
 

Interpreting A and B metrics with Λ as gravitational field
of a tachyon in an (anti–)de Sitter universe
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We investigate the main properties and mutual relations of the so-called A and B metrics with any value
of the cosmological constant. In particular, we explicitly show that both the AII and BI metrics are, in fact,
the famous Schwarzschild–(anti–)de Sitter spacetime (that is the AI metric) boosted to superluminal speed.
Together, they can be combined to form a complete gravitational field of a tachyon in an asymptotically
Minkowski or (anti–)de Sitter background. The boundary separating the AII and BI regions is the Mach-
Cherenkov shockwave on which the curvature is unbounded. We analyze various geometric features of
such spacetimes, provide their natural physical interpretation, and visualize them using convenient
background coordinates and embeddings.
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I. INTRODUCTION

In a seminal work [1] published in 1962, Ehlers and
Kundt systematically investigated static vacuum gravita-
tional fields. In particular, they introduced a classification
of all such fields of algebraic type D, denoting them as
classes A and B (and also C, later interpreted physically as
the metric in a static region around uniformly accelerating
black holes [2]).
The A metrics, consisting of three subclasses, were

written in Ref. [1] in the form1

AI∶ ds2 ¼ r2ðdϑ2 þ sin2ϑdφ2Þ

þ
�
1 −

b
r

�
−1
dr2 −

�
1 −

b
r

�
dt2; ð1Þ

AII∶ ds2 ¼ z2ðdr2 þ sinh2rdφ2Þ

þ
�
b
z
− 1

�
−1
dz2 −

�
b
z
− 1

�
dt2; ð2Þ

AIII∶ ds2 ¼ z2ðdr2 þ r2dφ2Þ þ zdz2 −
dt2

z
ð3Þ

(see also Table 18.2 in Ref. [3] or Chapter 9 in Ref. [4]).
The AI metric is the famous Schwarzschild solution [5]
describing the external vacuum field of a spherically
symmetric static object or black hole. The A metrics can

be generalized to include (for example) a cosmological
constant Λ, and can be written in a unified form

ds2 ¼ p2ðϵ0 − ϵ2q2Þdφ2 þ p2

ϵ0 − ϵ2q2
dq2

−
�
ϵ2 þ

2n
p

−
Λ
3
p2

�
dt2 þ

�
ϵ2 þ

2n
p

−
Λ
3
p2

�
−1
dp2:

ð4Þ
For ϵ2 ¼ 1;−1, 0, we obtain the AI, AII and AIII metrics,
respectively, as indicated in Table I. The AI metric withΛ is
the (so-called) Schwarzschild–de Sitter solution, first found
by Kottler [6], and its standard form is obtained by setting
p ¼ r, q ¼ cosϑ, n ¼ −M, ϵ0 ¼ 1. The AII and AIII
metrics have been described and studied as “topological
black holes” (see, e.g., Ref. [4] for a list of references).
The B metrics were introduced in Ref. [1] in the form

BI∶ ds2 ¼
�
1 −

b
r

�
−1
dr2 þ

�
1 −

b
r

�
dφ2

þ r2ðdϑ2 − sin2ϑdt2Þ; ð5Þ

BII∶ ds2 ¼
�
b
z
− 1

�
−1
dz2 þ

�
b
z
− 1

�
dφ2

þ z2ðdr2 − sinh2rdt2Þ; ð6Þ

BIII∶ ds2 ¼ zdz2 þ dφ2

z
þ z2ðdr2 − r2dt2Þ: ð7Þ

Although these metrics also look very simple and have
been known for more than 50 years, they have not
received as much attention as their counterparts (1)–(3).
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Analogously to Eq. (4), it is possible to include any
cosmological constant and write the B metrics in a unified
form

ds2 ¼ −p2ðϵ0 − ϵ2q2Þdt2 þ
p2

ϵ0 − ϵ2q2
dq2

þ
�
ϵ2 þ

2n
p

−
Λ
3
p2

�
dz2 þ

�
ϵ2 þ

2n
p

−
Λ
3
p2

�
−1
dp2:

ð8Þ

For the choices ϵ2 ¼ 1, −1, 0, we obtain the BI, BII and
BIII metrics, respectively, as also summarized in Table I.
Moreover, as we demonstrated in Refs. [7,8], the parameter
ϵ0 ¼ 1, −1, 0 in both Eqs. (4) and (8) has no physical
meaning because it only changes the specific coordinate
foliation of the two-dimensional subspace covered by the
φ, q and t, q coordinates, respectively. Without loss of
generality we may thus choose any ϵ0 to obtain the most
suitable form of the metric.
The A metric (4) can further be generalized to in-

clude electromagnetic charges, rotation, a Newman-Unti-
Tamburino parameter, and acceleration. Such generalized
black holes are contained in the large Plebański–Demiański
class [9] of expanding type D solutions; see Ref. [10]
for more details. Interestingly, the C metric is then also
naturally included in this Plebański–Demiański class.
Moreover, the B metrics can also be considered as a

subcase of the Plebański–Demiański class of metrics in a
nonexpanding limit in which the double-degenerate null
congruence has zero expansion, shear and twist. Such a
class has the form

ds2 ¼ ϱ2
�
−Qdt2 þ 1

Q
dq2

�
þ P
ϱ2

ðdzþ 2γqdtÞ2 þ ϱ2

P
dp2;

ð9Þ

where

ϱ2 ¼ p2 þ γ2; QðqÞ ¼ ϵ0 − ϵ2q2;

PðpÞ ¼ ð−ðe2 þ g2Þ − ϵ2γ
2 þ Λγ4Þ þ 2np

þ ðϵ2 − 2Λγ2Þp2 −
1

3
Λp4 ð10Þ

(see Sec. 16.4 in Ref. [4]). It contains two discrete
geometrical parameters ϵ0, ϵ2 ¼ 1, −1, 0, the cosmological
constant Λ, electric and magnetic charges e and g, the
masslike parameter n, and an additional parameter γ.
A thorough investigation of the corresponding de Sitter
and anti–de Sitter “backgrounds” in the form (9) (when n,
γ, e, g ¼ 0, with Λ ≠ 0) was performed in Refs. [7,11]. The
Minkowski “background” with Λ ¼ 0, and the physical
meaning of all seven independent parameters of Eq. (9),
have been recently clarified in Ref. [8]. Clearly, by setting
e, g, γ ¼ 0, the class of metrics (9)–(10) reduces to the
B metrics (8).
For both A and B metrics (4) and (8), the only nonzero

Weyl curvature Newman-Penrose scalar is

Ψ2 ¼
n
p3

ð11Þ

(see Ref. [8]). The metrics are thus of algebraic type D (or
conformally flat when n ¼ 0) and have a curvature singu-
larity at p ¼ 0. Since the metrics depend on the fraction
n=p, we may restrict ourselves to p > 0 while keeping n
arbitrary. In order to keep the signature ð−;þ;þ;þÞ, we
must also constrain the range of p such that PðpÞ > 0.
As noted already by Ehlers and Kundt in Ref. [1], the A

metrics (4) and the B metrics (8) have very similar forms,
formally related by a complex transformation φ ¼ it and
t ¼ iz, implying dφ2 → −dt2 and dt2 → −dz2. However,
this seems to be just a “heuristic trick,” a specific kind of
“Wick rotation.” It is preferable to avoid such a formal
identification. Instead, following Ref. [12], in Sec. II we
will employ a different approach to relate the A and B
metrics. This will be based on performing a boost of the
source, a procedure more acceptable from the physical
point of view. In Sec. III we will investigate the admitted
coordinate ranges and possible extensions of the B metrics.
Subsequently, in Sec. IV we will examine the main
geometrical properties of the corresponding gravitational
field of a tachyonic source, which can be composed of the
AII and BI metrics, separated by the Mach-Cherenkov
shocks. All these results will then be generalized to any
value of the cosmological constant Λ in Secs. V–VII.

II. AII AND BI METRICS ARE THE
SCHWARZSCHILD SPACETIME BOOSTED

TO INFINITE SPEED

In 1970, Peres [12] realized that it is possible to obtain
the exact gravitational field of a (hypothetical) tachyon by
boosting the classic Schwarzschild source (written in

TABLE I. Transformations between the unified form (4) of A
metrics (upper part) or B metrics (8) (lower part) and the original
forms (1)–(3) or (5)–(7), respectively, as presented by Ehlers and
Kundt in the case when Λ ¼ 0.

ϵ2 ϵ0 φ q t p n Equations

AI 1 1 φ cos ϑ t r −b=2 (4) → (1)
AII −1 −1 φ cosh r t z b=2 (4) → (2)
AIII 0 1 r sinφ r cosφ t z 1=2 (4) → (3)

t q z p n Equations

BI 1 1 t cos ϑ φ r −b=2 (8) → (5)
BII −1 −1 t cosh r φ z b=2 (8) → (6)
BIII 0 1 r sinh t r cosh t φ z 1=2 (8) → (7)
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isotropic coordinates) to superluminal speed. In fact, by
this procedure the Mach-Cherenkov shock wave is also
generated which separates two distinct regions which
are described by the AII and BI metrics. Such tachyonic
counterparts of the Schwarzschild black hole solution
were subsequently studied in more detail by Schulman
[13] and Gott [14]. Let us first summarize this pro-
cedure by explicitly “boosting” the usual form of the
Schwarzschild metric to infinite speed, obtaining thus

the gravitational field of a tachyon. Conversely, it is
possible to “slow down” the tachyonic source of the AII
and BI metrics to zero speed, obtaining thus the usual
Schwarzschild AI metric of a static source. In this sense,
the AI, AII and BI metrics are related and, in fact,
“equivalent”: they just represent (various regions of) the
gravitational field generated by a massive source mov-
ing with all possible velocities, including zero and
infinity.

