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We develop a method for computing the linearized gravitational backreaction for Nambu-Goto strings
using a fully covariant formalism. We work with equations of motion expressed in terms of a higher
dimensional analog of the geodesic equation subject to self-generated forcing terms. The approach allows
arbitrary spacetime and world sheet gauge choices for the background and perturbation. The perturbed
spacetime metric may be expressed as an integral over a distributional stress-energy tensor supported on the
string world sheet. By formally integrating out the distribution, this quantity may be reexpressed in terms of
an integral over the retarded image of the string. In doing so, one must pay particular attention to
contributions that arise from the field point and from nonsmooth regions of the string. Then, the gradient of
the perturbed metric decomposes into a sum of boundary and bulk terms. The decomposition depends upon
the world sheet coordinates used to describe the string, but the total is independent of those considerations.
We illustrate the method with numerical calculations of the self-force at every point on the world sheet for
loops with kinks, cusps and self-intersections using a variety of different coordinate choices. For field
points on smooth parts of the world sheet the self-force is finite. As the field point approaches a kink or cusp
the self-force diverges, but is integrable in the sense that the displacement of the world sheet remains finite.
As a consistency check, we verify that the period-averaged flux of energy-momentum at infinity matches
the direct work the self-force performs on the string. The methodology can be applied to address many
fundamental questions for string loop evolution.
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I. INTRODUCTION

A. Cosmological superstrings

Cosmic superstrings [1] are the strings of string theory
stretched to macroscopic length scales by the Universe’s
early phase of exponential, inflationary growth [2–4]. The
strings produced near the close of that epoch have formed a
complicated evolving network of various string elements
during the subsequent, more leisurely epochs of expansion
[5–7]. Long, horizon-crossing strings stretch; short curved
pieces accelerate and attempt to straighten; and, occasion-
ally, individual segments intercommute (collide, break and
reattach) chopping out loops and forming new, connected
string pathways. Analytic and numerical calculations dem-
onstrate that these processes rapidly drive the network and
the loops to self-similar evolution with macroscopic stat-
istical properties largely determined by the string tension
[8–12]. The energy densities in long strings, in loops, and in
gravitational radiation divided by the critical energy density
are all independent of time. The distribution of loops of a
given size relative to the horizon scale is also fixed.
An understanding of this evolution is informed by

previous studies of one-dimensional defects in the context
of symmetry breaking in grand unified theories (GUTs [13];
for a general review see [14]). One important difference for

superstrings is the expected value of the string tension. In
GUT theories the string tensionGμ=c2 ∼ Λ2

GUT=M
2
p ∼ 10−6

is fixed by the GUTenergy scale ΛGUT. Observations of the
microwave sky have ruled out GUT strings as the source of
cosmological perturbations [15–17] and led to upper bounds
on the string tension. Currently, broadly model-independent
limits from lensing [18–25], CMB studies [15–17,26–35]
and gravitational wave background and bursts [36–49]
give Gμ=c2 ≲ 10−7. More stringent but somewhat more
model-dependent limits from pulsar timing [50–54] have
regularly appeared. Currently, the strongest inferred limit is
Gμ=c2 ≲ 10−11 [55,56].
Low tension strings are natural in string theory and have

little difficulty in this regard. In the most well-studied
compactifications, standard model physics is located at the
bottom of a warped throat where all energy scales are
exponentially diminished compared to the string scale.
Superstrings have tensions that are reduced by exactly this
effect and can correspond to energies as small as TeV (see
[1,57] for reviews).
The magnitude of Gμ=c2 influences many properties of

the strings and loops that make up the network. A loop with
characteristic size l and energy ∝ μl will completely
dissipate by gravitational wave emission in times t ∼ l=
ðΓGμ=cÞ where Γ ∼ 50 is a loop-dependent pure number
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[36,58–64]. If Gμ=c2 ≪ 10−6 then superstring loops
evaporate by gravitational wave emission much less rapidly
than GUT string loops. The characteristic size of loops that
evaporate gravitationally in tH, the age of the Universe, is
lg ¼ tHΓGμ=c. These turn out to dominate the distribution
of loop sizes found in the Universe today.
Current simulations report that about 10%–20% of the

string network that is chopped out ends up in the form of
large loops, with sizes within a few orders of magnitude of
the horizon scale at birth [11,12]. The rest form very small
loops with size scale relative to the horizon set by a power
of Gμ=c2 [65–70]. These rapidly evaporate. Today, the
string network’s energy density is dominated by the large
loops formed at an early epoch. If Gμ=c2 < 7 × 10−9 it is
before matter-radiation equality. Today’s size distribution
increases as l → lg from above (the Universe was denser
at earlier times and formed more smaller loops); the
distribution is cut off by the evaporation process at l < lg.
Long gravitational lifetimes have another important

effect: the center of mass velocity of the old loops is small
and they cluster like cold dark matter [71]. This opens the
way to experimental tests of string theory that are based
upon direct detection of gravitational wave emission and
observation of string microlensing of background stellar
sources [72].

B. Gravitational backreaction in the string network

The most numerous loops are close to the characteristic
size lg, set by gravitational backreaction. An understanding
of string gravitational backreaction is crucial for making
forecasts of experimental studies and planning future
observational campaigns. The emission of gravitational
radiation and the associated dissipative forces shrink the
size of the loop (energy loss) and impart a recoil (momen-
tum and angular momentum loss). These may change
the character of the loop oscillation over long timescales.
The radiative emission processes have been well studied
assuming that the loop is a long-lived periodic oscillator
[36,58–64,73,74]. The secular effects of gravitational back-
reaction on the loop oscillation are relatively unexplored.
Two important aspects are the propensity of loops to self-
intersection and the evolution of discontinuous features on
the loops.
Self-intersections are important because they can lead to

the rapid demise of the long-lived loops which are of
greatest observational interest. The reason is simple: iso-
lated, dissipationless loops are exactly periodic. If a loop
can self-intersect it will do so over and over again
eventually leading to intercommutation and breakage.
This process shatters the loop into many small looplets
[64] moving apart at relativistic speeds, each of which will
evaporate in only a fraction of the time required by the
original loop. Self-intersections have the potential to
radically depress the number of old loops of size lg that

would otherwise exist throughout the Universe. The loop
distribution will be cut off at scale > lg; the number
density at that cutoff will be substantially smaller. Further-
more, the intercommutation process evicts the shattered
progeny from being bound to the galaxy. Backreaction can
significantly alter experimental forecasts.
Another important aspect of gravitational backreaction is

the presence of kinks and cusps on loops. Typically when a
new loop is formed from a smooth segment of string the
orbit of the new loop will contain an infinitesimal element
of string that moves at the speed of light for an infinitesimal
time, repeating once per period. This is a cusp, a well-
characterized, periodic strong source of gravitational wave
emission. Cusp emission is the principle target of gravi-
tational wave searches from string loops because it is
strong, beamed and has a well-understood signal form
[36–49]. The author of Ref. [70] has argued that a scaling
network may be inefficient at forming loops with cusps for
the following reason. Scaling requires chopping out a
significant fraction of the long strings’ length each time
the Universe doubles in size. The chopping removes loops
and inevitably adds kinks (derivative discontinuities) to the
remaining long string segments. Smooth long strings
accumulate kinks and grow dense with small scale structure
as the Universe ages. New loops inherit the small scale
structure. The first time that the loop begins to form a
cusplike structure the kinky string reconnects, effectively
excising the part of the loop responsible for the cusp. Such
a loop is left with nothing but kinks. Kinks may also be
detected by gravitational wave searches but are not as
strong or as unidirectional. Recent cosmological network
simulations support this theoretical prediction [11,12]. In
particular, they show that loops with kinks are formed
preferentially and there are few cusps.1

This general evolutionary outline prompts a number
of questions related to how gravitational backreaction
influences the evolution of derivative discontinuities on
loops and long strings. Qualitatively, we understand that
gravitational backreaction will smooth kink discontinuities
(lessening the size of the jump in the tangent vector from
one side to the other) and theoretically allow new cusps to
form. There is a competition between the rate at which the
discontinuity diminishes and the rate at which the loop
shrinks. One question is whether the loop fully evaporates
before the cusp reforms. Another question is whether a
reformed cusp has the same scale as the loop itself or an
intrinsically smaller scale. These can be answered by
calculating the dynamical evolution of a string loop with
backreaction for many orbits.
Another aspect that requires a full treatment of back-

reaction is how a loop with many kinks evolves (since the

1It must be noted that it is not clear whether the string
substructure in even the biggest simulations has entered a scaling
regime or is still in the process of evolving.
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scaling solution suggests the ubiquity of kinks). If the total
rate of gravitational wave emission scales linearly with the
number of kinks [75] then the loop’s lifetime is shortened.
However, the backreaction of many closely spaced radiat-
ing kinks may qualitatively affect the evolution predicted
on the basis of a single kink. It is therefore of interest to
understand how backreaction operates when there is a high
density of kinks on long strings and loops.

C. Theory and simulation

In this paper we develop a complete formalism for
computing the gravitational backreaction on cosmic string
loops, and we demonstrate the method by computing the
gravitational self-force for several specific cosmic string
configurations. Some similar studies were previously done
in Refs. [76,77], but these were limited in scope and did not
include many of the details considered here.
Quashnock and Spergel (QS) [76] derived linearized

equations of motion for a string interacting with its own
gravitational field (in this context, linearized means first
order in Gμ=c2 expanded about flat spacetime). They
worked with particular coordinates and gauge choices that
were chosen to simplify many aspects of the calculation.
The weak field approximation breaks down at kinks, cusps
and self-intersections, but these freely moving line singu-
larities were treated in a perturbative sense.
QS computed the self-force at a field point as sourced by

elements of the retarded, distant string image. They con-
cluded that only finite divergence-free backreaction forces
existed for field points with smooth sources, and that the
contribution to the backreaction forces tended to zero as the
source point approached the field point. This situation
stands in contrast to the analogous point particle case
studied by Dirac [78], in which self-interaction leads to a
renormalized mass. Carter and Battye [79] and Buonanno
and Damour [80] showed that while a general string has a
local divergent part to its perturbed metric, the Nambu-
Goto string is special and the total force density due to all
the local divergent pieces exactly vanishes. The remaining
force is given by long-range interactions.
Kinks and cusps are examples where smoothness in the

vicinity of the field point fails to hold. QS did not explicitly
discuss the limiting behavior near a kink but did argue on
general grounds that the backreaction force per source
coordinate interval at a cusp would be infinite, but
integrable. They also solved numerically for the evolution
of the loop represented both as a continuous function and as
a set of kinks (straight line segments with small tangent
vector discontinuities) by integrating the backreaction over
a full period. The simulations showed that cusps survive
backreaction but are deformed and delayed. Longer inte-
grations suggested that the amplitude of the cusp and the
associated asymmetric rocket effects were suppressed by
backreaction. Finally, QS also showed that small (com-
pared to the size of the loop) kinks decay more rapidly than

the string as a whole. The magnitude of the discontinuity at
a kink (change in tangent vectors) lessens but the disconti-
nuity itself is not smoothed out by dissipation.
It is some measure of the complexity of the problem that

most work since the QS investigation has dealt with
specific issues and has not attempted such an ambitious
numerical treatment. Anderson [81] analytically calculated
the gravitational backreaction forces for the Allen-Casper-
Ottewill (ACO) loop [61], a rotating loop configuration
with a pair of kinks (one tangent vector is continuous and
the other is discontinuous). The coordinates and gauge
conditions used were equivalent to those of [76]. Anderson
demonstrated explicitly that all the components of 4-vector
acceleration diverged near the kink. The calculated forces
were, however, integrable so that the equations of motion in
the weak field limit were integrable too.2

In this paper we do not evolve the string configuration
(that will be done in a follow-up) but study in detail the
method of calculation of the first-order self-force. Certain
intermediate quantities in our calculations exhibit diver-
gences. The occurrence of these calculational divergences
is tied to three interrelated factors: the choice of world
sheet gauge (e.g., conformal or other), the specification of
residual gauge freedom in the choice of world sheet
coordinates (e.g., null or non-null coordinates), and the
existence of discontinuous sources anywhere on the loop’s
retarded image (the intersection of the world sheet with the
past light cone of the field point). However, the total
integrated self-force at any point on a smooth region of the
world sheet is always finite due to cancellations of
divergences, and it is independent of these choices. This
finiteness is consistent with the lack of renormalization of
the string tension discussed in [82] and with the general
conclusions of smoothness of [76].
While the self-force is finite in smooth regions of the

world sheet, it diverges in the limit when the field point
approaches cusps or kinks on the world sheet. However,
when one solves the linearized equation of motion for the
perturbation to the world sheet, the linearized displacement
of the world sheet is finite. Going beyond this treatment
will involve critically examining the linearized approxi-
mation and the distributional representation of features
such as kinks and cusps. The question of whether physical
divergences occur in a fully self-consistent evolution is
beyond the scope of this paper. Nevertheless, the method-
ology we develop in this paper should allow addressing
certain aspects of the question in the future. Our method-
ology will allow us to refine the gauge during the course of
a self-consistent evolution (continuing to use linearization
with distributional models) to separate invariant physical
divergences from calculational divergences. In the case of
the cusp, for example, we would need to step carefully

2The author of [81] did not evaluate forces at the kink itself
where the metric is ill determined.
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through a single period of oscillation to handle the
occurrence of the divergence at a single spacetime point.
As a result of the work in this paper there is evidence that

any such singularity is weak in the “physical” sense. In
particular, period-averaged changes are given by simple
quadratures over the world sheet. Orbit averaging does not
require instant-by-instant evolution but presumes that the
metric and string are only mildly perturbed in some average
sense. We find that over an oscillation both the kink and
cusp lead to finite displacements of the world sheet and
finite small changes in energy, momentum and angular
momentum. All period-averaged physical divergences are
small and bounded in the sense of being proportional toGμ.
This is quite mild compared to the character of the singular
behavior of point masses in general relativity, for example.
Recently, Wachter and Olum [83,84] have studied the

evolution of loops composed of linear pieces (both right
and left moving modes are given by a set of fixed tangent
vectors which generate kinks). Using the methodology of
[76] they found the metric perturbations and the loop’s
acceleration and analytically evaluated the backreaction for
a planar rectangular loop [59]. They deduced the energy
loss, changes to the left and right moving modes and the
kink smoothing (diminishing the tangent vector jumps).
Small angle kinks (acute angles) disappeared more quickly
than large angle kinks (of order π=4). This observation is
complementary to that of [76] which reported that small
sized kinks (with a small length compared to the loop size)
disappeared more quickly than large sized kinks (with
length a fraction of the full loop size). The authors of
Refs. [83,84] compared the loop evaporation time to the
kink smoothing time and found that the loop angle was a
key parameter. For small angles, kinks disappeared rapidly.
For large angles, the loop evaporated first. Finally, the
analysis of the piecewise loops showed that the straight line
segments begin to curve after a short period for all except
loops with special symmetry.

D. Lagrangian methodology

Carter pioneered the treatment of perturbations in an
arbitrarily curved spacetime background with relativistic
string, membrane or other brane models where p, the
spatial dimension of the brane, is less than n, the spatial
dimension of spacetime ([85–87]; see [88] for a review).
The action in such models is

I ¼
Z

LdΣ̄ ð1:1Þ

dΣ̄ ¼ jγj1=2dpþ1ζ ð1:2Þ

where dΣ̄ is the surface measure element induced on the
timelike world sheet by the background metric, γ is
the determinant of the induced metric and ζ stands for
the (pþ 1) internal coordinates. We may assume a constant

scalar Lagrangian L ¼ −mpþ1 where m is a characteristic
mass scale and ℏ ¼ c ¼ 1. For p < n the brane and the
Lagrangian are distributional in spacetime. The brane is
concentrated on lower dimensional world sheets in the
higher dimensional spacetime. The case p ¼ 1 and n ¼ 3 is
an effective low-energy description of minimally coupled
F- and D-strings with two-dimensional world sheets.
In this work we apply the formalism to compute the

metric perturbation generated by a cosmic string. Two
important considerations guide our efforts. First, the dis-
tributional nature of the strings motivates a Lagrangian
approach. Second, we work as much as possible in terms of
tensorial quantities of the background spacetime and
avoiding the use of specific systems of intrinsic coordinates
for the brane submanifolds. We develop a fully covariant
formalism and apply it in a variety of circumstances.

E. Conventions used in this paper

Throughout this paper we follow the conventions of
Ref. [89]. We use a “mostly positive” metric signature,
ð−;þ;þ;þÞ for the spacetime metric and ð−;þÞ for the
world sheet metric; the connection coefficients are defined
by Γλ

μν ¼ 1
2
gλσðgσμ;ν þ gσν;μ − gμν;σÞ; the Riemann tensor is

Rα
λμν ¼ Γα

λν;μ − Γα
λμ;ν þ Γα

σμΓσ
λν − Γα

σνΓσ
λμ; the Ricci tensor

and scalar are Rαβ ¼ Rμ
αμβ and R ¼ Rα

α; and the Einstein
equations are Gαβ ¼ Rαβ − 1

2
gαβR ¼ 8πTαβ. We use stan-

dard geometrized units, with c ¼ G ¼ 1, latin indices for
world sheet components and greek indices for four-dimen-
sional spacetime components.

II. COVARIANT EQUATIONS OF MOTION FOR
A NAMBU-GOTO COSMIC STRING LOOP

We begin by considering a Nambu-Goto cosmic string
tracing out a two-dimensional world sheet in spacetime. We
identify a point on the string by a pair of world sheet
coordinates fζ1; ζ2g and denote the spacetime coordinate
of that point by zαðζaÞ.
Given the full spacetime metric, gαβ, the induced metric

on the world sheet is defined by

γab ¼ gαβ∂azα∂bzβ: ð2:1Þ

The world-sheet-tangent projection tensor is defined as

Pαβ ¼ γab∂azα∂bzβ ð2:2Þ

where γabγbc ¼ δac . The corresponding world-sheet-
orthogonal projection tensor is

⊥αβ ¼ gαβ − Pαβ: ð2:3Þ

For tensor fields with support confined to the world sheet,
the tangentially projected covariant derivative is
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∇̄α ¼ Pα
μ∇μ: ð2:4Þ

Finally, defining the extrinsic curvature (or second funda-
mental tensor) and its trace,

Kαβ
γ ≡ Pμβ∇̄αPμγ; Kγ ≡ gαβKαβ

γ; ð2:5Þ

Battye and Carter [90] showed that the equation of motion
of the string may be written in the compact form

Kρ ¼ 0: ð2:6Þ

This can be expanded explicitly as

Kγ ¼ 1ffiffiffiffiffiffi−γp ∂að ffiffiffiffiffiffi
−γ

p
γab∂bzγÞ þ PαβΓγ

αβ; ð2:7Þ

where γ ¼ detðγabÞ and Γγ
αβ is evaluated at the spacetime

coordinate of the world sheet point zμðζaÞ.

III. GRAVITATIONAL PERTURBATIONS OF
COSMIC STRING LOOPS

We now wish to specialize to the case where the
string tension is small and the problem may be treated
perturbatively in Gμ=c2. Then, the string can be con-
sidered to be moving in a perturbed spacetime with
metric

gαβ ¼ g
∘
αβ þ hαβ;

where the background, unperturbed metric is g
∘
αβ and the

perturbation hαβ is sourced by the string’s own stress
energy. We can likewise parametrize the world sheet in
terms of a background piece plus a perturbation,

zα ¼ zαð0Þ þ zαð1Þ; ð3:1Þ

and will work to first order3 in both the metric
perturbation, hαβ, and in the world sheet perturba-
tion, zαð1Þ.

