(v) =+1 and changes its sign
when exchanging vertex and edge variables.

D. Tetrahedron containing only timelike triangles

Starting from the critical equations derived above, we
can see what happens when all faces that appear inside the
closure constrain are timelike. For simplicity, we will use
the S, action as an example, and the other cases will follow
similar properties as they can be written in similar forms
as S,.

Suppose we have a solution to critical equations with all
the face actions being S, . As we have shown above, the
solution satisfies two closure constraints,

D 5p(ver + S(@uep)wly) =0, (3.94)
f

> s(aep)wl; = 0. (3.95)

7

Clearly here we have family of solutions generated by the
continuous transformations

R (avef) - Cve R (avef) ’

S(avef) - S(avef) + Ctegi(atef) (396)
In other words, the closure constraint only fixes ¢ up to C,,
and C,,.

Back to the bivectors inside the parallel transporta-
tion equation, it is easy to see that the bivector can be
rewritten as

(3.97)

where Xg =V + i‘s(agef) for some given i‘s(agef). Suppose we have a solution to some fixed C and C, the parallel

transported bivector then reads

GveXefGev = GveX(e)fGev + ER(a)(c + C*)GveW:fGev = *((Gvebvef) A (GveﬁzJef'))'

(3.98)
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From the fact that in spin-1/2 representation * — i, we
define ¢ == C +iC.

From the parallel transported vector ¥y := G, 7,.r and
iy = Gyl f, one can determine a null vector wy related to
face f = (e, ¢') uniquely up to a scale by
From the definitions of ¥ and i, we see that w,r.it,.r =
Wer.Dyey =0 and the same relation for e'. Since
G € SO, (1,3), which preserves the inner product, we
then have

Wr X GueW,er X Grpw,iy. (3.100)

Suppose a solution to critical equations determines a
geometrical 4-simplex up to scaling and reflection with
normals N,(v) = G,.u. (See Appendix E for the geomet-

rical interpretation of the critical solution. We suppose the
|

g?}ZX(e) Gev T+ defgveW:'gev = gve’Xg’ Geo'v T de'fgve’W:/ 9e'v-
f f f f

However, from (3.98) we know that

gvenggev + N (aef)cvegve WngeU = gve'Xg’fge’v + S{(ae’f)cve’gve’ W:/fge’v

which means

(Eﬁ(avef)cve - def)gvevvg+ Gev = (ER (ave’f)cve’ - de'f)gve’ W:/ 9e'v-
f f

They are 10 complex equations, with five complex c,,,
thus again giving an overconstrained system.

A special case is that the boundary data itself satisfy the
length matching condition. In this case, d,; = 0 correspond
to a critical solution. It can be further proved that (3.104)
with d,; = 0 implies

V.cpe =0. (3.105)
The condition is nothing else but (3.79), and it is easy
to see that in this case the critical equations reduce to
(3.87)-(3.91).

IV. GEOMETRIC INTERPRETATION AND
RECONSTRUCTION

The critical solutions of the spin foam action are shown
to satisfy certain geometrical bivector equations, and we
would like to compare them with a discrete Lorentzian
geometry. The general construction of a discrete Lorentzian
geometry and the relation with critical solutions for space-
like triangles were discussed in detail in [14] and [21]. We
will see that our solutions, which include timelike triangles,

solution is nondegenerate here. The degenerate case will be
discussed in Sec. V.) From this 4-simplex, we can get its
boundary tetrahedron with faces normals vif(v) = Gy
For the two edges e and ¢’ that belong to the same face f,
N, and N, determine uniquely a null vector (up to scaling),
which is perpendicular to N, and N,. Then from (3.99)
and (3.100), the vector is proportional to Wwy. Then it
implies that

Vyp = Dep +dopWey- (3.101)
The tetrahedra determined by v;, (by the Minkowski
theorem) satisfy the length matching condition, which
further constrains d,;. Ten d,;’s are overconstrained by
20 length matching conditions. d,; = 0 corresponds to a
solution if the boundary data (relating to ?,) also satisfies

the length matching condition. We have the parallel trans-
portation equation:

(3.102)

(3.103)

(3.104)

[
can be applied to a similar reconstruction procedure. We
demonstrate the detailed analysis in Appendix E. The main
result is summarized here. The result is valid when every
timelike tetrahedron contains both spacelike and timelike
triangles. It is also valid for tetrahedra containing only
timelike triangles in the special case with Eq. (3.105).

The following condition at a vertex v implies the
nondegenerate 4-simplex geometry:

det<N617Ne27Ne3, Ng4) Sé 0
el,e2,e3,e4=1

(4.1)

which means any four out of five normals are linearly
independent. Since N, = G, u, the above nondegeneracy
condition is a constraint on G,,. Here u = (0,0,0,1) or
u=(1,0,0,0) for a timelike or spacelike tetrahedron.
Then we can prove that satisfying the nondegeneracy
condition, each solution B,/(v) at a vertex v determines a
geometrical 4-simplex uniquely up to the shift and inver-
sion. The bivectors BeAf(v) of the reconstructed 4-simplex

satisfy
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B, (v) = r(v)Bs(v) (4.2)
where r(v) = +1 relates to the 4-simplex (topological)
orientation defined by an ordering of tetrahedra. The
reconstructed normals are determined up to a sign

Nﬁe = (_l)S”Nve- (43)
We can prove that for a vertex amplitude, the solution exists
only when the boundary data determine tetrahedra that are
glued with length matching (the pair of glued triangles have
their edge lengths matched).

Given the boundary data, we can determines geometric
group elements G € O(1,3) from reconstructed normals
NA. Then it can be shown that, after one chooses s, and s,,
such that

v, detGS, = (=1)" = r(v) (4.4)
G4, relates to G, by
GUL’ = Gﬁel“'"e (IRM)X” (4'5)

where Ry is the reflection respecting to normalized vector
N defined as

(4.6)

The choice of s, =41 corresponds to a gauge
freedom and is arbitrary here. Condition (4.4) is called
the orientation matching condition, which essentially
means that the orientations of five boundary tetrahedra
determined by the boundary condition are required to be
the same.

For a vertex amplitude, the nondegenerate geometric
critical solutions exist if and only if the length matching
condition and orientation matching condition are satisfied.
Up to gauge transformations, there are two gauge inequi-
valent solutions which are related to each other by a
reflection with respect to any normalized 4-vector e, (this
reflection is referred to as the parity transformation in,
e.g., [12-15])

Eef(v) = 5,=s,+1

R, (Bes(v)). (4.7)

which means

Gy = Re[,Gve(IRN)' (48)

Geometrically the second one corresponds to the
reflected simplex. These two critical solutions correspond
to the same 4-simplex geometry, but are associated to a
different sign of the oriented 4-simplex volume V(v).
sgn(V(v)) is referred to as the (geometrical) orientation

of the 4-simplex,” which should not be confused with r(v).
This result generalizes [21] to the spin foam vertex
amplitude containing timelike triangles.

The reconstruction can be extended to simplicial com-
plex K with many 4-simplices, in which some critical
solutions of the full amplitude correspond to nondegenerate
Lorentzian simplicial geometries on X (see Appendix E).
But similar to the situation in [14,15], 4-simplices in K may
have different sgn(V(v)). We may divide the complex K
into subcomplexes, such that each subcomplex is globally
orientated; i.e., the sign of the orientated volume sgn(V) is
a constant. Then we have the following result.

For critical solutions corresponding to simplicial geom-
etries with all 4-simplices globally oriented, picking up a
pair of them corresponding to opposite global orientations,
they satisty

~ Ru Gf(e)Ru,
Gr= ‘ :
! ['atraR, Gy(ey,ep)R,, boundary faces

internal faces

(4.9)

where G, = chafGerva is the face holonomy. We will
use this result to derive the phase difference of their
asymptotical contributions to the spin foam amplitude.
Note that, the asymptotic formula of the spin foam
amplitude is given by summing over all possible configu-
rations of orientations.

V. SPLIT SIGNATURE AND
DEGENERATE 4-SIMPLEX

This section discusses the critical solutions that violate
the nondegeneracy condition (4.1). We refer to these
solutions as degenerate solutions. If the nondegeneracy
condition is violated, then in each 4-simplex, all five
normals N, of tetrahedra ¢, are parallel, since we only
consider nondegenerate tetrahedra [21]. When it happens
with all ¢, timelike (or spacelike), with the help of gauge
transformation G,, - GG,,, we can write N,(v) =
G,.u,u=(0,0,0,1), where all the group variables
G,. € SO,(1,2). However, when the vertex amplitude
contains at least one timelike and one spacelike tetrahe-
dron, the nondegeneracy condition (4.1) cannot be violated
since timelike and spacelike normals certainly cannot be
parallel. Therefore, the solutions discussed in this section
only appear in the vertex amplitude with all tetrahedra
timelike. Moreover, these degenerate solutions appear
when the boundary data are special, i.e., they correspond
to the boundary of a split signature 4-simplex or a
degenerate 4-simplex, as we see in a moment.

When the tetrahedron contains both timelike and space-
like triangles, the closure constraint (3.78) concerning w

*sgn(V(v)) is a discrete analog of the volume element
compatible to the metric in smooth pseudo-Riemannian
geometry.
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involves at most 3 null vectors, which directly leads to
N (a,er) = 0 as the only solution. For degenerate solutions,
the bivector X/(v) = g,.X,rg., in (3.84) becomes

Xf(v) = *Gve(vef A M)Gev = Gvevef AU = Ugef AU.

(5.1)
The parallel transportation equation (3.91) becomes
vi(v) = vie = v}, = 245G ;s (5.2)

(Grelper = GueDyerp) At = CooNR(Aues)GoeWiy A tt = CooR(yerp) Growyp A .

Thus, the degenerate critical solutions satisfy

vi(v) = vl =09, zf:eef(v)vg(v) =0 (5.3)

and the collection of vectors v?(v) is referred to as a vector
geometry in [12].

In the case that all triangles in a tetrahedron are
timelike, we use S, as an example. The degeneracy
implies G,,u = G,ou = u. The parallel transportation
equation (3.98) becomes

; (5.4)

¢pe = Cpo +1C,, is the factor which solves the closure constraint with a given normalization of N(aer), e.g.

>N () = 1 as shown in (3.96). (5.4) directly leads to
Gve(@vef + Cvem (avef)wef) = Gve’(ﬁve’f + Cveg(t (avef)wef)

C've R (avef)Gvewef =

Notice that from (5.5), since w,r is null and
Wer - Uor = 0, we have

waef X Gve/Welf. (57)
It implies that (5.6) is only a function of C. However, at a
vertex v, there are only five independent C variables out of
10 equations. Thus (5.6) are overconstrained equations and
give five consistency conditions for G,, unless C = 0.

Actually, one can show that there is no solution when
C # 0. We give the proof here. For simplicity, we only
focus on a single 4-simplex.

Suppose we have solutions to above equations with
C # 0; then, the following equations hold according to
(5.5), (5.6), and the closure constraint (C14):

D er(v)vip(v) =0,

o)) = vy (0) = v o),

fctl‘
wi(v) =wl(v) =wh (v), Y er(v)wd(v) =0,
fC[e
(5.8)
where
UZf(U) = Gveijef =+ Cim(avef)GveWef
wif(v) = C’iiﬁ(awf)waef. (5.9)

Suppose 19 satisfy the length matching condition. From the
above equations, ), = v}, + awj, with arbitrary real
number a are also solutions. This means 7Y should also
satisfy the length matching condition. However, the

C've’ R (ave’f)Gve’We’f .

(5.5)

(5.6)

|

transformation from » to v + aw changes the edge lengths
of the tetrahedron, and the length matching condition gives
constraint to a. This conflicts with the fact that a is arbitrary
to form the solution. It means that we cannot have a
solution with C # 0 and the length matching condition
satisfied.

Thus, when boundary data satisfies the length matching
condition, the only possible solution of (5.6) is C,, = 0.
This corresponds to 9 (a) = 0, which is thus only possible
with the action S, . One recognizes that this is the same
condition as in the case of the tetrahedron with both
timelike and spacelike triangles, e.g., (3.79). In this case
C,. thus J(a) can be uniquely determined by the closure
and length matching condition. The critical point equations
again become (5.2) and (5.3).

In the end of this section, we introduce some relations
between the vector geometry and nondegenerate split
signature 4-simplex. As shown in Appendix E 6, the vector
geometries in three-dimensional subspace V can be mapped
to the split signature space M’ with signature (—, +, 4, —)
[flip the signature of u = (0, 0, 0, 1)], with the map ®*: A>
M* — V for bivectors B,

®*(B) = (FB-+'B) " u. (5.10)
®* naturally induced a map from g€ SO(2,2) to the
subgroup h € SO(1,2), defined by

% (gBg™) = ©%(g) 0% (B). (5.11)
If the vertex amplitude has the critical solutions being a pair
of non-gauge-equivalent vector geometries { G, }, they are
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equivalent to a pair of non-gauge-equivalent {G,, €
SO(M')} satisfying the nondegenerate condition. One of
the nondegenerate {G,,} satisfies G, = ®*(G,,), while
the other {G,,} satisfies

®*(G) = ®*(R,GR,) = ®T(G). (5.12)
When the vector geometries are gauge equivalent, the
corresponding geometric SO(M’) solution is degenerate.