A. Boosting the Schwarzschild (AI) metric to v → ∞
The Schwarzschild metric in the form (4) with ϵ2 ¼ 1 ¼ ϵ0, Λ ¼ 0, n ¼ −M can be written in Cartesian coordinates

p ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
; q ¼ cosϑ ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z2
p ; tanφ ¼ Y

X
; T ¼ t; ð12Þ

as

ds2 ¼ −dT2 þ dX2 þ dY2 þ dZ2 þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
�
dT2 þ

�
1−

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
�

−1 ðXdXþ YdY þ ZdZÞ2
X2 þ Y2 þ Z2

�
: ð13Þ

Let us now perform a boost in the Z direction:

T ¼ T 0 þ vZ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; Z ¼ Z0 þ vT 0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð14Þ

Although this boost is only allowed for velocities jvj < 1, it is interesting to observe that all terms in the metric (13) that
introduce

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
via T and Z are quadratic. It is thus possible to consider the limit v → ∞, resulting in

lim
v→∞

T2 ¼ lim
v→∞

ðT 0 þ vZ0Þ2
1 − v2

¼ −Z02; lim
v→∞

Z2 ¼ lim
v→∞

ðZ0 þ vT 0Þ2
1 − v2

¼ −T 02: ð15Þ

The “infinite boost” thus effectively causes just a swap T2 → −Z02 and Z2 → −T 02, so that the exact Schwarzschild metric
(13) becomes

ds2 ¼ −dT 02 þ dX2 þ dY2 þ dZ02 þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−T 02 þX2 þ Y2

p
�
−dZ02 þ

�
1−

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−T 02 þX2 þ Y2

p
�

−1 ð−T 0dT 0 þXdXþ YdYÞ2
−T 02 þX2 þ Y2

�
:

ð16Þ

In fact, this is the AII metric in the region T 02 > X2 þ Y2 forM purely imaginary, and the BI metric in the complementary
region T 02 < X2 þ Y2 for M real.
Indeed, the AII metric (4) with ϵ2 ¼ −1 ¼ ϵ0, Λ ¼ 0, written in Cartesian coordinates

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − X2 − Y2

p
; q ¼ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2 − X2 − Y2
p ; tanφ ¼ Y

X
; t ¼ Z; ð17Þ

reads

ds2 ¼ −dT2 þ dX2 þ dY2 þ dZ2 þ 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 −X2 − Y2

p
�
−dZ2 þ

�
1−

2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 −X2 − Y2

p
�

−1 ð−TdT þXdXþ YdYÞ2
−T2 þX2 þ Y2

�
: ð18Þ
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This is exactly the boosted Schwarzschild metric (16) with the identificationM ¼ in, i.e., for purely imaginary mass of the
(necessarily tachyonic) source. Here we consider the principal square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−T 02þX2þY2

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 02−X2−Y2

p
. Of course,

the transformation (17) is only valid in the region T2 > X2 þ Y2.
Similarly, the BI metric (8) with ϵ2 ¼ 1, ϵ0 ¼ −1 (which is a more convenient coordinate representation than ϵ0 ¼ 1),

Λ ¼ 0 is put into Cartesian coordinates in the region T2 < X2 þ Y2 by

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−T2 þ X2 þ Y2

p
; q ¼ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−T2 þ X2 þ Y2
p ; tan t ¼ Y

X
; z ¼ Z; ð19Þ

taking the form

ds2 ¼ −dT2 þ dX2 þ dY2 þ dZ2 −
2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−T2 þ X2 þ Y2
p

�
−dZ2 þ

�
1þ 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−T2 þ X2 þ Y2
p

�
−1 ð−TdT þ XdX þ YdYÞ2

−T2 þ X2 þ Y2

�
:

ð20Þ

Again, this is exactly the boosted Schwarzschild metric (16), in this case with M ¼ −n.

B. Slowing the AII metric to v → 0

Of course, it is also possible to consider a complementary procedure. Instead of boosting the Schwarzschild
static source to infinite speed, we can stop the tachyonic source of the AII metric. This is achieved by performing the boost2

T ¼ vT 0 − Z0ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p ; Z ¼ vZ0 − T 0ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p ð21Þ

of the metric (18). Although Eq. (21) is only allowed for v > 1, the metric is quadratic in T and Z, so it is possible to take the
limit v → 0, resulting in

lim
v→0

T2 ¼ lim
v→0

ðvT 0 − Z0Þ2
v2 − 1

¼ −Z02; lim
v→0

Z2 ¼ lim
v→0

ðvZ0 − T 0Þ2
v2 − 1

¼ −T 02: ð22Þ

As in the case (15), the limit v → 0 causes the swap T2 → −Z02 and Z2 → −T 02. The AII metric (18), valid in
T2 > X2 þ Y2, slowed down to v ¼ 0 is thus

ds2 ¼ −dT 02 þ dX2 þ dY2 þ dZ02 þ 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−X2 − Y2 − Z02p

�
dT 02 þ

�
1 −

2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−X2 − Y2 − Z02p

�
−1 ðXdX þ YdY þ Z0dZ0Þ2

X2 þ Y2 þ Z02

�
:

ð23Þ

In the region X2 þ Y2 þ Z02 > 0 this is the Schwarzschild metric (13) with n ¼ iM.

C. Slowing the BI metric to v → 0

Using the boost (21) we can similarly stop the superluminal tachyonic source of the BI metric. Due to the swap (22), the
metric (20) valid in the region T2 < X2 þ Y2 becomes

ds2 ¼ −dT 02 þ dX2 þ dY2 þ dZ02 −
2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z02p
�
dT 02 þ

�
1þ 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z02p
�

−1 ðXdX þ YdY þ Z0dZ0Þ2
X2 þ Y2 þ Z02

�
;

ð24Þ

which is the Schwarzschild metric (13) in the region X2 þ Y2 þ Z02 > 0, just with the relabeling M ¼ −n.

2This is formally the same as Eq. (14) with v replaced by −1=v.
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Both the AII and BI metrics can thus be physically
interpreted as (a formal limit of) the Schwarzschild solution
boosted to an infinite speed. Conversely, the superluminal
sources of the AII and BI metrics can be slowed down and
even stopped, yielding exactly the classic Schwarzschild
metric of a static massive source. In this sense, all three of
these exact metrics can be understood as representing the
“same gravitational field,” with the distinction given only
by the speed of the source and the region of spacetime
covered by the corresponding coordinates.
It can also be seen that in the weak-field limit n → 0, the

“interior” AII metric (18) covering T2 > X2 þ Y2 and the
“exterior” BI metric (20) covering T2 < X2 þ Y2 together
cover the whole Minkowski spacetime, except the surface
T2 ¼ X2 þ Y2 between them. Physically, it identifies an
expanding cylindrical Mach-Cherenkov shock wave which
will be described in more detail in Sec. IV, and extended to
any value of the cosmological constant Λ in Sec. VII.

III. COORDINATE RANGES OF THE B METRICS

It is now important to investigate the admitted coordinate
ranges of the Bmetrics. We start with the case Λ ¼ 0; more
general B metrics with a cosmological constant Λ will be
described in Sec. VI.

A. The BI metric

The BI metric is given by Eq. (8) with ϵ2 ¼ 1, Λ ¼ 0,
that is

ds2 ¼ −p2ðϵ0 − q2Þdt2 þ p2

ϵ0 − q2
dq2

þ
�
1þ 2n

p

�
dz2 þ

�
1þ 2n

p

�
−1
dp2: ð25Þ

Here z ∈ R, while the range of t, q depends on ϵ0. Ehlers
and Kundt in Ref. [1] considered the case ϵ0 ¼ 1; see
Table I. Due to Eq. (11), the range of p in Eq. (25) depends
on the sign of n. For n > 0 it is p ∈ ð0;∞Þ, with a
curvature singularity at p ¼ 0, while for n < 0 it is
p ∈ ð2jnj;∞Þ. Therefore, the two cases n > 0 and n < 0
represent two distinct spacetimes with different global
structures. Ehlers and Kundt also suggested a possible
analytic extension of the BI metric with n < 0 to include
p ¼ 2jnj in the p coordinate. For the choice ϵ0 ¼ −1, this
is achieved by the transformation3

p¼2jnj=ð1−ρ2Þ; q¼ sinhτ; z¼2nζ; t¼φ; ð26Þ

which puts the metric (25) into the form

ds2 ¼ 4n2½ð1 − ρ2Þ−2ð−dτ2 þ cosh2τdφ2Þ
þ ρ2dζ2 þ 4ð1 − ρ2Þ−4dρ2� ð27Þ

[see the metric (2–3.47) in Ref. [1]]. Although the term
ρ2dζ2 vanishes at ρ ¼ 0, there is no curvature singularity.
The coordinates (27) of the BI metric thus better illustrate
the behavior of the spacetime. At ρ ¼ 0, corresponding to
p ¼ 2jnj, the curvature (11) reaches its maximal but finite
value (in fact, it is impossible to reach the curvature
singularity located at p ¼ 0). With ρ → 1 the spacetime
becomes asymptotically flat (since p → ∞); see also the
corresponding embedding diagram for fixed values of τ and
ζ shown in the right part of Fig. 3. Let us finally remark that
in a section with fixed values of τ and φ and very small
values of ρ, the two-dimensional spatial metric is approx-
imately ds22 ≈ 16n2½dρ2 þ ρ2½dðζ=2Þ�2�. For angular coor-
dinate ζ ∈ ½0; 4πÞ, such a section would be flat and regular
at ρ ¼ 0 (see also page 58 of Ref. [14]). However, as will be
seen below, a natural interpretation of the coordinate ζ is
that it is a noncompact coordinate (along an infinite z axis
of cylinders) with the full range ζ ∈ R.