A. Zeroth-order equation of motion

For the case where backreaction is ignored, we may treat
the string as moving in a fixed background spacetime with
equation of motion

1ffiffiffiffiffiffi−γp ∂að ffiffiffiffiffiffi
−γ

p
γab∂bz

γ
ð0ÞÞ þ PαβΓγ

αβ ¼ 0: ð3:2Þ

If the background is Minkowski spacetime, the second term
vanishes and the equation of motion is just the standard
two-dimensional scalar wave equation for each component
of the world sheet coordinate vector.
Further simplification can be obtained by considering the

gauge freedom in defining the world sheet coordinates. A
common class of choices invokes the conformal gauge
condition, whereby the world sheet metric is required to be
conformally flat:

γab ¼ ϕηab; ð3:3Þ

where ηab is a two-dimensional Minkowski metric and
ϕ > 0 is a conformal factor. A consequence of this choice is
that the world sheet derivatives, ∂ζ1z

μ and ∂ζ2z
μ, must

satisfy certain orthogonality conditions (the details of
which depend on the particular choice of world sheet
coordinates) and that the equation of motion is given by

ϕ−1ηab∂a∂bz
γ
ð0Þ ¼ 0: ð3:4Þ

This is just the 1þ 1D flat space scalar wave equation for
each spacetime component of the string world sheet vector
zαð0Þ. The solutions to this equation are periodic in both ζ1

and ζ2 in the sense that for a loop of length L we
have zαðζ1; ζ2Þ ¼ zαðζ1 þ L=2; ζ2 þ L=2Þ.
Weak solutions of Eqs. (3.2) and (3.4) allow derivative

discontinuities, so generic solutions are not smooth. The
tangent sphere representation provides a description of the
derivatives of the two components of a solution [14].
Perfectly smooth string loop solutions have two continuous
paths on the tangent sphere. However, there may be long-
lived kinks (corresponding to gaps in the tangent sphere)
that propagate around the string along null world sheet
directions, and cusps (corresponding to intersections in the
tangent sphere) that only exist instantaneously. There may
also be self-intersections, where the string crosses over on
itself.

B. First-order equation of motion
for the string world sheet

We now return to the general case (no specialization of
gauge or metric) to write down the perturbed equation of
motion. Demanding that the perturbed trace of the extrinsic
curvature vanish as in Eq. (2.6) and assuming that the
zeroth-order equation of motion is satisfied gives [87,90]

⊥ρ
χ∇̄μ∇̄μzχð1Þ − 2∇̄μzαð1ÞK

μ
α
ρ þ⊥βρPμνRμενβzεð1Þ

¼ Kαβρhαβ −⊥ρ
βPλτ

�
∇λhβτ −

1

2
∇βhλτ

�
: ð3:5Þ

3For notational simplicity, from here on we will always make
explicit the dependence on the perturbed quantities hαβ and zαð1Þ,
but we will implicitly define everything else in terms of back-
ground quantities. So, for example, we will have γab ¼
g
°
αβ∂azαð0Þ∂bz

β
ð0Þ and likewise for all of the other quantities defined

in Sec. II.
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The homogeneous version of this equation is a higher
dimensional analog of the geodesic deviation equation.
Identifying the term on the right-hand side as a self-

force, it is convenient to split this force into separate
contributions, one involving the metric perturbation and the
other involving its derivative,

Fρ ¼ Fρ
1 þ Fρ

2; ð3:6aÞ

Fρ
1 ≡ −⊥ρ

λPμν

�
∇μhνλ −

1

2
∇λhμν

�
; ð3:6bÞ

Fρ
2 ≡ Kμνρhμν: ð3:6cÞ

Using the definition (2.5) of Kμνρ we can write Fρ
2 in terms

of Hab ≡ hμν∂azμ∂bzν (the projection of hμν along the
world sheet),

Fρ
2 ¼ ðγacγbd∂czσ∂dzλ∇λPσ

ρÞHab

¼ ⊥ρ
σγ

acγbdð∂c∂dzσ þ Γσ
λτ∂czλ∂dzτÞHab: ð3:7Þ

We can also write the first term as

Fρ
1 ¼ −

1ffiffiffiffiffiffi−γp ⊥ρ
λF λ

conf ; ð3:8Þ

where4

F ρ
conf ≡ ffiffiffiffiffiffi

−γ
p

Pμν

�
∇μhνρ −

1

2
∇ρhμν

�
ð3:9Þ

is the quantity that appears on the right-hand side of the
conformal gauge equation of motion (3.14) below. Battye
and Carter [90] showed that for a general choice of gauge it
is crucial to both project orthogonal to the world sheet and
to include the additional term involving Kμνρ in order to get
the correct gravitational self-force.5 In a subsequent work
[91] they showed that, despite the presence of divergences
in the metric perturbation, the gravitational self-force (3.6)
is finite for strings in four spacetime dimensions with
smooth world sheets.

The very general form for the equations of motion given
by Eq. (3.5) allows an arbitrary choice of gauge for the
background, both for the spacetime coordinates and for the
world sheet coordinates. It also allows separate arbitrary
gauge transformations for the perturbations and is invariant
under two different types of linearized gauge transfor-
mations:

(i) Linearized coordinate transformations in spacetime,
which induce changes in the world sheet and metric
perturbations, zαð1Þ→ zαð1Þ þξα, hαβ → hαβ − 2∇ðαξβÞ.

(ii) Linearized coordinate transformations on the world
sheet, which induce the changes

zαð1Þ → zαð1Þ þ ∂azαξa: ð3:10Þ

This gauge freedom shows that only the component
of zαð1Þ that is perpendicular to the world sheet

contains physical information.

C. Choices of gauge

1. Gauge choice to zeroth order

We now once again specialize to Minkowski spacetime
in Lorentzian coordinates at zeroth order. Then, the third
term on the left-hand side of Eq. (3.5) vanishes identically.
The first term simplifies to

⊥ρ
χ

1ffiffiffiffiffiffi−γp ∂að ffiffiffiffiffiffi
−γ

p
γab∂bz

χ
ð1ÞÞ; ð3:11Þ

and the second term is

−2∂az
ð1Þ
α γabzσð0Þ;bdz

α
ð0Þ;cγ

cd⊥σ
ρ: ð3:12Þ

The first two terms simplify further if we use the conformal
gauge [Eq. (3.3)] to zeroth order, in which case the left-
hand side becomes

⊥ρ
χ

1ffiffiffiffiffiffi−γp ηab∂a∂bz
χ
ð1Þ: ð3:13Þ

2. Gauge choice to first order

At first order we adopt Lorenz gauge6 for the spacetime
coordinates. For the world sheet coordinates there are
several natural choices. We focus here on the conformal
gauge as it is computationally the most convenient, and
direct the reader to Appendix A 4 for a discussion of other
possible choices.
The choice of conformal gauge at first order amounts to

choosing the world sheet coordinates so that the conformal

4We use a caligraphic font for F μ
conf since it is not a gauge-

specialized version of the general self-force Fμ, because the left-
hand side of Eq. (3.14) is not obtained from the left-hand side of
(3.5) by a gauge specialization.

5In fact, a sequence of papers provided derivations of the
fundamental equations of motion with increasing degrees of
rigor. Following on from Ref. [90], Battye and Carter [87]
performed a more careful analysis using a second-order Lagran-
gian variational treatment to derive the first-order equations of
motion for the displacement vector of the world sheet and for the
metric perturbations. When restricted to the linearized back-
reaction regime, their final results [given in Eqs. (30), (31) and
(33) of [87] with terms involving Kρ identically zero for
linearized backreaction] are consistent with their earlier results
and with the expressions above.

6This gauge condition is often referred to as Lorentz gauge but
is actually due to Lorenz [92].

CHERNOFF, FLANAGAN, and WARDELL PHYS. REV. D 99, 084036 (2019)

084036-6



flatness condition (3.3) holds to first order as well as zeroth
order. Anderson [81] showed that in this gauge the equation
of motion, Eq. (3.5), takes the simple form

ηab∂a∂bz
χ
ð1Þ ¼ −F χ

conf : ð3:14Þ

When our sign convention for the metric is taken into
account, this form is consistent with that used by Buonanno
and Damour [82].
Comparing with the covariant equation, Eq. (3.5), we see

a number of differences due to the gauge specialization:
(i) The right-hand side of Eq. (3.14) corresponds to the

second term on the right-hand side of Eq. (3.5), but
with the projection tensor dropped.

(ii) The left-hand side of Eq. (3.14) corresponds to the
first term on the left-hand side of Eq. (3.5), but again
with the projection tensor dropped.

(iii) The remaining two terms in Eq. (3.5) involving
couplings to the extrinsic curvature tensor have been
dropped—they cancel against the effect of dropping
the projection tensors in this gauge. (We have
already dropped the term involving the Riemann
tensor since we are working in flat spacetime.)

A simple proof of this can be obtained by starting with
the general coordinate expression (2.7) for Kρ before
considering perturbations, and applying the conformal
gauge condition (3.3). We have

Kρ ¼ 1ffiffiffiffiffiffi−γp ηab∂a∂bzρ þ γabzλ;az
μ
;bΓ

ρ
λμ ð3:15Þ

without approximation (zρ, γab, gαβ, Γρ
λμ exact). Now

consider evaluating this expression with the metric gαβ →
ηαβ þ hαβ and world sheet zα → zαð0Þ þ zαð1Þ. The zeroth-

order term vanishes by assumption. The variation of the
first term in Eq. (3.15) comes from replacing zρ with
zρð0Þ þ zρð1Þ, since the zeroth-order quantity ηab∂a∂bz

ρ
ð0Þ

vanishes. Therefore this term yields the left-hand side of
Eq. (3.14). Similarly, the variation of the second term in
Eq. (3.15) comes from the variation in Γρ

λμ, since this
quantity vanishes in the background by assumption (we are
working in Lorentzian coordinates in Minkowski space-
time). Using expression (2.2) for the projection tensor we
see that the variation of this term yields the right-hand side
of Eq. (3.14).
For the specific choice of gauge in this section F ρ

conf
naturally appears in the balance laws for energy and
momentum relating the flux of radiation at infinity to
the local dissipation forces (see Appendix C).

D. First-order metric perturbation

The stress tensor for a Nambu-Goto cosmic string is
given by [14]

TαβðxÞ ¼ −Gμ
ZZ

Pαβδ4ðx; zÞ
ffiffiffiffiffiffi
−γ

p
dζ1

0
dζ2

0 ð3:16Þ

where δ4ðx; zÞ ¼ δ4ðx−zÞffiffiffiffi−gp is the four-dimensional invariant

Dirac delta distribution and z, Pαβ and γ are all functions of
ζa

0
. A coupling of the string to gravity leads to deviations of

the spacetime from the background. For sufficiently small
string tensions, Gμ=c2 ≪ 1, this deviation may be treated
perturbatively by expanding the metric about the back-
ground spacetime,

gαβ ¼ g
∘
αβ þ hαβ: ð3:17Þ

The perturbation satisfies the linearized Einstein equation,
which in Lorenz gauge is just the wave equation,

□h̄αβ þ 2Rα
γ
β
δhγδ ¼ −16πTαβ ð3:18Þ

where h̄αβ ≡ hαβ − 1
2
g
∘
αβg

∘γδhγδ is the trace-reversed metric
perturbation. We can invert this equation using the retarded
Green function, which satisfies the wave equation,

□Gαβ
α0β0 þ 2Rα

γ
β
δGγδ

α0β0 ¼ −gαα
0
gββ

0
δ4ðx; x0Þ: ð3:19Þ

In a four-dimensional Minkowski background (g
∘
αβ ¼ ηαβ)

the solution is

Gret
αβ

α0β0 ðx; x0Þ ¼ 1

4π
Θ−ðx; x0Þδα0ðαδβ

0
βÞδ½σðx; x0Þ�: ð3:20Þ

Here, σðx; x0Þ is the Synge world function, defined to be
one-half of the square of the geodesic distance between x
and x0, so that the Dirac delta function is nonzero only when
x and x0 are null separated. In Minkowski spacetime, we
have the closed form

σðx; x0Þ ¼ 1

2
ηαβðxα − xα

0 Þðxβ − xβ
0 Þ: ð3:21Þ

The metric perturbation is then given by convolving the
Green function with the source,

h̄αβðxÞ ¼ 16π

Z
Gret

αβ
α0β0 ðx; x0ÞTα0β0 ðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
d4x0

¼ −4Gμ
ZZ

Pαβδ½σðx; zÞ�
ffiffiffiffiffiffi
−γ

p
dζ1

0
dζ2

0
; ð3:22Þ

where Pαβ, zα and γ are all functions of ζ1
0
and ζ2

0
.

In practical calculations it is convenient to perform one
of the integrals immediately using the identity

δ½σðx; zðζ1; ζ2ÞÞ� ¼ δ½ζ1 − ζ1retðx; ζ2Þ�
jr1j

ð3:23Þ
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where r1 ≡ ∂ζ1
0σ ¼ ð∂ζ1z

α0 Þð∂α0σÞ and ζ1retðx; ζ2Þ parametr-
izes the retarded image, defined by

σ½x; zðζ1ret; ζ2Þ� ¼ 0: ð3:24Þ

This gives

h̄αβðxÞ ¼ −4Gμ
I � ffiffiffiffiffiffi−γp

Pαβ

jr1j
�
ζ1

0
ret

dζ2
0
; ð3:25Þ

where the quantity in square brackets is evaluated at
ζ1

0 ¼ ζ1
0
retðζ20 Þ. The one-dimensional integration traces

exactly one period of the loop’s retarded image and there
is no boundary; it is a closed loop. Equivalently, the non-
trace-reversed metric perturbation is given by

hαβðxÞ ¼ −4Gμ
I � ffiffiffiffiffiffi−γp

jr1j
ΣαβP

�
ζ1

0
ret

dζ2
0
; ð3:26Þ

where Σαβ ≡ Pαβ − 1
2
ηαβP with P≡ Pγ

γ . Note that the
integral does not converge when x is a point on the world
sheet; this is because the integrand diverges whenever
r1 ¼ 0, which occurs when source and field points
coincide, i.e., x ¼ z.
Derivatives of the first-order metric perturbation may be

computed in a similar manner to hαβ itself, with the caveat
that care must be taken in nonsmooth regions of the string.
These nonsmooth regions occur at kinks and cusps, and
also in the vicinity of the field point, x, if it is on the
world sheet.
Ignoring the issue of smoothness for now, and differ-

entiating Eq. (3.22) with respect to the field point, x, we get

∂γh̄αβðxÞ¼−4Gμ
ZZ

Pαβ∂γðδ½σðx;zÞ�Þ ffiffiffiffiffiffi
−γ

p
dζ1

0
dζ2

0

¼−4Gμ
ZZ

Pαβ∂γσδ
0½σðx;zÞ� ffiffiffiffiffiffi

−γ
p

dζ1
0
dζ2

0

¼−4Gμ
ZZ

Pαβ
∂γσ

∂ζ1
0σ
∂ζ1

0 ðδ½σðx;zÞ�Þ ffiffiffiffiffiffi
−γ

p
dζ1

0
dζ2

0

¼−4Gμ
ZZ

PαβΩγ

r1
∂ζ1

0 ðδ½σðx;zÞ�Þ ffiffiffiffiffiffi
−γ

p
dζ1

0
dζ2

0
;

ð3:27Þ

where Ωα ≡ xα − xα
0
is the coordinate distance between

x and x0. On a smooth world sheet, this may be integrated
by parts to give

∂γh̄αβðxÞ

¼ 4Gμ
ZZ

∂ζ1
0

� ffiffiffiffiffiffi−γp
PαβΩγ

r1

�
δ½σðx; zÞ�dζ10dζ20

¼ 4Gμ
I �

1

jr1j
∂ζ1

0

� ffiffiffiffiffiffi−γp
PαβΩγ

r1

��
ζ1

0
ret

dζ2
0
: ð3:28Þ

Note that there are no boundary terms introduced in the
integration by parts as the integration is over a closed loop.
Additionally, note that we can also arrive at the same
equation by differentiating Eq. (3.25) and accounting for
the fact that the dependence on x appears both through r1
and through ζ1

0
ret, along with the relation ∂γζ

10
ret ¼ −Ωγ=r1

(see Sec. 10 of [93]). Again, we may write this in the non-
trace-reversed form,

∂γhαβðxÞ¼4Gμ
I �

1

jr1j
∂ζ1

0

� ffiffiffiffiffiffi−γp ΣαβΩγ

r1

��
ζ1

0
ret

dζ2
0
: ð3:29Þ

E. First-order self-force

With the results from the previous section at hand, it is
straightforward to obtain an integral expression for the first-
order gravitational self-force. Substituting Eqs. (3.26) and
(3.29) into (3.6) we obtain

Fμ
1ðzÞ ¼ −4Gμ⊥μγPαβ

×
I �

1

jr1j
∂ζ1

0

� ffiffiffiffiffiffi−γp ðΣβγΩα − 1
2
ΣαβΩγÞ

r1

��
ζ1

0
ret

dζ2
0
;

ð3:30Þ

Fμ
2ðzÞ ¼ −4GμKβαμ

I � ffiffiffiffiffiffi−γp Σαβ

jr1j
�
ζ1

0
ret

dζ2
0
: ð3:31Þ

Here, it is understood that the ⊥μγ , Pαβ and Kβαμ appearing
outside the integral are to be evaluated at z, whereas the Pαβ

and γ appearing inside the integral are to be evaluated at the
retarded point z0.
One may expect a difficulty to arise from the fact that h̄αβ

diverges logarithmically (and ∂γh̄αβ is even more divergent)
when the source and field points coincide. This would
appear to be a major obstacle for computing the self-force
since the integral expressions for h̄αβ and ∂γh̄αβ will not
converge when the field point, x, is on the world sheet.
Fortunately, it turns out that for field points on smooth parts
of the world sheet, some miraculous cancellations in the
particular combination appearing in the equation of motion
[and hence the self-force, Eq. (3.6)] lead to many of the
divergent terms canceling. The result is that one obtains a
convergent integral and a finite self-force. This was shown
to hold in [82] for the conformal gauge and in [91] for an
arbitrary gauge. However, both cases implicitly assumed a
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smooth string world sheet. It turns out that the conclusions
continue to hold for a nonsmooth world sheet provided the
field point is on a smooth part of the world sheet. As a field
point approaches a nonsmooth point on the world sheet the
total self-force diverges.
Despite this latter divergence, there is one further

important consideration, namely the physical significance
of the self-force itself. It is possible that a divergence in the
self-force is a spurious artifact arising from, for example, an
unfortunate choice of gauge or from a distributional treat-
ment of nonsmooth world sheet features. Indeed, Anderson
[81] computed explicit closed form expressions for the self-
force in the case of the ACO string. His expressions diverge
logarithmically and as negative powers in the vicinity of the
kink. However, this divergence is integrable and he was
able to solve the equations of motion to compute finite
deviations in both the position and velocity of the string.7

Similar conclusions have also been drawn in other work
[76,83,84].
In this work, we empirically find results that are

consistent with these previous conclusions; although the
equation of motion has a divergent self-force term it turns
out to give a finite change to the world sheet. Any physical
measurement must be consistent with the inferred finite
displacement. With a distributional description of kinks and
cusps as adopted here finite displacements can lead to
singular changes in derivative quantities such as tangent
vectors on the world sheet.8 Optimistically, we can expect
the finiteness of world sheet displacements to carry through
to more general scenarios, and we hope that the divergences
in the force are always integrable. A proof of this fact can
likely be obtained from a local expansion of the type given
in Sec. IV D below, adapted to allow for a kink or cusp
within the “local” region. Since there are considerable
subtle details in this calculation, we will leave its explora-
tion for future work.

IV. EVALUATING THE GRADIENT OF THE
RETARDED METRIC PERTURBATION

In the previous section, we obtained integral expressions
for the metric perturbation, its derivative, and the gravita-
tional self-force. The latter two are valid provided the
retarded image of the world sheet is smooth. In reality, we
do not have the luxury of a smooth world sheet for at least
two reasons:
(1) We are interested in studying strings with kinks and

cusps, and the world sheet is nonsmooth at the
location of any kink or cusp;

(2) We are interested in computing the self-force, which
requires us to evaluate the metric perturbation and its
derivative in the limit x → z. In that case, if one
considers the retarded image of a point directly on
the string, x ¼ z, one finds that it is not in general
smooth at the field point, ζ2

0 ¼ ζ2
0 ðxÞ.

These can lead to important distributional type contribu-
tions to the integrand in the expression for the self-force
which are easily missed. In the following subsections, we
extend Eqs. (3.29) and (3.30) above to allow for these
nonsmooth features. We begin with a general covariant
derivation of the integral to explain how coordinate-
dependent divergences arise, and we follow up with an
explicit treatment of both issues mentioned above.