In this case the reconstructed 4-simplex is degenerate and
the 4-volume is O.

VI. SUMMARY OF GEOMETRIES

We summarize all possible reconstructed geometries
corresponding to critical configurations of the Conrady-
Hnybida extended spin foam model (including the EPRL
model) here. We first introduce the length matching
condition and orientation matching condition for the
boundary data. Namely, (1) among the five tetrahedra
reconstructed by the boundary data (by the Minkowski
theorem), each pair of them are glued with their common
triangles matching in shape (matching their three edge
lengths), and (2) all tetrahedra have the same orientation.
The amplitude will be suppressed asymptotically if the
orientation matching condition is not satisfied.

For any given boundary data that satisfies the length
matching condition and orientation matching condition, we
may have the following reconstructed 4-simplex geom-
etries corresponding to critical configurations of the
Conrady-Hynbida model:

(1) Lorentzian (—+ ++) 4-simplex geometry: recon-

structed by boundary data which may contain
(a) both timelike and spacelike tetrahedra,
(b) all tetrahedra being timelike,

(c) all tetrahedra being spacelike.

(2) Split signature (— 4+ +—) 4 simplex geometry: This
case is only possible when every boundary tetrahe-
dron are timelike.

(3) Euclidean signature (+ + ++) 4-simplex geometry:
This case is only possible when every boundary
tetrahedron are spacelike.

(4) Degenerate 4 simplex geometry: This case is only
possible when all boundary tetrahedron are timelike
or all of them are spacelike.

When the length matching condition is not satisfied, we
might still have one gauge equivalence class of solutions
which determines a single vector geometry. This solution
exists again only when all boundary tetrahedron are time-
like or all of them are spacelike.

n . i
vf+ Z—flnié_uvefcwf—is lnié/_leféwf:
2 gyeflgvf/f' C'vef§1:ef
= _Q’isf(ee’vef + y¢e’vef)

_Ziysf(arg(gve’f) - arg(gvef) —2isln

Our analysis is generalized to a simplicial complex K
with many 4-simplices. A most general critical configura-
tion of the Conrady-Hnybida model may mix all the types
of geometries on the entire . One can always make a
partition of /C into subregions such that in each region we
have a single type of reconstructed geometry with the
boundary. However, this may introduce nontrivial transi-
tions between different types of geometries through the
boundary shared by them as suggested in [14]. It is
important to remark that, if we take the boundary data
of each 4-simplex to contain at least one timelike and one
spacelike tetrahedron, critical configurations will only give
Lorentzian 4-simplices.

VII. PHASE DIFFERENCE

In this section, we compare the difference of the phases
given by a pair of critical solutions with opposite (global)
sgn(V) orientations on a simplicial complex K. Recall that
the amplitude is defined with SU(1,1) and SU(2) coherent
states at the timelike and spacelike boundaries. When we
define the coherent state, we have a phase ambiguity from
the K, direction in SU(1,1) [or the J5; direction in SU(2)];
thus, the action is determined up to this phase. Thus, the
phase difference AS is the essential result in the asymptotic
analysis of the spin foam vertex amplitude. The phase
difference at a spacelike triangle has already been discussed
in [21]; we only focus on timelike triangles here.

Given a timelike triangle f, in the Lorentzian signature,
the normals N, and N, are spacelike and span a spacelike
plane, while in the split signature they form a timelike
surface. The dihedral angles © at f are defined as follows:
In the Lorentzian signature, the dihedral angle is ©; =
7 — 6, where

cosf; = N5 - N5,

0,€(0.2). (7.1

While in the split signature, the boost dihedral angle 6 is
defined by

cosh@; = [N2 -/ N5

, 0,20 while N>/ N5 = 0.
(7.2)

A. Lorentzian signature solutions
As we showed before, when every tetrahedron has both
timelike and spacelike triangles, the critical solutions only
come from S,. So we focus on the S action.
From the action (2.43), after inserting the decomposition
(3.4), we find

|Cve’f|
|Cvef|

(7.3)
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where 6 and ¢ are defined by )
~ A, — Apy,
G—l GJZ— _ eZuepelm evef IZvEp(,leO ¢? “‘f‘]lgof' (7' 12)

eof T
|Z.:1;e/f| ’
He’vef = In———, . . .
1 ver For a single 4-simplex, the above equations read
¢e’vef = arg(é’ve’f) - arg(gq)ef)' (74)

é:/vef ?vef l+
§/1)e’j' Cve’f o

a0, -1 / § l+ =
The face action at a triangle dual to a face f then reads (Gerse)™ (9ersGre 1l

_ A0, AiAD +
—=e e vef avﬂf}’]lef (713)
Sf = 251/.]' = —21Sf (Zee’vef + yz¢e’vef'> : (75)
vedf vedf vedf é:/ z
e g VI = _ve’f _ve’fjl_
We start the analysis from faces dual to boundary triangles (GerGue)™ (9engue) «f C/uef Cvef «f

(boundary faces) and then going to internal faces. DOy midd,,, Jle_of (7.14)

1. Boundary faces )
. . . . . which leads to
For critical configurations solving critical equations [we

keep J(a) = 0 by redefinition of /7], they satisfy e (Gradve) " Gungnenl
ve\Ye'vYve evYve'lte,f

— _Age/re +iA¢e/'ve +
(76) =€ ! ‘[gvel/lleof (715)

Z'vef
gve'll:f = Zve’f gue’nl;r/f

Gve (ge’vgve)_lge’rgwe‘]leof

_ G i, ~
Gl 5 = é-f—e:gv ST (7.7) = AT berg I (7.16)
ve,

We then have We can define an operator 7', by

Z”EPeleoee/vef+izvel’eleo¢"/”f1,]l+ (7.8) T€f = nl:} ® (le_f)T = |rlljf><l;f|' (7'17)

Gyler, el ; =e erf

From the facts (I;;|nl;;) = (I;;, ;) = L (Is[J 1) =0,

> Oney =i, b
VEPey ey € Vef VEPe e T € VES TT— . .
rero rero J le| f (7.9) the action of this operator leads to

Gf(el, eo)Jle_Of =€
where G(eq,e() is the product of the edge holonomy Tef|nl:f> _ |I/ll:f>< le_f‘fll:ﬁ _ |’71:f>
along the path p,
Tef|Jle‘f> =0. (7.18)
Gf(el ’ 60) =Geyvy -+ -9e vy Yvgey (710) . . .
From the definition of (3.64) (with a = 0), by using (3.55)

Suppose we have holonomies G and G from the pair of ~ and (3.60), one can then see
critical solutions with the global sgn(V) orientation, then

1 1
one can see Xoflnify) = 5 Il Xplig,) = _§|Jle_f>- (7.19)

=~ - A6, /ve +i A e/ ve
G_IGVIZZJf —e Z1"6”5180 evef IZ”EI’WO ’ f”]l:of (7.11)

Then we have
|

2X 1 9uelnlls) = 29ueX epGenGuelnlly) = Gue2Xer|nliy) = Guelnliy) (7.20)
2ngve|‘]l;f> = 2gveXefgevgve|Jl;f> = gvezxef|‘]le_f> = _gvel‘]le_f>' (7.21)

From (7.15) and (7.16), it is easy to see
Goe(FervGue) ™ oy = € 2800 XA Xy (7.22)

For a general simplicial complex with the boundary, given a boundary face f with two edges ¢, and e; connecting to the
boundary, and v is the bulk end point of ¢ if we define
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Gf(elv eO) = Gf(”7 el)_lgveo’

It can be proved that

Gf(”v 61>X€1fo<v’ el)_l = gveoxeofgeov

(7.23)

(7.24)

which is the generalization of the parallel transportation equation within a single 4-simplex. Then we can apply the same
derivation as the single-simplex case by replacing g, = G(v, e;), which leads to

gver<ela 60)_1Gf(€1 s eo)gey = e_zzve(‘i[Age’ne/X/+2iZT.€(9/A¢H'"e-/X‘/.

2. Internal faces

The discussion of the internal face f is similar to the
boundary case. We have

Gnlyy = ™ Dveo 0 ver T o P ves nly,  (7.26)
— 0, e —i P e —
Gl = 02O er =D o L, (7.27)
where G/ is the face holonomy
Gf = H 9e'vGve- (728)
vedf
By the action of the bivector X, in (7.19),
e_Zveﬁfael L'e.fzxe‘/—‘rizL'Eﬁ(f¢e/”€/2xef ﬂl:f>
= C_Zz:eé]fgf/”?f+ine[)f¢f/l‘€f |,1[:‘f> (729)
e_zweafae’ ver2Xey *izneaﬂbe’ veg2Xey J le_f>
= ezveafef’”f'iz1reaf'¢f’vff' J lZf)- (7.30)
Compared to (7.26) and (7.27), we see that
Gy = e_zveof‘gf’”f 2Xer +i2veﬁf”l’f” er 2Xes- (7.31)

Given G and G + from a pair of critical solutions with the
opposite sgn(V) orientation, we find

gveéjjl GfgeL = e_ZZ(fEf)fAee/rffoJrZiZ,;E(‘)fA(/)elvefo. (732)

3. Phase difference

For a pair of globally orientated [constant sgn(V)]
critical solutions with the opposite orientation, from
(7.5) we have

(7.25)

ASf = —21Sf (ZAge/vef -+ VZAcﬁe’vef) (733)

veIf vedf
where A@ and A¢ are determined by
gveG;l Gfgev = e—2 Z'Eaf Aee/WfoJFZiZ”EW A{l)e/"efxf.
(7.34)

G;=Gy(ey,ep) if f is a boundary face. Since ys, =
ng/2 € Z/2, we may restrict

ZA¢e've.f € [_7[’ 7[] (735)
vedf
because ASy is an exponent.
After projecting to SO, (1, 3),
gveG;legev - GveG]_‘leGem i— (736)

For the spacelike normal vector u = (0,0,0,1), from
which it is easy to see that G and G are related by

G =R, GR,I € 50,(1,3) (7.37)

and

G; =R, GR,, (7.38)
for both internal and boundary triangles f. The equation
then leads to
G,.6;'G¢G,, = G,.R,G;'R,G;G,, = Ry Ry, (7.39)
for both internal and boundary triangles f. N, and N, here
are given by
Ne = Gveu, Ne/ = Gve(Gfll/t); (740)

thus, N, is the parallel transported vector along the face.

Therefore, in both the internal case and boundary case,
we have
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Ry Ry, = @2 Do DOt Xt 25 oy B X (7.41)
On the other hand, from the fact that Ry = GR,G, and
the fact that G4, = GI*(IR,)$, we have
RNeRNi) - RNfRNA, (742)

Since Rya is a reflection with respect to the spacelike
normal N2, we have (see Appendix F)

A, NA
Ng ANT

FNENA
— TN AN

(7.43)
where f is the triangle dual to the face determined by edges
eand ¢'. 0, € [0, n] satisfies N2 - N5 = cos(6;). From the
geometric reconstruction,

By =niX; = =gz rWAWS « (NS ANE).  (7.44)
Since |By|* = —n}, we have
‘#rWﬁW@ NS ANS|=np.  (745)
Thus
x, =2 +(Ng A Ne) (7.46)

e —
ngT|(NS AND)]

where o, = —rsign(W5W?2). Since N, and N, are both
spacelike, we have oy =-—r. Keep in mind that r is the
orientation and is a constant sign on the (sub-)triangulation.
Therefore,

“(NB AN NA AND NEANA
eerva?f A9, ”ffWAe/TeA\JrerzveOf A¢”’bﬂf\zv2,m{j‘\ o f\NLéANgA,\
(7.47)
which implies
D A0, =0,
vedf
—rY Agyep =0y mod 7. (7.48)
vedf
The phase difference is then
ASy =2irAs0; mod in (7.49)

where Ay = ys; = n;/2 € Z/2 is the area spectrum of the
timelike triangle.

The iz ambiguity relates to the lift ambiguity from G, €
SO*(1,3) to SL(2, C). Some ambiguities may be absorbed
into gauge transformations g,, = —g¢,.. First, we consider a
single 4-simplex, (7.48) reduces to A8, =0, and
Adyyer = =0 mod z. [Here we use the notation that
we move the orientation r from A¢ in (7.48) to the
definition of AS. Keep in mind AS always depends on
the orientation r.] However, it is shown in Appendix G that
this ambiguity can indeed be absorbed into the gauge
transformation of g,,, i.e., if we fix the gauge,

mod 27,

A¢e/1/‘ef = _Gf(v) (750)

where 6,(v) is the angle between the tetrahedron normals
in the 4-simplex at ». Although this fixing of the lift
ambiguity only applies to a single 4-simplex, it is sufficient
for us to obtain AS % unambiguously. Applying (7.50) to the
case with many 4;simplices

ZA¢6’1)ef' = _ng(v) mod 27.

vedf vedf

(7.51)

Since 6;(v) relates to the dihedral angle ©/(v) by

Of(v) = —0y(v), for an internal f, > o Adeyer
relates to the deficit angle e, =27 — 3,y ©f(v) by

ZA¢e’vef = (2 - mf)ﬂ' — & mod 27
vedf

(7.52)

where m; is the number of v € Jf. Similarly, for a
boundary f, Zve(‘)f A telates to the deficit angle 0, =

= Zve@f ®f(v) by

ZAqﬁe/wf =(1=ms)m—6; mod 2. (7.53)
veIf
As a result, the total phase difference is
exp(AS)) = exp{Zir > aArl(2 = mp)m —g/]
f
+ ZieroundaryAf[(l - mf)n' - Gf]}
f

(7.54)

The exponent is a Regge action when all the bulk m, are
even, i.e., every internal f has an even number of vertices.
Obtaining the Regge calculus only requires all bulk m,’s to
be even, while boundary m’s can be arbitrary, since the
boundary terms A;(1 —m;)z do not affect the Regge
equation of motion.