B. The BII metric

Analogously, it is possible to study the BII metrics. In
particular, the metric (8) with Λ ¼ 0, ϵ2 ¼ −1 and ϵ0 ¼ 1
(to avoid superficial coordinate singularities in q) is

ds2 ¼ −p2ð1þ q2Þdt2 þ p2

1þ q2
dq2

þ
�
2n
p

− 1

�
dz2 þ

�
2n
p

− 1

�
−1
dp2: ð28Þ

The allowed ranges of coordinates are t, q, z ∈ R,
p ∈ ð0; 2nÞ. The correct signature requires n > 0, and
the metric (28) does not admit the flat (Minkowski) limit
given by n → 0. Similarly to Eq. (26) we may apply the
transformation

p ¼ 2n=ð1þ ρ2Þ; q ¼ sinh z; z ¼ 2nζ; ð29Þ

so that the BII metric (28) becomes

ds2 ¼ 4n2½ð1þ ρ2Þ−2ðdz2 − cosh2zdt2Þ
þ ρ2dζ2 þ 4ð1þ ρ2Þ−4dρ2�; ð30Þ

[see the metric (2–3.48) in Ref. [1]]. Again, there is no
curvature singularity at ρ ¼ 0 corresponding to p ¼ 2n,
while the curvature singularity at p ¼ 0 corresponds to
ρ ¼ ∞.

C. The BIII metric

This is obtained from Eq. (8) by setting ϵ2 ¼ 0, ϵ0 ¼ 1,
Λ ¼ 0,

3The original Ehlers and Kundt transformation for ϵ0 ¼ 1 is
q ¼ cosh τ sinφ, tanh t ¼ tanh τ= cosφ.
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ds2 ¼ −p2dt2 þ p2dq2 þ 2n
p
dz2 þ p

2n
dp2; ð31Þ

where t, q, z ∈ R, p ∈ ð0;∞Þ. Necessarily n > 0, and the
metric again does not have the Minkowski limit since n ¼ 0
is prohibited. As argued in Refs. [4,8], it is a special Levi-
Civita solution.

IV. GLOBAL STRUCTURE AND PHYSICAL
INTERPRETATION

After establishing that both the AII metric and the BI
metric represent specific parts of the gravitational field
generated by a superluminal source (tachyon moving along
a spacelike trajectory), it is now necessary to analyze the
global structure of such spacetimes and their relation. In
particular, we must describe the way in which the AII
metric

ds2 ¼ σ2ðdϑ2 þ sinh2ϑdφ2Þ

þ
�
1 −

2M
σ

�
dz2 −

�
1 −

2M
σ

�
−1
dσ2; ð32Þ

[which is actually the AII metric (4) with ϵ2 ¼ −1 ¼ ϵ0,
n ¼ M > 0, Λ ¼ 0, using p ¼ σ > 0, q ¼ coshϑ and
t ¼ z] is combined with the BI metric

ds2 ¼ p2ð−dτ2 þ cosh2τdφ2Þ

þ
�
1 −

2M
p

�
dz2 þ

�
1 −

2M
p

�
−1
dp2; ð33Þ

[which is the BI metric (8) with ϵ2 ¼ 1, ϵ0 ¼ −1,
n ¼ −M < 0, Λ ¼ 0, using q ¼ sinh τ, t ¼ φ].

A. Weak-field limit

As suggested already by Gott [14], in the weak-field
limit M → 0 the curved spacetime around the tachyonic
source becomes flat Minkowski spacetime, with the
tachyon becoming just a test particle located along the
Z axis (identical to the z axis). The flat spacetime is divided
into distinct regions that are separated by the cylindrical
surface T2 ¼ X2 þ Y2 with Z arbitrary, as shown in Fig. 1.
Region 1 and Region 2 are given by T2 > X2 þ Y2 with

T > 0 and T < 0, respectively. These are covered by the
metric (32) with M ¼ 0, namely

ds2 ¼ σ2ðdϑ2 þ sinh2ϑdφ2Þ þ dz2 − dσ2; ð34Þ
whose coordinates are related to background Minkowski
coordinates as Z ¼ z,

T ¼ �σ coshϑ;

X ¼ σ sinhϑ cosφ;

Y ¼ σ sinhϑ sinφ; ð35Þ
so that T2 − X2 − Y2 ¼ σ2. Any σ ¼ const is thus a hyper-
boloidal surface. Notice however that the coordinate
singularity σ ¼ 0 actually corresponds to

T ¼ 0; X ¼ 0 ¼ Y; ð36Þ

which is just the Z axis, i.e., the tachyon trajectory.

FIG. 1. Complete Minkowski spacetime divided into Regions 1 and 2 covered by two “background” AII metrics (Region 1 for T > 0
and Region 2 for T < 0) and Region 3 covered by the “background” BI metric. The left part is the T − X section with Y ¼ 0 and Z
arbitrary, while the right part shows the X, Y, Z subspace with T ¼ const > 0. For T > 0 the boundary is an expanding cylinder whose
interior is Region 1, while for T < 0 it is a contracting cylinder whose interior is Region 2. Outside this cylinder lies Region 3 covered by
the BI metric. The tachyon moves along the Z axis with infinite speed.
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Region 3 is defined by T2 < X2 þ Y2. It is covered by
the flat limit of the BI metric (33)

ds2 ¼ p2ð−dτ2 þ cosh2τdφ2Þ þ dz2 þ dp2; ð37Þ

corresponding to Minkowski coordinates via Z ¼ z,

T ¼ p sinh τ;

X ¼ p cosh τ cosφ;

Y ¼ p cosh τ sinφ; ð38Þ

so that X2 þ Y2 − T2 ¼ p2. Therefore, p ¼ const is a
hyperboloidal surface, but the coordinate singularity
p ¼ 0 again corresponds to the line T ¼ 0, X ¼ 0 ¼ Y,
i.e., it is the tachyon trajectory along the Z axis. It is now
also clear that both regions X > 0 and X < 0 are covered
by taking the full range of the angular coordinate
φ ∈ ½0; 2πÞ. Moreover, Region 1 for Y ≠ 0 is explicitly
disconnected from Region 2; see Fig. 2. Thus, two copies
of the metric (34) together with the single metric (37) cover
the whole Minkowski space (except the separation boun-
dary X2 þ Y2 ¼ T2), as shown in Figs. 1 and 2.

B. Curved metrics and their analytic extension

Of course, with M ≠ 0 the complete spacetime covered
by pairs of Eqs. (32) and (33) is not flat anymore. In fact,
there is a “tachyonic-type” curvature singularity located at
σ ¼ 0 for the AII metric, and formally at p ¼ 0 for the BI
metric; see Eq. (11).
Despite thepresence of such a curvature singularity, bothof

the metrics remain asymptotically flat far away from the
tachyonic source, i.e., for large σ andp. Indeed, by inspecting
the Cartesian form of the AII metric (18) it can be observed
that for any finiteX, Y, Z, the metric becomes ds2 ≈ −dT2 þ
dX2 þ dY2 þ dZ2 as jTj → ∞. The same is true for the BI
metric (20) for any finite T and X2 þ Y2 → ∞.
There is a coordinate singularity in the AII metric (32) at

σ ¼ 2M > 0. This is clearly the Killing horizon generated
by the Killing vector ∂z. For σ > 2M the coordinate z is
spatial, and in this region the metric is time dependent (σ is

a temporal coordinate). On the other hand, for 0 < σ < 2M
the coordinate z is temporal, and the spacetime region is
static (σ is a spatial coordinate). The AII metric can be
maximally analytically extended across σ ¼ 2M; see
Ref. [14] and Sec. 9.1.1 of Ref. [4] for more details.
The corresponding Penrose conformal diagram can be
constructed by employing the Kruskal–Szekeres-type coor-
dinates. This is shown in the left part of Fig. 3, and
illustrates the null character of the horizons σ ¼ 2M, the
timelike character of the curvature singularities σ ¼ 0, and
asymptotically flat null infinities I� at σ ¼ ∞.
Similarly, the BI metric (33) withM ≠ 0 ceases to be flat,

covering the background exterior region T2 < X2 þ Y2 via
Eq. (38). There is a curvature singularity at p ¼ 0. However,

FIG. 3. Left: Global conformal diagram for the AII metric (32)
with coordinates ϑ;φ suppressed (in particular, ϑ ¼ 0). Here i�
denote past/future timelike infinities, while I� are null conformal
infinities. The horizons σ ¼ 2M are null, while the singularities
σ ¼ 0 are timelike. Right: Embedding diagram of the BI metric
(40) for the section z ¼ const and cosh τ≡ C ¼ const. For larger
C, the neck diameter grows, while the surface becomes more
restricted.