A. Covariant evaluation of the world sheet integral

The expression for the gradient of the metric perturbation
at a point xα is of the form (dropping spacetime tensor
indices)

I ¼
Z
W
ωabδ

0ðσÞ: ð4:1Þ

Here W is the world sheet defined by xα ¼ zαðζaÞ, ωab is
some given smooth two-form on the world sheet, and the
function σ is as defined in Eq. (3.21). In this subsection we
will derive some identities for integrals of the form (4.1) for
arbitrary ωab and arbitrary smooth σ, and in the next
subsection we will specialize to the specific form (3.21) of
σ for our application here.
As a warm-up, let us first consider a simpler version of

the integral (4.1), namely

J ¼
Z
W
ωabδðσÞ: ð4:2Þ

Let C be the curve given by σ ¼ 0. We would like to derive
an expression for J of the form

J ¼
Z
C
θa ð4:3Þ

where θa is a one-form on the world sheet. The result
for θa is

7More precisely, the derivative along the direction orthogonal
to the kink’s propagation direction was divergent at the kink;
however Anderson was able to obtain a gauge transformation
which eliminated this divergence and so it can be attributed to
nonphysical coordinate effects.

8Divergent behavior of this sort (changes of orderGμ=c2 in the
tangent vector direction over a single period of oscillation) has
recently been reported by Blanco-Pillado, Olum andWachter (see
Acknowledgements). In our treatment here we emphasize that we
ignore the possibility of additional contributions coming from the
kink itself. It is difficult to validate this assumption within a
distributional approach. It is likely that a matched asymptotic
approach along the lines of Ref. [94] for point particles would be
required to provide a definitive answer to the question of whether
the distributional treatment omits any important physical effects.
We anticipate that such a treatment would also regularize singular
tangent vector derivatives so that all physical measurements are
finite, not merely consistent with the inferred finite world sheet
displacement.
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θa ¼
Dah

ωbcDbσDch
: ð4:4Þ

Here Da can be taken to be either a covariant or a partial
derivative on the world sheet, and ωab is the inverse of ωab.
Finally h can be taken to be any smooth function on the
world sheet which has the property that dh ∧ dσ ≠ 0.
Note that the expression (4.4) for the one-form, when

pulled back onto the curve C, is independent of the choice
of h. To see this, suppose we replace hwith a functionH of
h and σ,

h → Hðh; σÞ: ð4:5Þ

Under this transformation

Dah → H;hDahþH;σDaσ: ð4:6Þ

When this expression is inserted into the one-form (4.4),
the contribution from the second term to the denominator
vanishes because of antisymmetrization, and the contribu-
tion to the numerator vanishes when the one-form is pulled
back to C, since σ ¼ 0 on C. The factors of H;h cancel
between the numerator and the denominator, and so we see
that the pullback of θa to C is invariant under the trans-
formation. Thus it is independent of the choice of h.
We now turn to the derivation of the formula (4.4). We

specialize to coordinates ζ0̄ ¼ σ, ζ1̄ ¼ h. The integral (4.2)
becomes

J ¼
Z

dσ
Z

dhωσhðσ; hÞδðσÞ ð4:7Þ

where ωσh ¼ ω0̄ 1̄. Evaluating the integral using the delta
function gives

J ¼
Z

dhωσhð0; hÞ: ð4:8Þ

We now rewrite this in a form which is valid in arbitrary
coordinate systems. The factor

R
dh can be written as the

integral over C of the one-form Dah. The factor ωσh can be
written as

ωσh ¼
1

ωσh : ð4:9Þ

Using the tensor transformation law we have

ωσh ¼ ω0̄1̄ ¼ ωab ∂ζ0̄
∂ζa

∂ζ1̄
∂ζb ¼ ωab ∂σ

∂ζa
∂h
∂ζb : ð4:10Þ

Combining Eqs. (4.8)–(4.10) now yields the result given by
Eqs. (4.3) and (4.4).

Turn next to the corresponding analysis for the integral
(4.1). Suppose that instead of integrating over the entire
world sheet, we integrate over a region ΔW of it. The
intersection of the boundary ∂ΔW of this region with
the curve C will consist of a set of discrete points Pi. The
formula for the integral is

I ¼
Z
ΔW

ωabδ
0ðσÞ ¼ Iboundary þ Ibulk ð4:11Þ

where the contribution from the boundary is

Iboundary ¼
X
i

� 1

φ

kaDah
kbDbσ

: ð4:12Þ

Here ka is the tangent to the boundary δΔW and

φ ¼ ωabDaσDbh: ð4:13Þ
The contribution from the bulk is

Ibulk ¼
Z
C
θa ð4:14Þ

where the one-form θa is

θa ¼
1

φ3
ðωbcDbφDchÞDah: ð4:15Þ

Under a change of the function h of the form (4.5), the
one-form θa is no longer invariant. Instead, it transforms by
an exact form9

θa → θa þDaλ; ð4:16Þ
where λ ¼ H;σ=ðφH;hÞ. The change in the boundary
integral is

X
i

� H;σ

φH;h
; ð4:17Þ

which cancels against the change (4.16) in the one-form.
Thus we make the important observation that the integral
(4.11) is independent of choice of h, but the split into
boundary and integral terms is not.
We now turn to the derivation of the formula (4.11). As

before we initially specialize to coordinates ðζ0̄; ζ1̄Þ ¼
ðσ; hÞ. Inserting the identity

ωσhδ
0ðσÞdσ∧dh¼d½ωσhδðσÞdh�−δðσÞdωσh∧dh ð4:18Þ

into the integral (4.11) and using Stokes’s theorem gives a
result of the form of the right-hand side of (4.11), with

Iboundary ¼
Z
∂ΔW

ωσhδðσÞdh ð4:19Þ

9This formula is valid when pulled back to the curve C.
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and

Ibulk ¼ −
Z
ΔW

δðσÞωσh;σdσdh: ð4:20Þ

We evaluate the first term by taking the parameter along the
boundary δΔW to be σ and using dh ¼ dσðdh=dσÞ. This
gives

Iboundary ¼
X
i

ωσh
dh
dσ

: ð4:21Þ

Using Eqs. (4.10) and (4.13) this reduces to the
formula (4.12).
For the bulk contribution, from the formula (4.20) and

using arguments similar to those given for the integral J, we
find

θa ¼ −∂σð1=φÞDah ¼ φ;σ

φ2
Dah; ð4:22Þ

where we have used φ ¼ 1=ωσh. We evaluate the σ
derivative using

φ;σ ¼
∂φ
∂ζ0̄ ¼

∂φ
∂ζa

∂ζa
∂ζ0̄ : ð4:23Þ

We express the Jacobian matrix in terms of its inverse using

∂ζa
∂ζā ¼

2

½ωcdωc̄ d̄
∂ζc̄
∂ζc

∂ζd̄
∂ζd�

ωabωā b̄
∂ζb̄
∂ζb : ð4:24Þ

This formula is specific to two dimensions and is valid for
any choice of two-form. Specializing to ā ¼ 0̄ gives

∂ζa
∂ζ0̄ ¼

ωabDbh
ωcdDcσDdh

: ð4:25Þ

Inserting this into (4.23) and then into (4.22) finally gives
the result (4.15).
Finally, although the results derived in this subsection are

covariant, they do depend on a choice of arbitrary function
h on the world sheet. While the complete final result (4.11)
does not depend on h, the integrand (4.15) of the bulk
integral, as well as the splitting into bulk and boundary
terms, does depend on h. Elsewhere in this paper, we
choose to identify h with one of the world sheet coor-
dinates, which explains the coordinate dependence of the
integrand and of the splitting.

B. World sheets with kinks

We may now consider how our 1D integral expressions
(3.26) and (3.29) for the retarded metric perturbation and its
gradient must be modified to allow for the presence of a
kink. A cosmic string with a kink may be treated as
piecewise smooth, with discontinuities in certain tangent
vectors whenever a kink is crossed. To obtain an expression

allowing for these discontinuities we assume that the
retarded image on the world sheet is nonsmooth at
ζ2 ¼ k, where k may depend on the field point x.10

Then, one way to achieve the desired result is to break
up the integration in Eq. (3.25) at the discontinuity,

h̄αβðxÞ ¼ −4Gμ
Z

k−þL

kþ

� ffiffiffiffiffiffi−γp
Pαβ

jr1j
�
ζ1

0
ret

dζ2
0
; ð4:26Þ

where kþ (k−) is a point just to the right (left) of the kink.
Now, when we differentiate this expression we have to take
account of the possible dependence of the end points on x.
If the discontinuity in the string is at a fixed value of ζ2 (i.e.,
in the case of a kink propagating along the ζ1 direction),
then k does not depend on x and the boundary terms vanish.
If, instead, the discontinuity is at a fixed value of ζ1 (i.e., in
the case of a kink propagating along the ζ2 direction), then
k does depend on x. Then, using ∂γζ

2ðζ1retÞ ¼ −Ωγ=r2,
where r2 ≡ ∂ζ2

0σ ¼ ð∂ζ2z
α0 Þð∂α0σÞ, we get

∂γh̄αβðxÞ ¼ 4Gμ

�Z
k−þL

kþ

�
1

jr1j
∂ζ1

0

� ffiffiffiffiffiffi−γp
PαβΩγ

r1

��
ζ1

0
ret

dζ2
0

þ
� ffiffiffiffiffiffi−γp

PαβΩγ

jr1jr2

�
k−
−
� ffiffiffiffiffiffi−γp

PαβΩγ

jr1jr2

�
kþ

�
:

ð4:27Þ
It is easy to check that one can arrive at the same expression
by appropriately including the boundary terms from the
integration by parts described in Sec. IVA above. The
presence (or lack thereof) of boundary terms is then
manifestly dependent on the particular choice of world
sheet coordinates. Importantly, this apparent world sheet
coordinate dependence only appears in the split between
boundary and bulk terms; the sum of the two does not have
any world sheet coordinate dependence.
In the case of a smooth string, the two boundary terms

are identical and cancel, so we recover the same formula as
we had before. In the presence of a kink, however, the
boundary terms in the two limits kþ and k− yield different
values and so we pick up an overall contribution from the
kink in addition to the integral over the smooth portion of
the string. A similar contribution arises when we utilize
multiple coordinate systems to cover the string worldsheet:
we account for the boundary terms (4.21) that arise when
the coordinates change by evaluating the dependence of the
end points on x in a similar manner to our treatment of
kinks.

10Although there are world sheet coordinates where one of the
coordinates is a constant along a kink, we will not restrict
ourselves to only that case here. We permit the kink to have a
general path in terms of the worldsheet coordinates, fix ζ1 by the
null condition with respect to the field point and observe that the
kink location given in terms of ζ2 generally varies with the field
point.
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C. World sheets with cusps

We have already seen that care must be taken in
computing the self-force for cosmic strings with kinks.
Since cusps also introduce nonsmoothness in the world
sheet, one may expect similar care to be required for cuspy
strings. However, there is one crucial difference between a
string with kinks and one with cusps: cusps typically occur
at a single point on a world sheet while kinks occur along a
one-dimensional curve. The result is that, in the case of
kinks, all points on the string “see” a kink at some point in
their retarded image, and hence the integrand in Eq. (3.29)
will always be supplemented by a boundary term some-
where. Conversely, there is only a one-dimensional set of
points on the string which “see” a cusp in their retarded
image; everywhere else the integrand does not encounter a
discontinuity.
This suggests that strings with cusps may not need the

same careful treatment as those with kinks. This appears to
be the case in our test case in Sec. VI below, where we
probe the region around the one-dimensional cusp-seeing
curve and find no evidence of unusual behavior. This is, of
course, merely empirical evidence, and it should be
followed with a more formal treatment; it is likely that
the local expansions developed in Sec. IV D will prove
useful in such an analysis.

D. Contribution from the field point

The final place where we must take care is in the case
where the field point itself is on the string. Then, just as in
the case of a kink, the retarded image may have a
discontinuity at the field point. While it may be possible
in such cases to use a similar treatment to what we have
done for kinks, there is subtlety in taking the limit of the
field point to the world sheet which makes such a treatment
difficult. Instead we choose a more robust approach, by
using a local expansion of the integrand for field points
nearby11 the string and then analytically taking the limit of
the field point to the world sheet.
The purpose of the following subsections is to develop

the pieces required for such an expansion. In doing so we
make some assumptions:
(1) We will study the contribution to the self-force

integral nearby where the force is to be computed

and will ultimately shrink the size of this region
down to zero;

(2) We will assume that the world sheet is smooth in this
region. This is true everywhere except when the field
point exactly lies on a kink or cusp; points arbitrarily
close to a kink or cusp will, however, be perfectly
acceptable.

(3) We will assume that the induced metric does not
diverge (or vanish) on the string. This will be true
everywhere except where a field point lies exactly on
a cusp.

(4) We will assume a conformal gauge for the back-
ground world sheet, in particular Eq. (3.3) and the
orthogonality relations for ∂ζ1z

μ and ∂ζ2z
μ which

follow from it. This step is not a strict requirement of
the approach, but it does significantly simplify the
tensor algebra in the calculation.

Before we proceed with the derivation of the local
expansion, we point out one interesting feature, namely
that the divergence in the self-force that arises on kinks and
cusps comes purely from the short-distance portion of the
self-field, i.e., the contribution to the integral from nearby
points. It is therefore likely that a more careful treatment of
what happens to the self-force exactly on a kink or cusp
may be obtained from a local expansion of the kind given
here. We leave the exploration of this issue for future work.

1. Setup of the local expansion

We wish to compute the contribution to the self-force for
points near the field point. To do so, we will construct a
local expansion of the self-force integrand about a point on
the world sheet which is assumed to be nearby the field
point, xα, and to lie on its retarded image, zα½ζ1retðx; ζ2Þ; ζ2�.
We denote this expansion point by z̄α ≡ zα½ζ̄1; ζ̄2� with
ζ̄1 ≡ ζ1retðx; ζ̄2Þ for a particular choice of ζ̄2. The conformal
factor at this point is ϕ̄≡ ϕðζ̄1; ζ̄2Þ and we assume the
expansion has a radius of convergence that includes part of
the image. We can then simplify the evaluation of the local
integration over that part of the image utilizing the
approximate expansion.
We will now seek an expansion of the self-force

integrand (3.30) (note that there is no contribution to Fμ
2

from the field point since it does not involve derivatives of
hαβ) in Δζ2 ≡ ζ2 − ζ̄2.12 The first stage in our calculation is
to find an expansion of the retarded coordinate ζ1retðx; ζ2Þ
about ζ̄1 ¼ ζ1retðx; ζ̄2Þ. We denote the difference between
these two quantities Δζ1 and will seek an expansion of it in
powers ofΔζ2. In doing so, we will need to be careful about
what our particular choice of world sheet coordinate is. We
will also need to separately consider the cases where Δζ2 is

11Here, we use the term “nearby” loosely as such a notion is
obviously dependent on the choice of world sheets, and in
particular on the choice of coordinate which is used as the
variable of integration. Not surprisingly, we will find that the
conclusions we draw will depend on the choice of world sheet
coordinates. Nevertheless, just as in Sec. IVA, this apparent
coordinate dependence is merely an artifact of how we choose to
split up the self-force into contributions from various integrals
and boundary terms. In reality, the total self-force obtained by
combining all of these contributions is independent of the choice
of world sheet coordinates.

12Notationally, the integration in (3.29) is over the dummy
variable ζ2

0
but we suppress these primes for clarity.
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positive or negative, as in some instances the expansion has
a different form in the two cases.

2. Expansion of the light-cone condition:
Space-time coordinates

In this section we focus on a pair of spacelike and
timelike type coordinates which we will denote by ζ (for
space) and τ (for time), i.e., ðζ1; ζ2Þ ¼ ðτ; ζÞ. The important
defining features of these coordinates are the conformal
gauge orthogonality relations

gαβ∂τzα∂τzβ ¼ −ϕ; ð4:28Þ

gαβ∂τzα∂ζzβ ¼ 0; ð4:29Þ

gαβ∂ζzα∂ζzβ ¼ ϕ: ð4:30Þ

We can also obtain similar relations involving higher
derivatives (with respect to τ and/or ζ) of zα by differ-
entiating these fundamental relations. We additionally have
the conformal gauge equation of motion, Eq. (3.4), which
in τ − ζ coordinates gives us a relation between second τ
and second ζ derivatives of zα:

∂ττzα ¼ ∂ζζzα: ð4:31Þ

We will use these identities throughout the following
calculation to simplify the results we obtain.
We will start from the fact that the (retarded) source point

zα
0
and the field point zα are null separated, σðzα; zα0 Þ ¼ 0.

Expanding this about σ̄ ≡ σðzα; z̄αÞ we obtain a power
series in Δτ and Δζ,

σ ¼ σ̄ þ σ̄;τΔτ þ σ̄;ζΔζ

þ 1

2
ðσ̄;ττΔτ2 þ 2σ̄;τζΔτΔζ þ σ̄;ζζΔζ2Þ

þ 1

6
ðσ̄;τττΔτ3 þ 3σ̄;ττζΔτ2Δζ þ 3σ̄;τζζΔτΔζ2

þ σ̄;ζζζΔζ3Þ þ � � � : ð4:32Þ

Using ∂a ¼ ð∂azαÞ∇α (acting upon the second argument of
σ̄) along with the identities above and the fact that
∇α∇βσ ¼ gαβ for Minkowski spacetime, it is straightfor-
ward to rewrite the coefficients in terms of world sheet
derivatives of z̄α and ϕ̄:

σ̄;ττ ¼ z̄α;ζζσ̄α − ϕ; ð4:33Þ

σ̄;τζ ¼ z̄α;τζσ̄α; ð4:34Þ

σ̄;ζζ ¼ z̄α;ζζσ̄α þ ϕ; ð4:35Þ

σ̄;τττ ¼ z̄α;τζζσ̄α −
3

2
ϕ;τ; ð4:36Þ

σ̄;ττζ ¼ z̄α;ζζζσ̄α −
1

2
ϕ;ζ; ð4:37Þ

σ̄;τζζ ¼ z̄α;τζζσ̄α þ
1

2
ϕ;τ; ð4:38Þ

σ̄;ζζζ ¼ z̄α;ζζζσ̄α þ
3

2
ϕ;ζ; ð4:39Þ

and likewise for higher-order terms (for the current calcu-
lation of the contribution to the self-force from the field point
it is only necessary to go to the cubic order given here).

3. Expansion of the retarded time

In order to obtain the desired expansion of ΔτðΔζÞ, we
now make the ansatz that Δτ has an expansion in integer
powers of an order counting parameter ϵ ∼ Δζ and that
σ̄ ¼ Oðϵ2Þ. Substituting our ansatz into Eq. (4.32) and
solving order by order in ϵ then yields the desired
expansion of Δτ in terms of ϵ,

Δτ¼ 1

ϕ

�
σ̄;τ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄2;τþϕð2Δζσ̄;ζþ2σ̄þϕΔζ2Þ

q �
ϵþOðϵ2Þ:

ð4:40Þ
The expressions for the higher-order coefficients are some-
what cumbersome, but are fortunately not required for the
current calculation.