The above phase difference is for a general simplicial
complex; the result for a single 4-simplex is simply given
by removing the bulk terms and letting the boun-
dary my = 1.
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4. Determine the phase for bulk triangles

For the internal faces in the bulk, we can determine the
phase at the critical point uniquely.

Recall (7.31), the holonomy G((v) = g,.G/(e)g,, at
vertex v reads

Gs(v) = & 2y 0ver X0 D o e 2K, (1), (7.55)

Recall (E73) as we showed in Appendix E, for edges E;; (v)
and E;;(v) of the triangle f in the frame of vertex v,

(7.56)

where y = (—l)zfcﬁf ‘¢ = +1. Here s, is defined as s, =
Spe + Sye + 1 for edge e = (v, ') with s, € {0, 1}. With
edges E; (v) and Ej; (v), the bivector X (v) at vertex v can
be expressed as

_ *(No(v) AN, (v)) _ E;(v) A Ep(v)
INe(v) AN (0)]  |En(v) A Ep(v)]

X, (v) (7.57)

From (7.56) and (7.57), with the fact that eX/() is a boost,
one immediately sees y, = 1 and

A A
NZ AN

. 2r - .¢‘,rl,(, —
Gr(v) = & Dveay Pener s (0) o 2o e (7.58)

where we use (7.46). As we proved in Appendix F, there
exists the spacelike normalized vector N in the plane
spanned by N, and N, such that

Gf(v) = RyRy. (7.59)
From (7.38),
G,.G;(e)Gs(e)G,, = G,.R,Gs(e)R,Gf(e)G,,

Then, it is straightforward to show

G,Gy(e)Gr(e)Gey = RyGp(v)RyG(v)
(7.61)

Thus,
e B o _1 (1.62)

which leads to

Z(qze’vef + ¢e’ygf) =0 mod 7. (763)

veIf

The 7 ambiguity here relates to the lift ambiguity again.
Note that, the fixing of the lift ambiguity to these
4-simplices sharing the triangle f as in Appendix G leads
to g,yer(e)Gf(e)gw = 1. Then we have

Z (%e’vef + ¢e’pgf) =0 mod 27 (764)

veIf

where the 7 ambiguity is fixed. Combined with (7.52), we
have

Z ¢e/vef = - Z %e’ vef

vedf vedf

2 —m -
:—( )T = € mod 7.

. (7.65)

As a result, the total phase for bulk triangles is

exp(Sy) = exp{irZAf[@ —my)m — €] } (7.66)

fbulk

Again, the exponent is a Regge action when all bulk m,
are even; i.e., every internal f has an even number of
vertices.

Note that the above derivation assumes a uniform
orientation sgn(V), but the asymptotic formula of the spin
foam amplitude is given by summing over all possible
configurations of orientations. As suggested by [14], at a
critical solution, one can make a partition of K into
subregions such that each region has a uniform orientation,
so that the above derivation can be applied.

B. Split signature solutions

In this subsection, we focus on a single 4-simplex. We
consider a pair of the degenerate solutions g;-, which can be
reformulated as nondegenerate solutions in the flipped
signature space (— + +—) here. When degenerate solutions
are gauge equivalent, there exists only a single critical
point; then there is a single phase depending on boundary
coherent states.

Since (7.25) and (7.32) hold for all SL(2,C) elements
which solve critical equations, they also hold for degenerate
solutions g;,. Thus, from (7.22), we have

gfvgef}gi/gjy _ e¢2A9g’me?iZiA‘/’e’wa?

$2A€€r

= T2 Xf (7.67)

Notice that since all gi, € SU(1,1) c SL(2,C), we have
2A¢,per = 0 mod 27 (>:<chE generates rotations in the v9 —
u plane).
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From (E87), we have

q)i(gevgevgve'ge’v) = (I)i(gev)q)i(gev)q)i(gve')q)i(ge’v) = gigfbgj:e’gfz

Since G,, = R,G,.R,, we have

®*(Ry Ry,) = G4G&LGT, G5 . (7.69)

For X in flipped signature space M’, from the definition
of ®* in (5.10), we have

OE (X)) = £OF(X,) = t0%) = +OF(XF)  (7.70)
where we know Xjf = ”‘ijt A u in the degenerate case, and
X7 can be regarded as bivectors in so(V)~ A?V. Then we
have

o+ (62A02/vef*,xf) — CZFZABe’vefX% (771)

where we identify the SO(1,2) acting on V to the one acting
on M’

Therefore, the Af contribution to the phase difference in
degenerate solutions {g* } is identified to the A@ written in
flipped signature solutions {g} satisfying ®*(g) = ¢*. A0
is given by

Ry Ry, = 0w (7.72)

where X is the bivector from flipped signature solutions

B (N5 A NS
Xp=—t= —r%- (7.73)
I’lf |>l< (Ne//\Ne)|
From the fact that geometrically,
NAANS
gf\NAANGA\
RNKRN(/ — RNgRNA, =€ R N (774)
where 65 € R is a boost dihedral angle. We have
—rAl, e = 0Oy, 2A¢ e =0 mod 2z (7.75)

and the phase difference is
A . . 1 .
ASf = 21rsf9f = 21r;Af9f mod 7i. (776)

We can again fix the zi ambiguity by using the method in
Appendix G. There is no ambiguity in 6 since it is a boost
angle. As a result,

(7.68)

1
exp(AS;) = exp <2ir—Af9f>. (7.77)
14
The generalization to the simplicial complex is similar to
the nondegenerate case, by substituting every g and g there
with ¢g*.

VIII. CONCLUSION AND DISCUSSION

The present work studies the large-j asymptotics limit of
the spin foam amplitude with timelike triangles in a most
general configuration on a 4D simplicial manifold with many
4-simplices. It turns out the asymptotics of the spin foam
amplitude is determined by the critical configurations of the
corresponding spin foam action on the simplicial manifold.
The critical configurations have geometrical interpreta-
tions as different types of geometries in separated subre-
gions: Lorentzian (— + ++) 4-simplices, split (— — ++)
4-simplices, or degenerate vector geometries. The configu-
rations come in pairs which correspond to opposite global
orientations in each subregion. In each subcomplex with
globally oriented 4-simplices coming with the same signa-
ture, the asymptotic contribution to the spin foam amplitude
is an exponential of the Regge action, up to a boundary term
which does not affect the Regge equation of motion.

An important remark is that, for a vertex amplitude con-
taining at least one timelike and one spacelike tetrahedron,
critical configurations only give Lorentzian 4-simplices,
while Euclidean and degenerate vector geometries do not
appear. In all known examples of Lorentzian Regge
calculus, the geometries are corresponding to such con-
figuration, e.g., the Sorkin triangulation [30] where each
4-simplex contains 4 timelike tetrahedra and 1 spacelike
tetrahedron. Since such a configuration only gives Regge-
like critical configurations, which is supposed to be the
result of the simplicity constraint in spin foam models [5],
the result could open a new and promising way towards a
better understanding of the imposition of the simplicity
constraint. Furthermore, such a configuration also naturally
inherits the causal structure to spin foam models, which
may open the possibility to build the connection between
spin foam models and causal sets theory [31] or causal
dynamical triangulation theories [32,33].

With this work, the asymptotics of the Conrady-Hnybida
spin foam model, with arbitrary timelike or spacelike
nondegenerate boundaries, is now complete. In the present
work, we mainly concentrate on the case where each
tetrahedron contains both timelike and spacelike triangles,
which is the case in all Regge calculus geometry examples.
The geometrical interpretation of the case where the
tetrahedron contains only timelike triangles is much more
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complicated and we only identify its critical configurations
on special cases where the boundary data satisfies the
length matching condition and orientation matching con-
dition. Further investigation is needed for all possible
critical configurations in such cases.

Moreover, in the present analysis we do not give the
explicit form of measure factors of the asymptotics for-
mula, which is important for the evaluation of the spin foam
propagator and amplitude. The measure factor in the EPRL
model is related to the Hessian matrix at the critical
configuration [34,35]. However, the measure factor for
the triangulation with timelike triangles is a much more
complicated function of second derivatives of the action,
due to the appearance of singularities. A further study of
such a kind of multidimensional stationary phase approxi-
mation, in particular, the derivation of the measure factor,
would be interesting.

The present work opens the possibility to have Regge
geometries in Lorentzian Regge calculus emerge as critical
configurations from the spin foam model, which may leads
to a semiclassical effective description of the spin foam
model. Especially, this may lead to an effective equation of
motion for symmetry reduced models, e.g., Friedmann-
Lemaitre-Robertson-Walker cosmology or black holes,
from the semiclassical limit of spin foam models.
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APPENDIX A: DERIVATION OF THE REPRESENTATION MATRIX

This Appendix shows the Wigner matrix of the continuous series in unitary irreps of the SU(1,1) group in the large s
approximation. We begin with the introduction of the Wigner matrix of the continuous series given in [36]. Then by
transformations of hypergeometric functions and the saddle point approximation, we obtain the representation matrix in the

large s limit.

1. Wigner matrix

First, let us introduce the parametrization of the SU(1,1) group element v:

Y IRTICRTT Uy U
'U(Z) — elz[)J eHK emK — (

where

i

IS

vy =¢€

(s (5)
et G ) —on ) n(3))

Uy 1y (A ! )
) _isinh (;) sinh (;‘) ) (A2)
(A3

Note that the generators defined here are a complex version of what we used in the main part. In this parametrization, the

Wigner matrix, which is defined as

can be expressed by [36]

where

D}, (v) = (j.m|v|jic). (A4)

D{nla = eim[ﬁdfﬁoem = eim(ﬁS{n/w(TL/lFﬁz,u(ﬂ) - (—l)gTj;sz];m.u(B))eW (A5)

Fla(B) = (1= g)m=iD2gem=il/2 F\ (—j 4 m. j+m+ Lim +id+ 13 ) (A6)
j 1

TnM = (A7)

L(=m—j)T(m+1+i1)"

084040-24



ASYMPTOTIC ANALYSIS OF SPIN FOAM AMPLITUDE ... PHYS. REV. D 99, 084040 (2019)

Here ,F|(a, b, c, z) refers to Gaussian hypergeometric function, and I'(z) is the Gamma function. The normalization factor
N

‘e Teads

o T(m — j) 27 (= + 1)
Smio = T(m+ j+ 1)i°sin(z/2(—j —id + 06))) .

with = (1 —isinh(z))/2.
Above, Eq. (A5) can be written in terms of normalized spinors v = (v}, v,) in the SU(1,1) inner product (v, v) = 1.
According to the parametrization, we have

u i t o . t u_y 1 t . . t
v+ v, = e 4t (cosh <§> + isinh (E) ) , V) — vy = bt <cosh (5> — isinh <§> ) . (A9)

The Wigner matrix D can be written in terms of v and »

D}, =S (ThFl () = (1T FL L (9)) (A10)
with
F{n,u(”) = 27" () + vy) " (p) — py) (A
X Fi(=j+m,j+m+Lim+id+ 15 (0, + 0)(v) — v2)/2). (A11)

2. Asymptotics of Gauss hypergeometric function

According to (AS), we need to evaluate the hypergeometric function
ZFi(—=j+m j+m+1;m+id+ 1;p), JFi(=j—m,j—m+1;-m+ii+ 151 -p). (A12)

The function itself is complicated. However, we only need the asymptotics behavior with j ~m ~ 4> 1 in our case.
According to (2.29), m is chosen to be n/2 which is related to j = —1/2 +is by the simplicity constraint (2.9).
Correspondingly, 4 is also chosen to be related to s.

a. Transformation of original function

First, we would like to transform the original function to a more convenient form. According to the transformation
properties of hypergeometric function, we have

Fi(—j+mj+m+lim+id+1:6) =1 =) F (j+id+1,—j+ilim+id + 1) (A13)

Fi(=j—mj=m+li=m+id+ 11=p) = (B)"F (j+id+ 1L —j+ik-m+il+ 1;1-5)  (Al4)
sin(z(=m +i4))
al(m +1A+ 1)
:ﬂ_m_mFl(j—iH1,—j—i/1;m—i/1+1;1—ﬂ)
T(m—iA+ DI(j +il + )I(id - j)
_(1_ﬁ)—nz+i/12F1(j+i/1+1,—j+i/1;—m+i/1+1;1—ﬂ)
D(=m +iZ+ D0(=j +m)T(j +m + 1)
sin(z(m + i4)) o _
Fi(=j—mj-—m+1li-m+il+1;1-
em g 2o mj—mt bom i+ 1= 4)
ol —iA+ 1, —j =ik —m — A+ 13 B)
=(1=-p" . " RELL
I(=m—iA+ DI(j+id + D34 - j)
miig2F1+Hid+ 1, —j+idim +id + 1; )
T(m+id+ O)D(—j—m)T(j—m+ 1)

