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The large-j asymptotic behavior of the four-dimensional spin foam amplitude is investigated for the
extended spin foam model (Conrady-Hnybida extension) on a simplicial complex. We study the most
general situation in which timelike tetrahedra with timelike triangles are taken into account. The large-j
asymptotic behavior is determined by the critical configurations of the amplitude. We identify the critical
configurations that correspond to the Lorentzian simplicial geometries with timelike tetrahedra and
triangles. Their contributions to the amplitude are asymptotic phases, whose exponents equal the Regge
action of gravity. The amplitude may also contains critical configurations corresponding to nondegenerate
split signature 4-simplices and degenerate vector geometries. But vertex amplitudes containing at least one
timelike and one spacelike tetrahedra only give Lorentzian 4-simplices, while the split signature or
degenerate 4-simplex does not appear.
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I. INTRODUCTION

Spin foam models arise as a covariant formulation of loop
quantum gravity (LQG); for a review, see [1–5]. A spin foam
can be regraded as a Feynmann diagram with 5-valent
vertices, corresponding to quantum 4-simplices, as building
blocks of the discrete quantum spacetime. The boundary of a
4-simplex contains five tetrahedra. As one of the popular
spin foam models, the Lorentzian Engle-Pereira-Rovelli-
Livine/Freidel-Krasnov (EPRL/FK) model comes with a
gauge fixing within each tetrahedron such that in the local
frame the timelike normal vector of the tetrahedron reads
u ¼ ð1; 0; 0; 0Þ in a 4DMinkowski spacetime with signature
ð−1; 1; 1; 1Þ, known as the “time gauge.” As a result, this
model is subject to the restriction that tetrahedra and
triangles are all spacelike [6], such that the tetrahedra lives
in a Euclidean subspace. As a result, such spin foam models
only correspond to a special class of 4D Lorentzian
triangulations. However, in the extended spin foam model
by Conrady and Hnybida, some tetrahedron normal vectors
are chosen to be spacelike u ¼ ð0; 0; 0; 1Þ. As a result, the
model contains timelike tetrahedra and triangles which live
in 3D Minkowski subspaces [7–9].
The semiclassical behavior of spin foam models is

determined by its large-j asymptotics. Recently there have

been many investigations of large-j spin foams, in par-
ticular, the asymptotics of EPRL/FK model [10–18], and
models with the cosmological constant [19,20]. It has been
shown that, in large-j asymptotics, the spin foam amplitude
is dominated by the contributions from critical configura-
tions, which gives the simplicial geometries and discrete
Regge action on a simplicial complex. The resulting
geometries from the above analysis only have spacelike
tetrahedra and spacelike triangles. Recently, the asymp-
totics of the Hnybida-Conrady extended model with a
timelike tetrahedron was investigated in [21]. The critical
configurations of the extended model give simplicial
geometries containing timelike tetrahedra. But the limita-
tion is that all the triangles are still spacelike within each
timelike tetrahedron.
In this paper, we extend the semiclassical analysis of the

extended model to general situations, in which we take into
account both timelike tetrahedra and timelike triangles. Our
work is motivated by the examples of geometries in
classical Lorentzian Regge calculus, and their convergence
to smooth geometries [22–24]. In all examples, the Regge
geometries contain timelike triangles. In order to have the
Regge geometries emerge as critical configurations from
spin foam model, we have to extend the semiclassical
analysis to contain timelike triangles.
In our analysis, we first derive the large-j integral form

of the extended spin foam model with coherent states for
timelike triangles. The large-j asymptotic analysis is based
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on the stationary phase approximation of the integral. The
asymptotics of the integral is a sum of contributions from
critical configurations.
Before coming to our main result, we would like to

mention some key assumptions for the validity of the result:
The following results are valid when we assume every
timelike tetrahedron contains at least one spacelike and one
timelike triangle. This is the case in all Regge geometry
examples mentioned above. Our results also apply to some
special cases when all triangles in a tetrahedron are time-
like. Moreover, all tetrahedra in our discussion are assumed
to be nondegenerate. Here we do not consider the critical
configurations with a degenerate tetrahedron. Finally, the
Hessian evaluated at every critical configuration is assumed
to be a nondegenerate matrix.
The main result is summarized as follows: First, for a

single 4-simplex and its vertex amplitude, it is important to
have boundary data satisfy the length matching condition
and orientation matching condition. Namely, (1) among
the five tetrahedra reconstructed by the boundary data (by
the Minkowski theorem), each pair of them are glued with
their common triangles matching in shape (matching their
three edge lengths), and (2) all tetrahedra have the same
orientation. The amplitude has critical configurations
only if these two conditions are satisfied, otherwise the
amplitude is suppressed asymptotically. The critical con-
figurations have geometrical interpretations as geometrical
4-simplices, which may generally have one of three
possible signatures: Lorentzian, split, or degnerate.

(i) When the 4-simplex has Lorentzian signatures: The
contribution at the critical configuration is given by a
phase, whose exponent is the Regge action with a
sign related to orientations, i.e., the vertex amplitude
gives asymptotically

Av ∼ NþeiSΔ þ N−e−iSΔ ð1:1Þ

up to an overall phase depending on the boundary
coherent state. The Regge action in the 4-simplex
reads SΔ ¼ P

fAfθf with Af the area of triangle f.
θf relates to the dihedral angle Θf by θf ¼ π − Θf.
The area spectrum is different between timelike and
spacelike triangles in a timelike tetrahedron.

Af ¼
� nf

2
timelike triangle

γjf spacelike triangle
: ð1:2Þ

nf ∈ Zþ satisfies the simplicity constraint nf ¼ γsf
where sf ∈ Rþ labels the continuous series irreps of
SU(1,1). jf ∈ Zþ=2 labels the discrete series irreps
of SU(1,1). N� are geometric factors that depend on
the lengths and orientations of the reconstructed
4-simplex.

(ii) The reconstructed 4-simplices have split signatures:
The vertex amplitude gives asymptotically

Av ∼ Nþeiγ
−1SΔ þ N−e−iγ

−1SΔ ð1:3Þ
up to an overall phase. Here SΔ ¼ P

fAfθf where
θf is a boost dihedral angle.

(iii) The reconstructed 4-simplices are degenerate (vector
geometry) and there is a single critical point. The
asymptotical vertex amplitude is given by a phase
depending on the boundary coherent states.

It is important to remark that for a vertex amplitude con-
taining at least one timelike and one spacelike tetrahedron,
critical configurations only give Lorentzian 4-simplices,
while the split signature and degenerate 4-simplex do not
appear. The last two cases only appear when all tetrahedra
are timelike in a vertex amplitude. The situation is similar
to the Lorentzian EPRL/FK model, where the Euclidean
signature and degenerate 4-simplex appear because all
tetrahedra are spacelike.
Our analysis is generalized to the spin foam amplitude

on a simplicial complex K with many 4-simplices. We
identify the critical configurations corresponding to sim-
plicial geometries with all 4-simplices being Lorentzian
and globally oriented. The configurations come in pairs,
corresponding to opposite global orientations. Each pair
gives the following asymptotic contribution to the spin
foam amplitude (up to an overall phase)

NþeiSK þ N−e−iSK ð1:4Þ
where

SK ¼
X
f bulk

Afεf þ
X

f boundary

Afðθf þ pfπÞ ð1:5Þ

is the Regge action on the simplicial complex, up to a
boundary term with pf ∈ Z (pf is the number of
4-simplices sharing f minus 1). The additional boundary
term pfAfπ does not affect the Regge equation of motion.
Here the simplicial geometries and Regge action generally
contain timelike tetrahedra and timelike triangles. εf is the
deficit angle. εf and θf at timelike triangles are given by

εf ¼ 2π −
X
f

ΘfðvÞ; θf ¼ π −
X
f

ΘfðvÞ: ð1:6Þ

ΘfðvÞ is the dihedral angle within the 4-simplex at v. It is a
rotation angle between spacelike normals of tetrahedra,
because the tetrahedra sharing a timelike triangle are all
timelike.
To obtain (1.4), we have assumed each bulk triangle is

shared by an even number of 4-simplices. This assumption
is true in many important examples of classical Regge
calculus.
This paper is organized as follows. In Sec. II, we write

the coherent states for timelike triangles in large-j approxi-
mation and express the spin foam amplitude in terms of the
coherent states. In Sec. III, we derive and analyze the
critical equations. The critical equations are reformulated in

HONGGUANG LIU and MUXIN HAN PHYS. REV. D 99, 084040 (2019)

084040-2



a geometrical form for a timelike tetrahedron containing
both spacelike and timelike triangles. Then in Sec. IV, we
reconstruct nondegenerate simplicial geometries from criti-
cal configurations. In Sec. V, the critical configurations for
degenerate geometries are analyzed. Finally, in Sec. VII, we
derive the difference between phases evaluated at pairs of
critical configurations corresponding to the oppositely
orientated simplicial geometries.

II. SPIN FOAM AMPLITUDE IN TERMS OF
SU(1, 1) CONTINUOUS COHERENT STATES

The spin foam models are defined as a state sum
model over the simplicial manifold K and its dual, which
consists of simplices σv, tetrahedra τe, triangles f, edges,
and vertices (v, e, and f are labels for vertices, edges, and
faces on the dual graph, respectively). A triangulation is
obtained by gluing simplices σ with pairs of their bounda-
ries (tetrahedrons τ). The phase space associated with
manifold K is

PK ¼ T�SLð2;CÞL; ðΣIJ
f ; hfÞ ∈ T�SLð2;CÞ ð2:1Þ

for a Lorentzian model, where L is the number of triangles,
hf ∈ SLð2;CÞ is the holonomy along the edges, and
ΣIJ
f ∈ slð2;CÞ is its conjugate momenta. hf can be

decomposed as

hf ¼
Y
v⊂∂f

gevgve0 ð2:2Þ

where gve ∈ SLð2;CÞ and gev ¼ gve−1. ΣIJ
f is subject to the

simplicity constraint

γ

1þ γ2
ðueÞIðð1 − γ�ÞΣfIJÞ ¼ 0 ð2:3Þ

where ue is a 4-normal vector associated to each tetrahe-
dron te, γ is a real number known as the Immirizi parameter,
and � is the Hodge dual operator. Geometrically, the
simplicity constraint implies that each triangle f in tetra-
hedron te is associated with a simple bivector

Bf ¼
γ

1þ γ2
ð1 − γ�ÞΣf: ð2:4Þ

The state sum is defined over all the quantum states of
the physical Hilbert space on a given K, given as

ZðKÞ ¼
X
J

Y
f

μfðJfÞ
Y
v

AvðJf; ieÞ: ð2:5Þ

Here, J ¼ j⃗f represents the combination of labels of the
SLð2;CÞ irreps associated to each triangle. ie is the
intertwiner associated with each tetrahedron

ie ∈ InvG½VJ1 ⊗ … ⊗ VJ4 � ð2:6Þ

which impose the gauge invariance. The vertex amplitude
AvðJf; ieÞ associated with each 4-simplex σv captures the
dynamics of the model, while the face amplitude μfðJfÞ is a
weight for the J sum.
Usually a partial gauge fixing is taken to the above

models, which correspond to pick a special normal u for
all of the tetrahedra ∀e; ue ¼ u. As a result, the inter-
twiners associated with each tetrahedron defined above are
replaced by the intertwiners of the stabilizer group H ∈ G.
There are two different gauge fixings:

(i) u ¼ ð1; 0; 0; 0Þ, H ¼ SUð2Þ, EPRL/FK models.
(ii) u ¼ ð0; 0; 0; 1Þ, H ¼ SUð1; 1Þ, the Conrady-

Hnybida extension.
which, after imposing the quantum simplicity constraint
(2.3), lead to the following conditions [6,7,25]:

(i) u ¼ ð1; 0; 0; 0Þ, spacelike triangles

ρ ¼ γn; n ¼ j ð2:7Þ

(ii) u ¼ ð0; 0; 0; 1Þ, spacelike triangles

ρ ¼ γn; n ¼ j ð2:8Þ

(iii) u ¼ ð0; 0; 0; 1Þ, timelike triangles

ρ ¼ −n=γ; s ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2=γ2 − 1

q
: ð2:9Þ

Here ðρ ∈ R; n ∈ Z=2Þ are the labels of SLð2;CÞ irreps,
j ∈ N=2 is the label of SU(2) irreps or the SU(1,1) discrete
series, and s ∈ R is the label of the SUð1; 1Þ continous
series, and we will give a brief introduction of SU(1,1) and
SLð2;CÞ representation theory later. As a result, the area
spectrum is given by

Af ¼
� nf

2
timelike triangle

γjf spacelike triangle
: ð2:10Þ

The spin foam vertex amplitude can be expressed in the
coherent state representation:

AvðKÞ ¼
X
jf

Y
f

μðjfÞ
Z
SLð2;CÞ

Y
e

dgνe
Y
ðe;fÞ

Z
S2
dNefhΨρfnfðNefÞjDðρf;nfÞðgevgve0 ÞjΨρfnfðNe0fÞi: ð2:11Þ
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Here N is the unit vector in a sphere or hyperboloid
which labels the coherent states jΨρni of SLð2;CÞ in the
unitary irrep Hðρ;nÞ. By SU(1,1) the decomposition of the
SLð2;CÞ unitary irrep, the SLð2;CÞ irrep is isomorphic to a
direct sum of irreps of SU(1,1). The area of timelike
triangles is related to SU(1,1) spin s and the Immirzi
parameter γ by Af ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1=4

p
, which is consistent with

the spectrum from a canonical approach [7,26]. However,
the solution of the quantum simplicity constraint (2.3) on
timelike triangles that induced a Y map where the physical
Hilbert space H ∈ Hðρ;nÞ is isomorphic to the continuous
series of SU(1,1) with spin s fixed by (2.9). As a result, the
area spectrum is now given by

Af ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1=4

q
¼ nf

2
ð2:12Þ

which is quantized.
In the following, we first give a brief introduction of the

SU(1,1) and SLð2;CÞ representation theory. Then we write
the SLð2;CÞ states explicitly using continuous SU(1, 1)
coherent states in terms of spinor variables. Finally, we
derive the integral from of the spin foam amplitude on
timelike triangles with a spin foam action.

A. Representation theory of the SL(2;C)
and SU(1, 1) groups

The SLð2; C) group has six generators Ji and Ki with
commutation relation

½Ji; Ji� ¼ ϵijk J
k; ½Ji; Kj� ¼ ϵijk K

k;

½Ki; Kj� ¼ −ϵijk Jk: ð2:13Þ

The unitary representations of the group are labeled by
pairs of numbers ðρ ∈ R; n ∈ ZþÞ from the two Casimirs

C1 ¼ 2ðJ⃗2 − K⃗2Þ ¼ 1

2
ðn2 − ρ2 − 4Þ

C2 ¼ −4J⃗ · K⃗ ¼ nρ: ð2:14Þ

The Hilbert spaceHðρ;nÞ of unitary irrep of SLð2;CÞ can be
represented as a space of homogeneous functions
F∶C2nf0g → C with the homogeneity property

Fðβz1; βz2Þ ¼ βiρ=2þn=2−1β�iρ=2−n=2−1Fðz1; z2Þ: ð2:15Þ

The inner product in Hðρ;nÞ is given by

hF1jF2i ¼
Z
CP1

πððF1Þ�F2ωÞ ð2:16Þ

where π∶C2nf0g → CP1. ω is the SLð2;CÞ invariant
2-form defined by

ω ¼ i
2
ðz2dz1 − z1dz2Þ ∧ ðz̄2dz̄1 − z̄1dz̄2Þ: ð2:17Þ

SU(1,1) group is a subgroup of SLð2;CÞ with generators
F⃗ ¼ ðJ3; K1; K2Þ. F⃗ and G⃗ ¼ iF⃗ ¼ ðK3;−J1;−J2Þ trans-
form as Minkowski vectors under SU(1,1). The Casimir
reads Q ¼ ðJ3Þ2 − ðK1Þ2 − ðK2Þ2. The unitary representa-
tion of the SU(1,1) group is usually built from the
eigenstates of J3 which are labeled by j, m:

hjmjjm0i ¼ δmm0 ð2:18Þ

where m is the eigenvalue of J3 and j is related to the
eigenvalues of the Casimir Q.
The unitary irrep of SU(1,1) contains two series: the

discrete series and continuous series. For the discrete series,
one has

Qjjmi ¼ jðjþ 1Þjjmi; with j ¼ −
1

2
;−1;−

3

2
;…:

ð2:19Þ

The eigenvalue m of J3 takes the values

m ¼ −j;−jþ 1;−jþ 2…: or m ¼ j; j − 1; j − 2…:

ð2:20Þ

The Hilbert spaces of spin j are denoted by D�
j with

m ≷ 0. For the continuous series, Q takes the continuous
value

Qjjmi ¼ jðjþ 1Þjjmi ð2:21Þ

where j ¼ −1=2þ is and s is a real number s ∈ Rþ. Thus,
in the continuous case, we can use s instead of j to
represent the spin. The eigenvalues m takes the values

m ¼ 0;�1;�2;… or m ¼ � 1

2
;� 3

2
;…: ð2:22Þ

The irreps of this series are denoted by Cϵ
s where

ϵ ¼ 0; 1=2 corresponds to the integer m and half-integer
m, respectively.
Instead of jjmi, one may also choose the generalized

continuous eigenstates jjλσi of K1 as the basis of the irrep
Hilbert space [27]:

hjλ0σ0jjλσi ¼ δðλ − λ0Þδσσ0 ð2:23Þ
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where σ ¼ 0, 1 distinguish the twofold degeneracy of the
spectrum and λ here is a real number. For continuous series
irreps, Casimir Q takes

Qjjλσi ¼ jðjþ 1Þjjλσi ¼ −
�
s2 þ 1

4

�
jjλσi: ð2:24Þ

B. Unitary irreps of SL(2;C) and the decomposition
into the SU(1, 1) continuous state

The Hilbert space Hðρ;nÞ can be decomposed as a
direct sum of irreps of SU(1,1). The decomposition can
be derived from the homogeneity property and the
Plancherel decomposition of SU(1,1). As shown in [28],
the functions F in the SLð2;CÞ Hilbert space satis-
fying (2.15) can be described by pairs of functions
fα∶SUð1; 1Þ → C; α ¼ �1 via

Fðz1; z2Þ ¼
ffiffiffi
π

p ðαhz; ziÞiρ=2−1fαðvαðz1; z2ÞÞ; ð2:25Þ

where vα is the induced SU(1,1) matrix

vα ¼

8>>><
>>>:

1ffiffiffiffiffiffiffi
hz;zi

p
�
z1 z2
z̄2 z̄1

�
; α ¼ 1

1ffiffiffiffiffiffiffiffiffi
−hz;zi

p
�
z̄2 z̄1
z1 z2

�
; α ¼ −1

ð2:26Þ

with hz; zi ¼ z†σ3z ¼ z̄1z1 − z̄2z2 being the SU(1,1) invari-
ant inner product. Here α is a signature

α ¼
�
1; jz1j > jz2j
−1; jz1j < jz2j

: ð2:27Þ

Then Hðρ;nÞ is isomorphic to the Hilbert space
L2ðSUð1; 1ÞÞ ⊕ L2ðSUð1; 1ÞÞ with the inner product

hðfþ1 ; f−1 Þjðfþ2 ; f−2 Þi ¼
X
α

Z
dvðfα1ðvÞÞ�fα2ðvÞ ð2:28Þ

where dv is the SU(1,1) measure.
The function f in SU(1,1) continuous series representa-

tions with a continuous basis reads

fαjλðzÞ ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jþ 1
p ðDj

n=2;λðvðzÞÞ; 0Þ; α ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p ð0; Dj
−n=2;λðvðzÞÞÞ; α ¼ −1

: ð2:29Þ

Notice that here we assume s ≠ 0.Dj
mλ is theWigner matrix

with mixed bases (2.18) and (2.23)

Dj
mλσðvÞ ¼ hj; mjvðzÞjj; λ; σi: ð2:30Þ

Recall the quantum simplicity constraint (2.9),

ρ ¼ −n=γ; s ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2=γ2 − 1

q
: ð2:31Þ

Asymptotically, when s ≫ 1, we have

ρ ∼ −2s ∼ −
n
γ
: ð2:32Þ

Since n is discrete, s and ρ are also discrete. Using the
representation matrix of the continuous series of SU(1,1),
and some transformations of the hypergeometric function
and asymptotic analysis, we prove that when n ≫ 1 and
λ ¼ −s (the detailed derivation is shown in Appendix A),

Dj
n
2
;−sðvÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjγ þ ℑðv̄1v2Þj

p
×

�
T̃j
þσ

�
v1 − v2ffiffiffi

2
p

�n
2
−is

�
v1 − v2ffiffiffi

2
p

�
−n
2
−is

−T̃j
−σ

�
v1 þ v2ffiffiffi

2
p

�n
2
þis

�
v1 þ v2ffiffiffi

2
p

�
−n
2
þis

�
ð2:33Þ

where
ffiffiffi
2

p
T̃j
�σ ¼

ffiffiffi
2

p
Sjn=2;−s;σ=T

j
�σ are some phases:

T̃�T̃� ¼ 1=2.1 The detailed definitions of Sjn=2;−s;σ and

Tj
�σ are given in (A8) and (A46).
The m ¼ −n=2 case in (2.29) can be obtained by the

relation

Dσj
−m;λðvÞ ¼ −ð−1Þσe−iπmDσj

m;λðv̄Þ: ð2:34Þ

When α ¼ 1, we would like to write elements of vα ∈
SUð1; 1Þ introduced in (2.26) as

v1 − v2ffiffiffi
2

p ¼ hz̄; lþ0 iffiffiffiffiffiffiffiffiffiffiffihz; zip ;
v1 þ v2ffiffiffi

2
p ¼ hz̄; l−0 iffiffiffiffiffiffiffiffiffiffiffihz; zip ; ð2:35Þ

where

l�0 ¼ 1ffiffiffi
2

p ðn1 � n2Þ ¼
1ffiffiffi
2

p
�
1

�1

�
: ð2:36Þ

Notice that hlþ0 ; lþ0 i ¼ hl−0 ; l−0 i ¼ 0, hl−0 ; lþ0 i ¼ 1; thus, they
form a null basis in C2. Similarly, for α ¼ −1, we have

v1 − v2ffiffiffi
2

p ¼ −
hlþ0 ; z̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hz; zip ;

v1 þ v2ffiffiffi
2

p ¼ hl−0 ; z̄iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hz; zip : ð2:37Þ

1Here we ignore the regulator in (A43) for the zero points of
jγ þ ℑðv̄1v2Þj since it will appear naturally as the integration
contribution from this 1=2 singularity in the inner product. One
can check Appendix A for details.
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With this notation, we finally obtain

Fðρ;nÞ
−s;σ;αðzÞ ¼

ffiffiffi
π

p
αn=2þσþ1ffiffiffi

s
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

αhz; zip ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijαðγ − iÞhz; zi þ 2iαhz̄; l−0 ihlþ0 ; z̄i
p j

×

�
T̃j
þσðαhz; ziÞiρ=2þisðhlþ0 ; z̄ihz̄; lþ0 iÞ−is

�hz̄; lþ0 i
hlþ0 ; z̄i

�n
2

− T̃j
−σðαhz; ziÞiρ=2−isðhl−0 ; z̄ihz̄; l−0 iÞis

�hz̄; l−0 i
hl−0 ; z̄i

�n
2

�
: ð2:38Þ

One can check the homogeneity property (2.15):

FðλzÞ ¼ λmþiρ=2−1λ̄−mþiρ=2−1FðzÞ: ð2:39Þ

The coherent state is built from the reference state λ ¼ −s, and we choose σ ¼ 1, according to [8]

Ψðρ;nÞ
g̃;α ðzÞ ¼ Dðρ;nÞðg̃ÞFðρ;nÞ

−s;1;αðzÞ ¼
ffiffiffiffi
iπ

p
S̃jm;−s;σα−2isþmffiffiffiffiffiffiffiffiffiffiffiffiffijhz; zijp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðγ − iÞhz; zi þ 2ihz̄; l−ihlþ; z̄ijp

×

�
T̃j
þ1hz; ziiρ=2þisðhlþ; z̄ihz̄; lþiÞ−is

�hz̄; lþi
hlþ; z̄i

�n
2

− T̃j
−1hz; ziiρ=2−isðhl−; z̄ihz̄; l−iÞis

�hz̄; l−i
hl−; z̄i

�n
2

�
ð2:40Þ

where g̃ ∈ SUð1; 1Þ, and l� ¼ g̃−1†l�0 is defined though

hl�0 ; g̃tzi ¼ hg̃−1†l�0 ; z̄i ¼ hl�; z̄i: ð2:41Þ

C. Spin foam amplitude

Now we can write down explicitly the inner product between the coherent states appearing in the amplitude (2.11) by
inserting (2.40) and using (2.16):

hΨðρf;nfÞ
g̃e0fδ

jDðρf;nfÞðgve0gevÞjΨðρf;nfÞ
g̃efδ

i ¼
X
α

Z
CP1

ωzvfΨ
ðρf;nfÞ
g̃e0fδα

ðgtve0zvfÞΨ
ðρf;nfÞ
g̃efδα

ðgtevzvfÞ

¼
Z
CP1=hZ;Zi¼0

ωzvf

hvefhve0f
ðNfþeSvfþ þ Nf−eSvf− þ NfxþeSvfxþ þ Nfx−eSvfx−Þ ð2:42Þ

where N are some normalization factors, and ω is the SLð2;CÞ invariant measure defined in (2.17). The exponents read

Svf� ¼ Sve0f� − Svef�; Svfx� ¼ Sve0f� − Svef∓ ð2:43Þ

with

Svef� ¼ sf

�
γ ln

hZvef; l�efi
hl�ef; Zvefi

∓ i ln hZvef; l�efihl�ef; Zvefi þ ið−1� 1Þ ln hZvef; Zvefi
�

ð2:44Þ

where Zvef ¼ g†vez̄vf. l�ef here is defined as l� ¼ vðNefÞ−1†l�0 with l�0 defined in (2.36), and vðNefÞ ∈ SUð1; 1Þ which
encodes the unit normal. hZve0f; Zve0fi has the same sign as hZvef; Zvefi. The integrand is invariant under the following
gauge transformations:

gve → gvgve; zvf → λvfðgTv Þ−1zvf ð2:45Þ

gve → svegve; sve ¼ �1 ð2:46Þ

gve → gveve; l�ef → vel�ef; ð2:47Þ

where gv ∈ SLð2;CÞ; ve ∈ SUð1; 1Þ, and λvf ∈ Cnf0g.
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It is worth pointing out that both Svf� and Svfx� are
purely imaginary, and they are all proportional to sf which
will be uniform scaled later to derive the asymptotics. The
real valued function h is given by

hvef ¼ jhZvef; Zvefij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����γ − iþ 2hl−ef; ZvefihZvef; l

þ
efi

hZvef; Zvefi
����

s
:

ð2:48Þ

hvef can be 0 when we integrate over z on CP1 and
SLð2;CÞ group elements g in (2.11), and the zeros of h are
exactly the points where we define the principle value, i.e.,
at hZ; Zi ¼ 0. However, as shown in Appendix B, the
singularities due to h are of half order; thus, the final
integral remains finite at these points.