4. Expansion of quantities appearing in the integrand
for the self-force

We now expand each of the quantities appearing in the
integrand of Fμ

1 [Eq. (3.30)]:

Σμν ¼ Σð0;0Þ
μν þ Σð1;0Þ

μν Δτ þ Σð0;1Þ
μν Δζ þ � � � ; ð4:41Þ

where

Σð0;0Þ
μν ¼ ∂ζzμ∂ζzν − ∂τzμ∂τzν − ϕgμν; ð4:42Þ

Σð1;0Þ
μν ¼ ∂τ∂ζzμ∂ζzν þ ∂ζzμ∂τ∂ζzν − ∂τzμ∂ζ∂ζzν

− ∂ζ∂ζzμ∂τzν − ∂τϕgμν; ð4:43Þ

Σð0;1Þ
μν ¼ ∂ζ∂ζzμ∂ζzν þ ∂ζzμ∂ζ∂ζzν − ∂τzμ∂τ∂ζzν

− ∂τ∂ζzμ∂τzν − ∂ζϕgμν: ð4:44Þ

We also have

r¼ σ̄;τ þ σ̄;ττΔτþ σ̄;τζΔζ

þ 1

2
ðσ̄;τττΔτ2 þ 2σ̄;ττζΔτΔζþ σ̄;τζζΔζ2Þ þ � � � ; ð4:45Þ

and
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Ωμ ¼ Ω̄μ − zμ;τΔτ − zμ;ζΔζ −
1

2
zμ;ττΔτ2

− zμ;τζΔτΔζ −
1

2
zμ;ζζΔζ2 þ � � � : ð4:46Þ

Note that there are three potentially small parameters in
these expansions:Δτ;Δζ; and the distance of the field point
from the string, which we will denote Δx. In the above, the
dependence on Δτ and Δζ appears explicitly; the depend-
ence on Δx appears through Ω̄μ ∼ Δx and σ̄α ∼ Δx.
To make further progress, we will assume that all three

are of the same order, Δτ ∼ ϵ, Δζ ∼ ϵ and Δx ∼ ϵ. Now,
substituting the expansions into the integral equation for the
derivative of the metric perturbation, Eq. (3.29) and
expanding out in powers of ϵ, we find that the integrand
has a contribution at order ϵ−2 and at order ϵ−1, plus higher-
order terms. More explicitly, the Oðϵ−2Þ piece is given by

∂γhαβ

≈ −4
Z ½σ̄;ττ�Σð0;0Þ

αβ Ω̄γ − ½σ̄;ττ�Σð0;0Þ
αβ zγ;ζΔζ þ Σð0;0Þ

αβ zγ;τσ̄;τ
ðσ̄;τ þ ½σ̄;ττ�ΔτÞ3

dζ

þOðϵ−1Þ ð4:47Þ

where square brackets denote a coincidence limit, ½σ̄;ττ�≡
limΔx→0σ̄;ττ. Now, it is immediately apparent that if we
instead substitute our expansions into the integral expres-
sion for Fμ

1 this leading-order piece identically vanishes

since PμνΣμν ¼ 0.13 Likewise, since Σð0;1Þ
μν zμ;ζ ¼ Σð1;0Þ

μν zμ;τ,
many other terms either identically vanish or simplify
significantly. Then, the only remaining piece of the
Oðϵ−1Þ contribution to the derivative of the metric pertur-
bation which does not vanish upon substitution into the
self-force is given by

−
Z

4

ðσ̄;τ þ ½σ̄;ττ�ΔτÞ3
ð½σ̄;ττ�Σð0;1Þ

αβ Ω̄γΔζ − Σð1;0Þ
αβ Ω̄γσ̄;τ

þ Σð1;0Þ
αβ zγ;ζσ̄;τΔζ þ Σð0;1Þ

αβ zγ;τσ̄;τΔζ − ½σ̄;ττ�Σð1;0Þ
αβ zγ;τΔζ2

þ 2Σð1;0Þ
αβ zγ;τσ̄;τΔτ þ ½σ̄;ττ�Σð1;0Þ

αβ zγ;τΔτ2Þdζ: ð4:48Þ

Our final step is to substitute in the expansion of the
retarded time, rescale our integration range by ϵ and
integrate from Δζ=ϵ ¼ −∞ to þ∞. The factor of ϵ in
the integral weight cancels with the 1=ϵ in the integrand and
so the result is ultimately independent of ϵ.

5. Expansion of the self-force

Performing the integral explicitly in the limit where the
field point tends to the world sheet, we finally arrive at a
surprisingly simple expression for the field point contribu-
tion to the self-force. In τ − ζ coordinates, this is given by

Fμ
field;ST ¼ 4ϕ−2⊥μ

αðzα;ζϕ;ζ þ zα;τϕ;τ − 2zα;ζζϕÞ: ð4:49Þ
One can go through a similar procedure in the null case

(see Appendix D for details of the retarded time expansion
in null coordinates). Then, if we use ζ− as our integration
variable, the equivalent expression for the field point
contribution to the self-force is

Fα
field;N ¼ 4ϕ−2⊥μ

αðzα;ζþϕ;ζþ − zα;ζþζþϕÞ: ð4:50Þ
Likewise, one can change þ → − when ζþ is used as the
integration variable. The expressions (4.49) or (4.50) must
be added to the previous results given by Eq. (3.30) to
obtain the total contribution to Fα

1.

V. NUMERICAL METHODS AND
REGULARIZATION

For this work have developed several different tech-
niques to evaluate the self-force on the string by completely
finite, numerical calculations. In the next section, we will
compare these calculations to validate the exact methods
we have discussed. Before doing so, here we will sche-
matically outline the different approaches. The abbrevia-
tions for the methods are given in square brackets.

A. 2D, smoothed kink or cusp [2D]

The most general approach is to do the 2D integration
over the world sheet in Eq. (3.22). This circumvents having
to eliminate one world sheet coordinate in terms of another
(e.g., solving for the retarded time in τ − ζ coordinates) and
possibly having to patch different coordinate systems (e.g.,
two different null coordinate systems on either side of the
field point). The world sheet integration produces mani-
festly coordinate invariant results.
Schematically, we replace the singular retarded Green

function with a finite approximation. For a source at xs and
field at xf

Gðxf; xsÞ ¼ Θðxs; xfÞδðσÞ ð5:1Þ
where Θ ¼ 1 when the time of the source ts precedes the
time of the field point tf and 0 otherwise. We transform

δðσÞ → e−σ
2=ð2w2

1
Þffiffiffiffiffiffi

2π
p

w1

ð5:2Þ

Θ →
1 − tanhððts − tfÞ=w2Þ

2
ð5:3Þ

13Strictly speaking, this depends on how we extend the
definition of Pμν off the world sheet. However, since we are in
the end only interested in taking the limit to the world sheet the
particular choice of extension is irrelevant and does not change
the result.
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to generate a smooth, finite integrand. The parameters w1

and w2 describe the width of the smoothed delta function
and the width of the causal function. (We use wi sche-
matically in this discussion. In Appendix E we introduce
unique symbols.)
Source points are over-retarded and appear slightly

inside the field point’s backwards light cone. Over-
retardation [95] is a covariant method for classical renorm-
alization. We modify the Synge function

σðx; zÞ ¼ 1

2
ðx − zÞαgαβðx − zÞβ þ w3 ð5:4Þ

where w3 ≥ 0 is the parameter. Over-retardation disallows
the source-field point coincidence.
Finally, we round off discontinuous features on the

string. For kinks the transition from one derivative value
to another is smoothed. For cusps a small patch of the world
sheet near the cusp is excised. We introduce a parameter w4

that yields the discontinuous solution when w4 → 0.
Smoothing must be implemented separately for each loop
of interest. In the 2D approach any discontinuity, even if it
were not on the field point’s exact light cone, must be
smoothed because all world sheet points are sampled by the
smoothed delta function.
The 2D calculation does not require any special treat-

ment for boundaries, any special choice of coordinates or
any special handling of the field point. The discontinuities
in the source must be smoothed. We let fw1; w2; w3; w4g →
0 in lockstep together. We have found that the limit is not
impacted if we set w2 ¼ 0 (the smoothing of the causal step
function) and w3 ¼ 0 (the over-retardation) from the
beginning. Using the Gaussian approximation to the delta
function and smoothing the discontinuities on the string are
sufficient to regulate the calculation.

B. 1D, over-retarded, smoothed kink or cusp [1DOS]

The 1D calculations in which the Green function has
been integrated out must handle the case where the field
and source points coincide, the string discontinuities and
coordinate changes along the retarded loop image.
In the [1DOS] method we use over-retardation and

smooth the discontinuities on the string if they are visible
on the field point’s exact light cone. We integrate Eq. (3.30)
over the image if coordinate ζ2 covers the entire image; we
additionally include boundary terms of the type given in
Eq. (4.27) if multiple coordinate systems are utilized. Here
a boundary term arises not because of a string discontinuity
but because of the coordinate change. We let fw3; w4g → 0.

C. 1D, over-retarded, discontinuous kink or cusp [1DO]

As above we use over-retardation for the [1DO] method,
but we do not smooth the kink. We numerically locate the
kink and use boundary terms of the type given in Eq. (4.27)
to handle both jumps in the string source and coordinate

changes. We can evaluate the force for the cusp as long as
the cusp is not on the light cone (almost all world sheet
points). We let fw3g → 0.

D. 1D, discontinuous kink or cusp [1D]

For the [1D] method we use the analytic results (4.49) for
the contribution from the source and field points coincid-
ing, along with boundary terms and of the form given in
Eq. (4.27) for jumps in the string source and coordinate
changes. As above we can evaluate the force for strings
with cusps as long as the cusp is not on the light cone. This
is the computationally most efficient method and the one
that we are primarily interested in validating for future
calculations of loops evolving under the effect of gravita-
tional backreaction. It does not require any regularization
parameters wi.
There are many related questions that we address using

these techniques. For example, we compare the self-force
calculated utilizing different coordinate systems (this is
possible for all the methods, but we concentrate on the [1D]
case). We also consider a limiting process in which the
[1DO] method is used for a field point off the world sheet,
and we verify that the correct behavior is recovered as the
field point approaches the world sheet.

VI. NUMERICAL RESULTS

We now apply the derivations of the previous sections to
some specific examples, numerically computing the self-
force for a range of nontrivial string configurations that
feature kinks, cusps and self-intersections. We perform
several consistency checks in the process:
(1) For strings with a particularly simple structure

we compare against existing calculations in the
literature;

(2) For more nontrivial strings we compare different
versions of the [1D] integration done with different
choices of world sheet coordinates;

(3) We compare against the smoothed approaches
[1DOS] and [1DO] for handling kinks and field
point contributions. The field point contribution is
recovered by evaluating the integral for the force
with a small over-retardation of the retarded time and
numerically taking the limit as this over-retardation
vanishes. The kink contribution is similarly recov-
ered by introducing a small smoothing to the kink
and taking the limit of the smoothing parameter
going to zero.

(4) We further compare against our other entirely
independent [2D] approach, whereby the force is
directly determined from a full 2D integration over
the world sheet, approximating the Dirac δ distri-
bution in the Green function by a narrow Gaussian.

(5) We verify that the flux of radiation to infinity (as
computed using standard frequency domain meth-
ods [96]) appropriately balances the local self-force.
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There are infinitely many possible cosmic string loops
which satisfy (3.4). The examples which have typically
been studied in the literature are those with a low number
of harmonics. As a demonstration of our prescription for
computing the self-force, we will compute the self-force
for several of these strings. Our goal is not to be exhaustive,
but rather to select a set of test cases that cover all scenarios
(kinks, cusps, self-intersections, and strings without too
much symmetry). In all cases below, we define the world
sheet in terms of two functions aαðζþÞ and bαðζ−Þ, where
ζþ ≡ τ þ ζ and ζ− ≡ τ − ζ are null world sheet coordi-
nates. Then, the spacetime position of the string is
zμ ¼ ð1=2Þ½aμðζþÞ þ bμðζ−Þ�. Throughout the discussion,
we will also refer to the three-vectors a and b, which are
defined to be the spatial projections of aαðζþÞ and bαðζ−Þ.
Finally, we will specialize to the specific case t ¼ τ within
the class of conformal gauges.

A. Allen, Casper and Ottewill self-similar string

ACO [61] identified a particularly simple class of strings
for which the average power radiated is easily calculated
in closed form. All strings in the class have a pair of
kinks, each propagating along lines of constant ζþk1 ¼ 0 and
ζþk2 ¼ L=2, respectively. ACO’s motivation was to find the
string which radiates most slowly and is thus most long
lived. Our motivation for studying the ACO string14 stems
from a different consequence of the simplicity of the ACO
solution. Anderson [81] showed that the description of the
ACO string world sheet is sufficiently simple that it is
possible to determine the self-force analytically.15 This
provides a valuable reference point against which we can
check our numerical approach.
The ACO string world sheet is given in Cartesian

coordinates by

aαðζþÞ ¼ A½ζþ=A; 0; 0; jζþj�;
bαðζ−Þ ¼ A½ζ−=A; cosðζ−=AÞ; sinðζ−=AÞ; 0�; ð6:1Þ

where A≡ L
2π and L is the length of the string. For ζþ < − L

2

or ζþ > L
2
the periodic extension of az is used; i.e., az is the

triangle function centered about the origin and with period
L. The ACO string can be visualized as shown in Fig. 1; its
evolution is a rigid rotation of this shape about the z-axis.16

We characterize the ACO string in terms of its tangent-
sphere representation, as shown in Fig. 2.
Adopting the conformal gauge to first order, Anderson

[81] was able to compute the self-force [which in the
conformal gauge case is defined to be the right-hand
side of Eq. (3.14)] by analytically determining the first-
order metric perturbation generated by an ACO string.
Factoring out the rigid rotation using the matrix

Mα
β ¼

0
BBB@

1 0 0 0

0 cosð2πζ−Þ sinð2πζ−Þ 0

0 − sinð2πζ−Þ cosð2πζ−Þ 0

0 0 0 1

1
CCCA; ð6:2Þ

the conformal gauge self-force in a corotating frame is
given by fμ ¼ Mμ

αF α
conf, where fμ ¼ ½ftðζþÞ; fLðζþÞ;

fNðζþÞ; sgnðζþÞftðζþÞ�. We can interpret fN and fL as
the normal and longitudinal components of the force in the
x–y plane, respectively. Note that this factorized form is
quite convenient as the dependence on ζþ is entirely
contained within fμ, while the dependence on ζ− is entirely
in Mχ

μ.

0 L
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FIG. 1. Snapshot of the ACO string loop configuration in
spacetime at time τ ¼ 0. At later times the configuration can be
obtained by a rigid rotation about the z-axis.

14We will study just one case in the class of ACO strings, the
one which is simplest and which radiates power most slowly.
ACO call this particular string “case (1) with M ¼ 1.” We
will simply refer to it as the ACO string.

15In fact, in [97] Anderson was able to go one step further
and analytically self-consistently evolve the string under the
influence of gravitational backreaction.

16In [97] Anderson showed that this shape is preserved when
backreaction is taken into account, in which case the string
evolves (shrinks) self-similarly.
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As an important consistency check on our work, we have
verified that our numerical approach exactly reproduces the
analytic result derived by Anderson. Figure 3 shows the
factored components of the force as a function of ζþ, with
Anderson’s expressions plotted as solid lines and our
numerical values [computed using Eq. (3.30) plus boun-
dary terms of the type given in Eq. (4.27) at the kinks and
Eq. (4.49) for the field point contribution] shown as dots.
One interesting feature is the divergence of the force

components as a kink is approached. Although one may be
concerned about the physical implications of this diver-
gence, for the ACO string it turns out that it is a spurious
gauge artifact, and that the string world sheet itself only
ever picks up a small perturbation from the self-force. The
simplicity of the ACO solution makes it straightforward to
see this explicitly: as shown by Anderson [81], the explicit
form of the divergence near the kink can be written as

ft≈
�
−32

�
1

6
π2
�

1=3
μ=jζþj1=3;−128π2μðζþÞ2

�
;

fL≈ 32πμ ln jζþj
�
1

3
;1

�
;

fN ≈
�
−32

�
1

6
π2
�

1=3
μ=jζþj1=3;128π2μζþ ln jζþj

�
; ð6:3Þ

depending on whether the limit ζþ → 0 is taken from the
left or the right. Anderson goes on to show that integrating
up the equation of motion, the physical (nongauge)
displacement of the string due to this divergent force is
finite.

B. Kibble and Turok strings with cusps
and self-intersections

A simple family of string loop solutions of the zeroth-
order equations of motion was written down by Kibble and
Turok [98,99]. The gravitational radiation of representative
examples was calculated by Vachaspati and Vilenkin [36].
We will refer to the family as KT strings. The family is
described by the general form

aαðζþÞ ¼ A

�
ζþ=A; ð1 − αÞ sinðζþ=AÞ þ α

3
sinð3ζþ=AÞ;

ðα − 1Þ cosðζþ=AÞ − α

3
cosð3ζþ=AÞ;

− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1 − αÞ

p
cosðζþ=AÞ

�
;

bαðζ−Þ ¼ A½ζ−=A; sinðζ−=AÞ;
− cosϕ cosðζ−=AÞ;− sinϕ cosðζ−=AÞ�; ð6:4Þ

where 0 ≤ α ≤ 1 and −π ≤ ϕ ≤ π are two parameters.
We first focus on the case α ¼ 0 and ϕ ¼ π=6

(N ¼ M ¼ 1 Burden loops [58]). Nine snapshots of the
spacetime configuration of the loop are shown in Fig. 4.
The loop generally possesses an elliptical shape. It tumbles
in space while stretching and contracting. Twice per period
it forms a degenerate, linelike shape with a pair of cusps on
opposite sides. The tangent sphere representation is par-
ticularly simple: there are two continuous great circles that
cross at τ þ nπ ¼ ζ þmπ ¼ 0 for any integers n and m.
Each crossing gives rise to a cusp and to a spacelike line of
string overlap in the center of momentum frame. These two
effects make the calculation of the self-force particularly
challenging.
We first compute the self-force at two points on the string

(which we denote case I and case II):

ðτ; ζÞ ¼ ð32π=50; 13π=50Þ Case I ð6:5Þ

ðτ; ζÞ ≃ ð0.42; π=5Þ Case II: ð6:6Þ

FIG. 2. Tangent sphere representation of the ACO string loop
configuration with a0ðζþÞ denoted by the two blue dots and
b0ðζ−Þ by the orange circle.
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FIG. 3. Corotating self-force for the ACO string.
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For case I, the field point is such that no cusp is present
on the retarded image of the string. Since the left and
right moving modes are continuous the loop stress-energy
source is completely smooth except at the field point
itself.17 The case I results calculated by the [1D] method
described in Sec. IV are given in the first part of Table I. In
this case, there are two important contributions to Fρ

1: the
row labeled

R
is the integral contribution arising from the

1D integral over the smooth world sheet using Eq. (3.30);
and δ is the contribution from the field point obtained using
Eq. (4.49). The total is F1 ¼

R þ δ.
For case II, we have carefully chosen a field point such

that the cusp at ðτ; ζÞ ¼ ð0; 0Þ lies on the retarded string
image. Numerical results for this case (which were again
obtained using the [1D] method) are given in the second
part of Table I.
One notable feature of these numerical results is that the

field point contribution is comparable in magnitude to the
contribution from the integral. As such, this case provides a
valuable and stringent test of our derivation of the expres-
sion for the field point contribution. By comparing to a
different approach which does not rely on these terms we
may distinguish between

R
and F1. The [2D] integration

method (described in detail in Appendix E) provides just
such a comparison. In Table II we tabulate the results of the

[2D] integration method and compare against the 1D results
for case I in Table I. This comparison unambiguously
confirms that the field point contribution is essential. The
agreement provides a strong validation of our formalism.
Appendix E includes analogous [2D] results for case II.
These are in equally good agreement so we omit additional
discussion of the comparison.
We now proceed to compute the self-force at all points

on the world sheet. The results are shown in Figs. 5 and 6.
Unlike the ACO case, the extra complexity in the KT
solution means that there is no simple factorization of the
force into a piece which only depends on ζþ and another
piece which depends on ζ−. As such, the self-force for the
KT string is presented as a 2D surface plot, showing the
force contributions to Fμ (log10 of the absolute value of
a contribution, color coded by sign) at all18 points on the

0 7

128

7

64

21

128

7

32

35

128

21

64

49

128

7

16

FIG. 4. Snapshots of the KT string loop (α ¼ 0 and ϕ ¼ π=6)
configuration in spacetime, each labeled by time in units of L. All
the boxes have the same size axes, −1 to 1 for L ¼ 2π, and fixed
orientation.

TABLE I. Self-force at two points on the KT string (α ¼ 0 and
ϕ ¼ π=6) calculated by the 1D method.

Contravariant spacetime components

Case Force t x y z

I
R

9.28612 −4.96366 14.7739 −1.68376
δ −0.680917 1.09474 1.16578 −4.35077
F1 8.6052 −3.86891 15.9397 −6.03453
F2 −12.181 4.56246 −25.3768 14.1391

II
R

44.5678 49.5374 22.8974 −1.99924
δ 1.7937 1.5892 1.1546 −4.30897
F1 46.3615 51.1266 24.052 −6.30821
F2 −75.6739 −82.35 −39.8936 21.8117

TABLE II. The two contributions to the self-force calculated by
the [2D] method in case I of the KT string (α ¼ 0 and ϕ ¼ π=6).
First column is the name of the component; second column is the
force extrapolated to zero grid spacing; three column is the
uncertainty in the extrapolation; column 4 is the difference in the
force determined by the [2D] and [1D] methods.

Force Extrapolated Force Extrapolated error 2D − 1D

Ft
1 8.60882 0.0020 −0.0036

Fx
1 −3.87143 −0.0016 0.0025

Fy
1 15.9437 0.0013 −0.0040

Fz
1 −6.0318 0.0030 −0.0027

Ft
2 −12.181 3.6 × 10−5 1.0 × 10−5

Fx
2 4.56246 −1.5 × 10−6 −9.6 × 10−7

Fy
2 −25.3768 −1.6 × 10−5 2.7 × 10−5

Fz
2 14.1391 −7.5 × 10−6 1.5 × 10−5

17In a patch of the world sheet that extends �π about the field
point the cusps at ðτ; ζÞ ¼ ð0; 0Þ and ð0; πÞ are potentially visible
for a causal off-shell Green function.