SFi(=j+mj+m+1;m+id+ 1;5)

(A15)

(A16)

- ()
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From (A14) and (A15), we have

JFi(—j—mj—m+1L,—m+il+1;1 =) =T(-m+id+ )[(—=j+m)[(j +m+1)
" (ﬂ)m+"1s1n (m(=m +12))
T'(m+il+1)

(1=pm
L(m—il+ DI+ i+ D34 - j)?

i (+iA+ 1=+ ikm 424 1;5)

Fl(j—i/1+1,—j—i,1;m—i/1+1;1—ﬁ)). (A17)

Similarly, from (A13) and (A16), we have

Fi(=j+mj+m+Iim+id+150) =T(m+id+ 1)I(—j—m)I'(j—m+1)
_(L=p)™ sin(z(m +i))
X( Al(—m A+ 1)
ﬁ—m—i/l

Fij—id+1,—j—ik-m—il+ 1) ). A18
+F(—m—i/l+1)F(j+i,1+])r(i/1_j)2 (j—id+1,—j—ily—m—id + ﬂ)) (A18)

JF( A+ L —j i —m i+ 151 =)

Then, in terms of (A13) and (A17), the function dm 1, €an be written as

)36 (B) = Shze | (1 + (=1)° tan(a(~m +i2)))

y (1 _ﬂ)(—m+i&)/2/}(m+iﬂ)/22F1(j iy 1’_]- —|—i/1;m iy 1;ﬁ)
C(—=m — j)T(m +id+1)
B2 (1 = gD R (=il 4 1, —j—ikm—id+ 1,1 = )
T(m—il+ 1) +id+ DCEA= )T+ m+ 1)

- (-1

(A19)

Now we only need to evaluate the hypergeometric function ,F(j+il+1,—j+il;m+id+1;p), since
ZJF i (j—iA+1,—j—id;m —id+ 1;1 — p) is nothing else but the complex conjugation of the previous one. Similarly,
starting from (A14) and (A18), we have

d16(B) = Sz | (= tan(m(m +i2)) = (~1)7)
L= B) N2 BmHN2 (G4 il 4+ 1, —j + ik —m +id+ 151 = f)
C(m— j)0(=m +il+ 1)
BTN = g2 F (f—id 4 1, —f — i —m — 1A+ 1; )
C(-m—iA+ DI +id+ D)CGA— )T G —m+ 1)

+ (A20)

Clearly the two expression obey the relation d’ , (8) = —(=1)°d’, (B).

b. Saddle point approximation

From (A19), we need the large s approximation of the hypergeometric function ,F(j + il + 1, —j +il;m +il + 1; §).
Here we will only concentrate on the parameters such that m = n/2 = ys and 1 ~ s are satisfied. In this choice, all the
parameters will scale together with s. A choice of 11is 4 = —s. The generalization to parameters where m and A scale with A
but takes a different value is straightforward. Note that the smearing of 4 requires us to calculate 4 = —s, + € where € < /.
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For simplicity, we will transform the original function as

JF1( i+ 1, =j+idksm +id+ 15 5)

p—1

=(1-p"V4F, <;,;+(y+i)s;(y—i)s+1;ﬂ’il>. (A21)

:(1—ﬂ)‘1/22F1<j—|—i/1—|—l,j—&—m—l—l;m—l—i/l—l—l;L) with A=—-s,m=ys,y>0

We will use the integral representation for hypergeometric functions [37]:

2Fi(a,biciz) =

(1 _ r 1+ =1 = 1 c=b-1
(1+b-c) (c)/ r(t-1) dt, ifc—bgN&N(b)>0. (A22)
0

270 (b) (1-z0)

The validity region for these equations is |arg(1 — z)| < z. In (A22), the integration path is the anticlockwise loop that starts
and ends at ¢t = 0, encircles the point t = 1, and excludes the point t = 1/z. In our case, we have %i(c —b) = 1/2 and
M(b) =1/2+m = 1/2 + ys which satisfy the requirement. Thus, with (A22) we rewrite the original hypergeometric
function as

(g s - s+ 120) =59 [ g pene (A23)
where ¥(¢) and f(z, ) are
Y(t)=(y+1i)Int—2iln(r—1), f,p) = <t(t— 1)<1 —%))7 (A24)
and G(s) is
o LG+ 20((r = D)s +1)  /2a(y —i)s((y = 1)) (20)*
= g o) G A

Here we use the asymptotic formula of I' functions
I(z) ~ V271262, (A26)

Note that |G(s)| ~ /s exp(—zs). We will see later the contribution form exp(—zs) will cancel the contribution form
lexp(s¥(7))| at the saddle point .

Clearly when /(B — 1) # 1, we have three branch points t =0, 7 =1, and t = (f — 1)/ for f(¢,z) and two branch
points # = 0 and 7 = 1 for ¥(z). The branch cuts for ¥(¢) on the real axis are given by (—oo, 0] and (0, 1], which can be seen
in Fig. 1. We need to exclude the point #; = (f — 1)/ from the path.

There is one saddle point 7, given by the solution of the equation ¥ (¢) = 0

=11 (A27)
Yy —1

Consequently, at the saddle point 9t (W¥(#,)) = #. The steepest decent and ascent curves are shown in Fig. 1. The original
integration path then can be deformed as the steepest decent curve and two equal real part curves of ¥(z).
The corresponding value at the saddle point 7, reads

s — (TEIYI (2N Qi) (r=i(l=2p)\ ey i\
e‘P()—<7—i> (i+y> , f(to,ﬁ>—\/ﬁ( =7 ) ((y_i)3> (A28)

and
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Im[t ]

1 Relt]

FIG. 1. The value of N(®(7)) (dash line) and the steepest
decent and ascent path (black line) over the #-complex plane for
y=0.1. The blue line shows the position of possible poles 74 of f.

1 Uy - 1)3
Y= 565
- : ; ) (A29)

Then by the saddle point approximation we have

I—G()/drﬂ)

21

esV(1)+i0 o0 |
NT(}C(I()) W-FO(S_ )), as s —> o

N\/T< y—1i 1—2ﬂ)> +O(s2).

5 (A30)

Note that the generalization to A=—sy+dors = sy +

leads to a modification with (%jﬂ))—w.

We also need to consider the branch point
ts = (f—1)/p. When it lives outside the contour C, the
integration over contour C is exactly the path required by
(A22). Thus, in this case we get the asymptotics of the
hypergeometric function with the usual saddle point
method as (A30). However, when (#—1)/f inside the
contour, we need to deform the contour to exclude the
branch point and the branch cut due to (f—1)/p.
A possible way is we choose the branch cut along one
of the steepest decent paths starting at (1 —f)/p, and
deform the contour C excluding the branch point and
branch cut, which may give a nontrivial contribution to the
asymptotic expansion. Since 75 = (f —1)/f is a 1/2 order
branch point, according to [38], in this case, the contribu-
tion coming from the branch point is given by

1

N2\/_ ( ) s‘I’t/; tﬂ’ﬁ (tﬂ

) (

ys221s

s|¥(1p)]

)% + O(s71/2)

N(l_ﬂ)yﬂsﬂ —r+i)s \/ _1

((7+l)) ”“

—i))=)s -
: %—i(ll—z*/;)ﬂﬁo“_m)‘ A

Since the asymptotics contribution contains the power of s in terms of e*¥("), the full asymptotics of the function will come
from the largest Re(¥(z)) of 7, and #4. In our case, f; is in the negative imaginary half plane

ts :—:g. (A32)

And it is easy to show

T t>0

-z, t<0

(A33)

nev) - {

When 7 > 0, the contribution from 7, is lower than 7, in arbitrary order after multiplying by the power of s, and the final
result is given by (A30). The contribution from the branch point only exists when sinh(#) + y < €5 < 0 and the contribution
reads
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[2F1]
[y —i(1 = 2B)| = |y + sinh(t)] ~ 0 | E 6 —— The function ,F;
e I e r .
DAY | | «  Asymptotics value
SS 1| e 1
Sso 1 1
il > « Errors
| |
1 1
1 1 _4
1 o |
1 1
1 1
ME e ks
U o %
: 0.14 1
'.’: 0124,
| ! 0.1 1
i Tl T
‘ T . 0.06 T seesmessensee
il :
ik ' i i 0.04 -
ee ® o ! 4 0.02 A ‘
on .—.-.“.ﬁ‘.-..f 0o’ .b...l 4 I.L
-3 -2 -1 0 1 2 3

FIG.2. The function,F(j +i1+1,—j +id;m + i + 1; ) as shown in (A21) and its asymptotics result / given as (A30), (A34), and
(A35), respectively, with r € [-3,3], s = 100, y = 1. The absolute error is defined as € = |(|I| — |, F1])|/],F1]-

And in this case, the final asymptotics is given by the sum of (A30) and (A31). A special case is when the branch point is
located near the critical point |#, — 14| <€), where the result is

G(n) rein(=1/4+6/2) p—1 1 ’ _ e )
=5 e 0 (075 ) (o) o+ o)

2\/—31/4 - - VY174 -1
Y il = D D)1+ O (A%9)

Note that, for the continuous approximation on S, we have €, ~ s~!'/2. Figure 2 shows the error level of the above
asymptotics result when s = 100.

¢. Result

Now we can write out the final result. According to (A21), we have

Y —=i(1+1i)

O(s~1/2). A36
a2 ) (A36)

i (j—is+ 1, —j—is;n/2 —is + 15 5(1)) ~

From (A19), for sinh(¢) > —y we have

j g 1 ) (L= (D) (1 = p) a2
o124t S’"“’( (—i(l—2ﬂ))+0( ))( L(=5-/)TG+idi+1/2)

ﬂ(———ll)/Z ( ﬂ) (5-id)/2
TRy (A7)

—(=1)7

where we use the approximation

r(=5 =) (530 1) ~ 2 G =Ts(r+ D)0 (=) (A38)
F(%—iiJr 1>F(j—|—i/1+l)F(i/I—j)F‘l(j+m—|—1)~\ﬁﬂ\/W( 2is)~2iseis (A39)
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for sinh(#) < —y, the contribution from the extra branch point reads

j j 2 1= (=1)°)(1 = B)G-0/2p(=5-i2)/2 58B+A/2(1 — g)(—4+i/2
N ) [ Ce e = = e e
o sly —i(1—=2p)| V2U(j+id+ 1D)T([A - ) D(—2—j))TE+id+1/2)
(A40)
One checks that the final result is approximately
d o o=dy o —dy) NSJ'A< ! ++O(s“)>
n/2,~is,c n/2,—is,c n/2,~is,c mic S|]/—1(1 —2ﬁ)|
(1 _ (_1)01)(1 _ﬁ)(—§+i,1)/2ﬁ(§+i/1)/2 ﬁ(—g—i/l)/z(l _ﬁ)(g—u)/z Al
X —(—_1\o )
( L(=5-j/)rG+ii+1/2) F(j+i/1+1)F(i/1—j)> (Ad1)
When |y —i(1 —2f)| < e, which means the branch point near the saddle point, we have
. . —j 2)\1/41/4 (10 _ B (=24i2)/2 g(i+id) /2
dj/z . N S{1MO_ <2ﬁ( 1(1 +}/ )) N + O(s_3/4)> ((1 ( 1) 1)(1 ﬂ) .2 ﬁz
wfarise NODNG D(-§= TG +i2+172)
(=5-10/2(1 — g)5-iN/2
i Ut i } (A42)
C(j+id+ DTG4 - j)

3. Full representation matrix

According to (A10), now we can write out the D matrix in terms of the group elements v:

S o (Hly + 3(500)| —
Dm’A(Z) _ m,A,c < (|y+ J(U1U2)| 6)

Vo y + 3(0y02)]

+ H(e = |y +3(0122)))

2/7(1 + y2>1/4s5/“)
VAl (1/4)

() () () ) e

where H is the Heaviside step function

0 <0
H(x){ r= (A44)
1 x>0
and e is defined as
I'(1/4)?
oo T s
dm\/(1 +7%)s

such that D is continuous for v. Note that the contribution
from |y + J(7,v,))| < € is actually a regulator of the 1/2
order singular points because of |y + J(2,v,))|. In the
inner product this regulator naturally arises as the asymp-
totics with the 1/2 order singular points. In this sense, we
can ignore the regulator since we are only interested in the
inner product in the amplitude. The constant is given by

1—(=1)ci

To = Fcm = )Tm =)

(A46)

(=17
L(j +id+ DA - j)

T., = (A47)

with S given in (A8). In the asymptotics limit, we have

T

S oSy ~ A48
mic" mic 2COSh(2ﬂ.’S) ( )
=i 2cos(m(—m —is)) cos(z(m — is))
T~ 2
m
h(2
~M, when 5> 1 (A49)
b3
j=j cosh(2zs)
T ~———— (A50)

7t

where we use the asymptotic approximation of the Gamma
function
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I(z+e)
m
oo I'(2)z°

=1 (A51)

From the parity property of the representation matrix,
we have
D‘ijm,/l(y) =

—(—l)ae_i”mDﬁg(@)' (A52)

APPENDIX B: ANALYSIS OF SINGULARITIES
AND CORRESPONDING STATIONARY
PHASE APPROXIMATION

In this Appendix we concentrate on the analysis of
singularities appearing in the denominator of the integrand
of the vertex amplitude.