III. ANALYSIS OF CRITICAL POINTS

As we show above, the actions Svf� and Svfx� are purely
imaginary, and they are proportional to sf. Thus, we can
use stationary phase approximation to evaluate the ampli-
tude in the semiclassical limit where s is uniformly scaled
by a factor Λ → ∞. Note that the denominator h defined by
(2.48) in (2.42) contains a 1=2 order singular point at
hZ; Zi ¼ 0, as shown in Appendix B. Then the integral is of
the following type:

I ¼
Z

dx
1ffiffiffiffiffiffiffiffiffiffiffiffi

x − x0
p gðxÞeΛSðxÞ: ð3:1Þ

Here g is an analytic function which does not scale with Λ.
There are two different asymptotic equations for such a
type of integral according to the critical point xc located
exactly at the branch point x0 or away from it. According to
[29], if xc is located exactly at x0, the leading order
contribution will locate at the critical points (which is
also the branch points), and the asymptotic expansion is
given by

I ∼ gðxcÞ
πeiπðμ−2Þ=8

Γð3=4Þ
�

2

ΛjdetHðxcÞj
�

1=4
eΛSðxcÞ ð3:2Þ

where HðxcÞ is the Hessian matrix at xc, and μ ¼
sgn detHðxcÞ.
As we explain in the following sections, the critical

points of Eq. (2.42) are always located at the branch points,
when every tetrahedron containing the timelike triangle f
also contains at least one spacelike triangle. It is quite
generic to have every tetrahedron contain both timelike and
spacelike triangles in a simplicial geometry. In addition, in
case that we consider tetrahedra with all triangles timelike,
for a single vertex amplitude, the critical point is again
located at the branch points, when the boundary data give
the closed geometrical boundary of a 4-simplex (i.e., the

tetrahedra at the boundary are glued with shape matching).
We do not consider the possibility other than (3.2).

A. Equation of motion

Since both Svf� and Svfx� are purely imaginary, their
critical points or, namely, critical configurations, are
solutions of equations of motion. The equations of motion
are given by the variations of S with respect to spinors z,
SU(1,1) group elements v, and SLð2;CÞ group elements g.
Before calculating the variation, we would like to

introduce a decomposition of spinor Z. We first introduce
following lemmas:
Lemma III.1: Givena specific lþ satisfying hlþ; lþi ¼ 0,

there exists l̃−, s.t. hlþ; l̃−i ¼ 1; hl̃−; l̃−i ¼ 0. For two ele-
ments l̃−1 and l̃−2 satisfying the condition, they are related by

l̃−1 ¼ l̃−2 þ iηlþ; η ∈ R: ð3:3Þ

This is easy to proof since hl̃− þ iηlþ; l̃− þ iηlþi ¼
η2hlþ; lþi þ hl̃−2 ; l̃−2 i − iηhlþ; l̃−i þ iηhl̃−; lþi and hlþ; l̃−þ
iηlþi ¼ hlþ; l̃−i þ iηhlþ; lþi.
Lemma III.2: For a given lþ and l̃− defined by

Lemma III.1, lþ and l̃− form a null basis in two-
dimensional spinor space.
This lemma is proved by using the fact that given lþ and

l̃−, there exists a SU(1,1) element g̃, such that lþ ¼ g̃lþ0 and
l̃− ¼ g̃l−0 , and the fact that lþ0 and l−0 forms a null basis.
With Lemma III.2, for a given lþ or l−, we have
Theorem III.3: For a given lþ and l̃− defined by

Lemma III.1, spinor Zvef always can be decomposed as

Zvef ¼ ζvefðl̃∓ef þ αvefl�efÞ ð3:4Þ

where ζvef ∈ C and αvef ∈ C.
At the vertex v, from the action Svefþ (Svef−), we only

have lþ (l−) entering the action; thus, we can choose
arbitrarily l̃∓vef to form a basis. By Lemma III.1, we can

always write l̃0∓vef ¼ l̃0∓vef þ iℑðαvefÞl�ef s.t.,

Zvef ¼ ζvefðl̃∓vef þℜðαvefÞl�efÞ: ð3:5Þ

ℑðαÞ is basis dependent. It is easy to check that if we
replace Z inside the action (2.43) by the decomposition
(3.4), the action is independent of ℑðαÞ, which means that
ℑðαÞ is a gauge freedom.
We will drop the tilde on l̃ in the following. One should

keep in mind that we have the freedom to choose the l− (lþ)
such that for some vertices v, ℑðαvefÞ ¼ 0.
From the decomposition of Zvef, there is naturally a

constraint. By the fact of Zvef ¼ g†vez̄vf, we have

z̄vf ¼ g−1†ve Zvef ¼ g−1†ve0 Zve0f: ð3:6Þ
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In terms of the decomposition of Zvef

g−1†ve ðl�ef þ αvefl
∓
efÞ ¼

ζve0f
ζvef

g−1†ve0 ðl�e0f þ αve0fl
∓
vefÞ: ð3:7Þ

This can be written as

gveJðl�ef þ αvefl
∓
efÞ ¼

ζ̄ve0f
ζ̄vef

gve0Jðl�e0f þ αve0fl
∓
efÞ ð3:8Þ

where we used the antilinear map J:

Jða; bÞT ¼ ð−b̄; āÞ; JgJ−1 ¼ −JgJ ¼ g−1†: ð3:9Þ

1. Variation with respect to z

From the definition of the SU(1,1) inner product, for
arbitrary spinor u we have

δz̄hu; Zi ¼ δz̄ðu†ηg†z̄Þ ¼ ðgηuÞ†δz̄;
δzhZ; ui ¼ δzððg†z̄Þ†ηuÞ ¼ ðδzÞTðgηuÞ: ð3:10Þ

Then it is straightforward to see the variation of Svef
leading to

δz̄Svef� ¼
�
nf
2
� isf

� ðgveηl�efÞ†
hl�ef; Zvefi

− iðρf � sfÞ
ðgveηZvefÞ†
hZvef; Zvefi

ð3:11Þ

and

δzS ¼ −δz̄S ð3:12Þ

which comes from the fact that S is purely imaginary. With
the definition of Svf in (2.43), after inserting the decom-
position, we obtain the following equations:

δSvfþ ¼ ðγ − iÞsf
�
gveηl

þ
ef

ζ̄vef
−
gve0ηl

þ
e0f

ζ̄ve0f

�
¼ 0 with Z ¼ ζðl− þ αlþÞ ð3:13Þ

δSvf− ¼ −isf
�

gveηnvef
ℜðαvefÞζ̄vef

−
gve0ηnve0f

ℜðαve0fÞζ̄ve0f

�
¼ 0 with Z ¼ ζðlþ þ αl−Þ ð3:14Þ

δSvfxþ ¼ −ðγ − iÞsf
gve0ηl

þ
e0f

ζ̄ve0f
− isf

gveηnvef
ℜðαvefÞζ̄vef

¼ 0 with Ze0 ¼ ζðl− þ αlþÞ& Ze ¼ ζðlþ þ αl−Þ ð3:15Þ

δSvfx− ¼ ðγ − iÞsf
gveηl

þ
vef

ζ̄vef
þ isf

gve0ηnve0f
ℜðαve0fÞζ̄ve0f

¼ 0 with Ze ¼ ζðl− þ αlþÞ& Ze0 ¼ ζðlþ þ αl−Þ ð3:16Þ

where

nvef ≔ lþef þ iðγℜðαvefÞ þ ℑðαvefÞÞl−ef: ð3:17Þ

Note that nvef here satisfies Lemma III.2 and can form a
basis with l−ef given in Svef−.

2. Variation with respect to SU(1,1) group elements vef
Since l� ¼ v−1†l�0 with v ∈ SUð1; 1Þ, the variation with

respect to l� is the variation with respect to the SU(1,1)
group element v. If we consider a small perturbation of v
which is given by v0 ¼ ve−ϵiF

i
, where Fi are generators of

SU(1,1) group, we have v0−1 ¼ eϵiF
i
v−1. The variation is

then given by

δv−1 ¼ ϵiFiv−1; δv−1† ¼ ϵiv−1†ðFiÞ†: ð3:18Þ

Thus, for arbitrary spinor u, we have

δhu;mi ¼ δhu; v−1†m0i ¼ ϵihu; v−1†F†
i m0i

δhm; ui ¼ δhv−1†m0; ui ¼ ϵihv−1†F†
i m0; ui: ð3:19Þ

When Sef ¼ Svef� − Sv0ef�, the variation reads

δS ¼ ϵi
�
nf
2

∓ isf

��hZv0ef; v
−1†
ef F†

i l
�
0 i

hZv0ef; l�efi
−
hZvef; v

−1†
ef F†

i l
�
0 i

hZvef; l�efi
�

þ ϵi
�
nf
2
� isf

��hv−1†ef F†
i l

�
0 ; Zvefi

hl�ef; Zvefi
−
hv−1†ef F†

i l
�
0 ; Zv0efi

hl�ef; Zv0efi
�
: ð3:20Þ

HONGGUANG LIU and MUXIN HAN PHYS. REV. D 99, 084040 (2019)

084040-8



While Sef ¼ Svef� − Sv0ef∓, we have

δS ¼ ϵi
�
nf
2

��hZvef; v
−1†
ef F†

i l
�
0 i

hZvef; l�efi
−
hZv0ef; v

−1†
ef F†

i l
∓
0 i

hZv0ef; l
∓
efi

þ hv−1†ef F†
i l

�
0 ; Zvefi

hl�ef; Zvefi
−
hv−1†ef F†

i l
∓
0 ; Zv0efi

hl∓ef; Zv0efi
�

þ ϵisf

�hv−1†ef F†
i l

�
0 ; Zvefi

hl�ef; Zvefi
þ hv−1†ef F†

i l
�
0 ; Zv0efi

hl�ef; Zv0efi
þ hZv0ef; v

−1†
ef F†

i l
∓
0 i

hZv0ef; l
∓
efi

þ hZvef; v
−1†
ef F†

i l
�
0 i

hZvef; l�efi
�
: ð3:21Þ

Since Fi ¼ 1=2ðiσ3; σ1; σ2; Þ are SU(1,1) generators, we have

ðF0Þ†l�0 ¼ i

2
ffiffiffi
2

p
�
1 0

0 −1

��
1

�1

�
¼ i

2
l∓0 ð3:22Þ

ðF1Þ†l�0 ¼ 1

2
ffiffiffi
2

p
�
0 1

1 0

��
1

�1

�
¼ � 1

2
l�0 ð3:23Þ

ðF2Þ†l�0 ¼ 1

2
ffiffiffi
2

p
�
0 −i
i 0

��
1

�1

�
¼ ∓ 1

2
l∓0 : ð3:24Þ

Then in the first case we are only left with one equation, which reads

0 ¼
�
nf
2

∓ isf

��hZv0ef; il
∓
efi

hZv0ef; l�efi
−
hZvef; il

∓
efi

hZvef; l�efi
�
þ
�
nf
2
� isf

��hil∓ef; Zvefi
hl�ef; Zvefi

−
hil∓ef; Zv0efi
hl�ef; Zv0efi

�
: ð3:25Þ

After inserting the decomposition Z ¼ ζðl∓ þ αl�Þ,
correspondingly, we get

0¼
�
nf
2
∓ isf

�
ðᾱv0ef − ᾱvefÞ þ

�
nf
2
� isf

�
ðαv0ef − αvefÞ

¼ 2isfγℜðαv0ef − αvefÞ � 2isfℑðαvef − αv0efÞ: ð3:26Þ

The solution reads

γℜðαvefÞ ∓ ℑðαvefÞ ¼ γℜðαv0efÞ ∓ ℑðαv0efÞ: ð3:27Þ

Here ℑðαÞ is the decomposition of Z with respect to l∓ef
specified by vef. Note that in this case, we only have
lþefðl−efÞ in the action; thus, there is an ambiguity of vef.
However, changing vef corresponds to adding the same

constant to both ℑðαvÞ and ℑðα0vÞ; thus, the relation is kept
unchanged. After absorbing ℑðαÞ into l̃ by a redefinition,
the equation actually tells us that

l̃∓vef − l̃∓v0ef ¼ �γðℜðαvefÞ −ℜðαv0efÞÞl�ef ð3:28Þ

which fixes the transformation of l̃vef between vertices and
removes the ambiguity between different vertices v in the
bulk. With this redefinition, it is easy to see that nvef
defined in (3.17) satisfies nvef ¼ nve0f; thus, we ignore the
v variable and define

nef ≔ nvef ¼ nv0ef: ð3:29Þ
In the mixing case there will be two different equations

for F2 and F3, which lead to

0 ¼ nf
2

�
ℜ

hZv0ef; l�i
hZv0ef; l

∓
efi

−ℜ
hZvef; l∓i
hZvef; l�efi

�
� isf

�
iℑ

hZv0ef; l�i
hZv0ef; l

∓
efi

þ iℑ
hZvef; l∓i
hZvef; l�efi

�
ð3:30Þ

0 ¼ nf
2

�
ℜ

hZv0ef; l�i
hZv0ef; l

∓
efi

þℜ
hZvef; l∓i
hZvef; l�efi

�
� isf

�
iℑ

hZv0ef; l�i
hZv0ef; l

∓
efi

− iℑ
hZvef; l∓i
hZvef; l�efi

�
: ð3:31Þ

The equations give the solutions

γℜðαv0efÞ � ℑðαv0efÞ ¼ 0; with Zv0ef ¼ ζv0efðl�ef þ αv0efl
∓
efÞ

γℜðαvefÞ ∓ ℑðαvefÞ ¼ 0; with Zvef ¼ ζvefðl∓ef þ αvefl�efÞ:
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Here lþ and l− completely fix the group element v. α
corresponds to the decomposition of Z with these lþ and l−.
The nvef in this case is simply nvef ¼ lþef.

3. Variation with respect to SLð2;CÞ elements g

With the small perturbation of g, which is given by
g0 ¼ geL, the variation ofthe SLð2;CÞ group element g is
given by

δg ¼ gL; δg† ¼ −L†g† ð3:32Þ

where L is a linear combination of SLð2;CÞ generators,
L ¼ ϵiFi þ ϵ̃iGi ¼ ðϵi þ iϵ̃iÞFi. Here the F’s are the
SU(1,1) lie algebra generators defined as above, and we
use the fact that in spin-1=2 representation G ¼ iF. Then
for arbitrary u, we have

δhu; Zi ¼ δhu; g†z̄i ¼ hu; L†g†z̄i ¼ hu; L†Zi
δhZ; ui ¼ δhg†z̄; ui ¼ ðL†g†z̄Þ†ηu ¼ hL†Z; ui: ð3:33Þ

The variation leads to

δS ¼
X
f

ϵefðvÞ
�
−
�
nf
2

∓ isf

��hL†Zvef; l�efi
hZvef; l�efi

�
þ
�
nf
2
� isf

��hl�ef; L†Zvefi
hl�ef; Zvefi

�

− iðρf � sfÞ
�hL†Zvef; Zvefi þ hZvef; L†Zvefi

hZvef; Zvefi
��

ð3:34Þ

where ϵefðvÞ ¼ �1 is determined according to the face
orientation that is consistent with the edge e or the opposite
(up to a global sign). We have

ϵefðvÞ ¼ −ϵe0fðvÞ; ϵefðvÞ ¼ −ϵefðv0Þ: ð3:35Þ

We write ϵefðvÞ ¼ þ1 in the following for simplicity, and
recover general ϵ at the end of the derivation.
From the property of the SU(1,1) generator,

ηFη ¼ −F† ð3:36Þ
we have

hF†Z; ui ¼ −Z†Fηu ¼ −Z†ηF†u ¼ −hZ; F†ui: ð3:37Þ

Then (3.34) can be written as

X
f

�
nf
2

∓ isf

��hZvef; F†l�efi
hZvef; l�efi

�

þ
�
nf
2
� isf

��hl�ef; F†Zvefi
hl�ef; Zvefi

�
¼ 0 ð3:38Þ

and

X
f

−
�
nf
2
∓ isf

� hZvef;F†l�efi
hZvef; l�efi

þ
�
nf
2
� isf

� hl�ef;F†Zvefi
hl�ef;Zvefi

− 2iðρf � sfÞ
hZvef;F†Zvefi
hZvef;Zvefi

¼ 0: ð3:39Þ

After inserting the decomposition of Z and the solution of
the simplicity constraint, we have the following equations:
For both S�, (3.38) becomes

0 ¼ δFS�

¼ ∓2i
X
f

sfhl∓ef ∓ iðγReðαvefÞ ∓ ℑðαvefÞÞl�ef; F†l�efi:

ð3:40Þ

(3.39) will leads to different equations for different actions
S� due to the appearance of the hZvef; F†Zvefi term. The
variation of Sþ reads

0 ¼ δGSþ

¼ −2γ
X
f

sf

	
l−ef − i

�
1

γ
ℜðαvefÞ − ℑðαvefÞ

�
lþef; F

†lþef



;

ð3:41Þ

while the variation of S− reads

δGS− ¼ 2i
X
f

sf
hnvef; F†nvefi

ReðαvefÞ
þ 2γ

X
f

sfhnvef; F†l−efi:

ð3:42Þ
4. Summary

As a summary, after we introduce the decomposition of
Z as (3.4),

Zvef ¼ ζvefðl̃∓ef þ αvefl�efÞ ð3:43Þ

and a spinor n as (3.17)

nvef ≔ lþef þ iðγℜðαvefÞ þ ℑðαvefÞÞl−ef ð3:44Þ

the equation of motion is given by the following
equations:
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(i) parallel transport equations

Svfþ∶
gveηl

þ
ef

ζ̄vef
¼ gve0ηl

þ
e0f

ζ̄ve0f
; g−1†ve ðl−ef þ αvefl

þ
efÞ ¼

ζve0f
ζvef

g−1†ve0 ðl−e0f þ αve0fl
þ
vefÞ ð3:45Þ

Svf−∶
gveηnvef

ℜðαvefÞζ̄vef
¼ gve0ηnve0f

ℜðαve0fÞζ̄ve0f
; g−1†ve ðlþef þ αvefl−efÞ ¼

ζve0f
ζvef

g−1†ve0 ðlþe0f þ αve0fl−vefÞ ð3:46Þ

Svfxþ∶
gveηnvef

ℜðαvefÞζ̄vef
¼ −ð1þ iγÞ gve

0ηlþe0f
ζ̄ve0f

; g−1†ve ðlþef þ αvefl−efÞ ¼
ζve0f
ζvef

g−1†ve0 ðl−e0f þ αve0fl
þ
vefÞ ð3:47Þ

Svfx−∶ − ð1þ iγÞ gveηl
þ
vef

ζ̄vef
¼ gve0ηnve0f

ℜðαve0fÞζ̄ve0f
; g−1†ve ðl−ef þ αvefl

þ
efÞ ¼

ζve0f
ζvef

g−1†ve0 ðlþe0f þ αve0fl−vefÞ: ð3:48Þ

Here Svf� ¼ Sve0f� − Svef�, Svfx� ¼ Sve0f� − Svef∓ with Svef� is the action given in (2.44), the same for Sef�
and Sefx�.

(ii) vertices relations

Sef�∶ γℜðαvefÞ ∓ ℑðαvefÞ ¼ γℜðαv0efÞ ∓ ℑðαv0efÞ ð3:49Þ

Sef�x∶ γℜðαvefÞ ∓ ℑðαvefÞ ¼ γℜðαv0efÞ � ℑðαv0efÞ ¼ 0 ð3:50Þ

(iii) closure constraints

0 ¼ −2i
X

f=wSþðxÞ

sfhl−ef − iðγℜðαvefÞ − ℑðαvefÞÞlþef; F†lþefi þ 2i
X

f=wS−ðxÞ

sfhnef; F†l−efi ð3:51Þ

0¼ −2γ
X

f=wSþðxÞ

sf

	
l−ef − i

�
1

γ
ℜðαvefÞ−ℑðαvefÞ

�
lþef;F

†lþef



þ 2

X
f=wS−ðxÞ

isf
hnef;F†nefi
ℜðαvefÞ

þ γsfhnvef;F†l−efi ð3:52Þ

B. Bivector representation

For given spinors l− and lþ, there is a 3-vector vi associated to them

vi ¼ 2hlþ; Fil−i: ð3:53Þ

From which we can define a SU(1,1) valued bivector in spin-1=2 representation

V ¼ 2hlþ; Fil−iFi ¼ −2ðlþÞ†ðFiÞ†ηl−Fi ¼ −
1

2
ðlþÞ†σiηl−σi ¼ −ηl− ⊗ ðlþÞ† þ 1

2
hlþ; l−iI2 ð3:54Þ

where we use the fact that ηFη ¼ −F† and is the com-
pleteness of the Pauli matrix. Since hl−; Flþi ¼
−hlþ; Fl−i,

V ¼ −2hl−; FilþiFi ¼ ηlþ ⊗ ðl−Þ† − 1

2
hlþ; l−iI2: ð3:55Þ

From the fact

Ki ¼ −Ki ¼ J0i; Ji ¼ Ji ¼
1

2
ϵ0ijkJjk ð3:56Þ

where Ji ¼ �Ki. We have in the spin-1=2 representation,
� → i and Ji ¼ iKi. The bivector can be encoded into a
SLð2;CÞ bivector that in spin-1 representation reads

VIJ ¼

0
BBB@

0 −v1 −v2 0

v1 0 v0 0

v2 −v0 0 0

0 0 0 0

1
CCCA: ð3:57Þ

Then ð�VÞIJ reads
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ð�VÞIJ ¼

0
BBB@

0 0 0 v0

0 0 0 −v2

0 0 0 v1

−v0 v2 −v1 0

1
CCCA ¼ ðvIef ∧ uJÞ

ð3:58Þ

where the encoded 4-vector vIef ≔ ðv0;−v2; v1; 0Þ,
uI ¼ ð0; 0; 0; 1Þ. Clearly one can see that

vI ¼ iðhl−jσ̂Ijlþi þ uIÞ ð3:59Þ

where σ̂ ¼ ðσ0;−σ1;−σ2;−σ3Þ.
Since hlþ; Fil−i ¼ hlþ0 ; v†Fiv−1†l−0 i, in this sense, vi is

nothing else but the SO(1,2) rotation of 3-vector v0 ¼
ð0; 0; 1Þ with group element v−1†.
Similarly, we can define

W� ¼ 2ihl�; Fil�iFi ¼ −iηl� ⊗ ðl�Þ† ð3:60Þ

with

W�IJ ¼ w�I
ef ∧ uJ; w�I ≔ hl�jσ̂Ijl�i: ð3:61Þ

Here w�I
ef is a null vector w�I

ef w
�
efI

¼ 0.
We introduce SO(1,3) group elements G given by

Gve ¼ πðgveÞ ð3:62Þ

where π∶ SLð2;CÞ → SOð1; 3Þ. Since the action (2.43) is
invariant under the transformation gve → �gve, two group
elements related to gve are gauge equivalent if they satisfy

G̃ve ¼ GveIsve ; sve ¼ f0; 1g ð3:63Þ

where I is the inversion operator. With this gauge trans-
formation, we can always assume Gve ∈ SOþð1; 3Þ.
We can write the critical equations in terms of bivectors.