18In all of our plots we show the segment of the world sheet
defined by τ ∈ ½0; L=2�, ζ ∈ ½−L=2; L=2�. This covers the entire
set of unique points on the world sheet; other values can be
obtained by periodically extending in the τ and/or ζ direction.
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two-dimensional world sheet. The green and red curves
trace the advanced images of the cusps on the loop; each
point on these curves has the cusp at ðτ; ζÞ ¼ ð0; 0Þ (red) or
at ðτ; ζÞ ¼ ð0; L=2Þ (green) on its past light cone. The gross
variation of the self-force depends on the product of two
factors which have simple physical origins. First, the
loop’s linelike structure, periodically formed at τ ¼ 0 and
L=2, creates a ridge spanning all ζ at these particular times.
Second, at any given time the points along the string loop
which are least contracted and have the largest

ffiffiffiffiffiffi−γp
occur

at ζ ¼ �L=4. These produce a trough or minimum in the
force at ζ ¼ �L=4. The product of these two factors yields
the egg-crate-like symmetry in the force with the cusps at
the corners.
These plots show several interesting features:
(1) The self-force is finite at almost all points on the

world sheet, the notable exceptions being the loca-
tion of the two cusps, where it appears to diverge.

(2) The two contributions to Fμ
1 (coming from the

integral over the smooth world sheet and from the
field point) are comparable in magnitude. It is
therefore crucial that both contributions be included.

(3) The contributions from Fμ
1 and Fμ

2 are both compa-
rable in magnitude and both exhibit the same
qualitative behavior in terms of divergence at the
cusp and finiteness elsewhere.

Although this case provides a good check of the general
methodology it involves special features that can be traced
to the self-intersections. In the next section we modify the
parameter choice to avoid self-intersections.

C. KT strings with cusps without
self-intersections

Next we consider a KT string with parameter values
α ¼ 1=2 and ϕ ¼ 0. Snapshots of this loop are shown in
Fig. 7. The loop rotates about the z-axis and forms cusps
transiently at ðτ; ζÞ ¼ ð0; 0Þ and ð0; L=2Þ. There are no
self-intersections except infinitesimally close to the cusp
itself.
Figures 8 and 9 show the self-force at all points on

the world sheet of this KT string. These are analogous to
the plots for the self-intersecting KT string shown in
Figs. 5 and 6. The peaks clearly show the cusp locations
and the diagonal striping is related to the overall sense of
rotation of the loop. The spacelike line of overlap and the
egg-crate symmetry seen in the previous KT case are now
absent.
This nonintersecting case allows for a detailed analysis

of the behavior of the total backreaction force in the vicinity
of the cusp at ðτ; ζÞ ¼ ð0; 0Þ. At times close to cusp
formation the tip’s position (the string coordinate at fixed
ζ ¼ 0) is

FIG. 5. Contributions to Fμ
1 for the KT string (α ¼ 0 and ϕ ¼ π=6) when computed using the 1D integration method with integration

with respect to ζ. Each subfigure shows the relevant contribution to the force at all points on the string in the region τ ∈ ð0; L=2Þ,
ζ ∈ ð−L=2; L=2Þ; all other points can be obtained from the standard periodic extension of the string. Each column corresponds to a
different component of the force: Ft

1, F
x
1, F

y
1, and Fz

1. The rows correspond to the contributions from (i) the field point and (ii) the
integral over ζ (ignoring distributional contributions at the field point). For the purposes of the plots, we have set the string tension, μ,
and Newton’s constant, G, equal to 1; other values simply introduce an overall scaling. Note that we have used a logarithmic scale and
denoted positive (negative) values by coloring the plot orange (blue).
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zi ∼ f0;−0.83;−0.5g þ f1; 0; 0gτ þ f0; 1.5; 0.5g τ
2

2

þ f−3; 0; 0g τ
3

6
þ f0;−7.5;−0.5g τ4

24
þ � � � ð6:7Þ

The velocity lies in the x-direction and the acceleration in
the y- and z-directions. Conversely, the velocities in the
y- and z-directions and the acceleration in the x-direction
vanish. On physical grounds we expect the y- and z-
accelerations to source transverse gravitational waves and
the relativistic motion in the x-direction to lead to strong
beaming.
The driving force Fα which enters the string loop’s

equation of motion, Eq. (3.5), encodes the fully nonlocal,
self-interacting gravitational dynamics. If we were to adopt
the conformal gauge at first order then F α

conf would
naturally appear as the driving force in the equation of
motion. We will not restrict ourselves to that choice for

much of the discussion in this section. We will show,
however, that many of the features of the full world sheet
variation of Fα

1 can be understood based on the observed
properties of the formally defined quantity F α

conf (which
may be defined in any gauge; only its interpretation as the
driving force is restricted to conformal gauge). We will be
explicit whenever our statements demand the specification
of the conformal gauge.
The large dynamic range evident in Figs. 8 and 9

necessitates looking at small patches to examine special
features like the cusp. We begin by displaying F μ

conf in
Fig. 10. The special coordinate system shows a small patch
near the cusp which is located at ζ ¼ 0 ¼ τ. Results for
ln jF μ

conf j are displayed in these figures, color coded
according to the sign of the quantity: orange (blue) dots
represent positive (negative) values. Each figure combines
four plots with axes fsgnðζÞ ln jζj; sgnðτÞ ln jτjg, arranged
and oriented in the same way as a normal linear plot (plus a

FIG. 6. The two pieces of the self-force, Fμ
1 (row 1) and Fμ

2 (row 2), and the total self-force Fμ (row 3) for the KT string (α ¼ 0 and
ϕ ¼ π=6) as a function of position on the string. The Fμ

1 part can be obtained by summing the two rows in Fig. 5. For the purposes of the
plots, we have set the string tension, μ, and Newton’s constant, G, equal to 1; other values simply introduce an overall scaling. Note that
we have used a logarithmic scale and denoted positive (negative) values by coloring the plot orange (blue).
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constant shift selected to bring small values close to the
center). The lower left-hand quadrant has ζ < 0 and τ < 0.
Smaller values of jτj and jζj lie near the center for all four
quadrants. The gap encompasses all values near the sign
change of the independent coordinates.

We find that F t
conf < 0 for the entire area of the patch.

The magnitude of F t
conf is much less than Ft and is less

strongly divergent—the two are related by a projection
factor and an overall factor of 1=

ffiffiffiffiffiffi−γp
[see Eq. (3.6)], both

of which diverge as the cusp is approached. Like-
wise, F x

conf < 0, F y
conf > 0 and F z

conf > 0 have single,
well-defined signs throughout most of the area of the
corresponding patch.
In the conformal gauge the negative value for F t

conf
implies [see Eq. (C57) in Appendix C] that the string is
losing energy and decelerating in the x-direction both
before and after the cusp forms. This makes physical
sense; the self-force saps the mechanical energy during
the period of large acceleration and the relativistic beaming
ensures that gravitational waves are emitted primarily in the
x-direction, thus creating the largest decelerating force in
that direction. A small spatial segment of the string near
where the cusp forms behaves in a coherent fashion before
and after the moment of cusp formation in terms of the
signs of F α

conf for all components. F α
conf shows a net

positive acceleration in the y- and z-directions throughout
most of the area of these figures.
As the figures of F μ

conf make clear, the asymptotic
behavior near the cusp varies depending upon the direction
of approach. A common diagonal feature is the locus in the
world sheet where

ffiffiffiffiffiffi−γp ≥ 0 is small. Only at the cusp is γ
exactly equal to zero, but along the visible fold its values
are small.
Regardless of direction, however, the scaling with radial

distance from the cusp is clear and unambiguous in each of
the components. The smooth integral contribution to F μ

conf

FIG. 7. Snapshots of the KT string loop (α ¼ 1=2 and ϕ ¼ 0)
configuration in spacetime, at equally spaced times during the
fundamental period (as in Fig. 4). All the boxes have the same
size axes, −1 to 1 for L ¼ 2π, and fixed orientation.

FIG. 8. Contributions to Fμ
1 for the KT string (α ¼ 1=2 and ϕ ¼ 0) as otherwise described in Fig. 5.
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is shown in Fig. 11 for rays approaching the cusp with
angle θ ¼ 0 (δτ ¼ 0) and θ ¼ π=2 (δζ ¼ 0). The red dots
are numerical results and the blue lines are fits of the form
log jFμj ¼ a log j log rj þ b log rþ c.19 The angular varia-
tion and scaling of the delta-function term and the smooth
integral contribution are illustrated in Fig. 12 and discussed
in the caption.
Two-dimensional numerical fits for the integral part of

F μ
conf are summarized in Appendix F. We find that F t

conf
and F x

conf scale as the inverse distance from the cusp, and
that F y

conf and F z
conf are at worst much less singular

(consistent with a log divergence). From this we conclude
that when one adopts the conformal gauge at first order the
self-force near the cusp has a weak, integrable divergence
on the world sheet and that any integrated quantities (such
as the radiated energy) are finite.

Given the scalings for F μ
conf nearby the cusp, it is

straightforward to deduce the corresponding scaling
for Fμ

1 ¼ − 1ffiffiffiffi−γp ⊥μ
νF ν

conf. Working with the exact

expression for the determinant of the induced metric in
this case,

γ ¼ −
1

16
½2 − cosð2ζÞ − cosð4ζ þ 2τÞ�2; ð6:8Þ

and expanding the relationship between Fμ
1 and F μ

conf to
next from leading order, we find

Ft
1 ≈ Fx

1 ≈ −
1

γ

�
ðF t

conf − F x
confÞ −

1

2
½ðF z

conf þ 3F y
confÞτ

þ ðF z
conf þ F y

confÞζ� þ � � �
�
; ð6:9Þ

Fy
1 ≈ −

1

2γ
ðF t

conf − F x
confÞðζ þ 3τÞ þ � � � ; ð6:10Þ

FIG. 9. The two pieces of the self-force, Fμ
1 (row 1) and Fμ

2 (row 2), and the total self-force Fμ (row 3) for the KT string (α ¼ 1=2 and
ϕ ¼ 0) as otherwise described in Fig. 6.

19The occurrence of both log j log rj and log r are consistent
with recently reported analytic results of Blanco-Pillado, Olum
and Wachter (see Acknowledgments).
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Fz
1 ≈ −

1

2γ
ðF t

conf − F x
confÞðζ þ τÞ þ � � � : ð6:11Þ

Since γ scales as the fourth power of the distance from the
cusp we infer that Fμ

1 is naively four orders more singular
than F μ

conf . However, as can be seen in Table III, it turns out
that F t

conf ≈ F x
conf near the cusp so the leading-order

divergence cancels and at worst Fμ
1 diverges as the inverse

fourth power of the distance from the cusp. At next-from-
leading order the asymptotic expression for Fμ

1 is anti-
symmetric about the cusp. (This behavior, combined with
the mixing of components, is what makes the analysis of
F μ

conf clearer than working directly with Fμ
1.) With the

world sheet weighting we naively infer that
ffiffiffiffiffiffi−γp

Fμ
1

diverges as the inverse quadratic power of the distance

from the cusp, one power worse than F μ
conf . Now we must

consider the role of Fμ
2.

To understand the behavior of Fμ
2 near the cusp we begin

with the perturbed metric projected along the world sheet
vectors ∂τzα and ∂ζzα according to

Hττ ¼ ∂τzαhαβ∂τzβ ð6:12Þ

Hτζ ¼ ∂τzαhαβ∂ζzβ ð6:13Þ

Hζζ ¼ ∂ζzαhαβ∂τzβ: ð6:14Þ

Evaluating the simple expression Eq. (3.7) for the relation-
ship between Fμ

2 and the world sheet projections of the
metric perturbation, we find

FIG. 10. The four components (t, x, y and z [left to right, top to bottom]) of ln jF α
conf j on a small patch of the world sheet about the

cusp. Four quadrants in flog τ; log ζg are displayed with the smallest jτj and jζj at the center of the picture, oriented in the same way as
the usual linear system about f0; 0g. Orange (blue) represent positive (negative) values.
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Ft
2 ≈ Fx

2 ≈
1

2ð−γÞ3=2 ½2ð5Hτζ −Hττ −HζζÞζ

þ ð4Hτζ −Hττ −HζζÞτ þ � � ��; ð6:15Þ

Fy
2≈

2ð6Hτζ−Hττ−HζζÞðζ2þ3τζþτ2Þþ���
2ð−γÞ3=2 ; ð6:16Þ

Fz
2≈

2ð2Hτζ−Hττ−HζζÞðζ2þ3τζþτ2Þþ���
2ð−γÞ3=2 : ð6:17Þ

With the finite behavior of the world sheet projections of
the metric perturbation, it is straightforward to deduce the
corresponding scaling of the divergence in Fμ

2. We find that
at worst Ft

2 and Fx
2 diverge as the inverse fifth power of

distance from the cusp. With the world sheet weightingffiffiffiffiffiffi−γp
Fμ
2 diverges as the inverse cubic power of the distance

from the cusp. However, as this leading-order divergence is
antisymmetric about the cusp its integral over a patch
around the cusp cancels the leading-order divergence to
leave only subleading pieces.
We are now left with asymptotic forms for

ffiffiffiffiffiffi−γp
Fμ
1 andffiffiffiffiffiffi−γp

Fμ
2, each scaling as the square of the inverse distance

from the cusp. These are individually nonintegrable.
However, once the asymptotic forms given in Table III
for the quantities in Eqs. (6.9)–(6.11) and (6.15)–(6.17) are
taken into account, we find that the leading-order divergent
behavior exactly cancels (see Table IV) to the level of
accuracy of the numerically fitted coefficients in the
combination

ffiffiffiffiffiffi−γp ðFμ
1þFμ

2Þ yielding the full force
ffiffiffiffiffiffi−γp

Fμ

which at worst diverges as the inverse distance from the
cusp, and hence is integrable. This divergence is no worse
than F μ

conf itself.
A detailed understanding of the behavior of these

divergences near cusps allows us to solve either the general
covariant equation of motion (3.5) or the corresponding
Eq. (3.14) in which specific conformal gauge choices have
been adopted.

D. Garfinkle and Vachaspati string with kinks

The third case we will explore is from a class of strings
found by Garfinkle and Vachaspati (GV) [59]. These
strings contain two kinks that travel in the same direction
on an oscillating and twisting string loop. We choose a
particular representation from the general class with the
following right- and left-moving modes:
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FIG. 11. The components of the smooth integral contribution to F μ
conf along two rays at angles θ ¼ 0 and π=2 are shown. Red dots are

numerical results and blue lines are fits of the form log jF μj ¼ a log j log rj þ b log rþ c. For μ ¼ t, ða; b; cÞ ¼ ð0.098;−0.99; 2.45Þ for
θ ¼ 0 and ð0.046;−1; 3.24Þ for θ ¼ π=2; likewise, for μ ¼ x, ða; b; cÞ ¼ ð0.044;−1; 2.52Þ and (0.018, −1, 3.28). These fits show
that the dominant behavior in the direction of motion of the cusp as r → 0 is 1=r. In the other directions, the behavior is consistent
with a logarithmic divergence at leading order: μ ¼ y, ða; b; cÞ ¼ ð0.79;−0.011; 3.35Þ and (1.23,0.013,2.39); μ ¼ z, ða; b; cÞ ¼
ð0.43;−0.025; 2.13Þ and (0.41, −0.026, 2.17).
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FIG. 12. F μ
conf for the nonintersecting KT string (α ¼ 1=2 and ϕ ¼ 0) in the neighborhood of the cusp at τ ¼ 0 ¼ ζ. The t and x

components have been scaled by the radial (Euclidean) distance from the cusp, and the y and z components have not been scaled at all.
Each panel displays two separate contributions to the total force. For t and x components the upper (green solid and red dotted) lines give
the field point contribution. It is antisymmetric in angle and integrates over the angle to give zero (in fact, when taken over the whole
world sheet the integral also vanishes exactly). The lower (blue solid and orange dashed) lines give the smooth integral contribution. It is
single signed and large where

ffiffiffiffiffiffi−γp
is small. We plot scaled results for r ¼ 0.02 (solid lines) and r ¼ 0.002 (dashed/dotted lines) for each

contribution to the total. These overlap and show in a qualitative fashion the dominant 1=r scaling near the cusp for both contributions to
the t and x components. In the lower panels we display the y and z components. As before, the contribution from the field point is given
by the green solid and red dotted curves. In this case it is independent of r to lowest order (and integrates over the angle to give 4π at this
order). The solid blue and dashed orange lines show that the integral contributions increase slowly as r decreases, consistent with the
log r type behavior.

TABLE III. First-order fits for force combinations near the cusp with form aþ bτ þ cζ þ ðdτ2 þ eτζ þ fζ2Þ=r with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ ζ2

p
and second-order fits for the world sheet projected metric perturbations with form aþ bτ þ cζ þ dτ2 þ eτζ þ fζ2 over the radial range
2 × 10−8 ≤ r ≤ 2 × 10−4. The table provides the two force combinations and three world sheet projected metric perturbations that
appear in the asymptotic forms for Fμ

1 and Fμ
2. The last two columns give the common log of ϵ (the root mean square error between the

data and the fit) and Q (the ratio of the variation in the data divided by ϵ).

Quantity a b c d e f log10 ϵ log10 Q

Ft − Fx 14.68 276.43 117.42 −41.51 12.47 −25.45 −3.08 1.06
Fzðτ þ ζÞ þ Fyð3τ þ ζÞ 0 521.81 175.92 −126.45 38.64 16.21 −2.67 0.91

Hττ 11.49 −6.53 −15.33 18.76 84.03 101.7 −7.22 3.9
Hζζ 0 0 0.01 64.4 196 237.13 −7.03 1.32
Hτζ 0 −7.66 −17.94 22.71 69.29 56.75 −7.05 3.8
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aμðζþÞ ¼ ½ζþ; 0; a2ðζþÞ; a3ðζþÞ� ð6:18Þ

bμðζ−Þ ¼
�
ζ−;

L
2π

cos
2πζ−

L
; 0;

L
2π

sin
2πζ−

L

�
ð6:19Þ

where

a2ðxÞ ¼ L
π

X
j

δj;b2xLcð−1Þb
jþ1
2
c cos

�
π

4
þ ð−1Þj πx

L

�

a3ðxÞ ¼ L
π

X
j

δj;b2xLcð−1Þb
j
2
c
�
sin

�
π

4
þ jð−1Þj π

2

L

�

− sin

�
π

4
þ ð−1Þj πx

L

��
; ð6:20Þ

and where the sums are over all integers j, L is the
invariant length, bxc is the floor function and δj;k is the
Kronecker delta.
Figure 13 illustrates the configuration in spacetime at

equally spaced moments in the oscillation cycle. The kink
discontinuities are visible in all four snapshots. In the
tangent sphere representation (shown in Fig. 14), b0
traverses a complete great circle through the North and
South poles at a steady rate; a0 follows two disjoint
segments of a great circle (longitude offset by π=2 from
the one traced by b0) between latitudes θ ¼ �π=4, also at a
steady rate. The vector a0 traces one segment and then
abruptly jumps from the point ð0; y; zÞ to ð0;−y; zÞ and
traces out the mirrored arc at a steady rate (and repeats).
Each jump from one segment to the other yields a kink
discontinuity in the spacetime representation.
While the ACO string provided a useful analytic test case

with kinks against which we could compare our numerical
results, it turns out that the simplicity of the ACO string (in
particular, that many quantities are a constant along the
string) means that many important terms that appear in the
general expression for the self-force are identically zero for

the ACO string. Fortunately, the GV string is sufficiently
general that this is not the case. Unfortunately, however,
there is no known analytic solution for the self-force for the
GV string. Instead, in order to use the GV string as a test of
our method, we chose a particular point on the string
(τ ¼ 0.3L, ζ ¼ 0.4L) and computed the self-force at that
point using an extensive set of different and independent
methods:
(1) We used our exact 1D method including a field point

contribution and contributions from the two kinks
(this is method [1D] discussed in Sec. V D).

(2) We repeated our 1D calculation (again, method
[1D]) using multiple choices of integration variable
(ζþ, ζ− and ζ). In each case, the various contribu-
tions (from the integral, field point, and two kinks)
were different. Indeed, in some cases there was no
contribution picked up from the kinks.