FIG. 2. The T, X, Z subspace of Minkowski spacetime for Y ¼ 0 (left) and for a constant Y ≠ 0 (right). It is divided into the two
disconnected Regions 1 and 2 with the AII metrics, and Region 3 with the BI metric.
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as explained in Sec. III A, this singularity cannot be reached
because only the range p ∈ ð2M;∞Þ is allowed. The
BI metric can be extended to include p ¼ 2M > 0 by
performing the transformation p ¼ 2M=ð1 − ρ2Þ and taking
ρ ∈ ½0; 1Þ, so that the metric becomes

ds2 ¼ 4M2ð1 − ρ2Þ−4½ð1 − ρ2Þ2ð−dτ2 þ cosh2τdφ2Þ
þ 4dρ2� þ ρ2dz2; ð39Þ

cf. Eqs. (26) and (27). On the boundary ρ ¼ 0, correspond-
ing to p ¼ 2M, the curvature (11) is maximal but finite. Its
geometry is ds22 ¼ 4M2ð−dτ2 þ cosh2 τdφ2Þ which is a
two-dimensional de Sitter space.
For any fixed values of τ and z, the extended BI metric

(39) reads

ds22 ¼ 4M2ð1 − ρ2Þ−4½4dρ2 þ ð1 − ρ2Þ2C2dφ2�; ð40Þ

where C≡ cosh τ ≥ 1 is a constant. This geometry can be
embedded into three-dimensional Euclidean space with
Cartesian coordinates by

x1 ¼
2MC
1 − ρ2

cosφ; x2 ¼
2MC
1 − ρ2

sinφ;

x3 ¼ 4M
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − C2ρ2
p
ð1 − ρ2Þ2 dρ: ð41Þ

For τ ¼ 0, corresponding to C ¼ 1, we explicitly obtain
x3 ¼ 4Mρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
. The embedding surface x23 ¼ 8M ×

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
− 2MÞ, shown in the upper right part of Fig. 3,

extends to infinite values of xi because the whole range
ρ ∈ ½0; 1Þ is allowed. For C > 1 the integral in Eq. (41) is
more complicated. Numerical integration leads to the
axially symmetric embedding surface shown in the lower
right part of Fig. 3. As τ > 0 (and thus C) grows, the radius

2MC of the neck at ρ ¼ 0 grows, while the allowed range
of ρ in Eq. (41) becomes more restricted to ρ < 1=C.

C. Mach-Cherenkov shock wave separating
the AII and BI metrics

It has been demonstrated in Sec. IVA that, in the weak-
field limit M → 0, the complete Minkowski spacetime is
covered by two “background” AII metrics (Regions 1 and 2
for T > 0 and T < 0, respectively) and one “background”
BI metric (Region 3). These are separated by the cylindrical
surface X2 þ Y2 ¼ T2 with Z arbitrary; see Fig. 1. This
cylinder contracts for T < 0 to the Z axis located at T ¼ 0,
which is just the tachyon trajectory, and then reexpands for
T > 0. The spacetime region inside this cylinder is covered
by the AII metric, while its exterior is covered by the BI
metric. The cylindrical boundary between them, which
contracts/expands at the speed of light to/from the tachyon
trajectory, is the Mach-Cherenkov shock wave generated by
the superluminal source. Since the tachyon moves with
infinite speed, the “Mach-Cherenkov cone” is “infinitely
sharp,” i.e., it has a cylindrical geometry.
Of course, with M ≠ 0 the distinct regions covered by

the AII and BI metrics cannot be joined smoothly across
the Mach-Cherenkov surface. While keeping the cylindri-
cal geometry, it becomes a surface with a discontinuity
because the specific curvatures on both of its sides are
different. This gives rise to a real gravitational shock wave,
whose jump in the curvature can be explicitly evaluated.
Instead of using the coordinate representations (32)
and (33), this can be explicitly performed in the
Cartesian coordinates. Notice that the cylindrical surface
X2 þ Y2 ¼ T2, Z arbitrary, formally degenerates to σ ¼ 0,
ϑ ¼ ∞ in Eq. (34) and p ¼ 0, τ ¼ ∞ in Eq. (37). By
combining the AII and BI metrics in the Cartesian
coordinates (18) and (20), it is possible to write a unified
metric for both parts of the curved spacetime in the whole
range of the background coordinates T, X, Y, Z as

ds2¼−dT2þdX2þdY2þdZ2þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT2−X2−Y2j

p
�
−dZ2þ

�
1−

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT2−X2−Y2j

p
�

−1 ð−TdTþXdXþYdYÞ2
−T2þX2þY2

�
: ð42Þ

For T2 > X2 þ Y2 this is the AII metric (18) with M ≡ n,
while for T2 < X2 þ Y2 this is the BI metric (20) with
M≡ −n.4 The metric (42) diverges on the shock surface
X2 þ Y2 ¼ T2. In fact, there is an infinite discontinuity in
the Weyl curvature scalar Ψ2 [Eq. (11)], namely

Ψ2 ¼ þMðT2 − X2 − Y2Þ−3=2 for T2 > X2 þ Y2;

Ψ2 ¼ −Mð−T2 þ X2 þ Y2Þ−3=2 for T2 < X2 þ Y2:

ð43Þ
The curvature singularity located at the Mach-Cherenkov
cylindrical shock wave is such that Ψ2 → þ∞ when it is
approached from its interior, while Ψ2 → −∞ when it is
approached from its exterior.

D. Boosted metrics

In order to better understand and illustrate the tachyon
motion and also the specific character of the generated

4It is natural to choose M ¼ −n to obtain the same parameter
M > 0 for both parts of the unified metric (42). The alternative
choice M ¼ n for the BI metric is mathematically also possible.
In such a case the curvature scalar would behave as Ψ2 ¼
MjT2 − X2 − Y2j−3=2, but the metric on both parts would look
different.
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Mach-Cherenkov cone, it is very convenient to consider a
boost of the metric, as originally suggested in Ref. [14].
Since the tachyonic source in Eqs. (34) and (37), and also

Eqs. (32) and (33), moves at infinite speed (it is instanta-
neously located everywhere along on the Z axis), such a
boost will actually slow it down to finite superluminal speed
v > 1. We will use the boost (21). The boosted tachyon
then moves in the Z0 direction (coinciding with z0) at the
speed v > 1. In the new coordinates, the surfaceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
¼ T that separates Regions 1 and 3, and the

surface
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
¼ −T that separates Regions 2 and 3,

take the form

X2 þ Y2 ¼ ðvT 0 − Z0Þ2
v2 − 1

: ð44Þ

At any fixed time T 0, these represent Mach-Cherenkov
shock cones with the vertex at Z0 ¼ vT 0 which is the actual
position of the tachyon, and with the angle α of the cone
such that α ¼ 2arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p
. As illustrated in Fig. 4, the

rear cone expands while the forward cone contracts at
the speed of light. The tachyon is always located at the
intersection of these cones and—in a manner similar to the
so-called scissors effect—moves faster than light.
It is also illustrative to plot these shock waves for different

speeds v > 1 of the tachyon; see Fig. 5. For larger super-
luminal v, the angle α of the cone is smaller. In the extreme
case v ¼ ∞ this angle is zero and the cone degenerates to the
cylinder plotted in Fig. 1, while in the opposite limit v ¼ 1
both the rear and front cones degenerate to the point X ¼
0 ¼ Y moving at the speed of light in the Z0 direction, which
is the position of the tachyon. This behavior follows from the
dependence of the regions on v. The interior Regions 1 and 2
covered by two separate AII metrics are located at
X2 þ Y2 < ðvT 0 − Z0Þ2=ðv2 − 1Þ, so that for smaller super-
luminal speed v these regions are larger. In the limit v → 1
the whole spacetime (except the surface Z0 ¼ T 0) is covered

by the pair of AII metrics. On the other hand, Region 3
defined by X2 þ Y2 > ðvT 0 − Z0Þ2=ðv2 − 1Þ becomes
smaller, and in the limit v → 1 it degenerates to the surface
Z0 ¼ T 0 except for the line X ¼ 0 ¼ Y. The surface that
separated Regions 1, 2 and 3 degenerates to a line Z0 ¼ T 0,
X ¼ 0 ¼ Y (worldline of the tachyon).