The detailed analysis is in Appendix C. Given any solution
to the critical equations, we can define a bivector as

Xvef ¼ −2ihl−; FilþiFi − iᾱvefhlþ; FilþiFi

¼ Vef − ðℑðαvefÞ þℜðαvefÞ�ÞWþ
ef ð3:64Þ

or

Xvef ¼ −2ihn; F†il−iFi −
iþ γ

ð1þ γ2ÞℜðαvefÞ
hn; F†ini

Fi ¼ −Vef −
1 − γ�

ð1þ γ2ÞℜðαvefÞ
Wþ

ef ð3:65Þ

corresponding to their action, which is composited by
Svefþ or Svef−. Here Vef is a spacelike bivector and Wef is

a null bivector. In spin-1 representation, we can express the
above bivector as

XIJ
ef ¼ ð�ÞðṽIvef ∧ ũJvefÞ ð3:66Þ

where

ṽvef ¼
� vef − ℑðαvefÞwþ

ef; Svefþ

vef −
γ

ð1þγ2ÞℜðαvefÞw
þ
ef; Svef−

ð3:67Þ

ũvef ¼
� uþℜðαvefÞwþ

ef; Svefþ

uþ 1
ð1þγ2ÞℜðαvefÞw

þ
ef; Svef−

ð3:68Þ

with

vef ¼
�−2ihl−ef; Filþefi; Svefþ

−2ihnef; Fil−efi Svef−
; ð3:69Þ

wþ
ef ¼

�
2hlþef; Filþefi; Svefþ

2hnef; Finefi Svef−
: ð3:70Þ

The bivector Xvef satisfies the parallel transport
equation:

gveXvefg−1ve ¼ gve0Xve0fg−1ve0 : ð3:71Þ

This corresponds to

XfðvÞ ≔ gveXvefgev ¼ vIefðvÞ ∧ NI
eðvÞ ð3:72Þ

where

vIefðvÞ ≔ Gveṽvef; NI
eðvÞ ¼ Gveũvef: ð3:73Þ

The closure constraint in terms of the bivector variable then
reads

2
X
f

γϵefðvÞsfXfðvÞ ¼
X
f

ϵefðvÞBfðvÞ ¼ 0 ð3:74Þ

where Bf ¼ 2γsfXf ¼ nfXf with B2
f ¼ −n2f. Note that the

closure constraint is composed by two independent equa-
tions enrolling ṽ and wþ

X
f

ϵefðvÞṽvef ¼ 0;

8>><
>>:

P
f
ϵefðvÞℜðαvefÞwþ

ef ¼ 0; SvefþP
f
ϵefðvÞðℜðαvefÞ−1wþ

ef ¼ 0; Svef−
: ð3:75Þ
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C. Timelike tetrahedron containing both spacelike
and timelike triangles

The timelike tetrahedron in a generic simplicial geom-
etry contains both spacelike and timelike triangles. For
spacelike triangles, the irreps of SU(1,1) are in the discrete
series, in contrast to the continuous series used in timelike
triangles. The simplicity constraint is also different from
(2.9). This leads to different face actions on triangles with a
different signature, and the total action is expressed by
the sum of these actions. The action on the spacelike
triangle and corresponding critical point equations have

already been derived in [21]. The results are reviewed in
Appendix D.
The variations with respect to zvf and vef give equations

of motions (3.71) for timelike triangles and (D20) for
spacelike triangles, respectively. In addition, for timelike
triangles, solutions should satisfy (3.27), (3.32), or (3.32).
The variation with respect to the SLð2;CÞ group element

gve involves all faces connected to e, which may include
both spacelike and timelike triangles. In general, from
(3.40)–(3.42) and (D13)–(D14), the action including differ-
ent types of triangles gives

δFS ¼ −2i
X

f=wSþðxÞ

sfhl−ef − iðγℜðαvefÞ − ℑðαvefÞÞlþef; F†lþefi

þ 2i
X

f=wS−ðxÞ

sfhnef; F†l−efi − 2
X
f=wSsp

jfhξ�ef; F†ξ�efi ¼ 0 ð3:76Þ

− 2γ
X

f=wSþðxÞ

sf

	
l−ef − i

�
1

γ
ℜðαvefÞ − ℑðαvefÞ

�
lþef; F

†lþef




þ 2
X

f=wS−ðxÞ

isf
hnef; F†nefi
ℜðαvefÞ

þ γsfhnvef; F†l−efi þ 2iγ
X
f=wSsp

jfhξ�ef; F†ξ�efi ¼ 0: ð3:77Þ

The summation of the two equations leads to

ð1þ γ2Þ
X

f=wSþðxÞ

sfℜðαvefÞhlþef; Filþefi þ
X

f=wS−ðxÞ

sf
hnef; Finefi
ℜðαvefÞ

¼ 0: ð3:78Þ

This equation only involves timelike triangles. Since
wþi

ef¼hlþef;Filþefi (orwþi
ef ¼ hnef; Finefi in the S−ðxÞ case)

are null vectors, the above equation implies summing over
null vectors equal to 0. In a tetrahedron that contains both
timelike and spacelike triangles, the number of timelike
triangles, which is also the number of null vectors here, is
less than 4. If one has less than 4 null vectors summed to 0 in
four-dimensionalMinkowski space, then theyareeither trivial
or collinear. The only possibility to have a nondegenerate
tetrahedron from (3.78) is for all the timelike faces to be in the
action Sþ and set ℜðαÞ ¼ 0. The solution reads

ℜðαvefÞ ¼ 0 & ∀f∈te ; Sf ¼ SþðxÞ: ð3:79Þ

It means that in order to have a critical point, the action
associated to each triangle f of the tetrahedron te must
be Sþ or Sþx; other actions do not have stationary point.
The closure constraint is now given by (3.76) minus (3.77)

− 2i
X

f=wSþðxÞ

sfhl−ef þ iℑðαvefÞlþef; Filþefi ¼ 0

− 2
X

f=wSsp

jfhξ�ef; Fiξ�efi ¼ 0: ð3:80Þ

The parallel transport equations for timelike triangles still
keep the same form as (3.13)–(3.15). After we impose
condition (3.79), the parallel transport equation becomes

gvel
þ
ef ⊗ ðl−ef þ iℑðαvefÞlþefÞ†gev
¼ gve0l

þ
e0f ⊗ ðl−e0f þ iℑðαve0fÞlþe0fÞ†ge0v: ð3:81Þ

One recognizes the same composition of spinors l−ef þ
iℑðαvefÞlþef in (3.80) and (3.81). This is exactly the spinor
satisfying Lemma III.1. Recall (3.27), coming from the
variation with respect to SU(1,1) group elements vef, we
have

ℑðαvefÞ ¼ ℑðαv0efÞ ð3:82Þ

in the Sþ case or ℑðαvefÞ ¼ 0 in the Sxþ case, respectively.
However, recall that for the Sþ case, there is an ambiguity
in defining l̃− and ℑðαÞ from Lemma III.1. This ambiguity
does not change the action, and gives the same vector
vi ¼ hl̃−ef; Filþefi. Thus, we can always remove the ℑðαvefÞ
by a redefinition of l−ef, which does not change the
geometric form of the critical equations. With (3.82), this
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redefinition will extended to both end points of the edge e.
Thus, we always make the choice that ℑðαvefÞ ¼ 0 and
drop all ℑðαvefÞ terms in (3.80) and (3.81).
In the bivector representation, we can build bivectors for

timelike triangles,

Xef ¼ �ðvef ∧ uÞ; ð3:83Þ
with vef a normalized vector defined by vIef ¼ iðhlþef ×
jσ̂Ijl−efi − uIÞ. The parallel transportation equation implies
we can define a bivector XfðvÞ independent of e

XfðvÞ ¼ GveXefGev: ð3:84Þ
Clearly in this case we have

Ne · XfðvÞ ¼ 0; with Ne ¼ Gveu: ð3:85Þ
For spacelike triangles, the bivector is defined in (D18). One
can see they have exactly the same form as in the timelike
case and follow the same condition, except now vIef ¼
hξ�efjσ̂Ijξ�efi − hξ�efjjξ�efiuI instead. With bivectors Xef and
Xf, (3.80) becomes [after recover the sign factor ϵefðvÞ]X
f=wSþðxÞ

ϵefðvÞsfXfðvÞ −
X

f=wSsp

ϵefðvÞjfXfðvÞ ¼ 0: ð3:86Þ

In summary, the critical equations for a timelike tetra-
hedron with both timelike and spacelike triangles implies a
nondegenerate tetrahedron geometry only when timelike
triangles have the action SþðxÞ. Suppose we have a solution
ðjf; gve; zvfÞ, one can define bivectors

Bef ¼ 2AfXef ¼ 2Af � ðvef ∧ uÞ ð3:87Þ
where

vIef ¼
�−iðhlþefjσIjl−efi − uIÞ for timelike triangle

hξ�efjσIjξ�efi − hξ�; ξ�iuI for spacelike case
;

ð3:88Þ
and

Af ¼
�
γsf ¼ nf=2 for timelike triangle

γjf ¼ γnf=2 for spacelike triangle
: ð3:89Þ

We define BefðvÞ as

BfðvÞ ≔ GveBefGev: ð3:90Þ

The critical point equations imply

BefðvÞ ¼ Be0fðvÞ ¼ BfðvÞ ð3:91Þ

Ne · BfðvÞ ¼ 0 ð3:92Þ
X
f∈te

ϵefðvÞBfðvÞ ¼ 0 ð3:93Þ

where NI
e ¼ GveuI, ϵefðvÞ ¼ �1 and changes its sign

when exchanging vertex and edge variables.

D. Tetrahedron containing only timelike triangles

Starting from the critical equations derived above, we
can see what happens when all faces that appear inside the
closure constrain are timelike. For simplicity, we will use
the Sþ action as an example, and the other cases will follow
similar properties as they can be written in similar forms
as Sþ.
Suppose we have a solution to critical equations with all

the face actions being Sþ. As we have shown above, the
solution satisfies two closure constraints,X

f

sfðvef þ ℑðαvefÞwþ
efÞ ¼ 0; ð3:94Þ

X
f

sfℜðαvefÞwþ
ef ¼ 0: ð3:95Þ

Clearly here we have family of solutions generated by the
continuous transformations

ℜðαvefÞ → C̃veℜðαvefÞ;
ℑðαvefÞ → ℑðαvefÞ þ CveℜðαvefÞ: ð3:96Þ

In other words, the closure constraint only fixes α up to Cve

and C̃ve.
Back to the bivectors inside the parallel transporta-

tion equation, it is easy to see that the bivector can be
rewritten as

X ¼ V þ ðℑðαÞ þℜðαÞ�ÞWþ ¼ X0 þℜðαÞðCþ C̃�ÞWþ ð3:97Þ

where X0 ¼ V þ ℑðα0vefÞ for some given ℑðα0vefÞ. Suppose we have a solution to some fixed C and C̃, the parallel
transported bivector then reads

GveXefGev ¼ GveX0
efGev þℜðαÞðCþ C̃�ÞGveW

þ
efGev ¼ �ððGveṽvefÞ ∧ ðGveũvefÞÞ: ð3:98Þ
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From the fact that in spin-1=2 representation � → i, we
define c ≔ Cþ iC̃.
From the parallel transported vector ṽf ≔ Gveṽvef and

ũf ≔ Gveũvef, one can determine a null vector w̃f related to
face f ¼ ðe; e0Þ uniquely up to a scale by

w̃f:ṽf ¼ w̃f:ũf ¼ 0: ð3:99Þ

From the definitions of ṽ and ũ, we see that wef:ũvef ¼
wef:ṽvef ¼ 0 and the same relation for e0. Since
G ∈ SOþð1; 3Þ, which preserves the inner product, we
then have

w̃f ∝ Gvewef ∝ Gve0we0f: ð3:100Þ

Suppose a solution to critical equations determines a
geometrical 4-simplex up to scaling and reflection with
normals NeðvÞ ¼ Gveu. (See Appendix E for the geomet-
rical interpretation of the critical solution. We suppose the

solution is nondegenerate here. The degenerate case will be
discussed in Sec. V.) From this 4-simplex, we can get its
boundary tetrahedron with faces normals vgefðvÞ ¼ Gvevsef.
For the two edges e and e0 that belong to the same face f,
Ne andNe0 determine uniquely a null vector (up to scaling),
which is perpendicular to Ne and Ne0 . Then from (3.99)
and (3.100), the vector is proportional to w̃f. Then it
implies that

vsef ¼ ṽef þ defwef: ð3:101Þ

The tetrahedra determined by vsef (by the Minkowski
theorem) satisfy the length matching condition, which
further constrains def. Ten def’s are overconstrained by
20 length matching conditions. def ¼ 0 corresponds to a
solution if the boundary data (relating to ṽef) also satisfies
the length matching condition. We have the parallel trans-
portation equation:

gveX0
efgev þ defgveW

þ
efgev ¼ gve0X0

e0fge0v þ de0fgve0W
þ
e0fge0v: ð3:102Þ

However, from (3.98) we know that

gveX0
efgev þℜðαefÞcvegveWþ

efgev ¼ gve0X0
e0fge0v þℜðαe0fÞcve0gve0Wþ

e0fge0v ð3:103Þ

which means

ðℜðαvefÞcve − defÞgveWþ
efgev ¼ ðℜðαve0fÞcve0 − de0fÞgve0Wþ

e0fge0v: ð3:104Þ

They are 10 complex equations, with five complex cve,
thus again giving an overconstrained system.
A special case is that the boundary data itself satisfy the

length matching condition. In this case, def ¼ 0 correspond
to a critical solution. It can be further proved that (3.104)
with def ¼ 0 implies

∀ecve ¼ 0: ð3:105Þ

The condition is nothing else but (3.79), and it is easy
to see that in this case the critical equations reduce to
(3.87)–(3.91).

IV. GEOMETRIC INTERPRETATION AND
RECONSTRUCTION

The critical solutions of the spin foam action are shown
to satisfy certain geometrical bivector equations, and we
would like to compare them with a discrete Lorentzian
geometry. The general construction of a discrete Lorentzian
geometry and the relation with critical solutions for space-
like triangles were discussed in detail in [14] and [21]. We
will see that our solutions, which include timelike triangles,

can be applied to a similar reconstruction procedure. We
demonstrate the detailed analysis in Appendix E. The main
result is summarized here. The result is valid when every
timelike tetrahedron contains both spacelike and timelike
triangles. It is also valid for tetrahedra containing only
timelike triangles in the special case with Eq. (3.105).
The following condition at a vertex v implies the

nondegenerate 4-simplex geometry:

Y5
e1;e2;e3;e4¼1

detðNe1; Ne2; Ne3; Ne4Þ ≠ 0 ð4:1Þ

which means any four out of five normals are linearly
independent. Since Ne ¼ Gveu, the above nondegeneracy
condition is a constraint on Gve. Here u ¼ ð0; 0; 0; 1Þ or
u ¼ ð1; 0; 0; 0Þ for a timelike or spacelike tetrahedron.
Then we can prove that satisfying the nondegeneracy

condition, each solution BefðvÞ at a vertex v determines a
geometrical 4-simplex uniquely up to the shift and inver-
sion. The bivectors BΔ

efðvÞ of the reconstructed 4-simplex
satisfy
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BΔ
efðvÞ ¼ rðvÞBefðvÞ ð4:2Þ

where rðvÞ ¼ �1 relates to the 4-simplex (topological)
orientation defined by an ordering of tetrahedra. The
reconstructed normals are determined up to a sign

NΔ
ve ¼ ð−1ÞsveNve: ð4:3Þ

We can prove that for a vertex amplitude, the solution exists
only when the boundary data determine tetrahedra that are
glued with length matching (the pair of glued triangles have
their edge lengths matched).
Given the boundary data, we can determines geometric

group elements GΔ ∈ Oð1; 3Þ from reconstructed normals
NΔ. Then it can be shown that, after one chooses sv and sve,
such that

∀e detGΔ
ve ¼ ð−1Þsv ¼ rðvÞ ð4:4Þ

GΔ
ve relates to Gve by

Gve ¼ GΔ
veIsveðIRuÞsv ð4:5Þ

where RN is the reflection respecting to normalized vector
N defined as

ðRNÞIJ ¼ IIJ −
2NINJ

N · N
: ð4:6Þ

The choice of sve ¼ �1 corresponds to a gauge
freedom and is arbitrary here. Condition (4.4) is called
the orientation matching condition, which essentially
means that the orientations of five boundary tetrahedra
determined by the boundary condition are required to be
the same.
For a vertex amplitude, the nondegenerate geometric

critical solutions exist if and only if the length matching
condition and orientation matching condition are satisfied.
Up to gauge transformations, there are two gauge inequi-
valent solutions which are related to each other by a
reflection with respect to any normalized 4-vector eα (this
reflection is referred to as the parity transformation in,
e.g., [12–15])

B̃efðvÞ ¼ ReαðBefðvÞÞ; s̃v ¼ sv þ 1 ð4:7Þ

which means

G̃ve ¼ ReαGveðIRNÞ: ð4:8Þ

Geometrically the second one corresponds to the
reflected simplex. These two critical solutions correspond
to the same 4-simplex geometry, but are associated to a
different sign of the oriented 4-simplex volume VðvÞ.
sgnðVðvÞÞ is referred to as the (geometrical) orientation

of the 4-simplex,2 which should not be confused with rðvÞ.
This result generalizes [21] to the spin foam vertex
amplitude containing timelike triangles.
The reconstruction can be extended to simplicial com-

plex K with many 4-simplices, in which some critical
solutions of the full amplitude correspond to nondegenerate
Lorentzian simplicial geometries on K (see Appendix E).
But similar to the situation in [14,15], 4-simplices inKmay
have different sgnðVðvÞÞ. We may divide the complex K
into subcomplexes, such that each subcomplex is globally
orientated; i.e., the sign of the orientated volume sgnðVÞ is
a constant. Then we have the following result.
For critical solutions corresponding to simplicial geom-

etries with all 4-simplices globally oriented, picking up a
pair of them corresponding to opposite global orientations,
they satisfy

G̃f ¼
�
RueGfðeÞRue internal faces

Ire1þre0Rue1Gfðe1; e0ÞRue0 boundary faces

ð4:9Þ
where Gf ¼

Q
v⊂∂fGe0vGve is the face holonomy. We will

use this result to derive the phase difference of their
asymptotical contributions to the spin foam amplitude.
Note that, the asymptotic formula of the spin foam
amplitude is given by summing over all possible configu-
rations of orientations.

V. SPLIT SIGNATURE AND
DEGENERATE 4-SIMPLEX

This section discusses the critical solutions that violate
the nondegeneracy condition (4.1). We refer to these
solutions as degenerate solutions. If the nondegeneracy
condition is violated, then in each 4-simplex, all five
normals Ne of tetrahedra te are parallel, since we only
consider nondegenerate tetrahedra [21]. When it happens
with all te timelike (or spacelike), with the help of gauge
transformation Gve → GGve, we can write NeðvÞ ¼
Gveu; u ¼ ð0; 0; 0; 1Þ, where all the group variables
Gve ∈ SOþð1; 2Þ. However, when the vertex amplitude
contains at least one timelike and one spacelike tetrahe-
dron, the nondegeneracy condition (4.1) cannot be violated
since timelike and spacelike normals certainly cannot be
parallel. Therefore, the solutions discussed in this section
only appear in the vertex amplitude with all tetrahedra
timelike. Moreover, these degenerate solutions appear
when the boundary data are special, i.e., they correspond
to the boundary of a split signature 4-simplex or a
degenerate 4-simplex, as we see in a moment.
When the tetrahedron contains both timelike and space-

like triangles, the closure constraint (3.78) concerning w

2sgnðVðvÞÞ is a discrete analog of the volume element
compatible to the metric in smooth pseudo-Riemannian
geometry.
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involves at most 3 null vectors, which directly leads to
ℜðαvefÞ ¼ 0 as the only solution. For degenerate solutions,
the bivector XfðvÞ ¼ gveXefgev in (3.84) becomes

XfðvÞ ¼ �Gveðvef ∧ uÞGev ¼ Gvevef ∧ u ¼ vgvef ∧ u:

ð5:1Þ

The parallel transportation equation (3.91) becomes

vgfðvÞ ¼ vgve ¼ vgve0 ¼ 2AfGvevef: ð5:2Þ

Thus, the degenerate critical solutions satisfy

vgfðvÞ ¼ vgve ¼ vgve0 ;
X
f

ϵefðvÞvgfðvÞ ¼ 0 ð5:3Þ

and the collection of vectors vgfðvÞ is referred to as a vector
geometry in [12].
In the case that all triangles in a tetrahedron are

timelike, we use Svfþ as an example. The degeneracy
implies Gveu ¼ Gve0u ¼ u. The parallel transportation
equation (3.98) becomes

ðGveṽvef −Gve0 ṽve0fÞ ∧ u ¼ cveℜðαvefÞGvew
þ
ef ∧ u − cve0ℜðαve0fÞGve0w

þ
e0f ∧ u: ð5:4Þ

cve ¼ Cve þ iC̃ve is the factor which solves the closure constraint with a given normalization of ℜðαvefÞ, e.g.,P
fℜðαvefÞ ¼ 1 as shown in (3.96). (5.4) directly leads to

Gveðṽvef þ CveℜðαvefÞwefÞ ¼ Gve0 ðṽve0f þ CveℜðαvefÞwefÞ ð5:5Þ

C̃veℜðαvefÞGvewef ¼ C̃ve0ℜðαve0fÞGve0we0f: ð5:6Þ

Notice that from (5.5), since wef is null and
wef · vef ¼ 0, we have

Gvewef ∝ Gve0we0f: ð5:7Þ
It implies that (5.6) is only a function of C̃. However, at a
vertex v, there are only five independent C̃ variables out of
10 equations. Thus (5.6) are overconstrained equations and
give five consistency conditions for Gve unless C̃ ¼ 0.
Actually, one can show that there is no solution when

C̃ ≠ 0. We give the proof here. For simplicity, we only
focus on a single 4-simplex.
Suppose we have solutions to above equations with

C̃ ≠ 0; then, the following equations hold according to
(5.5), (5.6), and the closure constraint (C14):

vgfðvÞ ¼ vgefðvÞ ¼ vge0fðvÞ;
X
f⊂te

ϵefðvÞvgefðvÞ ¼ 0;

wg
fðvÞ ¼ wg

efðvÞ ¼ wg
e0fðvÞ;

X
f⊂te

ϵefðvÞwg
efðvÞ ¼ 0;

ð5:8Þ
where

vgefðvÞ ¼ Gveṽef þ CiℜðαvefÞGvewef

wg
efðvÞ ¼ C̃iℜðαvefÞGvewef: ð5:9Þ

Suppose vg satisfy the length matching condition. From the
above equations, ṽgef ¼ vgef þ awg

ef with arbitrary real
number a are also solutions. This means ṽg should also
satisfy the length matching condition. However, the

transformation from v to vþ aw changes the edge lengths
of the tetrahedron, and the length matching condition gives
constraint to a. This conflicts with the fact that a is arbitrary
to form the solution. It means that we cannot have a
solution with C̃ ≠ 0 and the length matching condition
satisfied.
Thus, when boundary data satisfies the length matching

condition, the only possible solution of (5.6) is C̃ve ¼ 0.
This corresponds to ℜðαÞ ¼ 0, which is thus only possible
with the action Sþ. One recognizes that this is the same
condition as in the case of the tetrahedron with both
timelike and spacelike triangles, e.g., (3.79). In this case
Cve thus ℑðαÞ can be uniquely determined by the closure
and length matching condition. The critical point equations
again become (5.2) and (5.3).
In the end of this section, we introduce some relations

between the vector geometry and nondegenerate split
signature 4-simplex. As shown in Appendix E 6, the vector
geometries in three-dimensional subspace V can be mapped
to the split signature space M0 with signature ð−;þ;þ;−Þ
[flip the signature of u ¼ ð0; 0; 0; 1Þ], with the mapΦ�∶ ∧2

M40 → V for bivectors B,

Φ�ðBÞ ¼ ð∓B − �0BÞ ·0 u: ð5:10Þ
Φ� naturally induced a map from g ∈ SOð2; 2Þ to the
subgroup h ∈ SOð1; 2Þ, defined by

Φ�ðgBg−1Þ ¼ Φ�ðgÞΦ�ðBÞ: ð5:11Þ

If the vertex amplitude has the critical solutions being a pair
of non-gauge-equivalent vector geometries fG�

veg, they are
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equivalent to a pair of non-gauge-equivalent fGve ∈
SOðM0Þg satisfying the nondegenerate condition. One of
the nondegenerate fGveg satisfies G�

ve ¼ Φ�ðGveÞ, while
the other fG̃veg satisfies

Φ�ðG̃Þ ¼ Φ�ðRuGRuÞ ¼ Φ∓ðGÞ: ð5:12Þ

When the vector geometries are gauge equivalent, the
corresponding geometric SOðM0Þ solution is degenerate.
In this case the reconstructed 4-simplex is degenerate and
the 4-volume is 0.