(3) We again repeated our 1D calculation using method
[1D], but using a mixed coordinate choice; we used
ζþ on one side of the field point and ζ− on the other
side. We then included a contribution at the point
where these two segments meet up again, to account
for the change in integration variable at that point.
This contribution is exactly the one discussed in
Sec. IV B, and an explicit expression is the same as
the one obtained when breaking the integration at a
kink, as discussed in Sec. IVA.

(4) We repeated the previously mentioned 1D calcula-
tions again, but instead of including the exact field

TABLE IV. The numerical results for the expansion of
ffiffiffiffiffiffi−γp

Fμ

in r (averaged over the angle) for the fit given in Table III.
For

ffiffiffiffiffiffi−γp ðF1 þ F2Þ ∼
P

ncnr
n the columns are the leading

powers of the expansion (n ¼ −4 to 0), the rows are the
spacetime components and the table values are the common
log of the expansion coefficients (dn ¼ log10 jcnj). The symbol <
means a numerical result jcnj < 10−12. When the fitting range is
narrowed about the cusp the 1=r2 contribution decreases ∝ r and
the other pieces are fixed. From this we infer that the leading
nonzero piece of Fμ varies as 1=r.

Order Component −4 −3 −2 −1 0

t < < −2.01 1.28 1.25
x < < −2.01 1.28 1.25
y < < < < 2.75
z < < < < 2.03

FIG. 13. The GV string loop configuration in spacetime at four
equally spaced moments in the basic loop oscillation cycle τ ¼ 0,
L=8, L=4 and 3L=8. Each box is the same size with fixed axes −1
to 1 and fixed orientation.
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point term, we considered an over-retarded image of
the string (method [1DO]). In that case, we find that
the over-retarded integrand picks up a δ-function
type feature nearby the field point (see Fig. 15). For
finite over-retardation this manifests itself as a
narrow Gaussian, and the Gaussian gets narrower
and sharper as the over-retardation parameter is
shrunk towards zero. Reassuringly, in the limit of
the Gaussian shrinking down to zero size we recover
a result which agrees with the previous calculations
and can identify the δ-function with the field point
contribution.

(5) Finally, we repeated the calculation in a completely
independent way, directly evaluating the self-force
from the 2D integral (method [2D]) without the
reduction to a 1D integral. This was significantly
less efficient, but provided an important check as
there is no need to consider any split into field-point-
plus-integral-plus-kink contributions. Instead, we
smeared out the δ function in the Green function
and also introduced a slight smoothing of the kinks,

as discussed in detail in Appendix E. Yet again,
reassuringly, in the limit of our smearing and
smoothing parameters going to zero we recovered
a result which was in perfect agreement with all of
the other methods.

The results of this extensive set of tests are given in
Table V. We see that all methods produce results which are
consistent within their respective error bars. The [2D]
method is least accurate, due to the need for a 2D rather
than a 1D numerical integral. The [1DO] method also poses
challenges for numerical accuracy due to the presence of
sharp features (i.e., the Gaussian approximation to the delta
function for the field point contribution), as does the
[1DOS] method for portions of the integral nearby kinks.
The three exact [1D] methods all work reasonably well;

however even in this case not all methods are equally
computationally efficient. In particular, calculations based
on a single null coordinate encounter a strong divergence in
the integrand as the field point is approached from one side
(the particular side is dependent on whether one uses ζþ or
ζ− as the integration variable). This diverging integral

FIG. 14. The arcs on the tangent sphere traced by b0ðxÞ (red
line, a complete great circle passing through poles) and a0ðxÞ
(two green segments symmetrically cut from a great circle) for
the GV string. The line is made by a series of points, equally
spaced in argument x for the left- and right-moving modes. A
blowup of the line in the figure would show equal intervals
between the points. When the kink is “rounded off” (nonzero Δ
as described in the text) a few of these points will sit between
the pictured green arcs and the green line is formally continuous.
The a0ðxÞ tangent vector moves very rapidly from one side to
the other.
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FIG. 15. Integrand used to compute the self-force for the
Garfinkle-Vachaspati string. These correspond to the values in
the ζ column of Table V. Distributional contributions from the
kinks and field point are denoted by dashed and solid arrows,
respectively. The top panel shows all four components of the
force vector, while the bottom panel only shows the t-component.
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largely cancels against the field point contribution,20

leaving a relatively small overall contribution from the
field-point-plus-integral combination. We found that the
remaining two approaches (integration with respect to ζ;
and half-ζþ half-ζ− plus coordinate change term) were
comparable in terms of computational efficiency.
Importantly, other than accuracy concerns, all methods

produced results which are unambiguous in agreeing with
each other.
Finally, we used the [1D] method (specifically, integrat-

ing with respect to ζ and including field point and kink
contributions) to evaluate the self-force at all points on the
GV string. The results are shown in Figs. 16 and 17.
Figure 16 shows how each of the contributions to Fμ

1

contribute to the overall result, while Fig. 17 shows Fμ
1 and

Fμ
2 themselves, as well as their sum. As in the other string

test cases, we find that the self-force is finite almost
everywhere on the string, with the exception of exactly
on the kinks, where it diverges.

We have analyzed the form of the divergence near the
kink by calculating the total backreaction force to high
accuracy along a set of world sheet points for a line that
runs perpendicular to the kink with coordinates ðτ; ζÞ ¼
ðπ=2þ ζþ=2;−π=2þ ζþ=2Þ for −21 < log jζþj < −11
for positive and negative ζþ. Locally, the kink can be
described in terms of the changes to the unit tangent vector
et, the velocity vector ev and e⊥ ¼ ev × et=jev × etj which
form the perpendicular coordinate system fet; ev; e⊥g. We
find that ev and et lie in the y − z plane and e⊥ along the x-
direction. Letting Δe ¼ eþ − e− stand for the change in
time of each unit vector,

Δe⊥ ¼ f2; 0; 0g ð6:21Þ
Δet ≃ f0;−1.85; 0g ð6:22Þ
δev ≃ f0;−0.77; 0g: ð6:23Þ

The kink is a y-reflection of the velocity and tangent vectors
in the y − z plane.
On each side of the kink we fit each component of Fα

with forms that include combinations of constant, linear
and ln terms in jζþj. We select the linear or ln fit, whichever
is best; it turns out that this corresponds to the term with
coefficients that are of order unity. We report the inferred
scaling in Table VI.

TABLE V. Comparison of methods for computing the self-force at a generic point (τ ¼ 0.3L, ζ ¼ 0.4L) on the GV string.

Contribution ζ− ζþ ζ−=ζþ ζ 2D ζ−ϵ ζþϵ ζϵ

Ft
1

R
−330.558 −12.73ð1Þ 6.89229 −25.6962 −12.76ð2Þ −330.60ð4Þ −12.7488ð1Þ −22.4707ð2Þ

δ � � � 3.22536 � � � � � � � � � � � �
Kink 1 358.819 � � � � � � 16.7989 � � � 358.819 � � � 16.7989
Kink 2 −41.0096 � � � � � � −7.07683 � � � −41.0096 � � � −7.07683
ζ− ↔ ζþ � � � � � � −19.6411 � � � � � � � � � � � � � � �
Total −12.7488ð1Þ −12.73ð1Þ −12.7488 −12.7488 −12.76ð2Þ −12.8ð1Þ −12.7488ð1Þ −12.7487ð2Þ

Fx
1

R
−300.675ð1Þ −2.64ð7Þ 8.62259 −21.7023 −2.58ð3Þ −300.63ð4Þ −2.56339ð6Þ −14.8591ð9Þ

δ � � � 6.84317 � � � � � � � � � � � �
Kink 1 287.628 � � � � � � 14.7570 � � � 287.628 � � � 14.7570
Kink 2 10.4832 � � � � � � −2.46129 � � � 10.4832 � � � −2.46129
ζ− ↔ ζþ � � � � � � −11.186 � � � � � � � � � � � � � � �
Total −2.5637ð8Þ −2.64ð7Þ −2.56342 −2.56342 −2.58ð3Þ −2.52ð8Þ −2.56339ð6Þ −2.56333ð9Þ

Fy
1

R
−304.564 −10.7066ð4Þ 6.6211 −23.4832 −10.72ð2Þ −304.59ð3Þ −10.7068ð1Þ −20.0615ð2Þ

δ � � � 3.42159 � � � � � � � � � � � �
Kink 1 326.143 � � � � � � 15.4176 � � � 326.143 � � � 15.4176
Kink 2 −32.2859 � � � � � � −6.06281 � � � −32.2859 � � � −6.06281
ζ− ↔ ζþ � � � � � � −17.3279 � � � � � � � � � � � � � � �
Total −10.7069 −10.7066ð4Þ −10.7068 −10.7068 −10.72ð2Þ −10.7ð1Þ −10.7068ð1Þ −10.7067ð2Þ

Fz
1

R
−190.140ð1Þ −13.82ð7Þ 2.25465 −15.9946 −13.90ð1Þ −190.22ð8Þ −13.8960ð1Þ −16.9795ð2Þ

δ � � � −0.985094 � � � � � � � � � � � �
Kink 1 234.551 � � � � � � 10.0429 � � � 234.551 � � � 10.0429
Kink 2 −58.3072 � � � � � � −6.95921 � � � −58.3072 � � � −6.95921
ζ− ↔ ζþ � � � � � � −16.1507 � � � � � � � � � � � � � � �
Total −13.8958ð7Þ −13.82ð7Þ −13.896 −13.8960 −13.90ð1Þ −13.97ð9Þ −13.8960ð1Þ −13.8958ð2Þ

20In practice, we were only able to obtain finite results by
evaluating the integral up to a short distance from the field point
and evaluating the expression for the field point contribution at
the point where the integral was cut off. We recovered a unique
and consistent result as the cutoff point was pushed towards the
actual field point.
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The results are similar to but not identical to the ACO
case. First, note that there is one redundancy Ft ¼ −Fz so
we have 3 GV force components to compare to ACO. The
GV coordinate directions of the force are not the same as

the normal and longitudinal directions in the ACO case
and this complicates a direct one-for-one comparison.
Nonetheless, we see analogous behavior. Most prominently
the GV divergence for ζþ < 0 of Ft and Fy scales close

FIG. 16. Contributions to Fμ
1 for the Garfinkle and Vachaspati string when computed using the 1D integration method

with integration with respect to ζ. Each subfigure shows the relevant contribution to the force at all points on the string in the
region τ ∈ ð0; L=2Þ, ζ ∈ ð−L=2; L=2Þ; all other points can be obtained from the standard periodic extension of the string. Each
column corresponds to a different component of the force: Ft

1, F
x
1, F

y
1, and Fz

1. The rows correspond to the contributions from (i) the
kink that passes through (τ ¼ 0, ζ ¼ 0); (ii) the kink that passes through (τ ¼ 0, ζ ¼ π); (iii) the field point; and (iv) the integral over
ζ (ignoring distributional contributions at the kinks and field point). The two kinks are denoted by diagonal black lines. For the
purposes of the plots, we have set the string tension, μ, and Newton’s constant, G, equal to 1; other values simply introduce an overall
scaling.
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to ∝ ðjζþjÞ−1=3 like ACO’s Ft and FN . One difference is
that the GV forces for all components with ζþ > 0
approach nonzero constant values. The ACO loop has
no curvature on one side of the kink, which is probably
responsible for the fact that two of its components approach
zero. Curiously, the ACO divergence for FL ∝ ln jζþj on
both sides of the kink is absent for any components in the
GV case. Likewise, the completely finite GV result for Fx

on both sides of the kink is absent in the ACO case. Despite
these differences the most important observation is that the
GV divergent self-force ∝ ðjζþjÞ−1=3 integrates to a finite
value so we expect the physical displacement of the string
to be finite.

FIG. 17. The two pieces of the self-force, Fμ
1 (row 1) and Fμ

2 (row 2), and the total force Fμ ¼ Fμ
1 þ Fμ

2 (row 3), for the Garfinkle and
Vachaspati string as a function of position on the string.TheFμ

1 part can be obtained by summing the four rows in Fig. 16. For the purposes of
the plots, we have set the string tension, μ, and Newton’s constant, G, equal to 1; other values simply introduce an overall scaling.

TABLE VI. Asymptotic form for the force near the kink;
1 means a nonzero constant.

Sign Ft Fx Fy Fz

ζþ < 0 jζþj−0.33 1 jζþj−0.33 jζþj−0.33
ζþ > 0 1 1 1 1

FIG. 18. The Kibble string loop configuration for p ¼ 1=2 in
spacetime at six equally spaced moments τ ¼ jπ=6 for j ¼ 0 to 5
(invariant length 2π) in the basic loop oscillation cycle. The blue
dashed and dotted loops self-intersect at the central red dot. The
solid blue lines are nonintersecting configurations.
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E. Kibble self-intersecting strings

The ACO and GV strings possess a pair of traveling
kinks that circulate around the loop throughout the period
of oscillation while the KT string forms two transient cusps
each period. In the tangent sphere representation the kink
discontinuities are jumps in a0 and/or b0 while the cusps
form whenever a0 and b0 cross. The nature of the self-
intersections of string loops is not immediately apparent
from the tangent sphere representation. In the case of the
KT string with α ¼ 0 and ϕ ¼ π=6 the string collapses to a
line and the overlap is a spacelike length of string. Unless
nature prefers special loop configurations the generic type
of self-intersection will be weaker than in the above KT
case. Here we investigate the Kibble string loop [13] which
is simpler than any of the previous cases in these respects: it
has no discontinuities or crossings on the tangent sphere,
i.e., the loop is smooth and continuous everywhere, and it
self-intersects at a spacetime point not along a space-
like line.
We integrate the tangent vectors [59] to give explicit

forms for the right and left modes:

aμðζþÞ ¼ ½ζþ; f1ðζþÞ; f2ðζþÞ; f3ðζþÞ� ð6:24Þ

bμð−ζ−Þ ¼ ½ζ−;−f1ðζ−Þ;−f3ðζ−Þ;−f2ðζ−Þ� ð6:25Þ

FIG. 19. The arcs on the tangent sphere traced by a0ðxÞ and
−b0ðxÞ for the Kibble string resemble the seams on a baseball.
The green and red lines are smooth and continuous and do not
intersect each other. They satisfy an integral condition such that
the loop has zero total momentum.

FIG. 20. Contributions toFμ
1 for theKibble stringwhen computed using the [1D] integrationmethodwith integrationwith respect to ζ. Each

subfigure shows the relevant contribution to the force at all points on the string in the region τ ∈ ð0; L=2Þ, ζ ∈ ð−L=2; L=2Þ; all other points
can be obtained from the standard periodic extension of the string. Each column corresponds to a different component of the force:Ft

1,F
x
1,F

y
1,

andFz
1. The rows correspond to the contributions from (i) the field point and (ii) the integral over ζ (ignoring distributional contributions at the

field point). For the purposes of the plots, we have set the string tension,μ, andNewton’s constant,G, equal to 1; other values simply introduce
an overall scaling. Note that we have used a logarithmic scale and denoted positive (negative) values by coloring the plot orange (blue).
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where

f1ðxÞ¼
L
2π

�ð1þp2Þ2 sin2yþðp2=4Þsin4y
2þ5p2þ2p4

�
ð6:26Þ

f2ðxÞ¼
L
2π

cos2y

�
−2þ4p2þ2p4þp2cos2y

4þ10p2þ4p4

�
ð6:27Þ

f3ðxÞ¼
L
2π

23=2pcosy

�
5þ3p2þ2cos2y
6þ15p2þ6p4

�
ð6:28Þ

y ¼ 2πx
L

ð6:29Þ

where p is a constant. We choose for the numerical
example p ¼ 1=2. This is a more complicated loop in
terms of harmonic content than either the GVor KT loops.
Figure 18 shows six equally spaced snapshots of the loop
during the fundamental oscillation period. The dashed and
dotted lines show the times when a self-intersection
occurs at the center (red dot). Figure 19 gives the tangent
sphere representation which resembles the seams of a
baseball.
This loop has collisions at world sheet coordinates

fτ; ζg ¼ f0;�π=2g and fτ; ζg ¼ fπ=2; 0g and fπ=2; πg.
We describe the limiting behavior near fτ; ζg ¼
f0;�π=2g. The velocities of the two bits of string are equal
and opposite: _zi¼�f0;−0.26;−0.26g. The tangent vectors
are dzi=dζ¼f−0.85;�0.26;∓0.26g (an angle of ∼0.94rad).
The acceleration vectors are z̈i¼f0;−0.41;0.41g. The

FIG. 21. The two pieces of the self-force, Fμ
1 (row 1) and Fμ

2 (row 2), for the Kibble string as a function of position on the string. The
Fμ
1 part can be obtained by summing the two rows in Fig. 20. For the purposes of the plots, we have set the string tension, μ, and

Newton’s constant, G, equal to 1; other values simply introduce an overall scaling. Note that we have used a logarithmic scale and
denoted positive (negative) values by coloring the plot orange (blue).
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gravitational radiation emitted by each piece of string
should be similar.
The net effect of the crossing is small. The bumps at the

collision points on the full scale world sheet representations
in Figs. 20 and 21 are difficult to distinguish at all. Here we
look in more detail near those crossings.
Component Ft is displayed in a small two-dimensional

patch about the crossing point in the top left plot of Fig. 22.
As τ → 0 at fixed ζ ¼ π=2 (the vertical line of small dots in
the picture) Ft diverges ∝ τ−1 with a change of sign as τ
passes through zero. The results at �τ are nearly equal and
opposite. We find that the sum of the two components at�τ
is nearly constant as jτj → 0, numerically approximately
∝ jτj0.05. As ζ varies near π=2 (fixed τ ¼ 0, the horizontal

line of small dots) the results on each side of the crossing
point are finite and the zero value is not exactly at δζ ¼ 0.
These results are quite sensitive to the size of δτ since the
surface changes sign (from plus to minus infinity) near
δτ ¼ 0.
We have formally fit the power law variation for δτ near

τ ¼ 0 and for δζ near ζ ¼ π=2. Table VII summarizes the
slopes extracted for Fα along fixed τ and fixed ζ coor-
dinates passing exactly through the crossing point. Some
components vary such that an integral over just one side
would yield a divergent quantity; however, the symmetric
sum is always integrable.
The plot of Ft shows it to be approximately a product

of individual functions of τ and ζ. The other force

FIG. 22. The four components (t, x, y, and z [left to right, top to bottom]) of ln jF t
conf j for a small patch of the world sheet about the

crossing point. Four quadrants in fδτ; δζg are displayed in log absolute value coordinates (oriented to match the usual linear system
about fτ; ζg ¼ f0; π=2g). Blue (orange) represents negative (positive) values. The small dots have been added for δτ ¼ 0 and δζ ¼ 0.
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components are more complicated. Components Fx, Fy

and Fz are shown in small two-dimensional patches in the
other plots of Fig. 22. The small dots show the variation
along the coordinate axes.
In summary, we find the effect of the string crossing

leads to integrable forces for all components in this
example.

F. Comparisons to radiated quantities
evaluated in the far field

As an additional consistency check on our results, we
compute the radiated energy and compare it to the energy
dissipated through the local self-force. The latter can be
computed using the change in the 4-momentum of the
string,

ΔPμ ¼ μ

Z
F μ

confdζdτ; ð6:30Þ

where the conformal-gauge force F μ
conf is given by

Eq. (3.9) and where the region of integration is given by
the fundamental period of the world sheet: −L=2 ≤
ζ < L=2 and 0 ≤ τ < L=2. In practice, we evaluate the
integrand at N ∼ 104 equally spaced points on a two-
dimensional surface and approximate the integral as the
sum of the function values at the points times the world
sheet area per point. This is a low accuracy method that is
suited to the occurrence of steep spikes at various points on
the world sheet; we estimate the accuracy of the results to
be within 1%–5%.
The work done on the string by the self-force lowers

its energy, ΔP0 < 0, and should be exactly balanced by
the flux carried to infinity, which must be −ΔP0 > 0.

We separately compute this flux to infinity using the
formalism of Allen and Ottewill [96], in which the
stress-energy tensor is a sum of individual Fourier compo-
nents of the undamped string. For each overtone n we
numerically integrate dPðnÞ=dΩ over the sphere. We
compute N overtones and then fit and sum a power law
extrapolation for N → ∞. This yields a result which is
approximately 1% accurate.
Table VIII compares the results of the two calculations.

We find good numerical agreement within the expected
accuracy of the result.