V. AII AND BI METRICS WITH Λ ARE THE
SCHWARZSCHILD–(ANTI–)DE SITTER

SPACETIME BOOSTED TO INFINITE SPEED

In previous sections we considered the A and B metrics
in a Minkowski background by setting Λ ¼ 0 in the metrics
(4) and (8), respectively. Now we are going to extend the
results to any value of the cosmological constant. In fact,
we will demonstrate that these metrics can be understood as
specific regions of the spacetime representing the exact
gravitational field of a tachyonic source moving in a de
Sitter (if Λ > 0) or anti–de Sitter (if Λ < 0) universe.
First, let us investigate boosts of the classic

Schwarzschild–(anti–)de Sitter metric (which is the most
important AI metric with Λ) and perform the limit v → ∞.
However, with Λ ≠ 0 the background is not flat but it is
everywhere curved (anti–)de Sitter spacetime. To perform
the boost correctly, it is most convenient to employ a five-
dimensional embedding formalism. It is well known
that (anti–)de Sitter spacetime can be understood as a
hyperboloid

−Z2
0 þ Z2

1 þ Z2
2 þ Z2

3 þ ϵZ2
4 ¼ ϵa2; ð45Þ

embedded into a five-dimensional flat spacetime

ds2 ¼ −dZ2
0 þ dZ2

1 þ dZ2
2 þ dZ2

3 þ ϵdZ2
4; ð46Þ

where a≡ ffiffiffiffiffiffiffiffiffiffiffi
3=jΛjp

and ϵ≡ signΛ; see the visualizations
in Fig. 6.

FIG. 4. Minkowski spacetime separated into Regions 1, 2, and 3 by the Mach-Cherenkov shock cones generated by the tachyon
slowed down by a boost to finite superluminal speed. The spacetime structure is visualized in the sections Y ¼ 0 (left) and T 0 ¼
const > 0 (right). The tachyon moves in the Z0 direction, and generates an expanding rear cone and contracting forward cone.
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FIG. 5. The spacetime structure (left), consisting of the AII and BI metrics separated by the Mach-Cherenkov shock waves (right) for
various superluminal speeds v of the tachyonic source.
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The (anti–)de Sitter background is obtained from the AI
metric (4) for ϵ2 ¼ 1 ¼ ϵ0, n ¼ 0. In the case with Λ > 0,
these coordinates parametrize the hyperboloid (45) as

Z0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

p
sinhðt=aÞ;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
cosφ;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
sinφ;

Z3 ¼ pq;

Z4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

p
coshðt=aÞ;

9>>>>>>>>=
>>>>>>>>;

for p < a;

Z0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − a2

p
coshðt=aÞ;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
cosφ;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
sinφ;

Z3 ¼ pq;

Z4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − a2

p
sinhðt=aÞ;

9>>>>>>>>=
>>>>>>>>;

for p > a; ð47Þ

while for Λ < 0 the corresponding parametrization is

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

q
sinðt=aÞ;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
cosφ;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
sinφ;

Z3 ¼ pq;

Z4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

q
cosðt=aÞ: ð48Þ

Expressing the AI metric (4) with ϵ2 ¼ 1 ¼ ϵ0 and n ≠ 0
in these five-dimensional coordinates, using Eqs. (47)
and (48), we obtain

ds2 ¼ ds2ðAÞdS þ
2Ma2

p

�ðZ4dZ0 − Z0dZ4Þ2
ðZ2

4 − ϵZ2
0Þ2

þ a2

p2

ðZ0dZ0 − ϵZ4dZ4Þ2
ðZ2

4 − ϵZ2
0ÞðZ2

4 − ϵZ2
0 − 2Ma2=pÞ

�
; ð49Þ

where ds2ðAÞdS is the (anti–)de Sitter background metric (46),

M≡ −n and p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2 þ Z2
3

p
. As in Refs. [15–17], we

can make a boost similar to Eq. (14), but now in the
coordinates Z0, Z3:

Z0 ¼
Z0
0 þ vZ0

3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; Z3 ¼
Z0
3 þ vZ0

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð50Þ

We immediately observe that all the terms introducing the
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
into Eq. (49) are quadratic, so it is possible to

take the formal limit v → ∞ that will effectively cause just a
swap Z2

0 → −Z0
3
2 and Z2

3 → −Z0
0
2 in Eq. (49). The resulting

metric will thus become

ds2 ¼ ds2ðAÞdS þ
2Ma2

p

�
−ðZ4dZ0

3 − Z0
3dZ4Þ2

ðZ2
4 þ ϵZ0

3
2Þ2

þ a2

p2

ðZ0
3dZ

0
3 þ ϵZ4dZ4Þ2

ðZ2
4 þ ϵZ0

3
2ÞðZ2

4 þ ϵZ0
3
2 − 2Ma2=pÞ

�
; ð51Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2 − Z0
0
2

p
. This is the AII metric in the

region Z02
0 > Z2

1 þ Z2
2 with a purely imaginary mass, and the

BI metric in the region Z02
0 < Z2

1 þ Z2
2 with a real mass.

Indeed, the AII metric background (4) for ϵ2 ¼ −1 ¼ ϵ0,
n ¼ 0, with Λ > 0 is given by

Z0 ¼ pq;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q
cosφ;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q
sinφ;

Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ a2

q
cosðt=aÞ;

Z4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ a2

q
sinðt=aÞ; ð52Þ

and with Λ < 0

Z0 ¼ pq;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

p
cosφ;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

p
sinφ;

Z3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

p
sinhðt=aÞ;

Z4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

p
coshðt=aÞ;

9>>>>>>=
>>>>>>;

for p < a;

Z0 ¼ pq;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

p
cosφ;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

p
sinφ;

Z3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − a2

p
coshðt=aÞ;

Z4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − a2

p
sinhðt=aÞ;

9>>>>>>>>=
>>>>>>>>;

for p > a: ð53Þ

These parametrizations only cover the region Z2
0>Z2

1þZ2
2.

The complete AII metric with n ≠ 0 written in the
coordinates of Eqs. (52) and (53) thus has the form

FIG. 6. The visualizations of de Sitter spacetime (left) and anti–
de Sitter spacetime (right) as hyperboloids (45) embedded in a
flat five-dimensional spacetime (46). The remaining coordinates
(Z3, Z4 for Λ > 0, and Z2, Z3 for Λ < 0) are suppressed. For
more details see Ref. [4].

INTERPRETING A AND B METRICS WITH Λ … PHYS. REV. D 99, 084037 (2019)

084037-11



ds2 ¼ ds2ðAÞdS þ
2na2

p

�
−ðZ4dZ3 − Z3dZ4Þ2

ðZ2
4 þ ϵZ2

3Þ2

−
a2

p2

ðZ3dZ3 þ ϵZ4dZ4Þ2
ðZ2

4 þ ϵZ2
3ÞðZ2

4 þ ϵZ2
3 − 2na2=pÞ

�
; ð54Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
0 − Z2

1 − Z2
2

p
. We clearly see that this is

exactly the Schwarzschild–(anti–)de Sitter metric (51)
boosted to infinite speed, with the identification M ¼ in
(and p2 → −p2).
Similarly, the BI metric (8) for ϵ2 ¼ 1, ϵ0 ¼ −1, n ¼ 0

corresponds to the parametrization

Z0 ¼ pq;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
cos t;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
sin t;

Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

p
cosðz=aÞ;

Z4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

p
sinðz=aÞ;

9>>>>>>=
>>>>>>;

for Λ > 0;

Z0 ¼ pq;

Z1 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
cos t;

Z2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
sin t;

Z3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

p
sinhðz=aÞ;

Z4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

p
coshðz=aÞ;

9>>>>>>>>=
>>>>>>>>;

for Λ < 0; ð55Þ

which only covers the region Z2
0 < Z2

1 þ Z2
2. In terms of the

coordinates (55), the complete BI metric reads

ds2 ¼ ds2ðAÞdS þ
2na2

p

�ðZ4dZ0
3 − Z0

3dZ4Þ2
ðZ2

4 þ ϵZ0
3
2Þ2

−
a2

p2

ðZ0
3dZ

0
3 þ ϵZ4dZ4Þ2

ðZ2
4 þ ϵZ0

3
2ÞðZ2

4 þ ϵZ0
3
2 þ 2na2=pÞ

�
; ð56Þ

which is again the same as the Schwarzschild–de Sitter
metric boosted to infinite speed [Eq. (51)] with M ¼ −n
and p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2 − Z2
0

p
.

We may thus conclude that both the AII and BI metrics
with anyΛ can be understood as (formal) limits of the classic
Schwarzschild–(anti–)de Sitter metric boosted to infinite
speed. Of course, complementary procedures can also be
applied: the Schwarzschild–de Sitter metric can be obtained
by slowing down (stopping) the source of the AII metric
with imaginary mass, or the BI metric with real mass.

VI. COORDINATE RANGES OF
THE B METRICS WITH Λ ≠ 0

To understand the global character of the B metrics with
any cosmological constant, and their possible extensions
and combinations, it is necessary to analyze the admitted
coordinate ranges.