VI. SUMMARY OF GEOMETRIES

We summarize all possible reconstructed geometries
corresponding to critical configurations of the Conrady-
Hnybida extended spin foam model (including the EPRL
model) here. We first introduce the length matching
condition and orientation matching condition for the
boundary data. Namely, (1) among the five tetrahedra
reconstructed by the boundary data (by the Minkowski
theorem), each pair of them are glued with their common
triangles matching in shape (matching their three edge
lengths), and (2) all tetrahedra have the same orientation.
The amplitude will be suppressed asymptotically if the
orientation matching condition is not satisfied.
For any given boundary data that satisfies the length

matching condition and orientation matching condition, we
may have the following reconstructed 4-simplex geom-
etries corresponding to critical configurations of the
Conrady-Hynbida model:
(1) Lorentzian ð−þþþÞ 4-simplex geometry: recon-

structed by boundary data which may contain
(a) both timelike and spacelike tetrahedra,
(b) all tetrahedra being timelike,
(c) all tetrahedra being spacelike.

(2) Split signature ð−þþ−Þ 4 simplex geometry: This
case is only possible when every boundary tetrahe-
dron are timelike.

(3) Euclidean signature ðþ þ þþÞ 4-simplex geometry:
This case is only possible when every boundary
tetrahedron are spacelike.

(4) Degenerate 4 simplex geometry: This case is only
possible when all boundary tetrahedron are timelike
or all of them are spacelike.

When the length matching condition is not satisfied, we
might still have one gauge equivalence class of solutions
which determines a single vector geometry. This solution
exists again only when all boundary tetrahedron are time-
like or all of them are spacelike.

Our analysis is generalized to a simplicial complex K
with many 4-simplices. A most general critical configura-
tion of the Conrady-Hnybida model may mix all the types
of geometries on the entire K. One can always make a
partition of K into subregions such that in each region we
have a single type of reconstructed geometry with the
boundary. However, this may introduce nontrivial transi-
tions between different types of geometries through the
boundary shared by them as suggested in [14]. It is
important to remark that, if we take the boundary data
of each 4-simplex to contain at least one timelike and one
spacelike tetrahedron, critical configurations will only give
Lorentzian 4-simplices.

VII. PHASE DIFFERENCE

In this section, we compare the difference of the phases
given by a pair of critical solutions with opposite (global)
sgnðVÞ orientations on a simplicial complex K. Recall that
the amplitude is defined with SU(1,1) and SU(2) coherent
states at the timelike and spacelike boundaries. When we
define the coherent state, we have a phase ambiguity from
the K1 direction in SU(1,1) [or the J3 direction in SU(2)];
thus, the action is determined up to this phase. Thus, the
phase difference ΔS is the essential result in the asymptotic
analysis of the spin foam vertex amplitude. The phase
difference at a spacelike triangle has already been discussed
in [21]; we only focus on timelike triangles here.
Given a timelike triangle f, in the Lorentzian signature,

the normals Ne and Ne0 are spacelike and span a spacelike
plane, while in the split signature they form a timelike
surface. The dihedral angles Θf at f are defined as follows:
In the Lorentzian signature, the dihedral angle is Θf ¼
π − θf where

cos θf ¼ NΔ
e · NΔ

e0 ; θf ∈ ð0; πÞ: ð7:1Þ
While in the split signature, the boost dihedral angle θf is
defined by

cosh θf ¼ jNΔ
e ·0 NΔ

e0 j; θf ≷ 0 while NΔ
e ·0 NΔ

e0 ≷ 0:

ð7:2Þ

A. Lorentzian signature solutions

As we showed before, when every tetrahedron has both
timelike and spacelike triangles, the critical solutions only
come from Sþ. So we focus on the Sþ action.
From the action (2.43), after inserting the decomposition

(3.4), we find

Svfþ ¼ nf
2
ln
ζvef ζ̄ve0f
ζ̄vefζve0f

− isf ln
ζve0f ζ̄ve0f
ζ̄vefζvef

¼ −2iγsfðargðζve0fÞ − argðζvefÞ − 2is ln
jζve0fj
jζvefj

¼ −2isfðθe0vef þ γϕe0vefÞ ð7:3Þ
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where θ and ϕ are defined by

θe0vef ≔ ln
jζve0fj
jζvefj

;

ϕe0vef ≔ argðζve0fÞ − argðζvefÞ: ð7:4Þ

The face action at a triangle dual to a face f then reads

Sf ¼
X
v∈∂f

Svf ¼ −2isf
�X

v∈∂f
θe0vef þ γ

X
v∈∂f

ϕe0vef

�
: ð7:5Þ

We start the analysis from faces dual to boundary triangles
(boundary faces) and then going to internal faces.

1. Boundary faces

For critical configurations solving critical equations [we
keep ℑðαÞ ¼ 0 by redefinition of l−ef], they satisfy

gveηl
þ
ef ¼

ζ̄vef
ζ̄ve0f

gve0ηl
þ
e0f ð7:6Þ

gveJl−ef ¼
ζ̄ve0f
ζ̄vef

g−1†ve0 Jl
−
e0f: ð7:7Þ

We then have

Gfðe1; e0Þηlþe0f ¼ e
−
P

v∈pe1e0
θe0vefþi

P
v∈pe1e0

ϕe0vefηlþe1f ð7:8Þ

Gfðe1; e0ÞJl−e0f ¼ e
P

v∈pe1e0
θe0vef−i

P
v∈pe1e0

ϕe0vefJl−e1f ð7:9Þ

where Gfðe1; e0Þ is the product of the edge holonomy
along the path pe0e1

Gfðe1; e0Þ ≔ ge1v1…ge0v0gv0e0 : ð7:10Þ

Suppose we have holonomies G and G̃ from the pair of
critical solutions with the global sgnðVÞ orientation, then
one can see

G̃−1Gηlþe0f ¼ e
−
P

v∈pe1e0
Δθe0vefþi

P
v∈pe1e0

Δϕe0vefηlþe0f ð7:11Þ

G̃−1GJl−e0f ¼ e
P

v∈pe1e0
Δθe0vef−i

P
v∈pe1e0

Δϕe0vefJl−e0f: ð7:12Þ

For a single 4-simplex, the above equations read

ðg̃e0vg̃veÞ−1ðge0vgveÞηlþe0f ¼ ζ̄0vef
ζ̄0ve0f

ζ̄vef
ζ̄ve0f

ηlþef

¼ e−Δθe0vefþiΔϕe0vefηlþef ð7:13Þ

ðg̃e0vg̃veÞ−1ðge0vgveÞJl−e0f ¼
ζ̄0ve0f
ζ̄0vef

ζ̄ve0f
ζ̄vef

Jl−e0f

¼ eΔθe0vef−iΔϕe0vefJl−e0f ð7:14Þ

which leads to

gveðg̃e0vg̃veÞ−1ge0vgveηlþe0f
¼ e−Δθe0vefþiΔϕe0vef gveηl

þ
e0f

ð7:15Þ

gveðg̃e0vg̃veÞ−1ge0vgveJle0f
¼ eΔθe0vef−iΔϕe0vef gveJl−e0f: ð7:16Þ

We can define an operator Tef by

Tef ≔ ηlþef ⊗ ðl−efÞ† ¼ jηlþefihl−efj: ð7:17Þ

From the facts hl−efjηlþefi ¼ hl−ef; lþefi ¼ 1; hl−efjJl−efi ¼ 0,
the action of this operator leads to

Tefjηlþefi ¼ jηlþefihl−efjηlþefi ¼ jηlþefi
TefjJl−efi ¼ 0: ð7:18Þ

From the definition of (3.64) (with α ¼ 0), by using (3.55)
and (3.60), one can then see

Xefjηlþefi ¼
1

2
jηlþefi; XefjJl−efi ¼ −

1

2
jJl−efi: ð7:19Þ

Then we have

2Xfgvejηlþefi ¼ 2gveXefgevgvejηlþefi ¼ gve2Xefjηlþefi ¼ gvejηlþefi ð7:20Þ

2XfgvejJl−efi ¼ 2gveXefgevgvejJl−efi ¼ gve2XefjJl−efi ¼ −gvejJl−efi: ð7:21Þ

From (7.15) and (7.16), it is easy to see

gveðg̃e0vg̃veÞ−1ge0v ¼ e−2Δθe0vefXfþ2iΔϕe0vefXf : ð7:22Þ
For a general simplicial complex with the boundary, given a boundary face f with two edges e0 and e1 connecting to the

boundary, and v is the bulk end point of e0 if we define
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Gfðe1; e0Þ ¼ Gfðv; e1Þ−1gve0 : ð7:23Þ

It can be proved that

Gfðv; e1ÞXe1fGfðv; e1Þ−1 ¼ gve0Xe0fge0v ð7:24Þ

which is the generalization of the parallel transportation equation within a single 4-simplex. Then we can apply the same
derivation as the single-simplex case by replacing gve0 → Gðv; e1Þ, which leads to

gveG̃fðe1; e0Þ−1Gfðe1; e0Þgev ¼ e−2
P

v∈∂fΔθe0vefXfþ2i
P

v∈∂fΔϕe0vefXf : ð7:25Þ

2. Internal faces

The discussion of the internal face f is similar to the
boundary case. We have

Gfηl
þ
ef ¼ e−

P
v∈∂fθe0vefþi

P
v∈∂fϕe0vefηlþef ð7:26Þ

GfJl−ef ¼ e
P

v∈∂fθe0vef−i
P

v∈∂fϕe0vefJl−ef ð7:27Þ

where Gf is the face holonomy

Gf ≔
Y←
v∈∂f

ge0vgve: ð7:28Þ

By the action of the bivector Xef in (7.19),

e−
P

v∈∂fθe0vef2Xefþi
P

v∈∂fϕe0vef2Xef jηlþefi
¼ e−

P
v∈∂fθe0vefþi

P
v∈∂fϕe0vef jηlþefi ð7:29Þ

e−
P

v∈∂fθe0vef2Xefþi
P

v∈∂fϕe0vef2Xef jJl−efi
¼ e

P
v∈∂fθe0vef−i

P
v∈∂fϕe0vef jJl−efi: ð7:30Þ

Compared to (7.26) and (7.27), we see that

Gf ¼ e−
P

v∈∂fθe0vef2Xefþi
P

v∈∂fϕe0vef2Xef: ð7:31Þ

Given Gf and G̃f from a pair of critical solutions with the
opposite sgnðVÞ orientation, we find

gveG̃
−1
f Gfgev ¼ e−2

P
v∈∂fΔθe0vefXfþ2i

P
v∈∂fΔϕe0vefXf : ð7:32Þ

3. Phase difference

For a pair of globally orientated [constant sgnðVÞ]
critical solutions with the opposite orientation, from
(7.5) we have

ΔSf ¼ −2isf
�X

v∈∂f
Δθe0vef þ γ

X
v∈∂f

Δϕe0vef

�
ð7:33Þ

where Δθ and Δϕ are determined by

gveG̃
−1
f Gfgev ¼ e−2

P
v∈∂f Δθe0vefXfþ2i

P
v∈∂f Δϕe0vefXf :

ð7:34Þ

Gf ≡Gfðe1; e0Þ if f is a boundary face. Since γsf ¼
nf=2 ∈ Z=2, we may restrict

X
v∈∂f

Δϕe0vef ∈ ½−π; π� ð7:35Þ

because ΔSf is an exponent.
After projecting to SOþð1; 3Þ,

gveG̃
−1
f Gfgev → GveG̃

−1
f GfGev; i → �: ð7:36Þ

For the spacelike normal vector u ¼ ð0; 0; 0; 1Þ, from
which it is easy to see that G and G̃ are related by

G̃ ¼ Re0GRuI ∈ SOþð1; 3Þ ð7:37Þ

and

G̃f ¼ RueGfRue ð7:38Þ

for both internal and boundary triangles f. The equation
then leads to

GveG̃
−1
f GfGev ¼ GveRuG−1

f RuGfGev ¼ RNe
RNe0 ð7:39Þ

for both internal and boundary triangles f. Ne and Ne0 here
are given by

Ne ¼ Gveu; Ne0 ¼ GveðG−1
f uÞ; ð7:40Þ

thus, Ne0 is the parallel transported vector along the face.
Therefore, in both the internal case and boundary case,

we have
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RNe
RNe0 ¼ e−2

P
v∈∂f Δθe0vefXfþ2�

P
v∈∂f Δϕe0vefXf : ð7:41Þ

On the other hand, from the fact that RN ¼ GRuG, and
the fact that GΔ

ve ¼ GIsveðIRuÞsv, we have

RNe
RN0

e
¼ RNΔ

e
RNΔ

e0
: ð7:42Þ

Since RNΔ is a reflection with respect to the spacelike
normal NΔ, we have (see Appendix F)

RNΔ
e
RNΔ

e0
¼ e

2θf
NΔ
e ∧NΔ

e0
jNΔ

e ∧NΔ
e0 j ð7:43Þ

where f is the triangle dual to the face determined by edges
e and e0. θf ∈ ½0; π� satisfies NΔ

e · NΔ
e0 ¼ cosðθfÞ. From the

geometric reconstruction,

Bf ¼ nfXf ¼ −
1

VolΔ
rWΔ

e WΔ
e0 � ðNΔ

e0 ∧ NΔ
e Þ: ð7:44Þ

Since jBfj2 ¼ −n2f, we have

���� 1

VolΔ
rWΔ

e WΔ
e0

����jNΔ
e0 ∧ NΔ

e j ¼ nf: ð7:45Þ

Thus

Xf ¼
Bf

nf
¼ σf

�ðNΔ
e0 ∧ NΔ

e Þ
jðNΔ

e0 ∧ NΔ
e Þj

ð7:46Þ

where σf ¼ −rsignðWΔ
e0W

Δ
e Þ. Since Ne and Ne0 are both

spacelike, we have σf ¼ −r. Keep in mind that r is the
orientation and is a constant sign on the (sub-)triangulation.
Therefore,

e
2r
P

v∈∂f Δθe0vef
�ðNΔ

e0∧N
Δ
e Þ

jNΔ
e0∧N

Δ
e j þ2r

P
v∈∂f Δϕe0vef

NΔ
e0∧N

Δ
e

jNΔ
e0∧N

Δ
e j ¼ e

2θf
NΔ
e ∧NΔ

e0
jNΔ

e ∧NΔ
e0 j

ð7:47Þ

which implies

X
v∈∂f

Δθe0vef ¼ 0;

−r
X
v∈∂f

Δϕe0vef ¼ θf mod π: ð7:48Þ

The phase difference is then

ΔSf ¼ 2irAfθf mod iπ ð7:49Þ

where Af ¼ γsf ¼ nf=2 ∈ Z=2 is the area spectrum of the
timelike triangle.

The iπ ambiguity relates to the lift ambiguity from Gf ∈
SOþð1; 3Þ to SLð2;CÞ. Some ambiguities may be absorbed
into gauge transformations gve → −gve. First, we consider a
single 4-simplex, (7.48) reduces to Δθe0vef ¼ 0, and
Δϕe0vef ¼ −θf mod π. [Here we use the notation that
we move the orientation r from Δϕ in (7.48) to the
definition of ΔS. Keep in mind ΔS always depends on
the orientation r.] However, it is shown in Appendix G that
this ambiguity can indeed be absorbed into the gauge
transformation of gve, i.e., if we fix the gauge,

Δϕe0vef ¼ −θfðvÞ mod 2π; ð7:50Þ

where θfðvÞ is the angle between the tetrahedron normals
in the 4-simplex at v. Although this fixing of the lift
ambiguity only applies to a single 4-simplex, it is sufficient
for us to obtainΔSΔf unambiguously. Applying (7.50) to the
case with many 4-simplicesX

v∈∂f
Δϕe0vef ¼ −

X
v∈∂f

θfðvÞ mod 2π: ð7:51Þ

Since θfðvÞ relates to the dihedral angle ΘfðvÞ by
θfðvÞ ¼ π − ΘfðvÞ, for an internal f,

P
v∈∂f Δϕe0vef

relates to the deficit angle εf ¼ 2π −
P

v∈∂f ΘfðvÞ byX
v∈∂f

Δϕe0vef ¼ ð2 −mfÞπ − εf mod 2π ð7:52Þ

where mf is the number of v ∈ ∂f. Similarly, for a
boundary f,

P
v∈∂f Δϕe0vef relates to the deficit angle θf ¼

π −
P

v∈∂f ΘfðvÞ byX
v∈∂f

Δϕe0vef ¼ ð1 −mfÞπ − θf mod 2π: ð7:53Þ

As a result, the total phase difference is

expðΔSfÞ ¼ exp

�
2ir

X
f

bulkAf½ð2 −mfÞπ − εf�

þ 2ir
X
f

boundaryAf½ð1 −mfÞπ − θf�
�
:

ð7:54Þ
The exponent is a Regge action when all the bulk mf are
even, i.e., every internal f has an even number of vertices.
Obtaining the Regge calculus only requires all bulkmf’s to
be even, while boundary mf’s can be arbitrary, since the
boundary terms Afð1 −mfÞπ do not affect the Regge
equation of motion.
The above phase difference is for a general simplicial

complex; the result for a single 4-simplex is simply given
by removing the bulk terms and letting the boun-
dary mf ¼ 1.

ASYMPTOTIC ANALYSIS OF SPIN FOAM AMPLITUDE … PHYS. REV. D 99, 084040 (2019)

084040-21



4. Determine the phase for bulk triangles

For the internal faces in the bulk, we can determine the
phase at the critical point uniquely.
Recall (7.31), the holonomy GfðvÞ ¼ gveGfðeÞgev at

vertex v reads

GfðvÞ ¼ e−
P

v∈∂f θe0vef2XfðvÞþi
P

v∈∂f ϕe0vef2XfðvÞ: ð7:55Þ

Recall (E73) as we showed in Appendix E, for edges El1ðvÞ
and El1ðvÞ of the triangle f in the frame of vertex v,

GfðvÞEl1ðvÞ ¼ μEl1ðvÞ;
GfðvÞEl2ðvÞ ¼ μEl2ðvÞ ð7:56Þ

where μ ¼ ð−1Þ
P

e⊂∂f se ¼ �1. Here se is defined as se ¼
sve þ sv0e þ 1 for edge e ¼ ðv; v0Þ with sve ∈ f0; 1g. With
edges El1ðvÞ and El1ðvÞ, the bivector XfðvÞ at vertex v can
be expressed as

XfðvÞ ¼
�ðNe0 ðvÞ ∧ NeðvÞÞ
jNe0 ðvÞ ∧ NeðvÞj

¼ El1ðvÞ ∧ El2ðvÞ
jEl1ðvÞ ∧ El2ðvÞj

: ð7:57Þ

From (7.56) and (7.57), with the fact that eXfðvÞ is a boost,
one immediately sees μe ¼ 1 and

GfðvÞ ¼ ei
P

v∈∂f ϕe0vef2XfðvÞ ¼ e
2r
P

v∈∂f ϕe0vef
NΔ
e0
∧NΔ

e

jNΔ
e0∧N

Δ
e j ð7:58Þ

where we use (7.46). As we proved in Appendix F, there
exists the spacelike normalized vector Ñ in the plane
spanned by Ne and Ne0 such that

GfðvÞ ¼ RNRÑ: ð7:59Þ

From (7.38),

GveG̃fðeÞGfðeÞGev ¼ GveRuGfðeÞRuGfðeÞGev

¼ RNGfðvÞRNGfðvÞ: ð7:60Þ

Then, it is straightforward to show

GveG̃fðeÞGfðeÞGev ¼ RNGfðvÞRNGfðvÞ
¼ RNRNRÑRNRNRÑ ¼ RÑRÑ ¼ 1:

ð7:61Þ

Thus,

e2
P

v∈∂fðϕ̃e0vefþϕe0vefÞ�Xf ¼ 1 ð7:62Þ

which leads to

X
v∈∂f

ðϕ̃e0vef þ ϕe0vefÞ ¼ 0 mod π: ð7:63Þ

The π ambiguity here relates to the lift ambiguity again.
Note that, the fixing of the lift ambiguity to these
4-simplices sharing the triangle f as in Appendix G leads
to gveG̃fðeÞGfðeÞgev ¼ 1. Then we have

X
v∈∂f

ðϕ̃e0vef þ ϕe0vefÞ ¼ 0 mod 2π ð7:64Þ

where the π ambiguity is fixed. Combined with (7.52), we
have X

v∈∂f
ϕe0vef ¼ −

X
v∈∂f

ϕ̃e0vef

¼ ð2 −mfÞπ − εf
2

mod π: ð7:65Þ

As a result, the total phase for bulk triangles is

expðSfÞ ¼ exp

�
ir
X
f bulk

Af½ð2 −mfÞπ − εf�
�
: ð7:66Þ

Again, the exponent is a Regge action when all bulk mf

are even; i.e., every internal f has an even number of
vertices.
Note that the above derivation assumes a uniform

orientation sgnðVÞ, but the asymptotic formula of the spin
foam amplitude is given by summing over all possible
configurations of orientations. As suggested by [14], at a
critical solution, one can make a partition of K into
subregions such that each region has a uniform orientation,
so that the above derivation can be applied.

B. Split signature solutions

In this subsection, we focus on a single 4-simplex. We
consider a pair of the degenerate solutions g�ve which can be
reformulated as nondegenerate solutions in the flipped
signature space ð−þþ−Þ here. When degenerate solutions
are gauge equivalent, there exists only a single critical
point; then there is a single phase depending on boundary
coherent states.
Since (7.25) and (7.32) hold for all SLð2;CÞ elements

which solve critical equations, they also hold for degenerate
solutions g�ve. Thus, from (7.22), we have

g�evg
∓
evg

∓
ve0g

�
e0v ¼ e∓2Δθe0vefX

�
f �2iΔϕe0vefX

�
f

¼ e∓2Δθe0vefX
�
f : ð7:67Þ

Notice that since all g�ve ∈ SUð1; 1Þ ⊂ SLð2;CÞ, we have
2Δϕe0vef ¼ 0 mod 2π (�X�

f generates rotations in the vg −
u plane).
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From (E87), we have

Φ�ðgevg̃evg̃ve0ge0vÞ ¼ Φ�ðgevÞΦ�ðg̃evÞΦ�ðg̃ve0 ÞΦ�ðge0vÞ ¼ g�evg
∓
evg

∓
ve0g

�
e0v: ð7:68Þ

Since G̃ve ¼ RuGveRu, we have

Φ�ðRNe
RNe0 Þ ¼ G�

evG
∓
evG

∓
ve0G

�
e0v: ð7:69Þ

For Xf in flipped signature spaceM0, from the definition
of Φ� in (5.10), we have

Φ�ð�0XfÞ ¼ �Φ�ðXfÞ ¼ �vg�ef ¼ �Φ�ðX�
f Þ ð7:70Þ

where we know X�
f ¼ vg�ef ∧ u in the degenerate case, and

X�
f can be regarded as bivectors in soðVÞ∼ ∧2V. Then we

have

Φ�ðe2Δθe0vef�0XfÞ ¼ e∓2Δθe0vefX
�
f ð7:71Þ

where we identify the SO(1,2) acting on V to the one acting
on M0.
Therefore, the Δθ contribution to the phase difference in

degenerate solutions fg�g is identified to the Δθ written in
flipped signature solutions fgg satisfying Φ�ðgÞ ¼ g�. Δθ
is given by

RNe
RNe0 ¼ e2Δθe0vef�

0Xf ð7:72Þ

where Xf is the bivector from flipped signature solutions

Xf ¼
Bf

nf
¼ −r

�0ðNΔ
e0 ∧ NΔ

e Þ
j� ‘ðNΔ

e0 ∧ NΔ
e Þj

: ð7:73Þ

From the fact that geometrically,

RNe
RNe0 ¼ RNΔ

e
RNΔ

e0
¼ e

2θf
NΔ
e ∧NΔ

e0
jNΔ

e ∧NΔ
e0 j; ð7:74Þ

where θf ∈ R is a boost dihedral angle. We have

−rΔθe0vef ¼ θf; 2Δϕe0vef ¼ 0 mod 2π ð7:75Þ

and the phase difference is

ΔSΔf ¼ 2irsfθf ¼ 2ir
1

γ
Afθf mod πi: ð7:76Þ

We can again fix the πi ambiguity by using the method in
Appendix G. There is no ambiguity in θf since it is a boost
angle. As a result,

expðΔSfÞ ¼ exp

�
2ir

1

γ
Afθf

�
: ð7:77Þ

The generalization to the simplicial complex is similar to
the nondegenerate case, by substituting every g and g̃ there
with g�.