1. Analysis of singularities

For simplicity, we consider one vertex case for some v
mainly. As we show, the amplitude enrolls the integration in
the form

’jﬂP%/H%H

where & is a real valued function

. 20150 Zer ) Zers 17)

<Z1)efv Zvef>

(B1)
Z/thl/e/f

(B2)

Here, each dual face is determined by two edges
f = (e, ¢’). Note that the square root part inside /,,, is
|

the spinor representation for the square root term inside the
Wigner d matrix:

‘ _i(1_2<lefvzvef>< vefvl:f
<Zvevavef>

) -

)| =1+ s
(B3)

The zero sets of h are given by (Z,; Z,;) =0

or |y + (v 9,)| = 0.
We can rewrite the original (Z,,;,Z,.r) as

<Zvef7 L€f> - 25R<<lef’ vef><Z1)6f’ l:f>) - m(f) (B4)
where we define f as
f 2<lef? Uef><Zvef’ l:f> (BS)

In this notation 4,,, becomes

S()
R(f)

hmzmm|h+ '=VWM@NW+m@M.

(B6)

Suppose the functions f are linearly independent to each
other. This requirement is the same as requirement that the
boundary tetrahedron /- -+ be nondegenerate. In this case, we

can define a coordinate transformatlon among the set of the
original coordinates (z,9) = (R(f),3(f),7.¢). The
coordinate transformation only transfers among the number
of f variables and leaves the left invariant; e.g., we only
transfer 40 variables in one vertex case and leave the other
four invariant. The elements of the Jacobian matrix of the
transformation J(f) is given by

8(91(8?4)) _ W =0Z e Zyes) = (GueZyes)" (B7)

%ZM)) = i(0:(Zuess Zoer) = 20 Alops Zoep) Zoe- Log) = 1((9oenZver = 290115 Zoey))" (B8)
%f;d)) = 6(Zvers Zuer) = (L Zyes. Zoos) + (Zyep L' Z ep) (B9)

OB (frer)) _ (L3 Zyogs Zoos) + (Zoeps L Zugg) = 200 Zyop V(L Zygy 1) = 2151 L1 Zyy ) (Z ooy 1)) (B10)

Jg

where L represents the generators of SL(2,C). Note that 6,(Z,.r,Z,.r) is zero when L are SU(1,1) generators.
However, the Jacobian is nonzero in general; e.g., in one vertex case of vertex v, we have the nontrivial contribution from

terms like

8, (13,14,15),  9,(21,24,25),  9,,(31,32,35),

d,,(42,43,45),

9.(12,23,34,41,51,52,53,54)
(B11)
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where 12 is the representation of the ef label in terms of numbers labeling edges and corresponding faces (e, e,). Apart
from those 0 in (B9), other zeros of the matrix elements are only possible when Z = {I*. The Jacobian matrix in this case is

given by (Z = {I" as an example),

a<m(fvef>>

= (gpel1Zer)” B12
92 (9ueNZer) (B12)
8(3(]0@6]4)) a(‘g(fvef))
Z B13
aZ 8z (gven vef) ( )
O (frer)) ; . 0, L=F
— 2 = (L'Zyur. Z e Zoet- LTZ )0 ) = B14
ag < vel f> * < / f> 2<Z11ef" LTZz)ef>a L =iF ( )
O3 (frer)) {21(2 ;o L'Zyy), L=F
N — i(Zyers LT Zpot) = (LT Zpor, Zo)) = v v . B15
99 (Zrer )= AL Zeps Zoer)) N L (B15)
Clearly the Jacobian matrix is still well defined and leads to a nonzero Jacobian.
After this coordinate transformation, the original integration becomes
H/J(f Hdgﬁ(fwf ‘g(f@ef)H . (B16)
~3 fl( (€
‘ (fLef)HgR fve’f |\/|7/+‘hf,ei \/' +‘h f‘
With a further polar coordinate transformation
Puef = \/m(fvef>2 + S(fvef)z’ ¢vef = arg(fvef) € [0’ ”/2> (B17)
whose Jacobian is given by
J = : . (B13)
vef pvef
The Jacobian is well defined except on the points where |f| = 0. After the coordinates transformation, we have
7'[/2 1 eSrf
I = /Q/ /dpvef/ d¢yef . (B19)
]g;Jf: 0 J(p’ ¢) 1;[ |COS(¢L‘6)")||COS(¢1/‘e’f)|\/|y + tan(¢1/ef)||y + tan(¢1)e/f)|

Clearly all possible singular points are 1/2 order. The
singular points due to |y +tan(¢,. )| and due to
| cos(¢,er¢)| are separated. The integration with respect
to p does not have singularities.

2. Multidimensional stationary phase
approximation

In Appendix A, we already use the saddle point
approximation when there is a branch point appearing in
the nonscaled function g(x). When adapting to the sta-
tionary phase approximation, for the 1/2 order singular
point located exactly at the critical point, the result is the
following:

mel -2/ 2 1/ 4eAS(xc)
[(3/4) \A[S"(x.)

(B20)

1—/f“ (x.)

where A ~ oo and § is purely imaginary. Note that the
dominant part here is given by the —1/4 order of A instead
of —1/2 as in the asymptotic formula without singularities.
The regulator appearing in (A43) is exactly this 1/4 order
difference.

However, this asymptotic formula only holds for the
single variable integral. We will generalize this single
variable approximation to the multivariables case. Recall
Fubini’s theorem:
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Theorem B.1. Let w = f(xy, X, ...,x,) be an n varia-
ble valued complex function. If the integral of f on the
domain B = [ [/ I,, where I, are intervals in R is absolutely
convergent:

[}|f(x1,x2, v X)|d (X1, X0, .0 xp) < 00, (B21)

then the multiple integral will give the same result as the
iterated integral,

| i = /(/fxydy>dx
:/B(Af(x,y)dx>dy.

The result is independent of the iterate order.
Here from (B19) we have the integral in the form

/dan 1/2 (x)

where S(x) € R, x € R", j < n and g(x) is analytic. j < n
illustrates the fact that only in a subspace of the total
variables will space have singularities. Then in a closed

|

(B22)

(B23)

region M where the stationary phase points (solutions of
0S = 0) exists, we have

/ ) o)
/d"x|H ~125(x)| < oo.

From Fubini’s theorem, we then can write the multidimen-
sional integral as an iterated integral. For the original
variables, since the singularities exist only in a subspace
of the total variable space, we can always perform a
coordinate transformation, such that variables with singu-
larities are separated from those do not have them, as we
show in (B19). Then, the final result is given by performing
the stationary phase approximation iteratively. In each step
one may use the usual stationary phase approximation or
the one with singularities. The lowest order of the total
integration is given by picking the lowest order approxi-
mation of each single integration.

However, due to technical reason, we would like to
derive the saddle point equations directly from S(x) instead
of evaluating it iteratively. According to the approximation,
each single valued integral is dominated by the phase S(x;)
where x, is the solution of the saddle point equation
5,.S(x) = 0. Then iteratively, the saddle points are given by

(B24)

Oox
5 n) = (5,500 G 5,500 )| <o 5(0lmg =00
X =x]
5an(x(l)’x8’ ""xn) = 5an(x)|x1=x?,x2=xg,...~x,,_1=x0_l =0 (BZS)

where x9(x;,, ..., x,) is the solution of the corresponding
equation of motlon 8 (X, XY X X, . x,) With
respect to x;. As one can see from (B25), the above
equation of motion is nothing else, but we solve the
original equation of motion {E, =4S(x)} iteratively.
Thus, they have the same solutions. The saddle points
given by the two methods will coincide to each other. Note
that, for variables whose saddle points are near the
singularities, the induced measure which contains second
derivatives of the action will be given in the order 1/4 in
contrast to 1/2 for those do not have singularities. As a
result, there is no general Hessian term in contrast to the
previous EPRL approximation, and the measure is more
involved as some special functions of second derivatives of
the action. As a result, finally we have order I~
g(A)A=4/27b/* for b variables that have singular points.

[
APPENDIX C: ANALYSIS OF CRITICAL POINTS
IN BIVECTOR REPRESENTATION

In this Appendix we will analyze and reformulate the
critical point equations we get in Sec. III in the bivector
representation. The analysis is done for all possible actions
appearing in the amplitude (2.42).

1. S,z case
From (3.8) and (3.13) in the S, case,

gvef

Guenll Gpetlh
vellter — Cw’f ve'llber ¢
5 élbef
gveJZvef - é, gve"]Z1 ef (Cl)
vef
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we have

gveﬂljf ® (le_f + avefljf)+gev = gve’ﬂl:f

® (le_’f + ave’fl;f)Tge/v (Cz)

with the fact that (I*,I") =0 and (I,[") = 1. With
(3.54), the above equation can be written as

Gue (Vef + lame )ge1 Guve' (Ve’f + iave’fwj/f)ge’v'

(C3)
In the spin-1 representation, this equation reads
Goe(Ver + (S(@per) + R(per)¥) W, 1) G
= goe (Verr + (Savey) + R@pep) )W, )ger-  (C4)
We can define a bivector X, ¢
Xiep = Ver + (3(@uer) + Ragep)x) Wi (C5)

Easy to check, X is a simple bivector which can be
expressed as

X=x(v+3I(@)w") A (u—=R@w") = A @) (C6)

Here, by the definition of » and w, we have

o = (3, -2, 7', 0), W= (w0, —wt2, w1, 0),
(C7)

where

o= =2 + (@I FIY),  wt =20 FI),

(C8)

One can check #/9; = @tlit; = 1; thus, X is timelike. (C4)
implies

(Gvei}vef) A (Gveﬁvef) = (Gve’ﬁve’f) A (Gve’ﬁve’f)7 (C9)
which reminds us to define

Xf(v) = GverefGev = Gve’Xve’fGe’L' (ClO)
Note that, from this equation, we have

(Gveu)lX;‘J(v) = _m(avef)(Gverf)J (Cll)

which is 0 only when %(a,,.r) = 0.
Going back to the equations we get from the variation
with respect to g, clearly (3.40) and (3.41) can be written as

D e ()7 +iS(@)IF FIIF) =0 (C12)
f
D eer(0)R(a) (I, FiIT) = 0. (C13)
f

In terms of 4-vectors ¥ and w, these equations read

Zeef Gvevvef =0
2 cer(?)

where 7 is defined by (C7). Then we can write (C14) as

abef)GbeWef 0 (C14)

D eer(0)X4(v) =0 (C15)
7
which is a closure condition to the bivectors.
2. §,r case
In this case, from (3.8) and (3.14) we have
Cvefm( 1ef)
GoelMyer = 27~ Gue'lTMye! (Clé)
i Cve f%(ave f) !
I~ 5ve'f 2
gveJZL'ef :—_gve’JZvef (C17)
gvef
where 1,z := 17 +i(yR(aer) + S(per))l;;. Note with

Eq. (3.32), we see n does not change for a different vertex
v: n,r(v) = ngr(v'). n defined here satisfies the relation in
Lemma III. 1; thus, according to Lemma I11.2, {n, [~} forms
a null basis. With n and [, Z can be rewritten as

Z=1"+al"=n+(1-ip)R(a)l-. (CIY)

This leads to the tensor product equation

ey ®( ef+(1

%( ) - iy)m(afef)le_fﬁgen = (6 - el).

(C19)

g@e

The right part of the above equation means we exchange all
the e in the left part to ¢’.

In terms of the bivector variables, according to (3.54),
we have

(i- }')W:f
Gue Ve +
( / (1 + yz)m(avef)

Note now that V is the spacelike bivector generated by n
with [~ and W is null bivector generated by n with itself.
Againthe bivector X, r =V, — (y =)W, /(1 +7*)R(a))
is a simple bivector. X, can be written as

)gev —(e=e). (C20)
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wti = 2i(n, Fin).