A. BI metric with Λ
For ϵ2 ¼ 1 the metric (8) is

ds2 ¼ −p2ðϵ0 − q2Þdt2 þ p2

ϵ0 − q2
dq2

þ
�
1þ 2n

p
−
Λ
3
p2

�
dz2 þ

�
1þ 2n

p
−
Λ
3
p2

�
−1
dp2:

ð57Þ

FIG. 7. Allowed ranges of the coordinate p for Λ > 0 (left) and Λ < 0 (right) in the BI metric (57). The horizontal lines correspond to
different values of −2n. The parts of these lines that lie under the curve − Λ

3
p3 þ p determine the admitted range of p. Their parts above

the curve are dashed: there is no solution for these values because the metric would no longer have the correct signature. The
intersections mark the roots p0, p1 of Eq. (58), with 0 < p0 < p1.
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The coordinate ranges are (considering ϵ0 ¼ −1) q; z ∈ R,
t ∈ ½0; 2πÞ, while the range of p depends on n and Λ. It is
determined by the roots of the cubic equation

−
Λ
3
p3 þ pþ 2n ¼ 0: ð58Þ

The best way to illustrate the allowed ranges of p > 0 for
all possible cases is to plot the possible roots pi of Eq. (58)
as intersections of the function − Λ

3
p3 þ p with horizontal

lines corresponding to various values of −2n. Since the
metric coefficients gzz and gpp must remain positive, we
require − Λ

3
p3 þ p > −2n. An explicit visualization is

given in Fig. 7. The left part applies to Λ > 0, while the
right part applies toΛ < 0. It can be seen that forΛ > 0 and
n ≥ 0, the values of p are p ∈ ð0; p1Þ. For − 1

3
ffiffiffi
Λ

p < n < 0,

the allowed range is p ∈ ðp0; p1Þ given by two roots of
Eq. (58). For n ¼ − 1

3
ffiffiffi
Λ

p the metric degenerates because

only one value p ¼ 1ffiffiffi
Λ

p is allowed. Finally, there is no

solution for n < − 1

3
ffiffiffi
Λ

p . In the case Λ < 0, the situation is

much simpler because the function − Λ
3
p3 þ p monoto-

nously grows from zero. Therefore, for n ≥ 0 the coor-
dinate p takes the maximal range ð0;∞Þ, while for n < 0
its range is restricted to p ∈ ðp0;∞Þ.
Interestingly, it is possible to extend the BI metric (57) to

include pi (the roots of gzz) by performing the trans-
formation

ρ2¼1þ2n
p
−
Λ
3
p2; sinhτ¼q; ζ¼ 1

2n
z; φ¼ t: ð59Þ

In fact, for Λ ¼ 0 this reduces to Eq. (26). The resulting
metric is

ds2 ¼ 4n2½R1ðρÞð−dτ2þ cosh2τdφ2Þþ ρ2dζ2þR2ðρÞdρ2�;
ð60Þ

where R1ðρÞ¼ 1
4n2p

2ðρÞ, R2ðρÞ¼ 1
4n2ðnpðρÞ−2þ1

3
ΛpðρÞÞ−2,

with pðρÞ obtained by inverting the relation (59). For
Λ ¼ 0 we recover the metric (27). Relations between the
ranges of p and the ranges of ρ > 0 are shown in Table II.

B. BII metric with Λ
For ϵ2 ¼ −1 the metric (8) gives

ds2 ¼ −p2ðϵ0 þ q2Þdt2 þ p2

ϵ0 þ q2
dq2

þ
�
−1þ 2n

p
−
Λ
3
p2

�
dz2

þ
�
−1þ 2n

p
−
Λ
3
p2

�
−1
dp2; ð61Þ

TABLE II. Ranges of p and the corresponding ranges of ρ for
possible combinations of Λ and n in the BI metric (57). Here ρmin
and ρmax denote specific minimal and maximal values or ρ.

Λ n Range of p Range of ρ > 0

>0 >0 ð0; p1Þ ð0;∞Þ
>0 <0 ðp0; p1Þ ð0; ρmaxÞ
<0 >0 ð0;∞Þ ðρmin;∞Þ
<0 <0 ðp0;∞Þ ð0;∞Þ

FIG. 8. Allowed ranges of p for Λ > 0 (left) and Λ < 0 (right) in the BII metric (61). They are determined by those parts of the
horizonal lines −2n that lie under the curve − Λ

3
p3 − p.
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where t; q; z ∈ R (considering ϵ0 ¼ 1). The range of p is
given by the roots 0 < p0 < p1 of

−
Λ
3
p3 − pþ 2n ¼ 0: ð62Þ

We plot the allowed ranges of p for different values of Λ
and n in Fig. 8. For Λ > 0, n > 0 the range is p ∈ ð0; p0Þ,
while the case n ≤ 0 is forbidden. ForΛ < 0 the coordinate
p has the full range ð0;∞Þ for any n > 1

3
ffiffiffiffiffi
jΛj

p . If n ¼ 1

3
ffiffiffiffiffi
jΛj

p
the metric degenerates at p ¼ 1ffiffiffiffiffi

jΛj
p . If 0 < n < 1

3
ffiffiffiffiffi
jΛj

p , the

metric represents two separate regions p ∈ ð0; p0Þ and
p ∈ ðp1;∞Þ. Finally, if n ≤ 0 the coordinate p can only
take values p ∈ ðp1;∞Þ. Notice that n ≤ 0 is forbidden for
the BII metrics (28) with Λ ¼ 0 and (61) with Λ > 0. In
particular, the BII metric (61) with Λ < 0 (and sufficiently
large jΛj) includes the anti–de Sitter spacetime when n ¼ 0.
Again, we can perform its extension to include pi, in this

case by generalizing Eq. (29) to

ρ2¼−1þ2n
p
−
Λ
3
p2; sinhz¼q; ζ¼ 1

2n
z: ð63Þ

The extended BII metric will then be

ds2 ¼ 4n2½R1ðρÞðdz2 − cosh2 zdt2Þ þ ρ2dζ2 þ R2ðρÞdρ2�:
ð64Þ

The explicit form of the metric functions R1ðρÞ; R2ðρÞ
[reducing to Eq. (30) when Λ ¼ 0] is obtained by using the
function pðρÞ that is obtained by inverting Eq. (63). The
ranges of ρ > 0 corresponding to the allowed ranges of p
are shown in Table III.

C. BIII metric with Λ
The metric (8) for ϵ2 ¼ 0 (and, without loss of generality,

ϵ0 ¼ 1) reads

ds2 ¼ −p2dt2 þ p2dq2

þ
�
2n
p

−
Λ
3
p2

�
dz2 þ

�
2n
p

−
Λ
3
p2

�
−1
dp2; ð65Þ

where t; q; z ∈ R, and the range of p is determined by the
roots of

−
Λ
3
p3 þ 2n ¼ 0: ð66Þ

The results are visualized in Fig. 9. For Λ > 0, n > 0,
the allowed range is p ∈ ð0; p0Þ. As for the BII metric, the
case n ≤ 0 is not allowed. When Λ < 0, n ≥ 0, the
coordinate p varies in the range ð0;∞Þ, while for n < 0,
it varies in the range ðp0;∞Þ. Of course, Eq. (66) can be
explicitly solved: for n=Λ > 0, the root is p0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
6n=Λ3

p
,

while for n=Λ < 0 there is no positive root. These BIII
metrics are, in fact, equivalent to the Linet-Tian metric; see
Refs. [8,18].

TABLE III. Ranges of p and ρ for possible Λ and n in the BII
metric (61).

Λ n Range of p Range of ρ > 0

>0 >0 ð0; p0Þ ð0;∞Þ
<0 > 1

3
ffiffiffiffiffi
jΛj

p ð0;∞Þ ðρmin;∞Þ
<0 0 < n < 1

3
ffiffiffiffiffi
jΛj

p ð0; p0Þ; ðp1;∞Þ ð0;∞Þ
<0 <0 ðp1;∞Þ ð0;∞Þ

FIG. 9. Allowed ranges of p for Λ > 0 (left) and Λ < 0 (right) in the BIII metric (65). They are determined by the root p0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
6n=Λ3

p
of Eq. (66).
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We can also make an extension to include p0 (which
does not have a counterpart for the Λ ¼ 0 case because
there are no roots of gzz). Such an extension is achieved by

ρ2 ¼ 2n
p

−
Λ
3
p2; ζ ¼ 1

2n
z; ð67Þ

and the extended BIII metric takes the form

ds2 ¼ 4n2½R1ðρÞð−dt2 þ dq2Þ þ ρ2dζ2 þ R2ðρÞdρ2�; ð68Þ

where R1ðρÞ, R2ðρÞ are evaluated by inverting Eq. (67).
The allowed ranges of p and the corresponding ranges of ρ
are summarized in Table IV.

VII. GLOBAL STRUCTURE AND PHYSICAL
INTERPRETATION: TACHYONS IN
(ANTI–)DE SITTER SPACETIME

The metric describing both internal Regions 1 and 2
around the tachyonic source is the AII metric with Λ,
namely

ds2 ¼ σ2ðdϑ2 þ sinh2ϑdφ2Þ þ
�
1 −

2M
σ

þ Λ
3
σ2
�
dz2

−
�
1 −

2M
σ

þ Λ
3
σ2
�

−1
dσ2; ð69Þ

while the external Region 3 is described by the BI metric
with Λ

ds2 ¼ p2ð−dτ2 þ cosh2τdφ2Þ þ
�
1 −

2M
p

−
Λ
3
p2

�
dz2

þ
�
1 −

2M
p

−
Λ
3
p2

�
−1
dp2; ð70Þ

generalizing Eqs. (32) and (33), assuming M > 0.