VIII. CONCLUSION AND DISCUSSION

The present work studies the large-j asymptotics limit of
the spin foam amplitude with timelike triangles in a most
general configuration on a 4D simplicial manifold with many
4-simplices. It turns out the asymptotics of the spin foam
amplitude is determined by the critical configurations of the
corresponding spin foam action on the simplicial manifold.
The critical configurations have geometrical interpreta-
tions as different types of geometries in separated subre-
gions: Lorentzian ð−þþþÞ 4-simplices, split ð− −þþÞ
4-simplices, or degenerate vector geometries. The configu-
rations come in pairs which correspond to opposite global
orientations in each subregion. In each subcomplex with
globally oriented 4-simplices coming with the same signa-
ture, the asymptotic contribution to the spin foam amplitude
is an exponential of the Regge action, up to a boundary term
which does not affect the Regge equation of motion.
An important remark is that, for a vertex amplitude con-

taining at least one timelike and one spacelike tetrahedron,
critical configurations only give Lorentzian 4-simplices,
while Euclidean and degenerate vector geometries do not
appear. In all known examples of Lorentzian Regge
calculus, the geometries are corresponding to such con-
figuration, e.g., the Sorkin triangulation [30] where each
4-simplex contains 4 timelike tetrahedra and 1 spacelike
tetrahedron. Since such a configuration only gives Regge-
like critical configurations, which is supposed to be the
result of the simplicity constraint in spin foam models [5],
the result could open a new and promising way towards a
better understanding of the imposition of the simplicity
constraint. Furthermore, such a configuration also naturally
inherits the causal structure to spin foam models, which
may open the possibility to build the connection between
spin foam models and causal sets theory [31] or causal
dynamical triangulation theories [32,33].
With this work, the asymptotics of the Conrady-Hnybida

spin foam model, with arbitrary timelike or spacelike
nondegenerate boundaries, is now complete. In the present
work, we mainly concentrate on the case where each
tetrahedron contains both timelike and spacelike triangles,
which is the case in all Regge calculus geometry examples.
The geometrical interpretation of the case where the
tetrahedron contains only timelike triangles is much more
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complicated and we only identify its critical configurations
on special cases where the boundary data satisfies the
length matching condition and orientation matching con-
dition. Further investigation is needed for all possible
critical configurations in such cases.
Moreover, in the present analysis we do not give the

explicit form of measure factors of the asymptotics for-
mula, which is important for the evaluation of the spin foam
propagator and amplitude. The measure factor in the EPRL
model is related to the Hessian matrix at the critical
configuration [34,35]. However, the measure factor for
the triangulation with timelike triangles is a much more
complicated function of second derivatives of the action,
due to the appearance of singularities. A further study of
such a kind of multidimensional stationary phase approxi-
mation, in particular, the derivation of the measure factor,
would be interesting.

The present work opens the possibility to have Regge
geometries in Lorentzian Regge calculus emerge as critical
configurations from the spin foam model, which may leads
to a semiclassical effective description of the spin foam
model. Especially, this may lead to an effective equation of
motion for symmetry reduced models, e.g., Friedmann-
Lemaître-Robertson-Walker cosmology or black holes,
from the semiclassical limit of spin foam models.
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APPENDIX A: DERIVATION OF THE REPRESENTATION MATRIX

This Appendix shows the Wigner matrix of the continuous series in unitary irreps of the SU(1,1) group in the large s
approximation. We begin with the introduction of the Wigner matrix of the continuous series given in [36]. Then by
transformations of hypergeometric functions and the saddle point approximation, we obtain the representation matrix in the
large s limit.

1. Wigner matrix

First, let us introduce the parametrization of the SU(1,1) group element v:

vðzÞ ¼ eiϕJ
3

eitK
2

eiuK
1 ¼

�
v1 v2
v̄2 v̄1

�
ðA1Þ

where

v1 ¼ e
iϕ
2

�
cosh

�
t
2

�
cosh

�
u
2

�
− i sinh

�
t
2

�
sinh

�
u
2

��
ðA2Þ

v2 ¼ e
iϕ
2

�
i cosh

�
u
2

�
sinh

�
t
2

�
− cosh

�
t
2

�
sinh

�
u
2

��
: ðA3Þ

Note that the generators defined here are a complex version of what we used in the main part. In this parametrization, the
Wigner matrix, which is defined as

Dj
mλσðvÞ ¼ hj;mjvjjλσi; ðA4Þ

can be expressed by [36]

Dj
mλσ ¼ eimϕdjmλσe

iλu ¼ eimϕSjmλσðTj
mλF

j
m;iλðβÞ − ð−1ÞσTj

−mλF
j
−m;iλðβ̄ÞÞeiλu ðA5Þ

where

Fj
m;iλðβÞ ¼ ð1 − βÞðm−iλÞ=2βðmþiλÞ=2

2F1ð−jþm; jþmþ 1;mþ iλþ 1; βÞ ðA6Þ

Tj
mλ ¼

1

Γð−m − jÞΓðmþ 1þ iλÞ : ðA7Þ
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Here 2F1ða; b; c; zÞ refers to Gaussian hypergeometric function, and ΓðzÞ is the Gamma function. The normalization factor
Sjmλσ reads

Sjmλσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðm − jÞ

Γðmþ jþ 1Þ

s
2j−1Γð−jþ iλÞ

iσ sinðπ=2ð−j − iλþ σÞÞÞ ðA8Þ

with β ¼ ð1 − i sinhðtÞÞ=2.
Above, Eq. (A5) can be written in terms of normalized spinors v ¼ ðv1; v2Þ in the SU(1,1) inner product hv; vi ¼ 1.

According to the parametrization, we have

v1 þ v2 ¼ e−
u
2
þiϕ

2

�
cosh

�
t
2

�
þ i sinh

�
t
2

��
; v1 − v2 ¼ e

u
2
þiϕ

2

�
cosh

�
t
2

�
− i sinh

�
t
2

��
: ðA9Þ

The Wigner matrix D can be written in terms of v and v̄

Dj
mλσ ¼ SjmλσðTj

mλF
j
m;iλðvÞ − ð−1ÞσTj

−mλF
j
−m;iλðv̄ÞÞ ðA10Þ

with

Fj
m;iλðvÞ ¼ 2−mðv1 þ v2Þðm−iλÞðv1 − v2ÞðmþiλÞ

× 2F1ð−jþm; jþmþ 1;mþ iλþ 1; ðv̄1 þ v̄2Þðv1 − v2Þ=2Þ: ðA11Þ

2. Asymptotics of Gauss hypergeometric function

According to (A5), we need to evaluate the hypergeometric function

2F1ð−jþm; jþmþ 1;mþ iλþ 1; βÞ; 2F1ð−j −m; j −mþ 1;−mþ iλþ 1; 1 − βÞ: ðA12Þ
The function itself is complicated. However, we only need the asymptotics behavior with j ∼m ∼ λ ≫ 1 in our case.
According to (2.29), m is chosen to be n=2 which is related to j ¼ −1=2þ is by the simplicity constraint (2.9).
Correspondingly, λ is also chosen to be related to s.

a. Transformation of original function

First, we would like to transform the original function to a more convenient form. According to the transformation
properties of hypergeometric function, we have

2F1ð−jþm; jþmþ 1;mþ iλþ 1; βÞ ¼ ð1 − βÞ−mþiλ
2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ ðA13Þ

2F1ð−j −m; j −mþ 1;−mþ iλþ 1; 1 − βÞ ¼ ðβÞmþiλ
2F1ðjþ iλþ 1;−jþ iλ;−mþ iλþ 1; 1 − βÞ ðA14Þ

sinðπð−mþ iλÞÞ
πΓðmþ iλþ 1Þ 2F1ð−jþm; jþmþ 1;mþ iλþ 1; βÞ

¼ β−m−iλ 2F1ðj − iλþ 1;−j − iλ;m − iλþ 1; 1 − βÞ
Γðm − iλþ 1ÞΓðjþ iλþ 1ÞΓðiλ − jÞ ðA15Þ

− ð1 − βÞ−mþiλ 2F1ðjþ iλþ 1;−jþ iλ;−mþ iλþ 1; 1 − βÞ
Γð−mþ iλþ 1ÞΓð−jþmÞΓðjþmþ 1Þ

×
sinðπðmþ iλÞÞ

πΓð−mþ iλþ 1Þ 2F1ð−j −m; j −mþ 1;−mþ iλþ 1; 1 − βÞ

¼ ð1 − βÞm−iλ 2F1ðj − iλþ 1;−j − iλ;−m − iλþ 1; βÞ
Γð−m − iλþ 1ÞΓðjþ iλþ 1ÞΓðiλ − jÞ

− ðβÞmþiλ 2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ
Γðmþ iλþ 1ÞΓð−j −mÞΓðj −mþ 1Þ : ðA16Þ
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From (A14) and (A15), we have

2F1ð−j −m; j −mþ 1;−mþ iλþ 1; 1 − βÞ ¼ Γð−mþ iλþ 1ÞΓð−jþmÞΓðjþmþ 1Þ

×

�
−
ðβÞmþiλ sinðπð−mþ iλÞÞ

πΓðmþ iλþ 1Þ 2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ

þ ð1 − βÞm−iλ

Γðm − iλþ 1ÞΓðjþ iλþ 1ÞΓðiλ − jÞ 2F1ðj − iλþ 1;−j − iλ;m − iλþ 1; 1 − βÞ
�
: ðA17Þ

Similarly, from (A13) and (A16), we have

2F1ð−jþm; jþmþ 1;mþ iλþ 1; βÞ ¼ Γðmþ iλþ 1ÞΓð−j −mÞΓðj −mþ 1Þ

×
�
−
ð1 − βÞ−mþiλ sinðπðmþ iλÞÞ

πΓð−mþ iλþ 1Þ 2F1ðjþ iλþ 1;−jþ iλ;−mþ iλþ 1; 1 − βÞ

þ β−m−iλ

Γð−m − iλþ 1ÞΓðjþ iλþ 1ÞΓðiλ − jÞ 2F1ðj − iλþ 1;−j − iλ;−m − iλþ 1; βÞ
�
: ðA18Þ

Then, in terms of (A13) and (A17), the function djmλσ can be written as

djmλσðβÞ ¼ Sjmλσ

�
ð1þ ð−1Þσ tanðπð−mþ iλÞÞÞ

×
ð1 − βÞð−mþiλÞ=2βðmþiλÞ=2

2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ
Γð−m − jÞΓðmþ iλþ 1Þ

− ð−1Þσ β
ð−m−iλÞ=2ð1 − βÞðm−iλÞ=2

2F1ðj − iλþ 1;−j − iλ;m − iλþ 1; 1 − βÞ
Γðm − iλþ 1ÞΓðjþ iλþ 1ÞΓðiλ − jÞΓ−1ðjþmþ 1Þ

�
: ðA19Þ

Now we only need to evaluate the hypergeometric function 2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ, since

2F1ðj − iλþ 1;−j − iλ;m − iλþ 1; 1 − βÞ is nothing else but the complex conjugation of the previous one. Similarly,
starting from (A14) and (A18), we have

djmλσðβÞ ¼ Sjmλσ

�
ð− tanðπðmþ iλÞÞ − ð−1ÞσÞ

×
ð1 − βÞð−mþiλÞ=2βðmþiλÞ=2

2F1ðjþ iλþ 1;−jþ iλ;−mþ iλþ 1; 1 − βÞ
Γðm − jÞΓð−mþ iλþ 1Þ

þ βð−m−iλÞ=2ð1 − βÞðm−iλÞ=2
2F1ðj − iλþ 1;−j − iλ;−m − iλþ 1; βÞ

Γð−m − iλþ 1ÞΓðjþ iλþ 1ÞΓðiλ − jÞΓ−1ðj −mþ 1Þ
�
: ðA20Þ

Clearly the two expression obey the relation djmλσðβÞ ¼ −ð−1Þσdj−mλσðβ̄Þ.

b. Saddle point approximation

From (A19), we need the large s approximation of the hypergeometric function 2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ.
Here we will only concentrate on the parameters such that m ¼ n=2 ¼ γs and λ ∼ s are satisfied. In this choice, all the
parameters will scale together with s. A choice of λ is λ ¼ −s. The generalization to parameters wherem and λ scale with Λ
but takes a different value is straightforward. Note that the smearing of λ requires us to calculate λ ¼ −s0 þ ϵwhere ϵ ≪ λ.
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For simplicity, we will transform the original function as

2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ

¼ ð1 − βÞ−1=22F1

�
jþ iλþ 1; jþmþ 1;mþ iλþ 1;

β

β − 1

�
with λ ¼ −s;m ¼ γs; γ > 0

¼ ð1 − βÞ−1=22F1

�
1

2
;
1

2
þ ðγ þ iÞs; ðγ − iÞsþ 1;

β

β − 1

�
: ðA21Þ

We will use the integral representation for hypergeometric functions [37]:

2F1ða; b; c; zÞ ¼
Γð1þ b − cÞΓðcÞ

2πiΓðbÞ
Z

1þ

0

tb−1ðt − 1Þc−b−1
ð1 − ztÞa dt; if c − b ∉ N &ℜðbÞ > 0: ðA22Þ

The validity region for these equations is jargð1 − zÞj < π. In (A22), the integration path is the anticlockwise loop that starts
and ends at t ¼ 0, encircles the point t ¼ 1, and excludes the point t ¼ 1=z. In our case, we have ℜðc − bÞ ¼ 1=2 and
ℜðbÞ ¼ 1=2þm ¼ 1=2þ γs which satisfy the requirement. Thus, with (A22) we rewrite the original hypergeometric
function as

2F1

�
1

2
;
1

2
þ ðγ þ iÞs; ðγ − iÞsþ 1;

β

β − 1

�
¼ GðsÞ

2πi

Z
1þ

0

dtfðt; βÞesΨðtÞ ðA23Þ

where ΨðtÞ and fðt; βÞ are

ΨðtÞ ¼ ðγ þ iÞ ln t − 2i lnðt − 1Þ; fðt; βÞ ¼
�
tðt − 1Þ

�
1 −

βt
β − 1

��
−1
2 ðA24Þ

and GðsÞ is

GðsÞ ¼ Γð1
2
þ 2isÞΓððγ − iÞsþ 1Þ
Γð1

2
þ ðγ þ iÞsÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðγ − iÞsp ððγ − iÞÞðγ−iÞsð2iÞ2is

ððγ þ iÞÞðγþiÞs : ðA25Þ

Here we use the asymptotic formula of Γ functions

ΓðzÞ ∼
ffiffiffiffiffiffi
2π

p
zz−1=2e−z: ðA26Þ

Note that jGðsÞj ∼ ffiffiffi
s

p
expð−πsÞ. We will see later the contribution form expð−πsÞ will cancel the contribution form

jexpðsΨðtÞÞj at the saddle point t0.
Clearly when β=ðβ − 1Þ ≠ 1, we have three branch points t ¼ 0, t ¼ 1, and t ¼ ðβ − 1Þ=β for fðt; zÞ and two branch

points t ¼ 0 and t ¼ 1 forΨðtÞ. The branch cuts forΨðtÞ on the real axis are given by ð−∞; 0� and (0, 1], which can be seen
in Fig. 1. We need to exclude the point tβ ¼ ðβ − 1Þ=β from the path.
There is one saddle point t0 given by the solution of the equation Ψ0ðtÞ ¼ 0

t0 ¼
γ þ i
γ − i

: ðA27Þ

Consequently, at the saddle point ℜðΨðt0ÞÞ ¼ π. The steepest decent and ascent curves are shown in Fig. 1. The original
integration path then can be deformed as the steepest decent curve and two equal real part curves of ΨðtÞ.
The corresponding value at the saddle point t0 reads

esΨðt0Þ ¼
�
γ þ i
γ − i

�ðγþiÞs� 2i
iþ γ

�
−2is

; fðt0; βÞ ¼
ð2iÞiϵffiffiffiffi

2i
p

�
γ − ið1 − 2βÞ

1 − β

�
−1
2
−iϵ

�
γ þ i

ðγ − iÞ3
�

−1
2 ðA28Þ

and
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Φ00ðt0Þ ¼
−iðγ − iÞ3
2ðγ þ iÞ ;

α ¼ argðnΨ00ðt0ÞÞ ¼
π

2
− arg

�
sgnðγ þ iÞ
sgnðγ − iÞ3

�
;

θ ¼ π − α

2
: ðA29Þ

Then by the saddle point approximation we have

I ¼ GðnÞ
2πi

Z
C
dtfðtÞesΨðtÞ

∼
esΨðt0Þþiθffiffiffi

n
p

�
fðt0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jΦ00ðt0Þj

s
þOðs−1Þ

�
; as s → ∞

∼
ffiffiffiffiffiffiffiffiffi
γ − i

p �
γ − ið1 − 2βÞ

1 − β

�
−1=2

þOðs−1=2Þ: ðA30Þ

Note that the generalization to λ¼−s0þδ or s ¼ s0 þ δ

leads to a modification with ðγ−ið1−2βÞ
1−β Þ−iδ.

We also need to consider the branch point
tβ ¼ ðβ − 1Þ=β. When it lives outside the contour C, the
integration over contour C is exactly the path required by
(A22). Thus, in this case we get the asymptotics of the
hypergeometric function with the usual saddle point
method as (A30). However, when ðβ − 1Þ=β inside the
contour, we need to deform the contour to exclude the
branch point and the branch cut due to ðβ − 1Þ=β.
A possible way is we choose the branch cut along one
of the steepest decent paths starting at ð1 − βÞ=β, and
deform the contour C excluding the branch point and
branch cut, which may give a nontrivial contribution to the
asymptotic expansion. Since tβ ¼ ðβ − 1Þ=β is a 1=2 order
branch point, according to [38], in this case, the contribu-
tion coming from the branch point is given by

I1 ∼ 2
ffiffiffi
π

p GðnÞ
2πi

esΨðtβÞfðtβ; βÞ
�
tβ −

β − 1

β

�1
2

�
1

sjΨ0ðtβÞj
�1

2 þOðs−1=2Þ

∼ ð1 − βÞðγþiÞsβð−γþiÞs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγ − iÞp ð−1Þγs22isððγ − iÞÞðγ−iÞs

ððγ þ iÞÞðγþiÞs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β

j − ið1 − 2βÞ þ γj

s
þOðs−1=2Þ: ðA31Þ

Since the asymptotics contribution contains the power of s in terms of esΨðtÞ, the full asymptotics of the function will come
from the largest ReðΨðtÞÞ of t0 and tβ. In our case, tβ is in the negative imaginary half plane

tβ ¼
β − 1

β
¼ β̄

β
: ðA32Þ

And it is easy to show

ℜðΨðtβÞÞ ¼
�−π; t < 0

π t > 0
: ðA33Þ

When t > 0, the contribution from tβ is lower than t0 in arbitrary order after multiplying by the power of s, and the final
result is given by (A30). The contribution from the branch point only exists when sinhðtÞ þ γ < ϵ0 < 0 and the contribution
reads

2

FIG. 1. The value of ℜðΦðtÞÞ (dash line) and the steepest
decent and ascent path (black line) over the t-complex plane for
γ¼0.1. The blue line shows the position of possible poles tβ of f.
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I ¼ I0 − I1: ðA34Þ

And in this case, the final asymptotics is given by the sum of (A30) and (A31). A special case is when the branch point is
located near the critical point jt0 − tβj ≤ ϵ0, where the result is

I ∼
GðnÞ
2πi

�
πeiπð−1=4þθ=2Þ

Γð1=4Þ fðt0Þ
�
t0 −

β − 1

β

�1
2

�
2

sjΨ00ðt0Þ
�

−1
4

esΨðt0Þ þOðs−3=4Þ
�

∼
2

ffiffiffi
π

p
s1=4

Γð1=4Þ ð−iðγ − iÞðγ þ iÞÞ1=4 þOðs−1=4Þ: ðA35Þ

Note that, for the continuous approximation on β, we have ϵ0 ∼ s−1=2. Figure 2 shows the error level of the above
asymptotics result when s ¼ 100.

c. Result

Now we can write out the final result. According to (A21), we have

2F1ðj − isþ 1;−j − is;n=2 − isþ 1; βðtÞÞ ∼
ffiffiffiffiffiffiffiffiffi
γ − i

p ð1þ iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðiγ þ ð1 − 2βÞÞp þOðs−1=2Þ: ðA36Þ

From (A19), for sinhðtÞ > −γ we have

d0
j
n=2;−iλ;σ ∼ Sjmλσ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðγ − ið1 − 2βÞÞp þOðs−1Þ
��ð1 − ð−1ÞσiÞð1 − βÞð−n

2
þiλÞ=2βðn2þiλÞ=2

Γð− n
2
− jÞΓðn

2
þ iλþ 1=2Þ

−ð−1Þσ β
ð−n

2
−iλÞ=2ð1 − βÞðn2−iλÞ=2

Γðjþ iλþ 1ÞΓðiλ − jÞ
�

ðA37Þ

where we use the approximation

Γ
�
−
n
2
− j

�
Γ
�
n
2
þ iλþ 1

�
∼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ − iÞs

p
ð−ðγ þ iÞsÞ−ðγþiÞsððγ − iÞsÞðγ−iÞse2is ðA38Þ

Γ
�
n
2
− iλþ 1

�
Γðjþ iλþ 1ÞΓðiλ − jÞΓ−1ðjþmþ 1Þ ∼

ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ þ iÞs

p
ð−2isÞ−2ise2is ðA39Þ

FIG. 2. The function 2F1ðjþ iλþ 1;−jþ iλ;mþ iλþ 1; βÞ as shown in (A21) and its asymptotics result I given as (A30), (A34), and
(A35), respectively, with t ∈ ½−3; 3�, s ¼ 100, γ ¼ 1. The absolute error is defined as ϵ ¼ jðjIj − j2F1jÞj=j2F1j.
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for sinhðtÞ < −γ, the contribution from the extra branch point reads

d1
j
n=2;−is;σ ∼ Sjmλσ

� ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjγ − ið1− 2βÞjp þOðs−1Þ

��ð1− ð−1ÞσiÞð1− βÞðn2−iλÞ=2βð−n
2
−iλÞ=2ffiffiffi

2
p

Γðjþ iλþ 1ÞΓðiλ− jÞ −ð−1Þσ
ffiffiffi
2

p
βðn2þiλÞ=2ð1− βÞð−n

2
þiλÞ=2

Γð− n
2
− jÞΓðn

2
þ iλþ 1=2Þ

�
:

ðA40Þ
One checks that the final result is approximately

djn=2;−is;σ ¼ d0
j
n=2;−is;σ − d1

j
n=2;−is;σ ∼ Sjmλσ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sjγ − ið1 − 2βÞjp þþOðs−1Þ
�

×

�ð1 − ð−1ÞσiÞð1 − βÞð−n
2
þiλÞ=2βðn2þiλÞ=2

Γð− n
2
− jÞΓðn

2
þ iλþ 1=2Þ − ð−1Þσ β

ð−n
2
−iλÞ=2ð1 − βÞðn2−iλÞ=2

Γðjþ iλþ 1ÞΓðiλ − jÞ
�
: ðA41Þ

When jγ − ið1 − 2βÞj < ϵ, which means the branch point near the saddle point, we have

djn=2;−is;σ ∼ Sjmλσ

�
2

ffiffiffi
π

p ð−ið1þ γ2ÞÞ1=4s1=4
Γð1=4Þ ffiffiffi

s
p þOðs−3=4Þ

��ð1 − ð−1ÞσiÞð1 − βÞð−n
2
þiλÞ=2βðn2þiλÞ=2

Γð− n
2
− jÞΓðn

2
þ iλþ 1=2Þ

−ð−1Þσ β
ð−n

2
−iλÞ=2ð1 − βÞðn2−iλÞ=2

Γðjþ iλþ 1ÞΓðiλ − jÞ
�
: ðA42Þ

3. Full representation matrix

According to (A10), now we can write out the D matrix in terms of the group elements v:

Dm;λðzÞ ¼
Sjm;λ;σffiffiffiffiffi

s0
p

�
Hðjγ þ ℑðv̄1v2Þj − ϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijγ þ ℑðv̄1v2Þj

p þHðϵ − jγ þ ℑðv̄1v2ÞjÞ
2

ffiffiffi
π

p ð1þ γ2Þ1=4s1=40ffiffiffi
π

p
Γð1=4Þ

�

×

�
Tj
þσ

�
v1 − v2ffiffiffi

2
p

�
mþiλ

�
v1 − v2ffiffiffi

2
p

�
−mþiλ

− Tj
−σ

�
v1 þ v2ffiffiffi

2
p

�
m−iλ

�
v1 þ v2ffiffiffi

2
p

�
−m−iλ

�
þOðs−3=4Þ ðA43Þ

where H is the Heaviside step function

HðxÞ
�
0 x ≤ 0

1 x > 0
ðA44Þ

and ϵ is defined as

ϵ ¼ Γð1=4Þ2
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ γ2Þs

p ðA45Þ

such that D is continuous for v. Note that the contribution
from jγ þ ℑðv̄1v2ÞÞj < ϵ is actually a regulator of the 1=2
order singular points because of jγ þ ℑðv̄1v2ÞÞj. In the
inner product this regulator naturally arises as the asymp-
totics with the 1=2 order singular points. In this sense, we
can ignore the regulator since we are only interested in the
inner product in the amplitude. The constant is given by

Tj
þσ ¼

1 − ð−1Þσi
Γð−m − jÞΓðm − jÞ ðA46Þ

Tj
−σ ¼ ð−1Þσ

Γðjþ iλþ 1ÞΓðiλ − jÞ ðA47Þ

with S given in (A8). In the asymptotics limit, we have

SjmλσS̄
j
mλσ ∼

π

2 coshð2πsÞ ; ðA48Þ

Tj
1T̄

j
1 ∼

2 cosðπð−m − isÞÞ cosðπðm − isÞÞ
π2

∼
coshð2πsÞ

π2
; when s ≫ 1 ðA49Þ

Tj
2T̄

j
2 ∼

coshð2πsÞ
π2

; ðA50Þ

where we use the asymptotic approximation of the Gamma
function
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lim
z→∞

Γðzþ ϵÞ
ΓðzÞzϵ ¼ 1: ðA51Þ

From the parity property of the representation matrix,
we have

Dσj
−m;λðvÞ ¼ −ð−1Þσe−iπmDσj

m;λðv̄Þ: ðA52Þ

APPENDIX B: ANALYSIS OF SINGULARITIES
AND CORRESPONDING STATIONARY

PHASE APPROXIMATION

In this Appendix we concentrate on the analysis of
singularities appearing in the denominator of the integrand
of the vertex amplitude.