=2 (1 ) )

(C22)

wt = 2i(n, F'n)

(C23)
and 3’9, = it'ii; = 1 implies X is timelike.
Then (C19) leads to
Xf(v) = szerefGev = Gve’Xve’fGe’v (C24)

which is the parallel transport of X between edges ¢ and ¢’.
With (C21), we can write X ;(v) as

Xf(l]) = Gve;[;vef A Gveﬂlfef‘ (C25)
Note here again we have
1
(G1)€M) XIJ = (Gvewjf)J (C26)

()0 (a)

which is some null vector and cannot be 0.
From (3.40) and (3.42), we have the following equations
of motion from the variation with respect to g:

Dot (mr (- ‘M%» =0
Zeef (n, F n)

In terms of 4-vectors,

=0. (C27)

G, .w
ve ef
E €f(1)Gpever =0 Ef €.r(v) () =0 (C28)
which leads to
E €r(1)Xs(v) =0 (C29)

3. 8, case

We will use S, ,_ as an example, and the S, /., will be
exactly the same except for switching e and ¢’ here. From
the critical point equations (3.8) and (3.15),

v —l)S gbe’/llyef s, - Gve'Mye' f ’
Cvef Cve/fm(ave/f)
gveZvefJ(l;f + aveflgf) = gve’Zve’f‘](l:f + a’ue’fle_’f)‘

(C30)

With Eq. (3.40) from the variation with respect to SU(1,1)
group elements v,,, in this case n = [*, and Z,je,f can be

+ (1 - i}/)m(ave’f)l;’f'
The tensor product between the two equations leads to

written as Z,,; = [}, f

¥
+(1 )l’f> ge'v

= gve"lnve’f ® ( tef

%( vef)
Ny f X Nye' f . SN
pu— ! —_— 1 J l ! oy
Gve ( .‘R(aw/f) + ( + 1?’)'7”vef ® ( ef) )ge v
(C31)

In bivector representation

J/) W:—e 'f
Goe(Ver +i0uefW 1) Ger = guo | Vo + m
H e'f

X Ge'p- (C32)

It is easy to see that one recovers the corresponding
bivectors in the S, ¢, case, respectively. Thus, the equation
implies

Xf(v) = gverefgev = gve’Xl;e’fge’v (C33)

with X, » defined by (C6) and X, ¢ defined by (C21). The
closure constraint, in these cases, are the combinations of
the corresponding equations in (C14) or (C28) according to
their representations in S, or S_. Then we still have

Zeef(v)Xf(v) = (C34)
f

APPENDIX D: BRIEF REVIEW OF CRITICAL
POINT EQUATIONS WITH SPACELIKE
TRIANGLES IN TIMELIKE TETRAHEDRA

In this Appendix, we briefly summarize the critical point
equations for spacelike triangles in a timelike tetrahedron.
The result was derived in [21]. As we described before,
spacelike faces correspond to the discrete series represen-
tation of the SU(1,1) group. In this case, the simplicity
constraint implies
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Pr =7 ng/2=j; (D1)

with the areas spectrum asymptotically given by A, =

v irlir +1)~pr=7js.
The embedded coherent state reads
= (alz )PP ialgn )Y (D2)

where a = + = (z, z) for spinors z. £ are spinors defined as

Here we use the simplicity constraint p; = 2yjs. Z,.¢ i8

again defined by Z,,. = GreZy - The real parts of the action
read

<§€/f’ Z7/e',f>2<z1/‘efv 5(3]”)2
<Zv6f’ Zlief> <Zz;e’fv Zz;g'f>

NS = —jNRn <0. (D5)

From RS, = 0, we have

&=y g with {53 = (107 v e SU(1,1)
0’ 56 = (0, 1)T ’ ’ Zvef = Cveffétf' (D6)
(D3)
B f Zyor = GheZyp, thi tion leads t
With these coherent states, we immediately see the action CCaUSe OF Luef = JueZoy, TS CQUATION feals {0
read
oes
+ ve +
$ _iiin (Zoer Zoey) i (&5 Zuo ) Zoeg 502 Gl &op = Lo GoeJEE - (D7)
o ! <Zve’f7 Zve’f> ! <Zﬂef1 Zvef> <Z1/‘e’f’ Zve’f> .
(D4) The variation of the action reads
|
NZ i, Z, N2, ye 2 is 5(EH.Z, Z e &S
5Syfzjf(1+i]/) < vef bef>+jf(1_iy) < ve'f Lef>_2.f< < ef wf) < ve'f ief>>. (DS)
<Z1/‘efv Zvef> <Zve’fv Zve’f> < ef? Zvef> <Z1/‘e’f’ 5e’f>

1. Critical point equation

Note that the variation takes the same properties as in timelike triangle case, where the variation with respect to z leads to

. <gvenZ1'ef>T . (gve’nzye’f)T <g”e/n§§f)
5.S=j(l+iy) =—+j/(1—iy) =——-2j,—— . (D9)
‘ / <Z1)efaZ1;ef> / <Zve’f7Z1)e’f> / <Z1;e’j" €§f>
After inserting (D6), we have
gt = 2 g e (D10)
gver] ef - Zyg’f gve 7] e’f‘

One can check that the variation with respect to the SU(1,1) group elements v, is trivial. The variation with respect to the

SL(2,C) group elements g,, leads to

<LTZvefv Z1)ef> + <Zvef’ L+Zvef>

. <§eif’ LTZvef>

88 = jp(1 +1iy)

Applying (D6), we have

— 4]
f+ <Zvef’ZL'ef> / < ztfvzvef>
. . <L+Zvefvzvef> + <Zvef’LTZvef> . <LTZWf’§2:f>
x> j(l—iy) —2j : (D11)
fz_ / <Zvefﬂ Zvef> ! <Z1jef’ gff>
88 = (1 +in) (L&} s Eup) + (Grep LTE0p) = 2060 LTEL)
[+

+ Y (=) (L& ) + (6 LTE))) = 2/ (L7 £5) (D12)

/=
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where f+ means face f is either an incoming or outgoing
edge e correspondingly. This leads to six equations with the
generators of the SL(2, C) group, which reads

88 = =2 “e.p(v)jp(E5. FTEL) (D13)
-

88 =2iyy eop(v)jp(Eh FEL).
i

(D14)

Again €,/(v) here is the signature determined up to a global
sign by

eef(v) = _ee’f(v)’ eef(v) = _eef(vl) (DIS)

for the triangle f shared by the tetrahedra ¢, and ¢,.

2. Geometrical interpretation

We can define a vector from &,/

ni, = =2i(EL, FiEL) (D16)

which is the SU(1,1) action on the unit timelike vector
ny = =2i(&, F'éF) = {£1,0,0}. The encoding of this
vector in four-dimensional Minkowski space is given by

e = Angp —mep nep OF = (EplolIecy) = (Eepllecy)-
(D17)
Clearly ngf is the timelike vector and future directed with

é’:f while the past is directed with ¢ .
Then there is a nature SL(2, C) bivector defined by

e _ 1
Xop = =20 F'&)E; = —1<’15§Ef ® (&7) —512>

(D18)

which, in spin-1 representation, reads

0 n! n?: 0
-nt 0 n 0
1 _ _ I I
X = 2 o0 ol” #(ngp Au'). (D19)
0 0 0O O

Clearly from (D7) and (D10), X, satisfy the parallel
transport equation

Xf(v) = gveXefgey = gve’Xe’fge’v (DZO)

and satisfies

(Gpeu).X¢(v) = 0. (D21)

The bivector is then again scaled as By(v) = 24X ,(v) =
2yj;X(v), where |B;| = 2A;. Equations (D13) and (D14)
then can be written as equations of By:

5,8 = %Zeef(v)gf(v) =0 (D22)
v

;8 = %izeef(u)Bf(u) =0. (D23)
f

APPENDIX E: GEOMETRIC INTERPRETATION
AND RECONSTRUCTION

In this Appendix we summarize the geometric
reconstruction theorems for the tetrahedron with spacelike
triangles only in [12-15,21], and extending them to general
tetrahedron may contain also timelike triangles. We start
with a single simplex o, corresponding to a vertex v, and
then generalize the result to a general simplicial manifold
with many simplices. For simplicity, we introduce a
shorthand notation for a single simplex o,:

Nl' = Nel(/u) Bl(; — _B]Gl = €€i€j(v)Beiej(U)
B = +(1% A N,) (E1)

where e;e; represents the face determined by the dual edges
e; and ¢;, and i =0, 1,...,4, and v;; here is the triangles
that are normal scaled with the area: v}, = +4A7.

Note that here we will assume our boundary data to be a
geometric boundary data, which means they satisfy the
length matching condition and orientation matching con-
dition. The detailed meaning of these conditions will
become clear later. The geometric boundary data is neces-
sary to get a Regge-like geometric solution. For non-
geometric boundary data, there will be at most one
solution up to gauge equivalence, which is an analogy to
the result in the EPRL model [12,13].

1. Nondegenerate condition and
classification of the solution

To begin with, we would like to introduce the non-
degenerate condition. We will first consider nondegenerate
simplices and then move to the degenerate case. For the
boundary data, nondegenerate means that for a boundary
tetrahedron any three out of four face normal vectors n,,
span a three-dimensional space. With nondegenerate boun-
dary data, for any three different edges i, j, k in a 4-simplex
one of the following holds:

(l) N(:'i = :l:Nej and NL'] = :l:Nek’

(i) N,;#N.,;

The first case can be further proved that leads to all N; are
parallel by using the closure constraint of B;;. This result
was first proved in [12] and later by [21].
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The only nondegenerate case is then specified by the
following nondegeneracy condition:

5
H det(Nel,NgzaNe3’N€4) ;éo

el,e2,e3,e4=0

(E2)

which means any four out of five normals are linear
independent and span a four-dimensional Minkowski
space. Since N,(v) = g,.N°, it is easy to see the non-
degenerate condition is actually a constraint on {g,,}.

2. Nondegenerate geometry on a 4-simplex

For simplicity, we start with one 4-simplex o, in four-
dimensional Minkowski space M = R* here. For each
4-simplex o, dual to the vertex v, we associate it with a
reference frame. In this reference frame, the five vertices of
the 4-simplex [pg, pi, P2, P3, p4] have the coordinates
pii(xh) = (&% x!,x7,x}). Based on these coordinates,
we introduce vectors y;, a as well as covector A in an
auxiliary space R>,

yi=0CL1DT, and a=(0,...,0,1)T, A=dl.
(E3)
We define the k + 1-vector in R®
\70,0 ,,,, a = Yag N oo A Ve, (E4)

where a; € {0, ..., 5}. With covector A, for k-vectors Q in
R’ satisfying A, Q = 0, we can identify it with a k-vector in

.....

.....

Van,...,as :ALVaO ..... . = (yal _yao) A A (ya5 _yao)'
(E5)

This vector is actually 4! times the volume 4-vector of the
4-simplex:

Va

0s- -4 (xal _xao) Ao A (xa4 _xa(])

wap N - A Eggg- (E6)
E} o, = xb — xk, is the edge vector related to the oriented
edge 1,4, = [Pa,» Po,)- Notice that the volume 4-vector
comes with a sign with respect to the order of points.

We further define the 3-vector and bivector by skipping
some points

(E7)

(E8)

where i means omitting the ith elements. We have the
following properties for V; and B;;:

Svi=o. (E9)
J#i
One can further check that B;; can be written as
1 sgn(o) Lijkmn
Bij :E(—l) € Emk /\Enk‘ (Ell)

And one has B}, = +4A}, where A;; is the area of the
corresponding spacelike or timelike triangles in the non-
degenerate case.

Suppose the volume 4-vector of the 4-simplex V,
nondegenerate. In this case any of the four out of the five y;
are linearly independent. One can introduce the dual bases
y; and y; defined by
Fa=0 (EL2)

Viayj = 0ij, Vi =5+ A,

with properties

Zj}i = A,

i

(E13)

Zf’i =0,

¥, here can be regarded as covectors belonging to M. With
¥;, we have
Vi==%i.Vo. 4 Bij =Y;5i.Vo. 4 (E14)

Thus, the covectors y; are conormal to subsimplices V.
And by using the Hodge star, we have

Vi = —Vol % 511-, Bl] = —Vol * (5)] AN 5)1) (El5)
where the volume Vol > 0 is the absolute value of the
oriented 4-volume

Vy:=det(V,  4) =sgn(Vy) Vol (E16)
It can be shown that
1 ijkl YTy
7 det(¥7, 3. & 91) (E17)
and the coframe vector E;; is given by
Ej; = Va€ijum(v) x (F* AT AT™). (E18)

If the subsimplices V; are nondegenerate, by introducing
normalized vectors N;, we can write y; as
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Ni'Ni:ti’ W1>O (Elg)
where #; = £1 distinguish spacelike or timelike normals,

respectively. This leads to

1
1

(E20)

In order to make the normal out-pointing, we redefine the
normalized normal vectors N; by

N& = —t;N;, W& =—-1,W; ZWiANiA =0 (E21)

such that N® are out-pointing.