VII. DISCUSSION

We have developed a general method for calculating
the self-force due to gravitational perturbations of a
lightly damped string loop. Our approach breaks up the
calculation into smooth integrals over the retarded
image of the loop plus boundary terms. The latter
are used to take account of the special contributions
when the source and field point coincide and when
discontinuities are visible on the past image of the loop.
These may be from kinks or cusps or crossings
(spacetime points where intercommutation events might
occur). Our methodology is quite general and can be
used for arbitrary choices of spacetime and world sheet
gauges.
There are some existing calculations of the gravita-

tional self-force for cosmic strings [76,81,84]; however
these results have all relied on simplifications or approx-
imations that do not hold in general. For example,
although Quashnock and Spergel [76] used a numerical
approach not too different from ours, they did not discuss
any of the various distributional type contributions that

TABLE VII. Kibble loop divergent behavior at the crossing
point τ ¼ 0 and ζ ¼ π=2. The columns labeled τ ¼ 0 give ν for
the scaling of the force component along the string near the
crossing point ∝ jζ − π=2jν. Likewise, the ones labeled ζ ¼ π=2
describe the scaling ∝ jτjν for times before and after the
appearance of the crossing. “One side” means the scaling of
the absolute value (approximately the same on each side); “Net”
means the scaling of the symmetric sum of points on opposite
sides of the crossing point. Small ν results are numerically close
to finite limits but in any case are integrable. The “� � �” indicates
values that are not well defined because of a zero-crossing
at τ ¼ 0.

ζ varies; τ ¼ 0 τ varies; ζ ¼ π=2

Component One side Net One side Net

Ft � � � � � � −1.0 0.04
Fx −1.1 −0.04 −0.04 −0.03
Fy −1.1 −0.06 −1.0 −0.05
Fz −1.1 −0.05 −0.96 −0.04

TABLE VIII. The total energy loss integrated over one
fundamental period of the loop oscillation in the center of
mass frame of the loop. The far field is calculated with the
formalism of Allen and Ottewill [96]. The analytic result for
the ACO loop in the far field is from Ref. [61]. The numerical
results for the direct energy loss integrate F μ

conf over the world
sheet according to the description in this section. The analytic
results for the direct energy loss for the ACO loop are from
Ref. [81].

Case
Far field

(numerical)
Far field
(analytic)

Direct
(numerical)

Direct
(analytic)

ACO 122.537 122.53 125.515 122.53
KT α ¼ 0,
ϕ ¼ π=6

349.677 � � � 355.643 � � �

KT α ¼ 1=2,
ϕ ¼ 0

241.321 � � � 238.259 � � �

GV 131.304 � � � 132.486 � � �
Kibble 137.6 � � � 135.428 � � �
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we have studied in detail here. Our results21 suggest that
their use of a pair of null coordinates sidesteps the issue
of a contribution from the field point. The issue of
contributions from kinks, however, remains unaddressed.
Additionally, given the limited computational resources
available at the time, their numerical calculations were
restricted to a low-resolution study in a restricted set of
cases. In the case of Refs. [81,84], approximations based
on simple string configurations were made which, while
reasonable in some cases, do not fully capture the
behavior for generic string configurations.
Our numerical calculations have passed a number of

validation checks including comparisons with existing
analytical results, comparisons of the integrated power
radiated over a fundamental period against the flux of
gravitational energy measured at large distances, and cross-
comparisons of several semi-independent methods for
computing the self-force. From the perspective of computa-
tional efficiency it is clear that the [1D] methods based on
either integration with respect to ζ or a Quashnock-Spergel
type mixed integration with respect to ζþ and ζ− are the
best choice. The other [1D] methods (using a single null
coordinate or over-retardation) inevitably encounter large
numerical cancellations nearby the field point, making
them significantly more computationally demanding. The
[2D] method is even worse and is orders of magnitude more
demanding than any of the [1D] methods.
While the preferred [1D] methods work well in general,

there are certain cases where they also run into numerical
challenges. Since the self-force diverges as one approaches
kinks and cusps (in such a way that the displacement of the
world sheet is finite) it is unavoidable that one would
encounter numerically divergent quantities at one point or
another. In thiswork,we handled the issue of divergences in a
brute force manner by simply evaluating quantities to a
sufficiently high accuracy that they can be canceled to leave a
residual which is still accurately determined. While this
approach works reasonably well, the calculation could be
made significantly more efficient by developing an alter-
native approach to the problem. One promising possibility is
to borrow from results in the point particle case [100–102],
where it was found that the separation of the full metric
perturbation into a so-called “puncture field” that captures
the singular behavior plus a “residual field” that is more
numerically well behaved. In the point particle case, by
basing the puncture field on an approximation to the singular
field proposed byDetweiler andWhiting [103], one canwork
directly with the residual field as it is entirely responsible for
driving the motion. In the case of a cosmic string we do not
yet have an analogousDetweiler-Whiting type singular field.
One could attempt to derive one following the matched

expansionmethods ofRef. [104].Alternatively, evenwithout
such a derivation a local analysis of the type done in
Sec. IV D may yield an approximation to the singular
behavior of the metric perturbation which leaves a numeri-
cally well-behaved residual field, and which is sufficiently
simple that its integrated contribution to the motion can be
determined analytically. Indeed, a preliminary analysis for
the ACO string (where the self-force is known analytically)
suggests that exactly this approach will work well and has
been found to significantly improve the accuracy with which
the integratedmotion canbedetermined, even in the presence
of a divergent self-force at the kinks.
The ultimate goal of our program is to evolve cosmic

strings under the influence of the self-force and to study the
consequences of backreaction on cusp formation, smooth-
ing of kinks, and other astrophysically relevant features of
cosmic strings. This paper represents the first step in such
an endeavor. We can now compute the self-force for an
arbitrary cosmic string with a reasonable level of accuracy
and with the freedom to arbitrarily choose coordinates and
gauges which are most suitable for evolution. The next step
is to implement this into a numerical evolution scheme.
This will be presented in a future work.
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APPENDIX A: ADAPTED TETRADS ON THE
WORLD SHEET

1. Definition of adapted tetrad

Suppose that we have a set of four linearly independent
basis vectors e⃗0̂, e⃗1̂, e⃗2̂, e⃗3̂, defined on the world sheet,
where e⃗0̂ is timelike and the other vectors are spacelike. If
e⃗0̂ and e⃗1̂ are tangent to the world sheet, and if the other two
vectors are orthogonal, we will say that the tetrad is adapted
to the world sheet. Such tetrads are convenient since the
four vectors can be used as a basis for spacetime tensors,
while the first two vectors can be used as a basis for world

21For example see the third column in Table V for the GV case,
but we also performed the same check for the other configura-
tions discussed in this paper.
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sheet tensors. We will not require in the following that the
basis be orthogonal or orthonormal.
We now introduce the following index notations. Hatted

lowercase Greek indices will run over 0̂, 1̂, 2̂, 3̂, so for
example an expansion of a vector v⃗ on the orthonormal
basis will be written as

v⃗ ¼ vα̂e⃗α̂: ðA1Þ
We will use hatted capital roman indices Â; B̂;… to run
over 0̂, 1̂, the directions along the world sheet, and hatted
capital greek indices Γ̂; Σ̂;… to run over 2̂, 3̂, the directions
orthogonal to the world sheet. So the decomposition (A1)
of a general vector can be rewritten as

v⃗ ¼ vÂe⃗Â þ vΣ̂e⃗Σ̂: ðA2Þ
We define the dual basis of one-forms wα̂

α by

wα̂
αeβ̂

α ¼ δα̂
β̂
: ðA3Þ

The basis vectors and dual basis vectors can be used to
express tetrad basis components of tensors in terms of
coordinate basis components and vice versa in the usual
way:

vα̂ ¼ wα̂
αvα; vα̂ ¼ eα̂αvα; ðA4Þ

etc.

2. Examples of adapted tetrads

Let us adopt the conventional parametrization of the
background world sheet [14]:

X⃗ðτ; ζÞ ¼
�
τ;
1

2
aðζ − τÞ þ 1

2
bðζ þ τÞ

�
; ðA5Þ

where a02 ¼ b02 ¼ 1. (Here the notation is that boldface
quantities are three-vectors, and quantities with arrows are
four-vectors.) We can then define an orthonormal tetrad of
basis vectors

e⃗0̂ ¼ f0ð2;−a0 þ b0Þ; ðA6aÞ

e⃗1̂ ¼ f1ð0;a0 þ b0Þ; ðA6bÞ

e⃗2̂ ¼ f2ð1 − a0 · b0;−a0 þ b0Þ; ðA6cÞ

e⃗3̂ ¼ f3ð0; a0 × b0Þ; ðA6dÞ

where f0¼f1¼½2ð1þa0 ·b0Þ�−1=2, f2¼½1−ða0 ·b0Þ2�−1=2
and f3 ¼ 1=ja0 × b0j. This is an adapted tetrad since the
vectors e⃗0̂ and e⃗1̂ point along the world sheet (they are
proportional to ∂τ and ∂ζ), while e⃗2̂ and e⃗3̂ are orthogonal
to it. Another choice of adapted tetrad is given in Eqs. (A6)
but with the coefficients fα̂ set to unity. This is an

orthogonal tetrad, but not an orthonormal tetrad, and might
be more convenient to use in computations.

3. Geometric quantities in terms of the tetrad basis

The spacetime metric on the tetrad basis is

gα̂ β̂ ¼ e⃗α̂ · e⃗β̂: ðA7Þ
It follows from the definition of the adapted tetrad that this
has a block diagonal form with two 2 × 2 sub-blocks, i.e.,
that gÂ Γ̂ ¼ 0. Also the induced metric on the tetrad basis is
just one of the 2 × 2 sub-blocks:

γÂ B̂ ¼ e⃗Â · e⃗B̂ ¼ gÂ B̂: ðA8Þ
It also follows that

γÂ B̂ ¼ gÂ B̂: ðA9Þ
Hatted indices are raised and lowered with gα̂ β̂. For vectors

vα̂ parallel to the world sheet we have vΓ̂ ¼ 0 and vΓ̂ ¼ 0,
so indices can equivalently be raised and lowered just
with γÂ B̂.
The projection tensor (2.2) can be expressed in terms of

the tetrad vectors and dual vectors as

Pβ
γ ¼ eÂ

βwÂ
γ; ðA10Þ

and the orthogonal projection tensor is

⊥β
γ ¼ eΓ̂

βwΓ̂
γ: ðA11Þ

Inserting these expressions into the definition (2.5) of the
extrinsic curvature tensor gives

Kμνρ ¼ −Pμ
αPνβ∇α⊥β

ρ

¼ −eÂαwÂ
μgνλeB̂

λwB̂
β∇αðeΓ̂βwΓ̂

ρÞ
¼ −eÂαwÂ

μgνλeB̂
λwB̂

β∇αðeΓ̂βÞwΓ̂
ρ: ðA12Þ

It follows that the nonzero components of the extrinsic
curvature tensor on the tetrad basis are

KÂ
B̂
Γ̂ ¼ −eÂαwB̂

β∇αeΓ̂
β: ðA13Þ

Note that this formula is valid for an arbitrary adapted
tetrad, not just an orthonormal one.

4. Explicit form of equation of motion
in orthogonal gauge using adapted tetrad

a. Orthogonal gauge

An alternative world sheet gauge choice is to impose that
the displacement vector be orthogonal to the world sheet
everywhere:
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Pα
βz

β
ð1Þ ¼ 0 ðA14Þ

or

⊥α
βz

β
ð1Þ ¼ zαð1Þ: ðA15Þ

From the general form (3.10) of linearized gauge trans-
formations we see that it is always possible to achieve
this gauge.

b. Form of equation of motion

In the orthogonal gauge, the displacement vector is
orthogonal to the world sheet, so we can express it as an
expansion in terms of two components on an adapted
tetrad:

z⃗ð1Þ ¼ zΓ̂ð1Þe⃗Γ̂: ðA16Þ

We now write the general equation of motion (3.5) in the
schematic form:

L½z⃗ð1Þ�α ¼ F α; ðA17Þ

where L is the differential operator that appears on the left-
hand side, and F is the forcing term linear in hαβ on the
right-hand side. Writing this equation on the orthonormal
basis gives

L½z⃗ð1Þ�α̂ ¼ F α̂: ðA18Þ

Now the α̂ ¼ 0̂ and α̂ ¼ 1̂ components of this equation
vanish identically, since both sides are perpendicular to the
world sheet. So, we end up with an equation with only two
components:

L½z⃗ð1Þ�Γ̂ ¼ F Γ̂: ðA19Þ

This will give two coupled equations for the two compo-
nents z2̂ð1Þ and z3̂ð1Þ of the displacement vector.
We now derive the following explicit form of the

differential operator on the orthonormal basis:

L½z⃗ð1Þ�Γ̂ ¼ ΔzΓ̂ð1Þ þKAΓ̂
Σ̂∂AzΣ̂ð1Þ þMΓ̂

Σ̂z
Σ̂
ð1Þ: ðA20Þ

Here ∂a denotes a derivative with respect to the world
sheet coordinates ζa, and △ is the scalar differential
operator

Δ ¼ 1ffiffiffi
γ

p ηab∂a∂b: ðA21Þ

The mass matrix M is given by

MΓ̂
Σ̂ ¼ wΓ̂

αΔeΣ̂α þ λΣ̂ Â B̂K
Â B̂ Γ̂: ðA22Þ

Also

λΣ̂ Â B̂ ¼ −γB̂ Ĉw
Ĉ
αeÂ

μ∇μeΣ̂
α − γÂ Ĉw

Ĉ
αeB̂

μ∇μeΣ̂
α: ðA23Þ

Note that all the derivatives in this expression are along the
world sheet, so the expression is well defined (the basis
vectors are not defined off the world sheet, so orthogonal
derivatives are not well defined). Finally the quantity K is
given by

KaΓ̂
Σ̂ ¼ 2ffiffiffi

γ
p wΓ̂

αη
ab∂beΣ̂

α: ðA24Þ

c. Derivation

From Eq. (3.5), dropping the Riemann term since we are
working in flat spacetime, and replacing all indices with
hatted indices, we get

L½z⃗ð1Þ�Γ̂ ¼ ⊥Γ̂
χ̂∇̄μ̂∇̄μ̂zχ̂ð1Þ − 2∇̄μ̂zα̂ð1ÞK

μ̂
α̂
Γ̂: ðA25Þ

Consider first the second term in Eq. (A25). Since the
extrinsic curvature tensor is parallel to the world sheet on its
first two indices, we can drop the bar on the derivative
operator. Also we can replace the indices μ̂ and α̂ by world
sheet indices Â and B̂, giving

−2KÂ
B̂
Γ̂∇Âz

B̂
ð1Þ ¼ −2KÂ

B̂
Γ̂eÂ

αwB̂
β∇αz

β
ð1Þ: ðA26Þ

Now inserting the expansion (A16) of the displacement
vector gives

−2KÂ
B̂
Γ̂eÂ

αwB̂
β∇αðzΓ̂ð1ÞeΓ̂βÞ ¼ −2KÂ

B̂
Γ̂eÂ

αwB̂
βzΓ̂ð1Þ∇αeΓ̂

β;

ðA27Þ

where we have used the orthonormality of Â and Γ̂
directions. This gives the second term in the mass matrix
(A22).
To evaluate the first term in Eq. (A25), we temporarily

return to the coordinate form of this term, the first term on
the left-hand side of Eq. (3.5). Then we use the general
result (valid in arbitrary gauges) for this term that

⊥ρ
χ∇̄μ∇̄μzχð1Þ ¼ ⊥ρ

χ
1ffiffiffi
γ

p ∂að ffiffiffi
γ

p
γab∂bz

χ
ð1ÞÞ: ðA28Þ

We now use the fact that we have chosen conformal gauge
to zeroth order, so that

ffiffiffi
γ

p
γab ¼ ηab. This gives

⊥ρ
χ∇̄μ∇̄μzχð1Þ ¼ ⊥ρ

χ
1ffiffiffi
γ

p ηab∂a∂bz
χ
ð1Þ: ðA29Þ
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We now convert the ρ and χ indices in this equation to
orthonormal indices, by multiplying by appropriate factors
of e and w, and also by inserting the expansion (A16) of the
displacement vector. We use the formula

ΔðzΓ̂ð1ÞeΓ̂χÞ ¼ ΔðzΓ̂ð1ÞÞeΓ̂χ þ zΓ̂ð1ÞΔeΓ̂
χ þ 2ffiffiffi

γ
p ηab∂azΓ̂ð1Þ∂beΓ̂

χ :

ðA30Þ

The three terms in this expression generate, respectively,
the first term in Eq. (A20), the first term in the mass matrix
(A22), and the second term in Eq. (A20).

APPENDIX B: COORDINATE SYSTEMS WITHIN
THE CLASS OF CONFORMAL GAUGES

Within the conformal gauge, there is freedom in the
particular choice of world sheet coordinates fζ1; ζ2g. For
example, they may be chosen to be space-time (ζa ¼ ½τ; ζ�);
null (ζa ¼ ½ζ−; ζþ�≡ ½τ − ζ; τ þ ζ� ¼ ½2τ − ζþ; ζþ�); or
seminull (ζa ¼ ½τ; ζþ�≡ ½τ; τ þ ζ�). The relation between
derivatives in the various coordinates is given by

� ∂
∂ζþ

�
τ

¼
� ∂
∂ζ

�
τ

¼
� ∂
∂ζþ

�
ζ−
−
� ∂
∂ζ−

�
ζþ
; ðB1Þ

� ∂
∂τ
�

ζþ
¼

� ∂
∂τ
�

ζ

−
� ∂
∂ζ

�
τ

¼ 2

� ∂
∂ζ−

�
ζþ
: ðB2Þ

As mentioned in Sec. IV D, the conformal gauge
condition imposes that derivatives of the world sheet be
related. In space-time coordinates the τ and ζ derivatives
are related by

∂τzα∂τzα þ ∂ζzα∂ζzα ¼ 0; ∂τzα∂ζzα ¼ 0: ðB3Þ

Equivalently, the null derivatives are related by

∂ζþzα∂ζþzα ¼ 0; ∂ζ−zα∂ζ−zα ¼ 0; ðB4Þ

and the seminull derivatives are related by

∂τzα∂τzα ¼ 0; ∂τzα∂ζþzα þ ∂ζþzα∂ζþzα ¼ 0: ðB5Þ

Additionally, the equation of motion (3.4) reduces to

ϕ−1½∂ζζzα − ∂ττzα� ¼ 0 ðB6Þ

in space-time coordinates, to

−4ϕ−1∂ζþζ−zα ¼ 0 ðB7Þ

in null coordinates, and to

−ϕ−1½∂ττzα þ 2∂ζþτzα� ¼ 0 ðB8Þ

in seminull coordinates. The solutions can be written in
terms of left-moving and right-moving waves, i.e., in terms
of two functions aαðζþÞ and bαðζ−Þ that satisfy the tangent
sphere condition gαβ∂ζþaα∂ζþaβ ¼ 0 ¼ gαβ∂ζ−bα∂ζ−bβ.