1. Analysis of singularities

For simplicity, we consider one vertex case for some v
mainly. As we show, the amplitude enrolls the integration in
the form

I ¼
Z Y

e

dgve

Z Y
f

Ωvf

Y
f

1

hvefhve0f
eSvf ðB1Þ

where h is a real valued function

hvef ¼ jhZvef;Zvefij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����γ − i

�
1−

2hl−ef;ZvefihZvef; l
þ
efi

hZvef;Zvefi
�����

s
:

ðB2Þ

Here, each dual face is determined by two edges
f ¼ ðe; e0Þ. Note that the square root part inside hvef is

the spinor representation for the square root term inside the
Wigner d matrix:����γ − i

�
1 −

2hlef; ZvefihZvef; l
þ
efi

hZvef; Zvefi
����� ¼ jγ þ ℑðv1v̄2Þj:

ðB3Þ
The zero sets of h are given by hZvef; Zvefi ¼ 0

or jγ þ ℑðv1v̄2Þj ¼ 0.
We can rewrite the original hZvef; Zvefi as

hZvef; Zvefi ¼ 2ℜðhl−ef; ZvefihZvef; l
þ
efiÞ ¼ ℜðfÞ ðB4Þ

where we define f as

f ≔ 2hl−ef; ZvefihZvef; l
þ
efi: ðB5Þ

In this notation hvef becomes

hvef ¼ jℜðfÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����γþ ℑðfÞ

ℜðfÞ
����

s
¼ jfjjcosðϕfÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jγþ tanðϕfÞj

q
:

ðB6Þ
Suppose the functions f are linearly independent to each

other. This requirement is the same as requirement that the
boundary tetrahedron l�ef be nondegenerate. In this case, we
can define a coordinate transformation among the set of the
original coordinates ðz; gÞ → ðℜðfÞ;ℑðfÞ; z0; g0Þ. The
coordinate transformation only transfers among the number
of f variables and leaves the left invariant; e.g., we only
transfer 40 variables in one vertex case and leave the other
four invariant. The elements of the Jacobian matrix of the
transformation JðfÞ is given by

∂ðℜðfvefÞÞ
∂z ¼ ∂ðℜðfvefÞÞ

∂z̄ ¼ δzhZvef; Zvefi ¼ ðgveηZvefÞT ðB7Þ

∂ðℑðfvefÞÞ
∂z ¼ iðδzhZvef; Zvefi − 2δzhl−ef; ZvefihZvef; l

þ
efi ¼ iððgveηZvef − 2gηlþefhl−ef; ZvefiÞT ðB8Þ

∂ðℜðfvefÞÞ
∂g ¼ δghZvef; Zvefi ¼ hL†Zvef; Zvefi þ hZvef; L†Zvefi ðB9Þ

∂ðℑðfvefÞÞ
∂g ¼ iðhL†Zvef; Zvefi þ hZvef; L†Zvefi − 2hl−ef; ZvefihL†Zvef; l

þ
efi − 2hl−ef; L†ZvefihZvef; l

þ
efiÞ ðB10Þ

where L represents the generators of SLð2;CÞ. Note that δghZvef; Zvefi is zero when L are SU(1,1) generators.
However, the Jacobian is nonzero in general; e.g., in one vertex case of vertex v, we have the nontrivial contribution from
terms like

∂g1ð13; 14; 15Þ; ∂g2ð21; 24; 25Þ; ∂g3ð31; 32; 35Þ; ∂g4ð42; 43; 45Þ; ∂zð12; 23; 34; 41; 51; 52; 53; 54Þ
ðB11Þ
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where 12 is the representation of the ef label in terms of numbers labeling edges and corresponding faces ðe1; e2Þ. Apart
from those 0 in (B9), other zeros of the matrix elements are only possible when Z ¼ ζl�. The Jacobian matrix in this case is
given by (Z ¼ ζlþ as an example),

∂ðℜðfvefÞÞ
∂z ¼ ∂ðℜðfvefÞÞ

∂z̄ ¼ ðgveηZvefÞT ðB12Þ

∂ðℑðfvefÞÞ
∂z ¼ ∂ðℑðfvefÞÞ

∂z̄ ¼ −iðgveηZvefÞT ðB13Þ

∂ðℜðfvefÞÞ
∂g ¼ hL†Zvef; Zvefi þ hZvef; L†Zvefi ¼

�
0; L ¼ F

2hZvef; L†Zvefi; L ¼ iF
ðB14Þ

∂ðℑðfvefÞÞ
∂g ¼ iðhZvef; L†Zvefi − hL†Zvef; ZvefiÞ ¼

�
2ihZvef; L†Zvefi; L ¼ F

0; L ¼ iF
: ðB15Þ

Clearly the Jacobian matrix is still well defined and leads to a nonzero Jacobian.
After this coordinate transformation, the original integration becomes

I ¼
Y
v

Z
Ω0

JðfÞ
Y
e;f

dℜðfvefÞdℑðfvefÞ
Y
f

eSvf

jℜðfvefÞjjℜðfve0fÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jγ þ ℑðfvefÞ

ℜðfvefÞ

����
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jγ þ ℑðfve0fÞ
ℜðfve0fÞ

����
s : ðB16Þ

With a further polar coordinate transformation

ρvef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜðfvefÞ2 þ ℑðfvefÞ2

q
; ϕvef ¼ argðfvefÞ ∈ ½0; π=2Þ ðB17Þ

whose Jacobian is given by

J1vef ¼
1

ρvef
: ðB18Þ

The Jacobian is well defined except on the points where jfj ¼ 0. After the coordinates transformation, we have

I ¼
Z

Ω0Y
e;f

Z
dρvef

Z
π=2

0

dϕvef
1

Jðρ;ϕÞ
Y
f

eSvf

jcosðϕvefÞjjcosðϕve0fÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijγ þ tanðϕvefÞjjγ þ tanðϕve0fÞj

p : ðB19Þ

Clearly all possible singular points are 1=2 order. The
singular points due to jγ þ tanðϕve0fÞj and due to
j cosðϕve0fÞj are separated. The integration with respect
to ρ does not have singularities.

2. Multidimensional stationary phase
approximation

In Appendix A, we already use the saddle point
approximation when there is a branch point appearing in
the nonscaled function gðxÞ. When adapting to the sta-
tionary phase approximation, for the 1=2 order singular
point located exactly at the critical point, the result is the
following:

I ¼
Z

gðxÞffiffiffi
x

p eΛSðxÞ ∼ gðxcÞ
πeiπðμ−2Þ=8

Γð3=4Þ
�

2

ΛjS00ðxcÞj
�

1=4
eΛSðxcÞ

ðB20Þ

where Λ ∼∞ and S is purely imaginary. Note that the
dominant part here is given by the −1=4 order of Λ instead
of −1=2 as in the asymptotic formula without singularities.
The regulator appearing in (A43) is exactly this 1=4 order
difference.
However, this asymptotic formula only holds for the

single variable integral. We will generalize this single
variable approximation to the multivariables case. Recall
Fubini’s theorem:
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Theorem B.1. Let w ¼ fðx1; x2;…; xnÞ be an n varia-
ble valued complex function. If the integral of f on the
domain B ¼ Q

n
i In where In are intervals inR is absolutely

convergent:

Z
B
jfðx1; x2;…; xnÞjdðx1; x2;…; x2Þ < ∞; ðB21Þ

then the multiple integral will give the same result as the
iterated integral,

Z
A×B

jfðx; yÞjdðx; yÞ ¼
Z
A

�Z
B
fðx; yÞdy

�
dx

¼
Z
B

�Z
A
fðx; yÞdx

�
dy: ðB22Þ

The result is independent of the iterate order.
Here from (B19) we have the integral in the form

I ¼
Z

dnx
Yj
i¼1

ðxiÞ−1=2gðxÞeiSðxÞ ðB23Þ

where SðxÞ ∈ R, x ∈ Rn, j < n and gðxÞ is analytic. j < n
illustrates the fact that only in a subspace of the total
variables will space have singularities. Then in a closed

region M where the stationary phase points (solutions of
δS ¼ 0) exists, we haveZ

M
dnxj

Y
i

ðxiÞ−1=2gðxÞeiSðxÞj

∼
Z
M
dnxj

Y
i

ðxiÞ−1=2g̃ðxÞj < ∞: ðB24Þ

From Fubini’s theorem, we then can write the multidimen-
sional integral as an iterated integral. For the original
variables, since the singularities exist only in a subspace
of the total variable space, we can always perform a
coordinate transformation, such that variables with singu-
larities are separated from those do not have them, as we
show in (B19). Then, the final result is given by performing
the stationary phase approximation iteratively. In each step
one may use the usual stationary phase approximation or
the one with singularities. The lowest order of the total
integration is given by picking the lowest order approxi-
mation of each single integration.
However, due to technical reason, we would like to

derive the saddle point equations directly from SðxÞ instead
of evaluating it iteratively. According to the approximation,
each single valued integral is dominated by the phase Sðx0Þ
where x0 is the solution of the saddle point equation
δxSðxÞ ¼ 0. Then iteratively, the saddle points are given by

δx1Sðx1; x2;…; xnÞ ¼ 0;

δx2Sðx01; x2;…; xnÞ ¼
�
δx1SðxÞ

∂x01
∂x2 þ δx2SðxÞ

�����
x1¼x0

1

¼ δx2SðxÞjx1¼x0
1
¼ 0;

..

.

δxnSðx01; x02;…; xnÞ ¼ δxnSðxÞjx1¼x0
1
;x2¼x0

2
;…;xn−1¼x0n−1

¼ 0 ðB25Þ

where x0i ðxiþ1;…; xnÞ is the solution of the corresponding
equation of motion δxiðx01;…; x0i−1; xi; xiþ1;…; xnÞ with
respect to xi. As one can see from (B25), the above
equation of motion is nothing else, but we solve the
original equation of motion fEn ¼ δSðxÞg iteratively.
Thus, they have the same solutions. The saddle points
given by the two methods will coincide to each other. Note
that, for variables whose saddle points are near the
singularities, the induced measure which contains second
derivatives of the action will be given in the order 1=4 in
contrast to 1=2 for those do not have singularities. As a
result, there is no general Hessian term in contrast to the
previous EPRL approximation, and the measure is more
involved as some special functions of second derivatives of
the action. As a result, finally we have order I ∼
gðΛÞΛ−a=2−b=4 for b variables that have singular points.

APPENDIX C: ANALYSIS OF CRITICAL POINTS
IN BIVECTOR REPRESENTATION

In this Appendix we will analyze and reformulate the
critical point equations we get in Sec. III in the bivector
representation. The analysis is done for all possible actions
appearing in the amplitude (2.42).

1. Svf+ case

From (3.8) and (3.13) in the Svfþ case,

gveηl
þ
ef ¼

ζ̄vef
ζ̄ve0f

gve0ηl
þ
e0f

gveJZ̃vef ¼ ζ̄ve0f
ζ̄vef

gve0JZ̃vef ðC1Þ
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we have

gveηl
þ
ef ⊗ ðl−ef þ αvefl

þ
efÞ†gev ¼ gve0ηl

þ
ef

⊗ ðl−e0f þ αve0fl
þ
e0fÞ†ge0v ðC2Þ

with the fact that hlþ; lþi ¼ 0 and hl−; lþi ¼ 1. With
(3.54), the above equation can be written as

gveðVef þ iᾱvefW
þ
efÞgev ¼ gve0 ðVe0f þ iᾱve0fW

þ
e0fÞge0v:

ðC3Þ

In the spin-1 representation, this equation reads

gveðVef þ ðℑðαvefÞ þℜðαvefÞ�ÞWþ
efÞgev

¼ gve0 ðVe0f þ ðℑðαve0fÞ þℜðαve0fÞ�ÞWþ
e0fÞge0v: ðC4Þ

We can define a bivector Xvef

Xvef ¼ Vef þ ðℑðαvefÞ þℜðαvefÞ�ÞWþ
ef: ðC5Þ

Easy to check, X is a simple bivector which can be
expressed as

X ¼ �ðvþ ℑðαÞwþÞ ∧ ðu −ℜðαÞwþÞ ¼ �ðṽ ∧ ũÞ: ðC6Þ

Here, by the definition of v and w, we have

ṽI ¼ ðṽ0;−ṽ2; ṽ1; 0Þ; w̃I ¼ ðwþ0;−wþ2; wþ1; 0Þ;
ðC7Þ

where

ṽi ¼ −2hl− þ iℑðαÞlþ; Filþi; wþi ¼ 2ihlþ; Filþi:
ðC8Þ

One can check ṽIṽI ¼ ũIũI ¼ 1; thus, X is timelike. (C4)
implies

ðGveṽvefÞ ∧ ðGveũvefÞ ¼ ðGve0 ṽve0fÞ ∧ ðGve0 ũve0fÞ; ðC9Þ

which reminds us to define

XfðvÞ ≔ GveXvefGev ¼ Gve0Xve0fGe0v ðC10Þ

Note that, from this equation, we have

ðGveuÞIXIJ
f ðvÞ ¼ −ℜðαvefÞðGvew

þ
efÞJ ðC11Þ

which is 0 only when ℜðαvefÞ ¼ 0.
Going back to the equations we get from the variation

with respect to g, clearly (3.40) and (3.41) can be written as

X
f

ϵefðvÞhl− þ iℑðαÞlþ; Filþi ¼ 0 ðC12Þ

X
f

ϵefðvÞℜðαÞhlþ; Filþi ¼ 0: ðC13Þ

In terms of 4-vectors ṽ and w, these equations readX
f

ϵefðvÞGveṽvef ¼ 0

X
f

ϵefðvÞℜðαvefÞGvew
þ
ef ¼ 0 ðC14Þ

where ṽ is defined by (C7). Then we can write (C14) asX
f

ϵefðvÞXfðvÞ ¼ 0 ðC15Þ

which is a closure condition to the bivectors.

2. Svf− case

In this case, from (3.8) and (3.14) we have

gveηnvef ¼ ζ̄vefℜðαvefÞ
ζ̄ve0fℜðαve0fÞ

gve0ηnve0f ðC16Þ

gveJZ̃vef ¼
ζ̄ve0f
ζ̄vef

gve0JZ̃vef ðC17Þ

where nef ≔ lþef þ iðγℜðαvefÞ þ ℑðαvefÞÞl−ef. Note with
Eq. (3.32), we see n does not change for a different vertex
v: nefðvÞ ¼ nefðv0Þ. n defined here satisfies the relation in
Lemma III.1; thus, according to Lemma III.2, fn; l−g forms
a null basis. With n and l−, Z̃ can be rewritten as

Z ¼ lþ þ αl− ¼ nþ ð1 − iγÞℜðαÞl−: ðC18Þ

This leads to the tensor product equation

gve
ηnef

ℜðαefÞ
⊗ ðnef þ ð1 − iγÞℜðαvefÞl−efÞ†gev ¼ ðe → e0Þ:

ðC19Þ
The right part of the above equation means we exchange all
the e in the left part to e0.
In terms of the bivector variables, according to (3.54),

we have

gve

�
Vef þ

ði − γÞWþ
ef

ð1þ γ2ÞℜðαvefÞ
�
gev ¼ ðe → e0Þ: ðC20Þ

Note now that V is the spacelike bivector generated by n
with l− and Wþ is null bivector generated by n with itself.
Again the bivectorXvef≔Vef−ðγ−�ÞWef=ðð1þγ2ÞℜðαÞÞ
is a simple bivector. Xvef can be written as
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Xvef ¼ �
��

vef −
γ

ð1þ γ2ÞℜðαvefÞ
wþ
ef

�

∧
�
u −

γ

ð1þ γ2ÞℜðαvefÞ
wþ
ef

��
¼ �ðṽvef ∧ ũvefÞ

ðC21Þ

where

ṽI ¼ ðṽ0;−ṽ2; ṽ1; 0Þ; wþi ¼ 2ihn; Fini: ðC22Þ

Here

ṽi ¼ 2

	
n; Fi

�
l− −

iγn
ð1þ γ2ÞℜðαÞ

�

; wþi ¼ 2ihn; Fini

ðC23Þ

and ṽIṽI ¼ ũIũI ¼ 1 implies X is timelike.
Then (C19) leads to

XfðvÞ ≔ GveXvefGev ¼ Gve0Xve0fGe0v ðC24Þ

which is the parallel transport of X between edges e and e0.
With (C21), we can write XfðvÞ as

XfðvÞ ¼ Gveṽvef ∧ Gveũvef: ðC25Þ

Note here again we have

ðGveuÞIXIJ
vf ¼ −

1

ð1þ γ2ÞℜðαÞ ðGvew
þ
efÞJ ðC26Þ

which is some null vector and cannot be 0.
From (3.40) and (3.42), we have the following equations

of motion from the variation with respect to g:

X
f

ϵefðvÞ
	
n; F†

�
l− −

iγn
ð1þ γ2ÞℜðαÞ

�

¼ 0

X
f

ϵefðvÞ
hn; F†ni
ℜðαÞ ¼ 0: ðC27Þ

In terms of 4-vectors,

X
f

ϵefðvÞGvevef ¼ 0
X
f

ϵefðvÞ
Gvew

þ
ef

ℜðαÞ ¼ 0 ðC28Þ

which leads to

X
f

ϵefðvÞXfðvÞ ¼ 0: ðC29Þ

3. Svfx case

We will use Svfx− as an example, and the Svfxþ will be
exactly the same except for switching e and e0 here. From
the critical point equations (3.8) and (3.15),

ðγ − iÞsf
gveηl

þ
vef

ζ̄vef
¼ −isf

gve0ηnve0f
ζ̄ve0fℜðαve0fÞ

;

gveζ̄vefJðl−ef þ αvefl
þ
efÞ ¼ gve0 ζ̄ve0fJðlþe0f þ αve0fl−e0fÞ:

ðC30Þ
With Eq. (3.40) from the variation with respect to SU(1,1)
group elements vef, in this case n ¼ lþ, and Z̃ve0f can be
written as Z̃ve0f ¼ lþe0f þ ð1 − iγÞℜðαve0fÞl−e0f.
The tensor product between the two equations leads to

ðiγ þ 1Þgveðηlþef ⊗ ðl−efÞ† þ ᾱvefηl
þ
ef ⊗ ðlþefÞ†Þgev

¼ gve0ηnve0f ⊗
�

nve0f
ℜðαve0fÞ

þ ð1 − iγÞl−e0f
�†

ge0v

¼ gve0
�
ηnve0f ⊗ nve0f

ℜðαve0fÞ
þ ð1þ iγÞηnve0f ⊗ ðl−e0fÞ†

�
ge0v:

ðC31Þ
In bivector representation

gveðVef þ iᾱvefW
þ
efÞgev ¼ gve0

�
Ve0f þ

ði − γÞWþ
ve0f

ℜðαe0fÞð1þ γ2Þ
�

× ge0v: ðC32Þ
It is easy to see that one recovers the corresponding
bivectors in the Svf� case, respectively. Thus, the equation
implies

XfðvÞ ≔ gveXvefgev ¼ gve0Xve0fge0v ðC33Þ
with Xvef defined by (C6) and Xve0f defined by (C21). The
closure constraint, in these cases, are the combinations of
the corresponding equations in (C14) or (C28) according to
their representations in Sþ or S−. Then we still haveX

f

ϵefðvÞXfðvÞ ¼ 0: ðC34Þ

APPENDIX D: BRIEF REVIEW OF CRITICAL
POINT EQUATIONS WITH SPACELIKE

TRIANGLES IN TIMELIKE TETRAHEDRA

In this Appendix, we briefly summarize the critical point
equations for spacelike triangles in a timelike tetrahedron.
The result was derived in [21]. As we described before,
spacelike faces correspond to the discrete series represen-
tation of the SU(1,1) group. In this case, the simplicity
constraint implies
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ρf ¼ γjf; nf=2 ¼ jf ðD1Þ

with the areas spectrum asymptotically given by Af ¼
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðjf þ 1Þp

∼ ρf ¼ γjf.
The embedded coherent state reads

fjαξ ¼ ðαhz; ziÞiρ=2−1−jðαhξα; z̄iÞ−2j ðD2Þ

where α ¼ � ¼ hz; zi for spinors z. ξ are spinors defined as

ξα ¼ v−1†ξα0; with

�
ξþ0 ¼ ð1; 0ÞT
ξ−0 ¼ ð0; 1ÞT ; v ∈ SUð1; 1Þ:

ðD3Þ

With these coherent states, we immediately see the action
read

S�vf ¼ iγjf ln
hZvef;Zvefi
hZve0f;Zve0fi

− jf ln
hξ�e0f;Zve0fi2hZvef;ξ�efi2
hZvef;ZvefihZve0f;Zve0fi

:

ðD4Þ

Here we use the simplicity constraint ρf ¼ 2γjf. Zvef is

again defined by Zvef ¼ g†vez̄vf. The real parts of the action
read

ℜS ¼ −jfℜ ln
hξe0f; Zve0fi2hZvef; ξefi2
hZvef; ZvefihZve0f; Zve0fi

≤ 0: ðD5Þ

From ℜS0 ¼ 0, we have

Zvef ¼ ζvefξ
�
ef: ðD6Þ

Because of Zvef ¼ g†vez̄vf, this equation leads to

gveJξ�ef ¼
ζ̄ve0f
ζ̄vef

gve0Jξ�e0f: ðD7Þ

The variation of the action reads

δSvf ¼ jfð1þ iγÞ δhZvef; Zvefi
hZvef; Zvefi

þ jfð1 − iγÞ δhZve0f; Zve0fi
hZve0f; Zve0fi

− 2jf

�
δhξ�ef; Zvefi
hξ�ef; Zvefi

þ δhZve0f; ξ�efi
hZve0f; ξ�e0fi

�
: ðD8Þ

1. Critical point equation

Note that the variation takes the same properties as in timelike triangle case, where the variation with respect to z leads to

δzS ¼ jfð1þ iγÞ ðgveηZvefÞT
hZvef; Zvefi

þ jfð1 − iγÞ ðgve0ηZve0fÞT
hZve0f; Zve0fi

− 2jf
ðgve0ηξ�e0fÞ
hZve0f; ξ�e0fi

: ðD9Þ

After inserting (D6), we have

gveηξ�ef ¼
ζ̄vef
ζ̄ve0f

gve0ηξ�e0f: ðD10Þ

One can check that the variation with respect to the SU(1,1) group elements vef is trivial. The variation with respect to the
SLð2;CÞ group elements gve leads to

δS ¼
X
fþ

jfð1þ iγÞ hL
†Zvef; Zvefi þ hZvef; L†Zvefi

hZvef; Zvefi
− 2jf

hξ�ef; L†Zvefi
hξ�ef; Zvefi

×
X
f−

jfð1 − iγÞ hL
†Zvef; Zvefi þ hZvef; L†Zvefi

hZvef; Zvefi
− 2jf

hL†Zvef; ξ�efi
hZvef; ξ�efi

: ðD11Þ

Applying (D6), we have

δS ¼
X
fþ

jfð1þ iγÞðhL†ξ�vef; ξ
�
vefi þ hξ�vef; L†ξ�vefiÞ − 2jfhξ�ef; L†ξ�efi

þ
X
f−

jfð1 − iγÞðhL†ξ�vef; ξ
�
vefi þ hξ�vef; L†ξ�vefiÞ − 2jfhL†ξ�ef; ξ

�
efi ðD12Þ
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where f� means face f is either an incoming or outgoing
edge e correspondingly. This leads to six equations with the
generators of the SLð2;CÞ group, which reads

δS ¼ −2
X
f

ϵefðvÞjfhξ�ef; F†ξ�efi ðD13Þ

δS ¼ 2iγ
X
f

ϵefðvÞjfhξ�ef; F̃†ξ�efi: ðD14Þ

Again ϵefðvÞ here is the signature determined up to a global
sign by

ϵefðvÞ ¼ −ϵe0fðvÞ; ϵefðvÞ ¼ −ϵefðv0Þ ðD15Þ

for the triangle f shared by the tetrahedra te and te0 .