A. Weak-field limit and distinct regions

As for Λ ¼ 0, the key point is to consider the weak-field
limit M → 0 of Eqs. (69) and (70), in which case the
curvature singularities at σ ¼ 0 and p ¼ 0 disappear and
the spacetimes (being then vacuum and conformally flat)
can readily be interpreted as an (anti–)de Sitter universe in
which the test tachyonic source (located at σ ¼ 0 and
p ¼ 0) moves with infinite speed.

The trajectory of such a tachyon on the hyperboloid (45)
can be determined using the corresponding five-dimensional
parametrizations. The internal AII metric (69) with M ¼ 0
and Λ > 0 is de Sitter spacetime covered by

Z0 ¼ �σ coshϑ;

Z1 ¼ σ sinhϑ cosφ;

Z2 ¼ σ sinhϑ sinφ;

Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ a2

p
cosϕ;

Z4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ a2

p
sinϕ; ð71Þ

which is actually Eq. (52) with p ¼ σ > 0, q ¼ � coshϑ
and t ¼ z≡ aϕ. The coordinate singularity at σ ¼ 0 with
ϑ finite, localizing the test tachyon, thus corresponds to the
trajectory

Z0 ¼ 0; Z1 ¼ 0 ¼ Z2;

Z3 ¼ a cosϕ;

Z4 ¼ a sinϕ: ð72Þ

Unlike the tachyon in Minkowski space whose trajectory is
given by the straight line (36), which is the Z axis, this
tachyon runs at infinite speed around the neck of the de
Sitter hyperboloid, which is the smallest possible circle Z2

3 þ
Z2
4 ¼ a2 in such a closed universe; see the left part of Fig. 10.
The same is true for the external BI metric (70) with

M ¼ 0 and Λ > 0. Indeed, the corresponding parametriza-
tion is

Z0 ¼ p sinh τ;

Z1 ¼ p cosh τ cosφ;

Z2 ¼ p cosh τ sinφ;

Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

q
cosϕ;

Z4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − p2

q
sinϕ; ð73Þ

which is equivalent to Eq. (55) with q ¼ sinh τ, t ¼ φ and
z ¼ aϕ. Setting p ¼ 0 at finite τ, we obtain again the
tachyonic trajectory (72).
For Λ < 0 the tachyonic trajectory is different. The anti–

de Sitter hyperboloid (45) with ϵ ¼ −1 is parametrized in
the form of the (weak-field limit of the) AII metric (69) as

Z0 ¼ �σ coshϑ;

Z1 ¼ σ sinhϑ cosφ;

Z2 ¼ σ sinhϑ sinφ;

Z3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − σ2

p
sinhðz=aÞ;

Z4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − σ2

p
coshðz=aÞ; ð74Þ

TABLE IV. Ranges of p and ρ for possible Λ and n in the BIII
metric (65).

Λ n Range of p Range of ρ > 0

>0 >0 ð0; p0Þ ð0;∞Þ
<0 >0 ð0;∞Þ ðρmin;∞Þ
<0 <0 ðp0;∞Þ ð0;∞Þ
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cf. Eq. (53). The test tachyon trajectory given by σ ¼ 0
with ϑ finite is thus located at

Z0 ¼ 0; Z1 ¼ 0 ¼ Z2;

Z3 ¼ �a sinhðz=aÞ;
Z4 ¼ �a coshðz=aÞ: ð75Þ

There are thus two tachyons moving at infinite speed along
main hyperbolic lines Z2

4 − Z2
3 ¼ a2 on opposite sides of

the anti–de Sitter hyperboloid, as illustrated in the right part
of Fig. 10. If the hyperboloid is unfolded into the covering
space, there would be infinitely many tachyon trajectories
(the tachyons would periodically appear, moving back and
forth in the universe).
The same result is obtained for the BI metric (70), which

for Λ < 0 corresponds to

Z0 ¼ p sinh τ;

Z1 ¼ p cosh τ cosφ;

Z2 ¼ p cosh τ sinφ;

Z3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

q
sinhðz=aÞ;

Z4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

q
coshðz=aÞ ð76Þ

[see Eq. (55)]. For p ¼ 0 and finite τ, we recover the same
tachyonic trajectory (75).

B. Mach-Cherenkov shock wave separating
the AII and BI metrics

In the weak-field limit, the pair of metrics (69) and (70)
together cover the full (anti–)de Sitter universe. The
internal Regions 1 and 2 are localized at Z2

0 > Z2
1 þ Z2

2

with Z0 > 0 and Z0 < 0, respectively. They are represented

by two AII metrics (69). The complementary external
Region 3 represented by a single BI metric (70) is localized
at Z2

0 < Z2
1 þ Z2

2.
These regions are separated by the surface Z2

1 þ Z2
2 ¼

Z2
0, with Z3 arbitrary such that Z2

3 ¼ ϵða2 − Z2
4Þ, corre-

sponding to the singularities σ ¼ 0; ϑ ¼ ∞ and p ¼ 0;
τ ¼ ∞, respectively. This surface represents the Mach-
Cherenkov shocks, i.e., the contracting one for Z0 < 0

given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2

p
¼ −Z0 and the expanding one for

Z0 > 0 given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 þ Z2

2

p
¼ Z0. As in the case of the

Minkowski background, visualized in Fig. 1, it is locally a
contracting/expanding cylinder around the superluminal
tachyonic source. However, in the Λ > 0 case, this cylinder
is “wrapped” around the circular trajectory (72) in closed
de Sitter space, so that topologically and also geometrically
it is a toroidal surface. For Λ < 0, instead, there are two
infinite cylinders around Eq. (75) on opposite sides of the
anti–de Sitter hyperbolic space; see Fig. 10.
The position of these shock surfaces, separating the

AII and BI regions, is shown in Fig. 11 for typical
three-dimensional sections (given by three distinct values
of Z4) through de Sitter space, and in Fig. 12 for anti–de
Sitter space.
It is also interesting to plot the Mach-Cherenkov shock

wave and tachyon position in compactified conformal
diagrams representing the global structure of (anti–)de
Sitter background space. Such Penrose conformal dia-
grams are specific parts of the Einstein static universe,
represented as a solid cylinder with conformal time η
plotted vertically and spatial angular coordinates χ; θ;ϕ
on the 3-sphere plotted horizontally; see e.g., Ref. [4].
Details of the exact construction of such diagrams,
describing the conformal structure of (anti–)de Sitter
space in the coordinates which correspond to the
weak-field limit of the B metrics, can be found in our
previous article [7]. Using these results (in particular,

FIG. 10. Motion of the infinitely fast test tachyon in (anti–)de Sitter background space. ForΛ > 0, the tachyon runs with infinite speed
in a closed circle around the neck of the de Sitter hyperboloid (left). For Λ < 0, there are two tachyons running along two hyperbolic
lines on opposite sides, corresponding to the signs � in Eq. (75), of the anti–de Sitter hyperboloid (right).

O. HRUŠKA and J. PODOLSKÝ PHYS. REV. D 99, 084037 (2019)

084037-16



FIG. 11. Separation of the background de Sitter space into Regions 1, 2 and 3, covered by the AII and BI metrics, for Z2 ¼ 0 and
jZ4j < a (upper left part), jZ4j > a (upper right part) and jZ4j ¼ a (lower part). For jZ4j < a the separation surface Z2

1 þ Z2
2 ¼ Z2

0 cuts
the de Sitter hyperboloid, for jZ4j ¼ a it is tangent to it, and for jZ4j > a this surface does not intersect the hyperboloid. Because the
coordinate Z4 is suppressed here, the tachyon motion is not visualized very well: in this section, it corresponds just to two points at the
intersection of the Z3 axis with the hyperboloid when jZ4j < a, and one point when jZ4j ¼ a. The tachyon motion is better seen in
Fig. 10 where both nontrivial coordinates Z3 and Z4 are visible.

FIG. 12. Separation of the background anti–de Sitter space into
Regions 1, 2 and 3 for the section Z2 ¼ 0, Z3 ¼ const. Unlike for
de Sitter space, visualized in Fig. 11, this picture looks quali-
tatively the same for any value of Z3. The motion of the tachyon
is better seen in Fig. 10.

FIG. 13. The position of the tachyon and the Mach-Cherenkov
shock wave separating the AII and BI metrics in the global
conformal representation of de Sitter spacetime for arbitrary
ϕ ¼ const. Since the angular coordinate ϕ ∈ ½0; 2πÞ is sup-
pressed, the tachyon is visible here only as a single point at
η ¼ π

2
; χ ¼ π

2
; θ ¼ π

2
. The bottom spacelike surface η ¼ 0 is the

past conformal infinity I− of the de Sitter universe, while the top
surface η ¼ π is its future conformal infinity Iþ.
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Fig. 4 and Fig. 13 of Ref. [7]) we plot here the conformal
diagram for de Sitter space in Fig. 13, and for anti–de
Sitter space in Fig. 14.