3. Reconstructing geometry from nondegenerate
critical points

We begin with the reconstruction of the normals. Recall
in the critical point equation (3.91), the normals N, satisfy
ertﬁIJNele(U)JK =0. (E22)
If there is another normal vector N satisfying the same
condition for some edge e, it is easy to see that we have
erter(/U) ~ *(N AN Ne) (E23)
which means for an edge e, B, are proportional to each
other. This is clearly contrary to the fact that we have a
nondegenerate solution. Thus, for the given bivectors
which are the solution of the critical point equation, if
we require a vector, N satisfies
ertﬂleIBf(U)JK =0 (E24)
for an edge tetrahedron 7,, and we then have N = +N, after
normalization. The condition (E24) is sufficient and
necessary.
Considering a 4-simplex o, at some vertex v, the critical

point equation (3.91) can be written in the shorthand
notation we introduce in (El) as

N B =0, Y Bl =0

J

G
B/(v) = BY" = -BS,

(E25)

Now we give normalized vectors N; satisfying the non-
degenerate condition. If we require that the bivectors satisfy
(E25), they are uniquely determined up to a constant 4 € R

B';j = AW,W; % (N; A N,). (E26)

Here W; € R are nonzero and determined by
ZW,N i 0
i

The proof is stated first in [14] and later in [21]. Note
that the bivector B;; is independent of the choice of the
signature of normal vectors N since the signs of W and N
will change simultaneously. 4 can be fixed up to a sign by
the normalization of B’;;

(E27)

By = —4y*s; = —4A7. (E28)

Then it can be proved that the nondegenerate geometric

solution determines the 4-simplex specified by the bivec-
tors B uniquely up to shift and inversion such that

G

BA = Bl (E29)

where r = %1 is the geometric Plebanski orientation. The

construction can be done as follows. With five given

normals N;, we take any five planes orthogonal to N;.

With the nondegeneracy condition, they cut out a 4-simplex

A’ which is uniquely determined up to shifts and scaling.

According to (E20) and (E26), the bivectors of the

reconstructed 4-simplex BiAj/ relate to B;; as

A _ o plG)
Bf =B (E30)
Then the identity of the normalization will determine the
scaling up to a sign

, |
BIV = rBY = — —— rWAWS x (N* A N®)

E31
ij ij Vol (E31)

where Vol is the 4!-volume of the 4-simplex.

Let us move to the boundary tetrahedron. Since G, is a
SO(1,3) rotation, its action then keeps the shape of
tetrahedrons. Thus, the tetrahedron with bivectors B;; =
*#(v;; A u;) has the same shape with the tetrahedron with

the face bivectors BZ{JG} = G, * (v;; A u;). For given v;;,
when the boundary data is nondegenerate, we can cut out a
tetrahedron with planes perpendicular to v;; in the three-
dimensional Minkowski space orthogonal to u. Clearly, the
face bivectors of this tetrahedron satisfy
with the 1j; arbitrary real number. However, from the
closure constraint, we have

ZB;/' = *(Ziﬁjvi]) Au=0.

Jij# Jii#

(E33)
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Since V;v;;.u = 0, the above closure equation implies

> ;=0 (E34)
JiJ#
which, according to closure with v;;, leads to
3,14 = A (E35)

Thus, for every edge e;, there exists a tetrahedron deter-
mined uniquely up to inversion and translation with face
bivectors

Bij = ri(Ul'j AN u) (E36)
in the subspace perpendicular to N; with r; = £1.

The edge lengths of the tetrahedron are then determined
uniquely by v,;. We denote I, * the signed square lengths of
the edge between faces ij and ik. The length matching
condition can be expressed as

2 l’z—ljz—l“.

(Uk jko T Yik T (E37)

The nondegenerate solution exists if and only if the lengths
satisfy the length matching condition. In case the length
matching condition is satisfied, we can write l%ijk) using the
missing indices which are different from i, j, k as l%mD.

With this notation, one introduces the lengths Gram matrix
of the 4-simplex

01 1 1
Lo I It

Gl=|1 G 0 By (E38)
1 G 4 0

The signature of G' corresponds to the signature of the
reconstructed 4-simplex. We denote the signature as (p, g).
Based on if G is degenerate or not, we have the following:
(i) If G’ is nondegenerate, then there exist a unique
up to rotation, shift, and reflection nondegenerate
4-simplex with signature (p,q). There are two
nonequivalent 4-simplices up to rotations and shift.
The normals of two reconstructed 4-simplices {N; }

and {N}} are related by

N, = (=1)%GN, = GI*'N

: (E39)

(i) If G' is degenerate, then there exist a unique up to
rotation and shift degenerate 4-simplex with signa-
ture (p, ). The 4-volume in this case is 0.

The signature here is related to the signature of the
boundary tetrahedron. For all boundary tetrahedra being
timelike, the possible signatures are Lorentzian (— + ++),
split (— + +—), or degenerate (— + +0). For all boundary
tetrahedra being spacelike, the possible signatures are
Lorentzian (— + ++), Euclidean (+ + ++), or degenerate
(0 + ++). For boundary data containing both spacelike
and timelike tetrahedra, the only possible reconstructed
4-simplex is in Lorentzian signature (— + ++).

4. Gauge equivalent class of solutions

Suppose we have a nondegenerate geometric boundary
data and the 4-volume is nondegenerate, then we can
reconstruct the geometric nondegenerate 4-simplex up to
the orthogonal transformations. Suppose we have this
reconstructed 4-simplex with the geometric bivectors B
with normals N2. From these normals, we can 1ntr0duce

wa WANA N&

5 =—vql (N,-A) J NA> (E40)

1)~A~ — 1 (WA WA A
Itis easy to check that vf} - N = 0 and Bf; = *(vj; A NP).
Thus, these are nothing else but normals of faces of the ith
tetrahedron recovered from the bivectors BiAj. It is easy to
check that we have

U = V;;

A A
Vik 1

v (E41)
by the fact that B - Bj = B;;- By. We can introduce
group elements G* € O for each i satisfying

GiAu = NA, G vjj A

: Vi vh.  (E42)

Note that there are only four independent conditions out
of five.

We would like compare these group elements G#
obtained from Bf]- with G; from the critical point solution.
From the reconstruction of bivectors and normals, we know
that

s piG 5,

B:=(-1)'BI),  N;=(-1)"N®  (E43)

where (—1)* with s € {0,1} and s; € {0, 1}. The condi-
tion leads to

G s
# (Givyg AN;) = BI = (<1)°BS
= (=1) % (viAj ANE) = +((=1)""w AN;).  (E44)
Since N; - vi; = N; - G;v;; = 0, we have
Gv;; = (‘U‘YH"U,'A,» G,N = (—1)%N? (E45)

which implies
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G; = GAISi(IRy)". (E46)
For G; € SO, we have detG; = 1, then from (E46)
det G2 = (—1)*. (E47)

Since there is only one reconstructed 4-simplex up to
rotations from O, thus two G* solutions are related by

GY =GG»,  Geo (E48)
which means
det G
, L — detG. E49
“detGE (E49)

This condition reminds us to introduce an orientation
matching condition for the boundary data where the
reconstructed 4-simplex has
VidetG: =r re{-1,1} (ES0)
We call the boundary data as the geometric boundary data if
they satisfy the length matching condition and orientation
matching condition.
After we choose the reconstructed 4-simplex, we have
fixed the value of s by
r=(-1)* (ES1)
and it is the Plebanski orientation. However, s; is still
arbitrary.
With (E46) and (E47), we can identify the geometric
solution and reconstructed 4-simplicies. Up to SO rota-

tions, there are two reconstructed 4-simplices. The two
|

1
By = =r(v) g WEWS + (V) A N) = ()

Vol

where B} is the geometric bivector corresponding to the triangle f dual to the face determined by e, e;, €

(E40), we can define

" Vol

W) = - (W@@)W%@)NW

classes of simplices solutions are related by the reflection
with respect to any normalization 4-vector e,

G _ {G}
Bij_Re(,(B )7

K s =s+1 (E52)

which means

G; =R, G(IR,) € SO(1,3). (ES3)
With the gauge choice that G; € SO, (1, 3), we can rewrite
(E53) as

Gi - Reolr[GiRu (E54)
such that G; € SO (1,3). It is direct to see r; = 0 for u
timelike and r; = 1 for u spacelike.

5. Simplicial manifold with many simplices

The above interpretation and reconstruction are within
the single 4-simplex case. Now we will generalize the result
to simplicial manifold with many simplices. We will
consider two neighboring 4-simplices where the corre-
sponding center v and v’ are connected by a dual edge
e = (v, 7). For a shorthand notation, we will use prime to
represent the parallel transported bivector and normals from
the simplex with center ¢’ to v, e.g., N: = G,,N;(v'). We
denote the edge e = (v,?') as e.

Since N,(v) =G,u and N,(v')= G ,u, we have
N,(v) =G, N,(v') for G = (v,v'). From the recon-
struction theorem, with (E43), we have

Ny = (=1)%+so NS, (ES5)
From the parallel transport equation X ;(v) = g, X 1 (v') gy,
with the fact that €,,(v) = —e,7(1'), we have

WAW'S « (N'® A N'§) (E56)

1
Vol
!

i

Now, similar to

which satisfies vj;(v) - N (v) = 0. The geometrical group elements Q2 , € O(1,3) is defined from

v@i(v) =QA /v@i(v’),

v

(E56) now reads

BIY = r(0) + (08 (0) A N§(0)) = =r(V/) % (G ol (v') A Gy NG ().

From (E55) and (E59), with the fact that v5(v) - N§(v) =

W)W )NA(0) - N2 ()
- W) (EST)
N3(0) = Q8 NB (). (E58)
(E59)

G,y 5 (V) - G,y NE (V') = 0, we have
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V5 (0) = =(=1) 0 0r(0)r(v) G (v), Ny (v) = (=1)T0G, N§ (V') (E60)
Compared with (E58),
Q8 = G IV 0 (IRy, (), det@B, = (=1)s+ (E61)

where s and s’ are determined by (—1)° = r(v) and (—1)* = r(v"). Note that from the fact No(v') = Go(v')u = I'oN§ ('),
and Ry = GR,G™', we have RN@ = Ry,. One can check that (E61) can be written as

Qﬁv/ _ IISO+SE)IS+S,GWR;+S,GM/ _ IGﬁeGgAy/ (E62)

which coincide with the geometric solution for the single simplex. Note that, after fixing a pair of compatible values of s and
s’, another pair of compatible values are given by s + 1 and s’ + 1 due to the common tetrahedron 7, shared by two
4-simplices. This is nothing but reflecting that every 4-simplex simultaneously connects with each other. Then, according to
(E53), these two possible non-gauge-equivalent solutions are related by

- R, Gr(e)R, internal faces
{ ¢ ‘ (E63)

G =
f Jreit7eo R, Gf(ei.e0)R,, boundary faces

where G, = chafGe/vae is the face holonomy.

For a simplicial manifold, we will introduce the consistent orientation. For two 4-simplices o, and o,/ share the same
tetrahedron 7,, and we say they are consistently oriented if their orientation satisfies [pg, pi, P2, P3, p4] and
—[Po» P1» P2 D3> P4]. Therefore, we have €1234(v) = —€%123(1') for the orientation in (E11). The orientated volume
then contains a minus sign in V'.

From (E55) and (E56), we have

, WAWAVol
1\7/1-A = —(—I)SO_H07'(’[1)1"(1},)V‘//iﬁlé\/oll\/iA +(1iN€ (E64)
where a; are some coefficients s.t. >_; WAN'S = —W'N'§. We introduce § where 3; = g WAN#, then
" W
B, = —r(v)Volx (§; A o). ¥i = =(=1)""0r(v)r(v') 375 31 + @i (E6S)
0
where @; are coefficients s.t. >_;5; = —y,. We then have
1 . e e~ W€2V01 e e e o N\~ Wézl
v det(y'o,)"1.¥'2.'3) = (=r(v)r(v"))’ <W’§> Vol det(Fo. ¥1. 52, 53) = —F(v)F(v) w'a v (E66)

where we define 7(v) = r(v)sgn(V(v)). The equation results in 7#(v) = 7(v") = 7. Therefore, 7 = sgn(V(v))r(v) is a global
sign on the entire triangulation after we choose compatible orientation. The equation also implies |W§| = |W'8|. With
the fact that the normal vectors N§ and N'§ are of the same type (spacelike or timelike), we have W5 = W'{. Thus (E64)
leads to

, WAWAVol
N8 = —(=1)%*Sosgn(VV') W’ZT’QVMN"A + a;N§ = u,N* + a;N§ (E67)
where we define a sign factor y, := —(—1)%*+sosgn(VV’). One can see that, for an edge E,,, in the tetrahedron #, shared by
o, and o,/, we have
E;m = Vl€lmjk<vl) * ()ﬁ;lj A )‘;/k A )70) = ﬂevelmjk(v) * (5)] N yk A 5}0) = /"eElm‘ (E68)

The equation thus implies the coframe vectors on all edges of the tetrahedron ¢, at neighboring vertices v and v’ are
related by
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El(v) = /’lerv’El(UI)' (E69)
Since E;(v") L Ny(v'), the relation is a direct consequence
of (E61) with the fact that 7(v) = #(v') = 7. This relation
shows that the vectors E in a tetrahedron shared by two

4-simplices o, and o, satisfy
9nL, = ﬂIJEf] (U)Ezjz@) = ﬂIJEf] (U,>E{2(U/) (E70)
where g;;, is the induced metric on the tetrahedron
and it is independent of v. If the oriented volume of these
two neighboring 4-simplices come with the same sig-
nature, i.e., sgn(V(v)) = sgn(V(v')), we can associated a
|

reference frame in each 4-simplex o, and the frame
transformation is given by Q,, = u.G,, € SO(1,3).
The matrix €2,_,, is a discrete spin connection com-
patible with the coframe then. Note that, since 7(v) =
r(v)sgn(V(v)) is a global sign, globally orienting
sgn(V(v)) will make r = r(v) a global orientation on
the dual face.