2. Geometrical interpretation

We can define a vector from ξef

nief ¼ −2ihξ�ef; Fiξ�efi ðD16Þ

which is the SU(1,1) action on the unit timelike vector
n0 ¼ −2ihξ�0 ; Fiξ�0 i ¼ f�1; 0; 0g. The encoding of this
vector in four-dimensional Minkowski space is given by

nIef ¼ fn3ef;−n2ef; n1ef; 0g ¼ hξ�efjσIjξ�efi − hξ�efjjξ�efi:
ðD17Þ

Clearly nIef is the timelike vector and future directed with
ζþef while the past is directed with ζ−ef.
Then there is a nature SLð2;CÞ bivector defined by

Xef ¼ −2ihξ�ef; Fiξ�efiEi ¼ −i
�
ηξ�ef ⊗ ðξ�efÞ† −

1

2
I2

�
ðD18Þ

which, in spin-1 representation, reads

XIJ
ef ¼

0
BBB@

0 n1 n2 0

−n1 0 n3 0

−n2 −n3 0 0

0 0 0 0

1
CCCA ¼ �ðnIef ∧ uIÞ: ðD19Þ

Clearly from (D7) and (D10), Xef satisfy the parallel
transport equation

XfðvÞ ¼ gveXefgev ¼ gve0Xe0fge0v ðD20Þ

and satisfies

ðGveuÞ:XfðvÞ ¼ 0: ðD21Þ

The bivector is then again scaled as BfðvÞ ¼ 2AfXfðvÞ ¼
2γjfXfðvÞ, where jBfj ¼ 2Af. Equations (D13) and (D14)
then can be written as equations of Bf:

δgS ¼ i
2γ

X
f

ϵefðvÞBfðvÞ ¼ 0 ðD22Þ

δg̃S ¼ 1

2
i
X
f

ϵefðvÞBfðvÞ ¼ 0: ðD23Þ

APPENDIX E: GEOMETRIC INTERPRETATION
AND RECONSTRUCTION

In this Appendix we summarize the geometric
reconstruction theorems for the tetrahedron with spacelike
triangles only in [12–15,21], and extending them to general
tetrahedron may contain also timelike triangles. We start
with a single simplex σv corresponding to a vertex v, and
then generalize the result to a general simplicial manifold
with many simplices. For simplicity, we introduce a
shorthand notation for a single simplex σv:

Ni ≔ NeiðvÞ BG
ij ¼ −BG

ji ¼ ϵeiejðvÞBeiejðvÞ
BG
ij ¼ �ðvGij ∧ NiÞ ðE1Þ

where eiej represents the face determined by the dual edges
ei and ej, and i ¼ 0; 1;…; 4, and vij here is the triangles
that are normal scaled with the area: v2ij ¼ �4A2

ij.
Note that here we will assume our boundary data to be a

geometric boundary data, which means they satisfy the
length matching condition and orientation matching con-
dition. The detailed meaning of these conditions will
become clear later. The geometric boundary data is neces-
sary to get a Regge-like geometric solution. For non-
geometric boundary data, there will be at most one
solution up to gauge equivalence, which is an analogy to
the result in the EPRL model [12,13].

1. Nondegenerate condition and
classification of the solution

To begin with, we would like to introduce the non-
degenerate condition. We will first consider nondegenerate
simplices and then move to the degenerate case. For the
boundary data, nondegenerate means that for a boundary
tetrahedron any three out of four face normal vectors nef
span a three-dimensional space. With nondegenerate boun-
dary data, for any three different edges i, j, k in a 4-simplex
one of the following holds:

(i) Nei ¼ �Nej and Nej ¼ �Nek,
(ii) Nei ≠ Nej

The first case can be further proved that leads to all Ni are
parallel by using the closure constraint of Bij. This result
was first proved in [12] and later by [21].
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The only nondegenerate case is then specified by the
following nondegeneracy condition:

Y5
e1;e2;e3;e4¼0

detðNe1; Ne2; Ne3; Ne4Þ ≠ 0 ðE2Þ

which means any four out of five normals are linear
independent and span a four-dimensional Minkowski
space. Since NeðvÞ ¼ gveN0, it is easy to see the non-
degenerate condition is actually a constraint on fgveg.

2. Nondegenerate geometry on a 4-simplex

For simplicity, we start with one 4-simplex σv in four-
dimensional Minkowski space M ¼ R4 here. For each
4-simplex σv dual to the vertex v, we associate it with a
reference frame. In this reference frame, the five vertices of
the 4-simplex ½p0; p1; p2; p3; p4� have the coordinates
pi∶ðxIiÞ ¼ ðx0i ; x1i ; x2i ; x3i Þ. Based on these coordinates,
we introduce vectors yi, a as well as covector A in an
auxiliary space R5,

yi ¼ ðxIi ; 1ÞT; and a ¼ ð0;…; 0; 1ÞT; A ¼ aT:

ðE3Þ
We define the kþ 1-vector in R5

Ṽα0;…;αk ¼ yα0 ∧ … ∧ yαk ðE4Þ

where αi ∈ f0;…; 5g. With covector A, for k-vectors Ω in
R5 satisfying A⌞Ω ¼ 0, we can identify it with a k-vector in
M. For example, since A⌞A⌞Ṽα0;…;α5 ¼ 0, we then induce a
4-vector in M from Ṽα0;…;α5 ,

Vα0;…;α5 ¼ A⌞Ṽα0;…;αk ¼ ðyα1 − yα0Þ ∧ … ∧ ðyα5 − yα0Þ:
ðE5Þ

This vector is actually 4! times the volume 4-vector of the
4-simplex:

Vα0;…;α4 ¼ ðxα1 − xα0Þ ∧ … ∧ ðxα4 − xα0Þ
¼ Eα1α0 ∧ … ∧ Eα5α0 : ðE6Þ

EI
αiα0 ¼ xIαi − xIα0 is the edge vector related to the oriented

edge lαiα0 ¼ ½pαi ; pα0 �. Notice that the volume 4-vector
comes with a sign with respect to the order of points.
We further define the 3-vector and bivector by skipping

some points

Vi ¼ ð−1ÞiV0.::î…4 ðE7Þ

Bij ¼ A⌞Ṽ0…î…n ¼
( ð−1Þiþjþ1V0.::î…ĵ…4 i < j

ð−1ÞiþjV0.::ĵ…î…4 i > j
ðE8Þ

where î means omitting the ith elements. We have the
following properties for Vi and Bij:X

i

Vi ¼ 0; ðE9Þ

Bij ¼ −Bijm ∀i

X
j≠i

Bij ¼ 0: ðE10Þ

One can further check that Bij can be written as

Bij ¼
1

2
ð−1ÞsgnðσÞϵijkmnEmk ∧ Enk: ðE11Þ

And one has B2
ij ¼ �4A2

ij where Aij is the area of the
corresponding spacelike or timelike triangles in the non-
degenerate case.
Suppose the volume 4-vector of the 4-simplex V0;…;4 is

nondegenerate. In this case any of the four out of the five yi
are linearly independent. One can introduce the dual bases
ŷi and ỹi defined by

ŷi⌟yj ¼ δij; ŷi ¼ ỹi þ μiA; ỹi⌟a ¼ 0 ðE12Þ

with properties

X
i

ŷi ¼ A;
X
i

ỹi ¼ 0; ðE13Þ

ỹi here can be regarded as covectors belonging to M. With
ỹi, we have

Vi ¼ −ỹi⌟V0…4; Bij ¼ ỹj⌟ỹi⌟V0…4: ðE14Þ

Thus, the covectors ỹi are conormal to subsimplices Vi.
And by using the Hodge star, we have

Vi ¼ −Vol � ỹi; Bij ¼ −Vol � ðỹj ∧ ỹiÞ ðE15Þ

where the volume Vol > 0 is the absolute value of the
oriented 4-volume

V4 ≔ detðV0;…;4Þ ¼ sgnðV4ÞVol: ðE16Þ

It can be shown that

1

V4

¼ ϵijkl detðỹi; ỹj; ỹk; ỹlÞ ðE17Þ

and the coframe vector Eij is given by

Eij ¼ V4ϵijklmðvÞ � ðỹk ∧ ỹl ∧ ỹmÞ: ðE18Þ

If the subsimplices Vi are nondegenerate, by introducing
normalized vectors Ni, we can write ỹi as
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ỹi ¼
1

Vol
WiNi; Ni · Ni ¼ ti; Wi > 0 ðE19Þ

where ti ¼ �1 distinguish spacelike or timelike normals,
respectively. This leads to

Bij ¼ −
1

Vol
WiWj � ðNj ∧ NiÞ;

X
i

WiNi ¼ 0:

ðE20Þ

In order to make the normal out-pointing, we redefine the
normalized normal vectors Ni by

NΔ
i ¼ −tiNi; WΔ

i ¼ −tiWi

X
i

WΔ
i N

Δ
i ¼ 0 ðE21Þ

such that NΔ
i are out-pointing.

3. Reconstructing geometry from nondegenerate
critical points

We begin with the reconstruction of the normals. Recall
in the critical point equation (3.91), the normals Ne satisfy

∀f∈teηIJNe
IBfðvÞJK ¼ 0: ðE22Þ

If there is another normal vector N satisfying the same
condition for some edge e, it is easy to see that we have

∀f∈teBfðvÞ ∼ �ðN ∧ NeÞ ðE23Þ

which means for an edge e, Bef are proportional to each
other. This is clearly contrary to the fact that we have a
nondegenerate solution. Thus, for the given bivectors
which are the solution of the critical point equation, if
we require a vector, N satisfies

∀f∈teηIJN
IBfðvÞJK ¼ 0 ðE24Þ

for an edge tetrahedron te, and we then haveN ¼ �Ne after
normalization. The condition (E24) is sufficient and
necessary.
Considering a 4-simplex σv at some vertex v, the critical

point equation (3.91) can be written in the shorthand
notation we introduce in (E1) as

BfðvÞ ¼ BfGg
ij ¼ −BG

ji; Ni⌞B
fGg
ij ¼ 0;

X
j

BfGg
ij ¼ 0:

ðE25Þ

Now we give normalized vectors Ni satisfying the non-
degenerate condition. If we require that the bivectors satisfy
(E25), they are uniquely determined up to a constant λ ∈ R

B0
ij ¼ λWiWj � ðNj ∧ NiÞ: ðE26Þ

Here Wi ∈ R are nonzero and determined byX
i

WiNi ¼ 0: ðE27Þ

The proof is stated first in [14] and later in [21]. Note
that the bivector Bij is independent of the choice of the
signature of normal vectors N since the signs of W and N
will change simultaneously. λ can be fixed up to a sign by
the normalization of B0

ij

jBfj2 ¼ −4γ2s2f ¼ −4A2
f: ðE28Þ

Then it can be proved that the nondegenerate geometric
solution determines the 4-simplex specified by the bivec-
tors BΔ uniquely up to shift and inversion such that

BΔ
ij ¼ rBfGg

ij ðE29Þ

where r ¼ �1 is the geometric Plebanski orientation. The
construction can be done as follows. With five given
normals Ni, we take any five planes orthogonal to Ni.
With the nondegeneracy condition, they cut out a 4-simplex
Δ0 which is uniquely determined up to shifts and scaling.
According to (E20) and (E26), the bivectors of the
reconstructed 4-simplex BΔ0

ij relate to Bij as

BΔ0
ij ¼ λBfGg

ij : ðE30Þ

Then the identity of the normalization will determine the
scaling up to a sign

BfGg
ij ¼ rBΔ0

ij ¼ −
1

Vol
rWΔ

i W
Δ
j � ðNΔ

j ∧ NΔ
i Þ ðE31Þ

where Vol is the 4!-volume of the 4-simplex.
Let us move to the boundary tetrahedron. Since Ge is a

SO(1,3) rotation, its action then keeps the shape of
tetrahedrons. Thus, the tetrahedron with bivectors Bij ¼
�ðvij ∧ uiÞ has the same shape with the tetrahedron with

the face bivectors BfGg
ij ¼ Gi � ðvij ∧ uiÞ. For given vij,

when the boundary data is nondegenerate, we can cut out a
tetrahedron with planes perpendicular to vij in the three-
dimensional Minkowski space orthogonal to u. Clearly, the
face bivectors of this tetrahedron satisfy

Bij ¼ λ0ij � ðvij ∧ uÞ ðE32Þ

with the λ0ij arbitrary real number. However, from the
closure constraint, we have

X
j∶j≠i

B0
ij ¼ �

�X
j∶j≠i

λ0ijvij

�
∧ u ¼ 0: ðE33Þ
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Since ∀jvij:u ¼ 0, the above closure equation implies

X
j∶j≠i

λ0ijvij ¼ 0 ðE34Þ

which, according to closure with vij, leads to

∃λ∶λ0ij ¼ λ: ðE35Þ

Thus, for every edge ei, there exists a tetrahedron deter-
mined uniquely up to inversion and translation with face
bivectors

Bij ¼ riðvij ∧ uÞ ðE36Þ

in the subspace perpendicular to Ni with ri ¼ �1.
The edge lengths of the tetrahedron are then determined

uniquely by vij. We denote lijk
2 the signed square lengths of

the edge between faces ij and ik. The length matching
condition can be expressed as

l2ðijkÞ ≔ lijk
2 ¼ ljik

2 ¼ lkij
2: ðE37Þ

The nondegenerate solution exists if and only if the lengths
satisfy the length matching condition. In case the length
matching condition is satisfied, we can write l2ðijkÞ using the
missing indices which are different from i, j, k as l2ðmlÞ.
With this notation, one introduces the lengths Gram matrix
of the 4-simplex

Gl ¼

0
BBBBBBBB@

0 1 1 � � � 1

1 0 l201 � � � l204
1 l210 0 � � � l224

..

. ..
. ..

. . .
. ..

.

1 l240 l241 � � � 0

1
CCCCCCCCA
: ðE38Þ

The signature of Gl corresponds to the signature of the
reconstructed 4-simplex. We denote the signature as ðp; qÞ.
Based on if Gl is degenerate or not, we have the following:

(i) If Gl is nondegenerate, then there exist a unique
up to rotation, shift, and reflection nondegenerate
4-simplex with signature ðp; qÞ. There are two
nonequivalent 4-simplices up to rotations and shift.
The normals of two reconstructed 4-simplices fNig
and fN0

ig are related by

N0
i ¼ ð−1ÞsiGNi ¼ GIsiNi: ðE39Þ

(ii) If Gl is degenerate, then there exist a unique up to
rotation and shift degenerate 4-simplex with signa-
ture ðp; qÞ. The 4-volume in this case is 0.

The signature here is related to the signature of the
boundary tetrahedron. For all boundary tetrahedra being
timelike, the possible signatures are Lorentzian ð−þþþÞ,
split ð−þþ−Þ, or degenerate ð−þþ0Þ. For all boundary
tetrahedra being spacelike, the possible signatures are
Lorentzian ð−þþþÞ, Euclidean ðþ þ þþÞ, or degenerate
ð0þþþÞ. For boundary data containing both spacelike
and timelike tetrahedra, the only possible reconstructed
4-simplex is in Lorentzian signature ð−þþþÞ.

4. Gauge equivalent class of solutions

Suppose we have a nondegenerate geometric boundary
data and the 4-volume is nondegenerate, then we can
reconstruct the geometric nondegenerate 4-simplex up to
the orthogonal transformations. Suppose we have this
reconstructed 4-simplex with the geometric bivectors BΔ

ij
with normals NΔ

i . From these normals, we can introduce

vΔij ¼ −
1

Vol

�
WΔ

i W
Δ
j N

Δ
j −

WΔ
i W

Δ
j N

Δ
i · NΔ

j

ðNΔ
i Þ2

NΔ
i

�
: ðE40Þ

It is easy to check that vΔij · N
Δ
i ¼ 0 and BΔ

ij ¼ �ðvΔij ∧ NΔ
i Þ.

Thus, these are nothing else but normals of faces of the ith
tetrahedron recovered from the bivectors BΔ

ij. It is easy to
check that we have

vΔij · v
Δ
ik ¼ vij · vik ðE41Þ

by the fact that BΔ
ij · B

Δ
ik ¼ Bij · Bik. We can introduce

group elements GΔ
i ∈ O for each i satisfying

GΔ
i u ¼ NΔ

i ; ∀j∶j≠iGΔ
i vij ¼ vΔij: ðE42Þ

Note that there are only four independent conditions out
of five.
We would like compare these group elements GΔ

i
obtained from BΔ

ij with Gi from the critical point solution.
From the reconstruction of bivectors and normals, we know
that

BΔ
ij ¼ ð−1ÞsBfGg

ij ; Ni ¼ ð−1ÞsiNΔ
i ðE43Þ

where ð−1Þs with s ∈ f0; 1g and si ∈ f0; 1g. The condi-
tion leads to

� ðGivij ∧ NiÞ ¼ BfGg
ij ¼ ð−1ÞsBΔ

ij

¼ ð−1Þs � ðvΔij ∧ NΔ
i Þ ¼ �ðð−1ÞsþsivΔij ∧ NiÞ: ðE44Þ

Since Ni · vΔij ¼ Ni ·Givij ¼ 0, we have

Givij ¼ ð−1ÞsþsivΔij; GiN ¼ ð−1ÞsiNΔ
i ðE45Þ

which implies
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Gi ¼ GΔ
i I

siðIRNÞs: ðE46Þ

For Gi ∈ SO, we have detGi ¼ 1, then from (E46)

detGΔ
i ¼ ð−1Þs: ðE47Þ

Since there is only one reconstructed 4-simplex up to
rotations from O, thus two GΔ solutions are related by

GΔ0
i ¼ GGΔ

i ; G ∈ O ðE48Þ

which means

∀i
detGΔ0

i

detGΔ
i
¼ detG: ðE49Þ

This condition reminds us to introduce an orientation
matching condition for the boundary data where the
reconstructed 4-simplex has

∀i detGΔ
i ¼ r r ∈ f−1; 1g: ðE50Þ

We call the boundary data as the geometric boundary data if
they satisfy the length matching condition and orientation
matching condition.
After we choose the reconstructed 4-simplex, we have

fixed the value of s by

r ¼ ð−1Þs ðE51Þ

and it is the Plebanski orientation. However, si is still
arbitrary.
With (E46) and (E47), we can identify the geometric

solution and reconstructed 4-simplicies. Up to SO rota-
tions, there are two reconstructed 4-simplices. The two

classes of simplices solutions are related by the reflection
with respect to any normalization 4-vector eα

BG̃
ij ¼ ReαðBfGg

ij Þ; s0 ¼ sþ 1 ðE52Þ
which means

G̃i ¼ ReαGiðIRuÞ ∈ SOð1; 3Þ: ðE53Þ

With the gauge choice that Gi ∈ SOþð1; 3Þ, we can rewrite
(E53) as

G̃i ¼ Re0I
riGiRu ðE54Þ

such that G̃i ∈ SOþð1; 3Þ. It is direct to see ri ¼ 0 for u
timelike and ri ¼ 1 for u spacelike.

5. Simplicial manifold with many simplices

The above interpretation and reconstruction are within
the single 4-simplex case. Now wewill generalize the result
to simplicial manifold with many simplices. We will
consider two neighboring 4-simplices where the corre-
sponding center v and v0 are connected by a dual edge
e ¼ ðv; v0Þ. For a shorthand notation, we will use prime to
represent the parallel transported bivector and normals from
the simplex with center v0 to v, e.g., N0

i ¼ Gvv0Niðv0Þ. We
denote the edge e ¼ ðv; v0Þ as e0.
Since NeðvÞ ¼ Gveu and Neðv0Þ ¼ Gv0eu, we have

NeðvÞ ¼ Gvv0Neðv0Þ for G ¼ ðv; v0Þ. From the recon-
struction theorem, with (E43), we have

NΔ
0 ¼ ð−1Þs0þs00N0Δ

0 : ðE55Þ

From the parallel transport equationXfðvÞ¼gvv0Xfðv0Þgv0v,
with the fact that ϵefðvÞ ¼ −ϵefðv0Þ, we have

BfGg
0i ¼ −rðvÞ 1

Vol
WΔ

i W
Δ
0 � ðNΔ

i ∧ NΔ
0 Þ ¼ rðv0Þ 1

Vol0
W0Δ

i W
0Δ
0 � ðN0Δ

i ∧ N0Δ
0 Þ ðE56Þ

where BΔ
0i is the geometric bivector corresponding to the triangle f dual to the face determined by e; ei; e0i. Now, similar to

(E40), we can define

vΔ0iðvÞ ¼ −
1

Vol

�
WΔ

0 ðvÞWΔ
i ðvÞNΔ

i ðvÞ −
WΔ

0 ðvÞWΔ
i ðvÞNΔ

0 ðvÞ · NΔ
i ðvÞ

ðNΔ
0 ðvÞÞ2

NΔ
0 ðvÞ

�
: ðE57Þ

which satisfies vΔ0iðvÞ · NΔ
0 ðvÞ ¼ 0. The geometrical group elements ΩΔ

vv0 ∈ Oð1; 3Þ is defined from

vΔ0iðvÞ ¼ ΩΔ
vv0v

Δ
0iðv0Þ; NΔ

0 ðvÞ ¼ ΩΔ
vv0N

Δ
0 ðv0Þ: ðE58Þ

(E56) now reads

BfGg
0i ¼ rðvÞ � ðvΔ0iðvÞ ∧ NΔ

0 ðvÞÞ ¼ −rðv0Þ � ðGvv0vΔ0iðv0Þ ∧ Gvv0NΔ
0 ðv0ÞÞ: ðE59Þ

From (E55) and (E59), with the fact that vΔ0iðvÞ · NΔ
0 ðvÞ ¼ Gvv0vΔ0iðv0Þ ·Gvv0NΔ

0 ðv0Þ ¼ 0, we have
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vΔ0iðvÞ ¼ −ð−1Þs0þs0
0rðvÞrðv0ÞGvv0vΔ0iðv0Þ; NΔ

0 ðvÞ ¼ ð−1Þs0þs0
0Gvv0NΔ

0 ðv0Þ: ðE60Þ

Compared with (E58),

ΩΔ
vv0 ¼ Gvv0IIs0þs0

0ðIRN0ðv0ÞÞsþs0 ; detΩΔ
vv0 ¼ ð−1Þsþs0 ðE61Þ

where s and s0 are determined by ð−1Þs ¼ rðvÞ and ð−1Þs0 ¼ rðv0Þ. Note that from the fact N0ðv0Þ ¼ G0ðv0Þu ¼ Is
0
0NΔ

0 ðv0Þ,
and RN ¼ GRuG−1, we have RNΔ

0
¼ RN0

. One can check that (E61) can be written as

ΩΔ
vv0 ¼ IIs0þs0

0Isþs0GveRsþs0
u Gev0 ¼ IGΔ

veGΔ
ev0 ðE62Þ

which coincide with the geometric solution for the single simplex. Note that, after fixing a pair of compatible values of s and
s0, another pair of compatible values are given by sþ 1 and s0 þ 1 due to the common tetrahedron te shared by two
4-simplices. This is nothing but reflecting that every 4-simplex simultaneously connects with each other. Then, according to
(E53), these two possible non-gauge-equivalent solutions are related by

G̃f ¼
�RueGfðeÞRue internal faces

Ire1þre0Rue1Gfðe1; e0ÞRue0 boundary faces
ðE63Þ

where Gf ¼ Q
v⊂∂fGe0vGve is the face holonomy.