C. Boosted metrics with Λ ≠ 0

Following the idea outlined in Ref. [7], it is useful to
perform a boost which slows the tachyonic source from
infinite speed to some finite speed v > 1. This enables us to
better illustrate its motion and the generated Mach-
Cherenkov conical shock waves in a (anti–)de Sitter

universe, analogously to the flat background case
shown in Fig. 4. Such a boost must be performed in the
five-dimensional coordinates of Eqs. (45) and (46).
Choosing the spatial Z3 direction, it reads

Z0 ¼
vZ0

0 − Z0
3ffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 − 1
p ; Z3 ¼

vZ0
3 − Z0

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p ; ð77Þ

cf. Eq. (21). The tachyon moving along Z1 ¼ 0 ¼ Z2 at
Z0 ¼ 0 [see Eqs. (72) and (75)] is then located at Z0

3 ¼ vZ0
0,

and the shock wave surface Z2
1 þ Z2

2 ¼ Z2
0 becomes

FIG. 14. The position of the tachyon and the Mach-Cherenkov shock wave separating the AII and BI metrics in the global conformal
representation of anti–de Sitter spacetime for ϕ ¼ 0 (left), ϕ ¼ π

4
(middle) and ϕ ¼ π

2
(right). Unlike the case Λ > 0 shown in Fig. 13,

these conformal diagrams depend on ϕ. In the unfolded covering space, the tachyon periodically reappears in time, namely at
η ¼ π

2
þ kπ, k ∈ Z. Its full trajectory is only visible in the section ϕ ¼ π

2
. The outer cylindrical boundary χ ¼ π

2
is the null conformal

infinity I of the anti–de Sitter universe.

FIG. 15. Motion of a slowed tachyon in de Sitter (left) and anti–de Sitter (right) background space in boosted coordinates. Its trajectory
is given by Z0

3=Z
0
0 ¼ v > 1 and Z1 ¼ 0 ¼ Z2.

O. HRUŠKA and J. PODOLSKÝ PHYS. REV. D 99, 084037 (2019)

084037-18



Z2
1 þ Z2

2 ¼
ðvZ0

0 − Z0
3Þ2

v2 − 1
: ð78Þ

The trajectory of this slowed tachyon in a (anti–)de Sitter
universe is illustrated in Fig. 15.
Such a motion in de Sitter space admits two interpreta-

tions. The first is that the tachyon moves forward in time
from the initial point (starting at Z0

0 ¼ −Z0
0max) to the final

point (reaching it at Z0
0 ¼ þZ0

0max), and then travels back-
wards in time to the initial point, also at a speed faster
than light. The second is that the tachyon moves from the
initial to the final point along both trajectories (recall that
there is not a unique geodesic between two events in pseudo-
Riemannian geometry). The specific value Z0

0max can be
evaluated. Substituting the conditions Z1¼0¼Z2, Z0

3¼vZ0
0

into the boosted form of Eq. (45), namely −Z02
0 þ Z2

1 þ
Z2
2 þ Z02

3 þ Z2
4 ¼ a2, we obtain Z02

0 ¼ ða2 − Z2
4Þ=ðv2 − 1Þ.

This explicitly determines the position of the tachyon on the
de Sitter hyperboloid as a function of time Z0

0. Extreme
values of Z0

0 arise when Z4 ¼ 0, yielding

Z0
0max ¼

affiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p : ð79Þ

FIG. 16. Separation of the de Sitter universe into Regions 1, 2 and 3 in the boosted coordinates for jZ4j < a (upper left part), jZ4j > a
(upper right part) and jZ4j ¼ a (lower part), with Z2 ¼ 0. The intersections of these separation boundaries with the hyperboloid in the
upper left part give the position of the Mach-Cherenkov shock cones in the de Sitter universe. The tachyon is always located at their joint
vertex at Z1 ¼ 0 ¼ Z2.

FIG. 17. Separation of the anti–de Sitter universe into
Regions 1, 2 and 3 in the boosted coordinates. Notice that
Regions 1 and 2, covered by the AII metrics, are larger, whereas
Region 3 covered by the BI metric is smaller, compared to
Fig. 12 (i.e., without the boost).
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In anti–de Sitter space there are two tachyons, each
moving faster than light on opposite sides of the universe;
see the right part of Fig. 15. “Unfolding” the hyperboloid,
there would be just one tachyon oscillating between
Z0
3; Z4 ¼ �∞, that is “bouncing off” the conformal infinity.
Regions 1, 2 and 3, separated by the conical shock wave

surface (78) in the boosted coordinates of de Sitter space,
are shown in Fig. 16. At any time Z0

0, these separation
boundaries localize the Mach-Cherenkov shock on the
hyperboloid, namely the rear expanding cone and the
forward contracting cone. Analogously to the situation
shown in Fig. 4, the tachyon is always located at the
intersection of these two cones at Z1 ¼ 0 ¼ Z2.
Similarly, in Fig. 17 we visualize these separation

boundaries and the corresponding two conical shocks in
the boosted form of anti–de Sitter space.
Finally, it is illustrative to visualize the de Sitter

spacetime, together with the actual position of the Mach-
Cherenkov shocks, in spatial sections given by Z1, Z2, Z0

3

(with a fixed value of Z4 < a). This is done in Fig. 18 for
five different times Z0

0 ¼ const. In any such section, the de
Sitter spatial geometry is a 3-sphere, represented here as a
2-sphere because one spatial dimension is suppressed in
this plot. As a function of Z0

0, this de Sitter sphere contracts
to a minimal size at Z0

0 ¼ 0 and then reexpands. The shock
surface given by Eq. (78) has the form of two cones, with
the tachyon located at their joint vertex. The position of the
Mach-Cherenkov shocks in the de Sitter universe is given
here by the circular intersection of these cones with each
sphere. There are two shocks: the forward shock and the
rear one. Recall that these shocks separate the internal
Regions 1 and 2 (with the AII metric) from the external
Region 3 (endowed with the BI metric).
The top left part of Fig. 18 shows the situation in a

generic time Z0
0 < −Z0

0max, in which case both the shocks
are contracting from the equator of the spherical de Sitter
space, approaching the north pole and the south pole (both
located at Z1 ¼ 0 ¼ Z2), respectively. At the special time

FIG. 18. A time sequence visualizing the de Sitter universe—in this section Z1, Z2, Z0
3 represented as a sphere—at five different times

Z0
0 ¼ const (and fixed Z4 < a). The universe contracts, reaches its minimal size at Z0

0 ¼ 0, and then reexpands. The intersections of the
sphere with the cones give the actual position of the two Mach-Cherenkov shocks in the universe. For Z0

0 < −Z0
0max both shocks are

contracting on the sphere towards its poles, while for Z0
0 > Z0

0max they are both expanding from the poles. The tachyon is always located
at the joint vertex of the cones. Analogous pictures apply to the anti–de Sitter universe expressed in global static coordinates because the
2-spaces of constant T and r are also spheres; see the metric (5.4) in Ref. [4].
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Z0
0 ¼ −Z0

0max, shown in the top right part, the tachyon
occurs at the north pole of the space when the first
contracting shock reaches it, crosses it, and starts to
reexpand. The second shock in the southern hemisphere
continues to contract towards the south pole. At Z0

0 ¼ 0

(see the middle part of Fig. 18) the situation is fully
symmetric: the closed de Sitter universe has a minimal
radius, both shock waves are of the same size, and they are
located symmetrically with respect to the equator. For
Z0
0 > 0, the situation is complementary to the top part of the

figure. The bottom left part shows the tachyon located at the
south pole at time Z0

0 ¼ Z0
0max when the second contracting

shock has just shrinked to zero and starts to reexpand from
the south pole, while the first shock had been already
expanding from the north pole. A generic situation at a time
Z0
0 > Z0

0max is shown in the bottom right part of Fig. 18,
with two expanding shocks in the expanding de Sitter
universe, both approaching the equator.

VIII. CONCLUSIONS

We have presented and analyzed the classes of A and B
metrics with an arbitrary value of the cosmological con-
stant. While the famous Schwarzschild–(anti–)de Sitter
spacetime (which is the AI metric) represents the spheri-
cally symmetric gravitational field of a static massive
source, the AII and BI metrics describe specific parts of
the field of a superluminal source, i.e., a tachyon moving
along the axis of symmetry. In fact, all three families of
metrics are related by an appropriate boost (admitting
speeds v > 1).
We have studied the weak-field limit, analytic exten-

sions, and global structure of these spacetimes. We have
demonstrated that the full gravitational field of a tachyon in

a Minkowski or (anti–)de Sitter universe can be obtained by
combining a pair of AII metrics with a single BI metric.
The former represent the contracting/expanding interior
regions while the latter represents an exterior region with
respect to the separation boundary which is the contracting/
expanding Mach-Cherenkov shock wave. This structure
of the “composite spacetime,” yielding the complete
gravitational field of a tachyonic source moving with
any superluminal speed in a Minkowski, de Sitter or
anti–de Sitter universe, has been analyzed and visualized
in numerous pictures.
In fact, the present work is the third paper in our recent

series which we have devoted to a deeper geometric,
algebraic, and physical investigation of a large family on
nonexpanding Plebański-Demiański spacetimes. This whole
family, generalizing the original B metrics of Ref. [1], was
described and its free parameters were identified and studied
in our work [8]. A thorough investigation of the character of
the corresponding background coordinates for de Sitter and
anti–de Sitter universes was presented in Ref. [7]. We hope
that, together with this third complementary paper, we
have thus provided an extensive survey and review of this
simple yet interesting family of exact solutions of Einstein’s
field equations.
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