Let us go back to the original geometric rotation Qi‘,v,.
Suppose we orient consistently all pairs of 4-simplices on
the simplicial complex /C. We then choose a subcomplex
with the boundary such that, within it the oriented volume
sgn(V) is a constant. Then for the holonomy along the
edges of an internal face, we have

Q?(U) - Qﬁoﬂ’nQLA‘u”n—l o QiA’l v Inlson-‘rann_l+W+SIOGU01',, Gl‘n”n—l o G”lvo = /ler(U) (E71)
while for a boundary face,
Q]é(vn’ UO) = Qﬂuvnq U Qvlvo = I”]-"n,nfl+"'+510G”0””Gvnvnil T G'/‘l’/‘o = ﬂer(U”’ 1}0) (E72)

where £ is the number of internal edges belonging to the face f. Here y, = I"[ [,/ I = £1, and 5,_, ,ty = 5y + 5,0 18

independent from orientation.

Suppose the edges of the triangle due to face f res given by E;(v) and Ej(v). Then from (E69) and (E71)—(E72),

we have

Gr(v)E)(v) = pEi(v),

or Gf(ynv UO)EI(UO> = ﬂeEl<vn)'

(E73)

For the normals Ny(») and N, (v) which are orthogonal to the triangle due to f, from (E67) and (E71)—~(E72), we have

G(v)N1(v)* = aNy(v)* + DN, (v)*,

GyN (v) - E;(v) = GgNy(v) - Ep(v) = 0.

(E74)

For boundary faces with the boundary tetrahedron ¢, and 7, , similarly, we have

G (04, 19)Neo(v0) - Efi (v,) = G (v, v9)Neo(v0) - Ep(v,) = 0.

6. Flipped signature solution and vector geometry
Now let us consider the degenerate case, where the
4-volume is 0 and G; can be a gauge fixed to its subgroup
G; € SO(1,2) for the timelike tetrahedron. In this case, the
4-normals of the boundary tetrahedra are then gauge fixed
to be V;N; = u. We can introduce an auxiliary space M*/
with metric g, from M?* by flipping the norm of u
g//w = 9w — zuuuu (E76)
where g, is the metric in M*. We will use prime to all the

operations in M*. For the norm of u, we have

t=u-u, ' =—t=u'u. (E77)
Notice that for the subspace V orthogonal to u, the
restriction of both scalar products coincides. Thus, for

(E75)

[
the vectors in V we can use both scalar products. The
Hodge dual operation satisfies *’ 2— 2 —fr=—-7.

For the subspace V, we can introduce maps ®*

O NMY >V,

®*(B) = (+B—1 ¥ B)'u=(F B++B) u (ET8)

where B is a bivector in M¥. Clearly for a vector v € V,
we have

OE (¥ (v A u)) = 0. (E79)

The map ®* naturally induces a map from G € SO(2,2) to
the subgroup # € SO(1,2), which is defined by

®*(GBG™!) = ®*(G)d*(B) (E80)
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where

®*(G) € O(V). (E81)

It is easy to see when G =h e SO(1,2), we have
®*(h) = h. And one can further prove that the condition
is sufficient and necessary as shown in [21].

Clearly, for given bivectors BI{J.G} =G, * (v;; Au)in M,

if B;{jG} = —B}iG }, we have

G}+ G}+ G}+ G
”;‘{j = _”,{‘i I ) U;‘{j = (I)i(G)Uij = q)i(B;'{j })
(E82)
and the closure }_,B}; = 0 leads to
S ol =o. (E83)

1

One can prove the condition is necessary. In other words, if

we have g such that v,{jG}i = —v;{.iG = we can always

build unique G; € SO(M’) (up to I*’) which constitutes a
SO(M’) solution.

In summary we see that there is an 1-1 correspondence
between

(i) the pair of two nongauge equivalent vector geom-

etries,

(ii) the geometric SO(M’') nondegenerate solution.
The two vector geometries are obtained from the SO(M’)
solutions {g,.} as g, = ®*(g,.). This is the flipped
signature case for a Gram matrix with given geometric
boundary data. For example, with all boundary tetrahedra
timelike, the signature of the reconstructed nondegenerate
4-simplex is split (— + +—).

From the reconstruction for nondegenerate solutions, we
have the orientation matching condition for the geometric
group elements G2+ € O(V) where

A+ _ At
Gy = i,

v,-Aji = d?i(BiAj). (E84)
One can show that, in the flipped signature case, this
condition becomes
det G4, = det G5, (E8S)
The critical point solutions are in 1-1 correspondence
with reconstructed 4-simplices up to reflection and shift. As
a direct result from (E53), for nondegenerate boundary data
satisfying the length matching condition and orientation
matching condition, there are two gauge inequivalent
solutions corresponding to reflected 4-simplices which
are related by

G = R,GR, (E86)

where G and G represent two gauge equivalent series. Two
nonequivalent geometric SO(M’) nondegenerate solutions
then satisfy
®*(G) = D*(R,GR,) = D7 (). (E87)
Finally, when the SO(M’) solution is degenerate, we can
assume N; = u by gauge transformations. In this case, we
see @1 (G) = @ (G) = h. Thus, the vector geometries are
gauge equivalent. The inverse is also true. When the vector
geometries are gauge equivalent, we have @7 (G) =
@~ (G), which means there exists G; (uniquely up to gauge
transformations) such that after gauge transformations
N; = G,u = u. This corresponds to the degenerate recon-
structed 4-simplex with zero 4-volume.

APPENDIX F: DERIVATION OF ROTATION
WITH DIHEDRAL ANGLES

In this Appendix, we prove the following equation:

N[AN/-

29ijm (Fl)

RN‘,RN], = QU =€

which is used in Sec. VII. For two normalized spacelike
vectors N;, N, NIN;; = NYN;; = 1, compatible with (7.1)
and (7.2), we have

N{N]I = COS (9i (FZ)

je
|Nj/\Nl|2:—|*Nj/\Nl|2251n2<911) (F3)
For the N;, N; that are timelike and the signature of the

plane spanned by N; A N; that is mixed in the flipped
signature case, we have

NZIN]I = cosh 91' (F4)

e
|Nj VAN Ni|2 = |*/ Nj VAN Ni|2 = —Sinhz(eij). (FS)

Now from

2NN,
N-N

(Ry), =1- =1-2tN'N, (F6)

where we define ¢ := N'N,. Itis easy to see for a vector » in
the N; AN i plane,

Ry, Ry,v = (I =2tNFNy)(I = 2tN|N ;) v’

= U-2t(N,U)Nl—2t(NjU)NJ

which leads to
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Tr(Ry,Ry,) = 4(N; - N;)* =2, (F9)

Let us introduce spacetime rotations Q € SO_(1,3). For
connected components in the Lorentzian group, two group
elements Q and Q' are equal if they satisfy

Q-Q 1 =0Q -Q"!

Tr(Q) = Tr(€).  (F10)

The space rotation can be written using bivectors as

20, . N; AN;
Q;; =e NNl = cos(20;;) + s1n(2¢9,»j)|NTN;‘ (F11)

and for spacelike normal vectors we have

. N; AN;
(F12)
Tr(€;;) = 2cos(26;;) = 2(2cos*(0;;) — 1)

while for timelike normal vectors that span a mixed
signature plane, € is a boost,

20, . Ni AN;
Qij =e INiAN; | — COSh(zgij) + Slnh(29ij)WTIV;|
(F14)
with
, N, AN;
(F15)
Tr(Q;;) = 2cosh(26;;) = 2(2cosh*(6;;) — 1)
Notice that here [N; A N, is defined as
IN; ANj| = \/IIN: A NP (F17)
Thus, in both cases we have
20, NN
Ry Ry, = Q) = 75 (F18)

where 0;; is the angle between normals and related to the
dihedral angle by (7.1) and (7.2).

APPENDIX G: FIX THE AMBIGUITY
IN THE ACTION

In this Appendix we show how to choose the SL(2, C)
lift to fix the ambiguity in the action. Note that here we only
fix the ambiguity for a single 4-simplex o, with the
boundary data, where the deficit angle @, =6, is the
angle between normals. The ambiguity (in one 4-simplex
o, with boundary) which due to odd n; can be expressed as

AS — ASA — ir Z Ap-0, non degenerate case (G1)
finpoddyy gplit signature case.

The procedure we use here is an extension of the one used

for spacelike triangles in [21].

1. Nondegenerate case

Suppose we have nondegenerate solutions {GY, €
SO(1,3)} with normals v9 of triangles of nondegenerate
boundary tetrahedra. The area of these triangles is given by

0
spins ys?f = %’ Define the following continuous path:

G, (1), u(t) =u=(0,0,0,1)", (G2

”ef(t)’
where V eGY, = G,.(0), 19, = v,,(0) such that
(i) Vre[0,1], {G,.(r)} is a solution of the critical
point equations with boundary data where the
normals of the triangles of the boundary tetrahedra
are v,/(1),
(i) Vt#1 boundary data is nondegenerate, and
Uef(l) ;é 0’
(iii) Vr# 1 solution {G,,(¢)} is nondegenerate,
@iv) for t=1, the pair of solutions {G,(7)} and
{Gve(t) = R, g,c(1)R,} are gauge equivalent.
In this path, the function
f(1) =

D Apees(t) = rOp(1) mod 2z (G3)

fingodd

takes values in {0, 7} and changes continuously with the
phase and the difference from the stationary points deter-
mined by {G,.(#)} and {Gl,e(t) =R, G, (t)R,}. Thus,
f(z) is a constant. Since at t = 1, we have two geometric
solutions that are gauge equivalent to each other, which
means the lifts g,,, §,. of the solutions satisfy

re =1{0,1}.  (G4)

Ve.ave = (_l)r”gng

From (7.22),
(_1)r,,e+rw/ = Gpe (ge"vgve)_lge v — e_ZAeeI”fo+2iA{/)elwaf
(G5)
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which leads to Ag,,. (1) = (r,. + )7 mod 27 since
we have (2X,)? = 1. We shall consider a subgraph of the
spin network which contains those odd n links. The
subgraph has even valence nodes. Thus, we can decompose
into Euler cycles. In those cycles every link of odd n will
appears exactly once. For a Euler cycle consisting of edges
with odd n, every edge will be counted twice. Thus we have

> Apep(1)= > 2r,mr=0 mod2z. (G6)

eecycle eecycle

Also, from the fact that two geometrical solutions are
gauge equivalent, V,G,, = GG,,, we have Ry, Ry, =
Gve(Ge’véve)_lGe’v =1, thus

®f(1) = 7'f71' mod 2, ?f = ?ve + ;.L'e’ (S {0, 1},
(G7)

which can be fixed again using Euler cycles for Ag.

The path can be achieved by deforming solutions in the
following way: First choose a timelike plane with the
simple normalized bivector V at some vertex v that satisfies

vV V AxBy#0. (G8)
The path is made by contracting the two directions in *V,
and we donate the r =1 as the limit for contracting
directions to 0. From the above condition we have that
lim,_,; By exist and keep nonzero. The dual action of the
shrinking on the geometric normal vectors N2 also has a
limit which is their normalized components lying in the xV
plane (after normalization). By a suitable definition of
boundary data, we can assume G, (1) =1lm_,G,.(7)
exist. Now we end up with a highly degenerate 4-simplex
which is contained in a 2D plane and all bivectors are
proportional to V.

2. Split signature case

The treatment concerns degenerate solutions following
the similar method. We start from the nondegenerate
boundary data, where normals of the triangles of boundary
tetrahedra are given by vgf and an area of these triangles are
related to spins n;/2. Suppose from these boundary data,

we can reconstruct a nondegenerate 4-simplex in flipped
signature space M’. In this case, we have two non-gauge-
equivalent solutions {g, }. We define the following path:

Goe(t):  vep(1),

where Veg); = 63.(0), v0; = v.4(0). The path satisfies
(i) Vte|0,1], {g=(t)} are solutions of the critical
point equation with boundary data given by v, (1),

(i) Vt € [0, 1] boundary data is nondegenerate, e.g., the
boundary tetrahedron is nondegenerate,

(iii) Vt# 1 solutions {g7,} are non-gauge-equivalent,
thus we have a nondegenerate reconstructed
4-simplex in M’

(iv) for t = 1, the reconstructed 4-simplex is degenerate
in M.

Now the constant function f(r) € {0, z} reads

f(t) = Z A¢eve'f<t> mod 27.

finjodd

u(t) = u = (0,0,0,1)7, (G9)

(G10)

Following the same argument in the nondegenerate case,
we have for the lifts
gv+e(1> = (_1)rwg;e(1)' (Gll)

Based on the same consideration using Euler cycles,
we have

f)= > Ag.ep(t) =0 mod 2z. (G12)
fingodd
Thus we have
AS" — ASA =0 mod 27. (G13)

The path is built by the following way: We choose a
spacelike normal such that, in flipped signature space

ViN A By #0. (G14)

The path is then made by contracting in the direction of N

in the flipped space M’'. The contraction leads to a con-

tinuous path of nondegenerate solutions in M’ until r = 1
where the 4-simplex is degenerate.
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