For a simplicial manifold, we will introduce the consistent orientation. For two 4-simplices σv and σv0 share the same
tetrahedron te, and we say they are consistently oriented if their orientation satisfies ½p0; p1; p2; p3; p4� and
−½p0; p1; p2; p3; p4�. Therefore, we have ϵ01234ðvÞ ¼ −ϵ01234ðv0Þ for the orientation in (E11). The orientated volume
then contains a minus sign in V 0.
From (E55) and (E56), we have

N0Δ
i ¼ −ð−1Þs0þs00rðvÞrðv0Þ W

Δ
i W

Δ
0Vol

0

W0Δ
i W

0Δ
0Vol

NΔ
i þ aiNΔ

0 ðE64Þ

where ai are some coefficients s.t.
P

i W
0Δ
i N

0Δ
i ¼ −W0Δ

0N
0Δ
0 . We introduce ỹ where ỹi ¼ 1

VolW
Δ
i N

Δ
i , then

BG
0i ¼ −rðvÞVol � ðỹi ∧ ỹ0Þ; ỹ0i ¼ −ð−1Þs0þs00rðvÞrðv0Þ W

Δ
0

W0Δ
0

ỹi þ ãiỹ0 ðE65Þ

where ãi are coefficients s.t.
P

iỹi ¼ −ỹ0. We then have

−
1

V 0 ¼ detðỹ00; ỹ01; ỹ02; ỹ03Þ ¼ ð−rðvÞrðv0ÞÞ3
�
WΔ

0

W0Δ
0

�
2 Vol
Vol0

detðỹ0; ỹ1; ỹ2; ỹ3Þ ¼ −r̃ðvÞr̃ðv0Þ
�
WΔ

0

W0Δ
0

�
2 1

V 0 ðE66Þ

where we define r̃ðvÞ ¼ rðvÞsgnðVðvÞÞ. The equation results in r̃ðvÞ ¼ r̃ðv0Þ ¼ r̃. Therefore, r̃ ¼ sgnðVðvÞÞrðvÞ is a global
sign on the entire triangulation after we choose compatible orientation. The equation also implies jWΔ

0 j ¼ jW0Δ
0 j. With

the fact that the normal vectors NΔ
0 and N0Δ

0 are of the same type (spacelike or timelike), we have WΔ
0 ¼ W0Δ

0 . Thus (E64)
leads to

N0Δ
i ¼ −ð−1Þs0þs00sgnðVV 0Þ W

Δ
i W

Δ
0Vol

0

W0Δ
i W

0Δ
0Vol

NΔ
i þ aiNΔ

0 ¼ μeNΔ
i þ aiNΔ

0 ðE67Þ

where we define a sign factor μe ≔ −ð−1Þs0þs00sgnðVV 0Þ. One can see that, for an edge Elm in the tetrahedron te shared by
σv and σv0 , we have

E0
lm ¼ V 0ϵlmjkðv0Þ � ðỹ0j ∧ ỹ0k ∧ ỹ00Þ ¼ μeVϵlmjkðvÞ � ðỹj ∧ ỹk ∧ ỹ0Þ ¼ μeElm: ðE68Þ

The equation thus implies the coframe vectors on all edges of the tetrahedron te at neighboring vertices v and v0 are
related by
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ElðvÞ ¼ μeGvv0Elðv0Þ: ðE69Þ

Since Elðv0Þ⊥N0ðv0Þ, the relation is a direct consequence
of (E61) with the fact that r̃ðvÞ ¼ r̃ðv0Þ ¼ r̃. This relation
shows that the vectors E in a tetrahedron shared by two
4-simplices σv and σv0 satisfy

gl1l2 ≔ ηIJEI
l1
ðvÞEJ

l2
ðvÞ ¼ ηIJEI

l1
ðv0ÞEJ

l2
ðv0Þ ðE70Þ

where gl1l2 is the induced metric on the tetrahedron
and it is independent of v. If the oriented volume of these
two neighboring 4-simplices come with the same sig-
nature, i.e., sgnðVðvÞÞ ¼ sgnðVðv0ÞÞ, we can associated a

reference frame in each 4-simplex σv and the frame
transformation is given by Ωvv0 ¼ μeGvv0 ∈ SOð1; 3Þ.
The matrix Ωe¼ðv;v0Þ is a discrete spin connection com-
patible with the coframe then. Note that, since r̃ðvÞ ¼
rðvÞsgnðVðvÞÞ is a global sign, globally orienting
sgnðVðvÞÞ will make r ¼ rðvÞ a global orientation on
the dual face.
Let us go back to the original geometric rotation ΩΔ

vv0 .
Suppose we orient consistently all pairs of 4-simplices on
the simplicial complex K. We then choose a subcomplex
with the boundary such that, within it the oriented volume
sgnðVÞ is a constant. Then for the holonomy along the
edges of an internal face, we have

ΩΔ
f ðvÞ ¼ ΩΔ

v0vnΩ
Δ
vnvn−1 � � �ΩΔ

v1v0 ¼ InIs0nþsn;n−1þ���þs10Gv0vnGvnvn−1 � � �Gv1v0 ¼ μeGfðvÞ ðE71Þ

while for a boundary face,

ΩΔ
f ðvn; v0Þ ¼ Ωvnvn−1 � � �Ωv1v0 ¼ InIsn;n−1þ���þs10Gv0vnGvnvn−1 � � �Gv1v0 ¼ μeGfðvn; v0Þ ðE72Þ

where n is the number of internal edges belonging to the face f. Here μe ¼ In
Q

e∈fI
se ¼ �1, and se¼ðv;v0Þ ¼ sve þ sve0 is

independent from orientation.
Suppose the edges of the triangle due to face f res given by El1ðvÞ and El2ðvÞ. Then from (E69) and (E71)–(E72),

we have

GfðvÞElðvÞ ¼ μeElðvÞ; or Gfðvn; v0ÞElðv0Þ ¼ μeElðvnÞ: ðE73Þ

For the normals N0ðvÞ and N1ðvÞ which are orthogonal to the triangle due to f, from (E67) and (E71)–(E72), we have

GfðvÞN1ðvÞΔ ¼ aN0ðvÞΔ þ bN1ðvÞΔ; GfN1ðvÞ · El1ðvÞ ¼ GfN1ðvÞ · El2ðvÞ ¼ 0: ðE74Þ

For boundary faces with the boundary tetrahedron ten and te0 , similarly, we have

Gfðvn; v0ÞNe0ðv0Þ · El1ðvnÞ ¼ Gfðvn; v0ÞNe0ðv0Þ · El2ðvnÞ ¼ 0: ðE75Þ

6. Flipped signature solution and vector geometry

Now let us consider the degenerate case, where the
4-volume is 0 and Gi can be a gauge fixed to its subgroup
Gi ∈ SOð1; 2Þ for the timelike tetrahedron. In this case, the
4-normals of the boundary tetrahedra are then gauge fixed
to be ∀iNi ¼ u. We can introduce an auxiliary space M40

with metric g0μν from M4 by flipping the norm of u

g0μν ¼ gμν − 2uμuν ðE76Þ

where gμν is the metric in M4. We will use prime to all the
operations in M40. For the norm of u, we have

t ¼ u · u; t0 ¼ −t ¼ u ·0 u: ðE77Þ

Notice that for the subspace V orthogonal to u, the
restriction of both scalar products coincides. Thus, for

the vectors in V we can use both scalar products. The
Hodge dual operation satisfies �02 ¼ −�2 ¼ t ¼ −t0.
For the subspace V, we can introduce maps Φ�

Φ�∶Λ2M40 → V;

Φ�ðBÞ ¼ t0ð�B − t0 �0 BÞ ·0 u ¼ ð∓ Bþ �0BÞ ·0 u ðE78Þ

where B is a bivector in M40. Clearly for a vector v ∈ V,
we have

Φ�ð�0ðv ∧ uÞÞ ¼ v: ðE79Þ

The mapΦ� naturally induces a map fromG ∈ SOð2; 2Þ to
the subgroup h ∈ SOð1; 2Þ, which is defined by

Φ�ðGBG−1Þ ¼ Φ�ðGÞΦ�ðBÞ ðE80Þ
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where

Φ�ðGÞ ∈ OðVÞ: ðE81Þ

It is easy to see when G ¼ h ∈ SOð1; 2Þ, we have
Φ�ðhÞ ¼ h. And one can further prove that the condition
is sufficient and necessary as shown in [21].

Clearly, for given bivectors BfGg
ij ¼ Gi � ðvij ∧ uÞ inM0,

if BfGg
ij ¼ −BfGg

ji , we have

vfGg�ij ¼ −vfGg�ji ; vfGg�ij ¼ Φ�ðGÞvij ¼ Φ�ðBfGg
ij Þ
ðE82Þ

and the closure
P

iB
g
ij ¼ 0 leads to

X
i

vfGg�ij ¼ 0: ðE83Þ

One can prove the condition is necessary. In other words, if

we have g�i such that vfGg�ij ¼ −vfGg�ji , we can always
build unique Gi ∈ SOðM0Þ (up to Isi ) which constitutes a
SOðM0Þ solution.
In summary we see that there is an 1-1 correspondence

between
(i) the pair of two nongauge equivalent vector geom-

etries,
(ii) the geometric SOðM0Þ nondegenerate solution.

The two vector geometries are obtained from the SOðM0Þ
solutions fgveg as g�ve ¼ Φ�ðgveÞ. This is the flipped
signature case for a Gram matrix with given geometric
boundary data. For example, with all boundary tetrahedra
timelike, the signature of the reconstructed nondegenerate
4-simplex is split ð−þþ−Þ.
From the reconstruction for nondegenerate solutions, we

have the orientation matching condition for the geometric
group elements GΔ� ∈ OðVÞ where

GΔ�
i vij ¼ vΔ�ij ; vΔ�ij ¼ Φ�ðBΔ

ijÞ: ðE84Þ

One can show that, in the flipped signature case, this
condition becomes

detGΔ
ve ¼ detGΔ�

ve : ðE85Þ

The critical point solutions are in 1-1 correspondence
with reconstructed 4-simplices up to reflection and shift. As
a direct result from (E53), for nondegenerate boundary data
satisfying the length matching condition and orientation
matching condition, there are two gauge inequivalent
solutions corresponding to reflected 4-simplices which
are related by

G̃ ¼ RuGRu ðE86Þ

where G̃ and G represent two gauge equivalent series. Two
nonequivalent geometric SOðM0Þ nondegenerate solutions
then satisfy

Φ�ðG̃Þ ¼ Φ�ðRuGRuÞ ¼ Φ∓ðgÞ: ðE87Þ

Finally, when the SOðM0Þ solution is degenerate, we can
assume Ni ¼ u by gauge transformations. In this case, we
see ΦþðGÞ ¼ Φ−ðGÞ ¼ h. Thus, the vector geometries are
gauge equivalent. The inverse is also true. When the vector
geometries are gauge equivalent, we have ΦþðGÞ ¼
Φ−ðGÞ, which means there exists Gi (uniquely up to gauge
transformations) such that after gauge transformations
Ni ¼ Giu ¼ u. This corresponds to the degenerate recon-
structed 4-simplex with zero 4-volume.

APPENDIX F: DERIVATION OF ROTATION
WITH DIHEDRAL ANGLES

In this Appendix, we prove the following equation:

RNi
RNj

¼ Ωij ¼ e
2θij

Ni∧Nj
jNi∧Nj j ðF1Þ

which is used in Sec. VII. For two normalized spacelike
vectors Ni, Nj, NI

iNiI ¼ NJ
jNjJ ¼ 1, compatible with (7.1)

and (7.2), we have

NI
iNjI ¼ cos θij; ðF2Þ

jNj ∧ Nij2 ¼ −j � Nj ∧ Nij2 ¼ sin2ðθijÞ: ðF3Þ

For the Ni, Nj that are timelike and the signature of the
plane spanned by Ni ∧ Nj that is mixed in the flipped
signature case, we have

NI
iNjI ¼ cosh θij; ðF4Þ

jNj ∧ Nij2 ¼ j�0 Nj ∧ Nij2 ¼ − sinh2ðθijÞ: ðF5Þ

Now from

ðRNÞIJ ¼ I −
2NINJ

N · N
¼ I − 2tNINJ ðF6Þ

where we define t ≔ NINI. It is easy to see for a vector v in
the Ni ∧ Nj plane,

RNi
RNj

v ¼ ðI − 2tNK
i NiIÞðI − 2tNI

jNjJÞvJ
¼ v − 2tðNi · vÞNi − 2tðNj · vÞNj

þ 4ðNi · NjÞðNj · vÞNi ðF7Þ

which leads to

RNi
RNj

− RNj
RNi

¼ 4ðNi · NjÞNi ∧ Nj ðF8Þ
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TrðRNi
RNj

Þ ¼ 4ðNi · NjÞ2 − 2: ðF9Þ

Let us introduce spacetime rotations Ω ∈ SO�ð1; 3Þ. For
connected components in the Lorentzian group, two group
elements Ω and Ω0 are equal if they satisfy

Ω −Ω−1 ¼ Ω0 −Ω0−1; TrðΩÞ ¼ TrðΩ0Þ: ðF10Þ

The space rotation can be written using bivectors as

Ωij ¼ e
2θij

Ni∧Nj
jNi∧Nj j ¼ cosð2θijÞ þ sinð2θijÞ

Ni ∧ Nj

jNi ∧ Njj
ðF11Þ

and for spacelike normal vectors we have

Ωij −Ωji ¼ 2 sinð2θijÞ
Ni ∧ Nj

jNi ∧ Njj
¼ 4ðNi · NjÞðNi ∧ NjÞ

ðF12Þ

TrðΩijÞ ¼ 2 cosð2θijÞ ¼ 2ð2 cos2ðθijÞ − 1Þ
¼ 4ðNi · NjÞ2 − 2 ðF13Þ

while for timelike normal vectors that span a mixed
signature plane, Ω is a boost,

Ωij ¼ e
2θij

Ni∧Nj
jNi∧Nj j ¼ coshð2θijÞ þ sinhð2θijÞ

Ni ∧ Nj

jNi ∧ Njj
ðF14Þ

with

Ωij −Ωji ¼ 2 sinhð2θijÞ
Ni ∧ Nj

jNi ∧ Njj
¼ 4ðNi · NjÞðNi ∧ NjÞ

ðF15Þ

TrðΩijÞ ¼ 2 coshð2θijÞ ¼ 2ð2 cosh2ðθijÞ − 1Þ
¼ 4ðNi · NjÞ2 − 2: ðF16Þ

Notice that here jNi ∧ Njj is defined as

jNi ∧ Njj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjNi ∧ Njj2j

q
: ðF17Þ

Thus, in both cases we have

RNi
RNj

¼ Ωij ¼ e
2θij

Ni∧Nj
jNi∧Nj j ðF18Þ

where θij is the angle between normals and related to the
dihedral angle by (7.1) and (7.2).

APPENDIX G: FIX THE AMBIGUITY
IN THE ACTION

In this Appendix we show how to choose the SLð2;CÞ
lift to fix the ambiguity in the action. Note that here we only
fix the ambiguity for a single 4-simplex σv with the
boundary data, where the deficit angle Θf ¼ θf is the
angle between normals. The ambiguity (in one 4-simplex
σv with boundary) which due to odd nf can be expressed as

ΔS − ΔSΔ ¼ ir
X

f∶nfodd

Δϕ−Θf non degenerate case

Δϕ split signature case:

ðG1Þ

The procedure we use here is an extension of the one used
for spacelike triangles in [21].

1. Nondegenerate case

Suppose we have nondegenerate solutions fG0
ve ∈

SOð1; 3Þg with normals v0ef of triangles of nondegenerate
boundary tetrahedra. The area of these triangles is given by

spins γs0f ¼
n0f
2
. Define the following continuous path:

GveðtÞ; vefðtÞ; uðtÞ ¼ u ¼ ð0; 0; 0; 1ÞT; ðG2Þ

where ∀ eG0
ve ¼ Gveð0Þ, v0ef ¼ vefð0Þ such that

(i) ∀ t ∈ ½0; 1�, fGveðtÞg is a solution of the critical
point equations with boundary data where the
normals of the triangles of the boundary tetrahedra
are vefðtÞ,

(ii) ∀t ≠ 1 boundary data is nondegenerate, and
vefð1Þ ≠ 0,

(iii) ∀t ≠ 1 solution fGveðtÞg is nondegenerate,
(iv) for t ¼ 1, the pair of solutions fGveðtÞg and

fg̃veðtÞ ¼ ReαgveðtÞRug are gauge equivalent.
In this path, the function

fðtÞ ¼
X

f∶nfodd
Δϕeve0fðtÞ − rΘfðtÞ mod 2π ðG3Þ

takes values in f0; πg and changes continuously with the
phase and the difference from the stationary points deter-
mined by fGveðtÞg and fG̃veðtÞ ¼ ReαGveðtÞRug. Thus,
fðtÞ is a constant. Since at t ¼ 1, we have two geometric
solutions that are gauge equivalent to each other, which
means the lifts gve; g̃ve of the solutions satisfy

∀eg̃ve ¼ ð−1Þrveggve; rve ¼ f0; 1g: ðG4Þ

From (7.22),

ð−1Þrveþrve0 ¼ gveðg̃e0vg̃veÞ−1ge0v ¼ e−2Δθe0vefXfþ2iΔϕe0vefXf

ðG5Þ
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which leads to Δϕeve0fð1Þ ¼ ðrve þ rve0 Þπ mod 2π since
we have ð2XfÞ2 ¼ 1. We shall consider a subgraph of the
spin network which contains those odd n links. The
subgraph has even valence nodes. Thus, we can decompose
into Euler cycles. In those cycles every link of odd n will
appears exactly once. For a Euler cycle consisting of edges
with odd n, every edge will be counted twice. Thus we haveX

e∈cycle
Δϕeve0fð1Þ ¼

X
e∈cycle

2rveπ ¼ 0 mod 2π: ðG6Þ

Also, from the fact that two geometrical solutions are
gauge equivalent, ∀eG̃ve ¼ GGve, we have RNe

RNe0 ¼
GveðG̃e0vG̃veÞ−1Ge0v ¼ 1, thus

Θfð1Þ ¼ r̃fπ mod 2π; r̃f ¼ r̃ve þ r̃ve0 ∈ f0; 1g;
ðG7Þ

which can be fixed again using Euler cycles for Δϕ.
The path can be achieved by deforming solutions in the

following way: First choose a timelike plane with the
simple normalized bivector V at some vertex v that satisfies

∀fV ∧ �Bf ≠ 0: ðG8Þ

The path is made by contracting the two directions in �V,
and we donate the t ¼ 1 as the limit for contracting
directions to 0. From the above condition we have that
limt→1Bf exist and keep nonzero. The dual action of the
shrinking on the geometric normal vectors NΔ also has a
limit which is their normalized components lying in the �V
plane (after normalization). By a suitable definition of
boundary data, we can assume Gveð1Þ ¼ lim→1GveðtÞ
exist. Now we end up with a highly degenerate 4-simplex
which is contained in a 2D plane and all bivectors are
proportional to V.

2. Split signature case

The treatment concerns degenerate solutions following
the similar method. We start from the nondegenerate
boundary data, where normals of the triangles of boundary
tetrahedra are given by v0ef and an area of these triangles are
related to spins nf=2. Suppose from these boundary data,

we can reconstruct a nondegenerate 4-simplex in flipped
signature space M0. In this case, we have two non-gauge-
equivalent solutions fg�veg. We define the following path:

g�veðtÞ; vefðtÞ; uðtÞ ¼ u ¼ ð0; 0; 0; 1ÞT; ðG9Þ
where ∀ eg0�ve ¼ g�veð0Þ, v0ef ¼ vefð0Þ. The path satisfies

(i) ∀t ∈ ½0; 1�, fg�veðtÞg are solutions of the critical
point equation with boundary data given by vefðtÞ,

(ii) ∀t ∈ ½0; 1� boundary data is nondegenerate, e.g., the
boundary tetrahedron is nondegenerate,

(iii) ∀t ≠ 1 solutions fg�veg are non-gauge-equivalent,
thus we have a nondegenerate reconstructed
4-simplex in M0

(iv) for t ¼ 1, the reconstructed 4-simplex is degenerate
in M0.

Now the constant function fðtÞ ∈ f0; πg reads

fðtÞ ¼
X

f∶nfodd
Δϕeve0fðtÞ mod 2π: ðG10Þ

Following the same argument in the nondegenerate case,
we have for the lifts

gþveð1Þ ¼ ð−1Þrveg−veð1Þ: ðG11Þ

Based on the same consideration using Euler cycles,
we have

fð1Þ ¼
X

f∶nfodd
Δϕeve0fðtÞ ¼ 0 mod 2π: ðG12Þ

Thus we have

ΔS0 − ΔSΔ0 ¼ 0 mod 2π: ðG13Þ

The path is built by the following way: We choose a
spacelike normal such that, in flipped signature space

∀fN ∧ Bf ≠ 0: ðG14Þ

The path is then made by contracting in the direction of N
in the flipped space M0. The contraction leads to a con-
tinuous path of nondegenerate solutions in M0 until t ¼ 1
where the 4-simplex is degenerate.
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Physique Théorique (Gauthier-Villars, 1970), Vol. 13,
pp. 27–56.

[28] F. Conrady and J. Hnybida, Unitary irreducible representa-
tions of SL(2,C) in discrete and continuous SU(1,1) bases,
J. Math. Phys. (N.Y.) 52, 012501 (2011).

[29] N. Bleistein, Uniform asymptotic expansions of integrals
with stationary point near algebraic singularity, Commun.
Pure Appl. Math. 19, 353 (1966).

[30] R. Sorkin, Time evolution problem in Regge calculus, Phys.
Rev. D 12, 385 (1975); Erratum, Phys. Rev. D 23, 565(E)
(1981).

[31] R. D. Sorkin, Causal sets: Discrete gravity, in Lectures
on Quantum Gravity. Proceedings, School of Quantum
Gravity, Valdivia, Chile, 2002 (Springer, Boston, 2003),
pp. 305–327.

[32] J. Ambjorn, J. Jurkiewicz, and R. Loll, Dynamically
triangulating Lorentzian quantum gravity, Nucl. Phys.
B610, 347 (2001).

[33] J. Ambjørn, A. Görlich, J. Jurkiewicz, and R. Loll, Quantum
gravity via causal dynamical triangulations, in Springer
Handbook of Spacetime, edited by A. Ashtekar and V.
Petkov (Springer-Verlag, Berlin, Heidelberg, 2014),
pp. 723–741.

[34] E. Alesci and C. Rovelli, The complete LQG propagator. II.
Asymptotic behavior of the vertex, Phys. Rev. D 77, 044024
(2008).

[35] E. Bianchi and Y. Ding, Lorentzian spinfoam propagator,
Phys. Rev. D 86, 104040 (2012).

[36] G. Lindblad, Eigenfunction expansions associated with
unitary irreducible representations of su(1,1), Phys. Scr.
1, 201 (1970).

[37] F. W. Olver, NIST Handbook of Mathematical Functions
Hardback and CD-ROM (Cambridge University Press,
Cambridge, 2010).

[38] P. D. Miller, Applied Asymptotic Analysis (American Math-
ematical Society, Rhode Island, 2006), Vol. 75.

ASYMPTOTIC ANALYSIS OF SPIN FOAM AMPLITUDE … PHYS. REV. D 99, 084040 (2019)

084040-47

https://doi.org/10.12942/lrr-2013-3
https://doi.org/10.1016/j.nuclphysb.2008.02.018
https://doi.org/10.1016/j.nuclphysb.2008.02.018
https://doi.org/10.1088/0264-9381/27/18/185011
https://doi.org/10.1088/0264-9381/27/18/185011
https://doi.org/10.1088/0264-9381/27/15/155014
https://doi.org/10.1088/0264-9381/27/15/155014
https://doi.org/10.1103/PhysRevD.95.026002
https://doi.org/10.1103/PhysRevD.95.026002
https://doi.org/10.1103/PhysRevD.78.104023
https://doi.org/10.1088/0264-9381/27/3/035012
https://doi.org/10.1088/0264-9381/27/3/035012
https://doi.org/10.1063/1.3244218
https://doi.org/10.1088/0264-9381/27/16/165009
https://doi.org/10.1088/0264-9381/27/16/165009
https://doi.org/10.1088/0264-9381/30/16/165012
https://doi.org/10.1088/0264-9381/30/16/165012
https://doi.org/10.1088/0264-9381/29/16/165004
https://doi.org/10.1088/0264-9381/31/1/015004
https://doi.org/10.1088/0264-9381/31/1/015004
https://doi.org/10.1103/PhysRevD.88.044051
https://doi.org/10.1103/PhysRevD.88.044051
https://doi.org/10.1103/PhysRevD.96.024047
https://doi.org/10.1103/PhysRevD.96.024047
https://doi.org/10.1016/j.nuclphysb.2015.08.023
http://arXiv.org/abs/1512.07690
https://doi.org/10.1088/1361-6382/aac6a4
https://doi.org/10.1007/BF02435787
https://doi.org/10.1007/BF02435787
https://doi.org/10.1088/0264-9381/15/2/013
https://doi.org/10.1088/0264-9381/15/2/013
https://doi.org/10.1088/0264-9381/30/8/085004
https://doi.org/10.1088/0264-9381/25/12/125018
https://doi.org/10.1088/0264-9381/25/12/125018
https://doi.org/10.1088/1361-6382/aa7348
https://doi.org/10.1088/1361-6382/aa7348
https://doi.org/10.1063/1.3533393
https://doi.org/10.1002/cpa.3160190403
https://doi.org/10.1002/cpa.3160190403
https://doi.org/10.1103/PhysRevD.12.385
https://doi.org/10.1103/PhysRevD.12.385
https://doi.org/10.1103/PhysRevD.23.565
https://doi.org/10.1103/PhysRevD.23.565
https://doi.org/10.1016/S0550-3213(01)00297-8
https://doi.org/10.1016/S0550-3213(01)00297-8
https://doi.org/10.1103/PhysRevD.77.044024
https://doi.org/10.1103/PhysRevD.77.044024
https://doi.org/10.1103/PhysRevD.86.104040
https://doi.org/10.1088/0031-8949/1/5-6/001
https://doi.org/10.1088/0031-8949/1/5-6/001