APPENDIX C: ENERGY-MOMENTUM LOSS
FORMULAS

We review the QS [76] result for energy-momentum
loss by self-forces in light-cone coordinates and con-
formal gauge. We note that these results can be generalized
to arbitrary gauge choice. Finally, we rewrite the
energy-momentum loss formulas directly in terms of the
conformal-gauge force using Eq. (3.14). We utilize
the result to evaluate the dissipative effects on the string.
QS analyzed a string with mass per length μ, spacetime

position of the world sheet xμ ¼ zμðζ1; ζ2Þ where the two
coordinates covering the world sheet are ζa ¼ fζ1; ζ2g;
gμν ¼ f−;þ;þ;þg; and ζa ¼ fζ1; ζ2g ¼ fτ; ζg. The
Nambu-Goto action is

S ¼ −μ
Z

d2ζ
ffiffiffiffiffiffi
−γ

p ðC1Þ

γab ¼ gμν
∂zμ
∂ζa

∂zν
∂ζb ðC2Þ

γ ¼ det γab ðC3Þ

and γ < 0. We have the stress-energy tensor [Eq. (12.2.2)
of [105] ]

TμνðxÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

�
δS

δgμνðxÞ
�

ðC4Þ

g ¼ det gμν: ðC5Þ

Now using _zμ ¼ zμ;τ, z0μ ¼ zμ;ζ, _z
2 ¼ gμν _zμ _zν, z02 ¼ gμνz0μz0ν,

z0 · _z ¼ gμνz0μ _zν and δgαβðxÞ=δgμνðx0Þ ¼ δ4ðx − x0Þðδμαδνβ þ
δναδ

μ
βÞ=2 we can write

Tμν ¼ μffiffiffiffiffiffi−gp
Z

d2ζffiffiffiffiffiffi−γp δ4ðx − zðζÞÞCμν ðC6Þ

Cμν ¼ Dμν þ Eμν ðC7Þ

Dμν ¼ _zμ _zνðz0Þ2 þ z0μz0νð_zÞ2 ðC8Þ

Eμν ¼ ðz0 · _zÞðz0μ _zν þ _zμz0νÞ: ðC9Þ

This differs from QS Eq. (3.2) in two details: the power of
the determinant of the induced metric is −1=2 not 1=2 and
there is an explicit occurrence of the determinant of the
spacetime metric.
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The Lagrangian L ¼ −μ ffiffiffiffiffiffi−γp
leads to the equations of

motion [QS Eq. (3.3)]. With the gauge choices _x · x0 ¼ 0

and ð_xÞ2 þ ðx02Þ ¼ 0 we have

ffiffiffiffiffiffi
−γ

p ¼ −ð_xÞ2 ¼ ðx0Þ2 ðC10Þ

and QS Eq. (3.6)

ẍν − x00ν ¼ −Γν
αβð_xα _xβ − x0αx0βÞ: ðC11Þ

In light-cone coordinates u≡ τ þ ζ and v≡ τ − ζ
these are

∂u∂vxμ ¼ −Γμ
αβ∂uxα∂vxβ ðC12Þ

gαβ∂uxα∂uxβ ¼ 0 ðC13Þ

gαβ∂vxα∂vxβ ¼ 0: ðC14Þ

In flat background these reduce to

xμð0Þ;uv ¼ 0 ðC15Þ

with gauge conditions

ημνx
μ
ð0Þ;ux

ν
ð0Þ;u ¼ ημνx

μ
ð0Þ;vx

ν
ð0Þ;v ¼ 0: ðC16Þ

The subscripts here and below label powers of μ. Our
ϕ ¼ −γð0Þ > 0.
For general background the stress-energy tensor is Tμν ≡

μIμν where

Iμν ¼ 1ffiffiffiffiffiffi−gp
Z

dudvGμνδð4Þðx − zÞ ðC17Þ

and

Gμν ¼ zμ;uzν;v þ zμ;vzν;u: ðC18Þ

The form is exact and does not explicitly involve γ. This is
QS Eq. (3.12) supplemented with an explicit determinant of
the spacetime metric. We can regard G (and γ) as functions
of u and v via x ¼ zðu; vÞ.
Integrating the covariant derivative of the stress-energy

tensor ∇νTμν over a large cylinder with spatial extent
beyond the source and asymptotically flat and between two
time slices over weight

ffiffiffiffiffiffi−gp
d4x gives the covariant

conservation law

Z
d4x

ffiffiffiffiffiffi
−g

p ∇νTμν

¼
Z

d4xð ffiffiffiffiffiffi
−g

p
TμνÞ;ν þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Γμ
αβT

αβ: ðC19Þ

The first term on the left is rewrittenZ
d4xð ffiffiffiffiffiffi

−g
p

TμνÞ;ν

¼
Z

d4xð ffiffiffiffiffiffi
−g

p
Tμ0Þ;0 þ

Z
d4xð ffiffiffiffiffiffi

−g
p

TμiÞ;i: ðC20Þ

Defining

Pμ ≡
Z

d3x
ffiffiffiffiffiffi
−g

p
Tμ0 ðC21Þ

ΔPμ ≡
Z

dtPμ
;0 ðC22Þ

and applying Gauss’s law to the integral at spatial infinity
Z

d3xð ffiffiffiffiffiffi
−g

p
TμiÞ;i ¼ 0 ðC23Þ

we find the change in the source momentum
Z

d4xð ffiffiffiffiffiffi
−g

p
TμνÞ;ν ¼ ΔPμ: ðC24Þ

Inserting this result into Eq. (C19) and rearranging, we get

ΔPμ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð∇νTμν − Γμ
αβT

αβÞ

¼
Z

d4xð ffiffiffiffiffiffi
−g

p
TμνÞ;ν: ðC25Þ

It is not too surprising that the form is identical to
Eq. (C24).
Next, use the explicit form for the stress-energy tensor on

the right-hand side. How well do we need to know the
terms? Since P ∼ μ, if we wish ΔP ∼ μ2 then we needffiffiffiffiffiffi−gp

T ∼ μ
ffiffiffiffiffiffi−gp

I accurate to order μ2. Since there is one
factor of μ which is explicit one needs I ¼ Ið0þ1Þ, but, as
mentioned earlier, I is exact.22

Integrate over a fundamental period in time and a large
volume containing the string source:
Z

ð ffiffiffiffiffiffi
−g

p
TμνÞ;νd4x ¼ μ

Z
d4x∂ν

Z
dudvGμνδ4ðx − zÞ

ðC26Þ

¼ μ

Z
d4x

Z
dudvGμν∂νðδ4ðx − zÞÞ:

ðC27Þ

22In our formalism, this is not the case; we start with Eq. (3.16)
with gμν → ημν and all other quantities evaluated for the back-
ground (see footnote 1). This expression is Ið0Þ.
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To handle the derivative of the delta function we
introduce two additional independent variables for span-
ning the space perpendicular to the world sheet:

ya ¼ fζ; σ⊥g ðC28Þ

ζ ¼ fu; vg ðC29Þ

σ⊥ ¼ fσ1; σ2g: ðC30Þ

Define Z which extends z off the world sheet by adding a
perpendicular component h for σ⊥ ≠ 0:

ZμðyÞ ¼ zμðζÞ þ hμðζ; σ⊥Þ ðC31Þ
hμjσ⊥¼0 ¼ 0 ðC32Þ

gμνð∂ζzμÞð∂σ⊥h
νÞjσ⊥¼0 ¼ 0: ðC33Þ

The third condition is the requirement that the extension lie
off the world sheet. This extension is meant to be exact to
all orders in μ.
Now we can formally extend the integrationZ

dudvδ4ðx − zÞ →
Z

d4yδ2ðσ⊥Þδ4ðx − ZÞ; ðC34Þ

rewrite the derivative of the delta function (this is possible
because the extra variables allow one-to-one coordinate
transformations)

∂
∂xν δ

4ðx − ZÞ ¼ −
∂

∂Zν δ
4ðx − ZÞ ðC35Þ

¼ −
∂ya
∂Zν

∂
∂ya δ

4ðx − ZÞ ðC36Þ

¼ −ð∂νyaÞ
∂
∂ya δ

4ðx − ZÞ; ðC37Þ

and insert and integrate by parts:

Z
ð ffiffiffiffiffiffi

−g
p

TμνÞνd4x¼−μ
Z

d4xd4yδ2ðσ⊥ÞGμν

× ð∂νyaÞð∂aδ
4ðx−ZÞÞ ðC38Þ

¼ μ

Z
d4y∂aðδ2ðσ⊥ÞGμν ∂νyaÞ: ðC39Þ

Finally, note that ∂Zμ

∂ya
∂yb
∂Zμ ¼ δba so that we end up with

ΔPμ ¼ 2μ

Z
dudv

∂2zμ

∂u∂v : ðC40Þ

This is exact and identical to what QS derive in
Eq. (4.6). Second-order results in μ follow by writing

zμ ¼ zμð0Þ þ zμð1Þ, noting that the unperturbed equations of

motion are zμð0Þ;uv ¼ 0, and finding

ΔPμ
ð0þ1Þ ¼ 0 ðC41Þ

ΔPμ
ð2Þ ¼ 2μ

Z
dudv

∂2zμð1Þ
∂u∂v : ðC42Þ

One needs to know the perturbed string position to apply
this formula directly to calculate energy-momentum loss in
the sense that ΔPðnþ1Þ requires zðnÞ.
QS rewrite this using their first-order equations of

motion zμð1Þ;uv ¼ −Γμ
αβð1Þz

α
ð0Þ;uz

β
ð0Þ;v, giving the final result

for energy-momentum change to second order in μ:

ΔPμ
ð2Þ ¼ −2μ

Z
dudvΓμ

αβð1Þz
α
ð0Þ;uz

β
ð0Þ;v: ðC43Þ

In this form the numerical evaluation of the energy-
momentum change requires the first-order metric pertur-
bations instead of the first-order string perturbations. The
linearized equations for the metric are

□gμνð1Þ ¼ −16πGðTμνð1Þ − ð1=2Þgμνð0ÞTρ
ρð1ÞÞ ðC44Þ

where Tð1Þ ¼ μIð0Þ [i.e.,
ffiffiffiffiffiffi−gp

ð0Þ ¼ 1 and unperturbed

world sheet z ¼ zð0Þ].
We can generalize this procedure by following the

identical logic without make the choice of the conformal
gauge. In summary,

S ¼ −μ
Z

d2ζ
ffiffiffiffiffiffi
−γ

p ðC45Þ

TμνðxÞ ¼ 2ffiffiffiffiffiffi−gp δS
δgμνðxÞ

ðC46Þ

¼ μffiffiffiffiffiffi−gp
Z

d2ζ
ffiffiffiffiffiffi
−γ

p
γabzμ;azν;bδ

4ðx − zÞ ðC47Þ

ΔPμ ¼ μ

Z
d2ζ

∂
∂ζb ð

ffiffiffiffiffiffi
−γ

p
γabzμ;aÞ: ðC48Þ

If we count orders then we need γð0þ1Þ and zð0þ1Þ to give
ΔPð2Þ. In the previous case there was no explicit appearance
of the induced metric; only z was present so it was
sufficient to give zð0þ1Þ to find ΔPð2Þ. Now there is the
possibility that zð0Þ couples to γð1Þ in addition to zð1Þ
coupling to γð0Þ.
Finally, the equation of motion, Kμ ¼ 0 [our Eq. (2.7)],

is explicitly
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Kμ ¼ 1ffiffiffi
h

p ∂
∂ζb ð

ffiffiffi
h

p
habzμ;aÞ þ PαβΓμ

αβ ¼ 0 ðC49Þ

and so we can also write the energy-momentum change as

ΔPμ ¼ −μ
Z

d2ζ
ffiffiffi
h

p
PαβΓμ

αβ: ðC50Þ

The above pair of equations is analogous to QS’s
Eqs. (3.14) and (4.6). They are valid for any coordinate
and gauge choice and do not presume a flat background.
To calculate energy-momentum loss we start from

Eq. (C42) above, and we rewrite u and v in terms of ζ
and τ to give

dudv ¼ 2dζdτ ðC51Þ

∂u∂v ¼ ð1=4Þð∂2
τ − ∂2

ζÞ ðC52Þ

¼ −ð1=4Þηab∂a∂b ðC53Þ
for our definitions

η ¼
�−1 0

0 1

�
ðC54Þ

γab ¼ ϕηab: ðC55Þ

Now Eq. (3.14) (conformal gauge at zeroth and first order)
is

ηab∂a∂bz
μ
ð1Þ ¼ −F μ

conf ðC56Þ

so (C42) implies that the change in the 4-momentum of the
string is

ΔPμ
ð2Þ ¼ μ

Z
F μ

confdζdτ ðC57Þ

with the region of integration given by the fundamental
period of the world sheet: −L=2 ≤ ζ < L=2 and
0 ≤ τ < L=2. For F 0

conf < 0 the work done on the string
lowers its energy, ΔP0 < 0, and the flux carried to infinity
is −ΔP0 > 0. This form is analogous to QS Eq. (C43).

APPENDIX D: EXPANSION OF THE RETARDED
TIME IN NULL COORDINATES

In Sec. IV D we derived an expansion which is useful in
the case where spacelike and timelike world sheet coor-
dinates are used. It is also useful to consider the case where
null coordinates are used (and, in particular, where the
variable of integration is a null world sheet coordinate). We
will denote these null coordinates by ζþ and ζ− and assume
they can be related to spacelike and timelike coordinates in
the standard way, ζþ ¼ τ þ ζ and ζ− ¼ τ − ζ. Just like with

the spacelike and timelike coordinates, we can write
down conformal gauge orthogonality relations for these
null coordinates,23

gαβ∂ζþzα∂ζþzβ ¼ 0; ðD1Þ

gαβ∂ζ−zα∂ζ−zβ ¼ 0; ðD2Þ

gαβ∂ζþzα∂ζ−zβ ¼ −ϕ: ðD3Þ

We also have the null coordinate version of the conformal
gauge equation of motion:

∂ζ−ζþzα ¼ 0: ðD4Þ

Now, proceeding exactly as we did with spacelike and
timelike coordinates, we can seek a local expansion of
Δζ−ðΔζþÞ [or, equivalently, ΔζþðΔζ−Þ]. As before, we
will achieve this using the fact that source and field points
are null separated, σðz; z0Þ ¼ 0. Unlike before, however, we
can no longer make the assumption that Δζ− has an
expansion in integer powers of our order-counting param-
eter ϵ, where Δζþ ¼ OðϵÞ. We can see this by starting from
our expansion of ΔτðΔζÞ, rewriting it in terms of Δζ− and
Δζþ, and rearranging to get the expansion of Δζ−ðΔζþÞ.
Whether taking the direct approach or going via the

spacelike and timelike expansion, we obtain the same result
upon gathering terms, namely that the expansion takes a
distinct form depending on the sign of Δζþ:
(1) For Δζþ > 0 we get a standard integer power series;
(2) ForΔζþ < 0we find that theOðϵÞ pieces cancel and

we are left starting with (at least) a cubic term. The
result is that our expansion now has the form

Δζ− ¼ Δζ−1 ϵ1=3 þ Δζ−2 ϵ2=3 þ � � � : ðD5Þ

This is generically true, providedΔτ3 in Eq. (4.40) is
nonzero, which is equivalent to the question of
how the retarded image deviates from being a
straight line.

As before, the expressions for the coefficientsΔζ−1 ;Δζ−2 ;…
are somewhat cumbersome. The important point this time is
that they depend on σ [which is Oðϵ2Þ]; on ∂τσ, ∂ζσ, and
Δζ [all of which areOðϵÞ]; and on ϕ̄ and z̄α and their world
sheet derivatives. Two different expansions are needed
based upon the sign of Δζþ.

APPENDIX E: 2D CALCULATION
OF THE SELF-FORCE

As an independent check on the numerical results of our
1D method, we also performed a direct 2D integration to

23In the coordinates fζþ; ζ−g, the conformal factor ϕ is half of
its value in the fτ; ζg system at the same world sheet point.
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determine the self-force. The results of the 2D calculation
are given in Sec. VI and are found to be consistent with
those of the 1D method. In this Appendix we give the
explicit details of the calculation.

1. Regularization

In order to devise a numerical scheme for evaluating the
self-force as a 2D integral, wewill allow twomodifications of
the delta function that enforces the exact null condition
between source and field points. First, we replace the delta
function itself with a nonsingular, smooth function of the
spacetime interval. Second, we modify the null condition to
select source points marginally timelike separated from the
field point. There are two parameters, one for the character-
istic width of the delta function replacement and one for the
amount of over-retardation.When both jointly approach zero
then the smooth function tends to the singular delta function
and the source-field separation tends to the exact null
separation. Our prescription is that any physical answer is
the limit of a sequence of calculationswith (jointly) vanishing
parameters, assuming, of course, that a unique limit exists.
We integrate over the 2D surface of the source

distribution using a Gaussian approximation to the delta
function. The Gaussian form picks up small source con-
tributions away from exact null separations (off shell).
This 2D method of integration avoids potential pitfalls
associated with the elimination of one world sheet coor-
dinate in terms of another coordinate when solving
σðx; zðζ1; ζ2ÞÞ ¼ 0. Subtleties can easily arise (and be
missed) in the 1D reduction. The 2D integration method
therefore provides a valuable (if computationally costly)
independent check on other methods.
The 2D integration produces manifestly coordinate

invariant results. It is potentially susceptible to the effect
of any world sheet singularity that lies off the exact null
image. For example, if a kink or cusp exists anywhere on
the world sheet then the associated divergence must be
integrable for the method to give a well-defined limit for the
force. As a practical matter, all finite integrable off shell
singularities are multiplied by Gaussian wings and strongly
suppressed. We believe but have not proven that contri-
butions of singularities lying off of the image do not survive
the limiting process.

2. Mathematical forms

As summarized in the main text, in Minkowski space-
time we write the modified Synge world function for two
spacetime coordinates as

σðx; zÞ ¼ 1

2
ðx − zÞαgαβðx − zÞβ þ σ0 ðE1Þ

where σ0 is the over-retardation parameter (and σ0 ¼ 0
gives the usual world function). The retarded Green
function for a source at xs and field at xf is

Gðxf; xsÞ ¼ Θðxs; xfÞδðσÞ ðE2Þ

where the Θ ¼ 1 when the time of the source ts precedes
the time of the field point tf and 0 otherwise. We replace the
delta function with the Gaussian

δðqÞ → δGðqÞ≡ e−q
2=ð2w2Þffiffiffiffiffiffi
2π

p
w

ðE3Þ

which is finite for any source and field point choices.
We allow two possible representations for the causality
condition. In the “exact” representation we use the
discontinuous Θ function. For the parts of the integrand
that are directly proportional to G ¼ Θδ we expect that
using the exact Θ representation suffices for all field-
source combinations (i.e., we take the limit w → 0 of an
integrand with G ∼ ΘδG). However, parts of the integrand
include derivatives with respect to xf of G. Then the
situation is more complicated. We can justify ignoring the
functional dependence of Θ on xf if we use the exact
delta function δðσÞ. The only point where both Θ and
δðσÞ are nonvanishing is xf ¼ xs and things are unde-
fined there anyway. But it is dubious to ignore xf
dependence if we are replacing the delta function with
the Gaussian δG because there are contributions from
points xs (away from xf) such that the derivative of Θ
with respect to xf multiplies a nonzero off-shell δG. It is
not obvious that it is safe to drop Θ’s functional
dependence on xf before taking the limit of δG → δ.
To study the situation we replace the cutoff with a
smoothed discontinuity i.e., Θ → Θtanh ≡ ð1 − tanhððts −
tfÞ=wÞÞ=2 and take full derivatives of Θtan hδG. As a
practical matter we use the same small parameter in the
Gaussian and in the tanh, and we will seek convergent
results in the joint limit w → 0 and σ0 → 0.
Let f1 and f2 be the self-force integrands

fρ1ðx; zÞ ¼ −⊥ρλðxÞημνðxÞΔHμνλ ðE4Þ

fρ2ðx; zÞ ¼ KμνρðxÞΔhμν: ðE5Þ

These are integrated with a uniform weight on the world
sheet to give [Eq. (3.6)]

Fρ
1ðxÞ ¼

ZZ
fρ1ðx; zÞdζ1dζ2 ðE6Þ

Fρ
2ðxÞ ¼

ZZ
fρ2ðx; zÞdζ1dζ2: ðE7Þ

The tangential and perpendicular projection operators
and the extrinsic curvature are evaluated at the field point,
x. The metric perturbation quantities, ΔH and Δh, depend
upon both source and field points. Replacing covariant

CHERNOFF, FLANAGAN, and WARDELL PHYS. REV. D 99, 084036 (2019)

084036-42



derivatives with partial derivatives (recall that we are
working in Minkowski spacetime, in which case the
two derivatives are equal), the integrands for the trace-
reversed metric perturbation and metric perturbation
derivative are

Δh̄αβ ¼ −4Gμ
ffiffiffiffiffiffiffiffiffiffiffiffi
−γðzÞ

p
ηαβðzÞGðx; zÞ ðE8Þ

Δh̄αβ;γ ¼ −4Gμ
ffiffiffiffiffiffiffiffiffiffiffiffi
−γðzÞ

p
ηαβðzÞ

∂Gðx; zÞ
∂xγf ; ðE9Þ

where source and field point dependence is explicitly
indicated.
We now proceed with the calculation for a given choice

of w and σ0 for the smoothed Green function. We repeat the
calculation for a sequence with w → 0 and σ0 → 0. The
area of the world sheet includes all nonzero contributions to
the integral but as a practical matter we limit it to regions
where the magnitude of the integrand exceeds some
minimum threshold.
We have used several different techniques for estimating

the integrals of interest. The first approach is a simple
quadrature along lines in which we evaluate fρ1 at a lattice
of points z and estimate

Fρ
1ðxÞ ∼

AWS

N

XN
i¼1

fρ1ðx;;i Þ ðE10Þ

where AWS ¼
R
dζ1dζ2 is the world sheet area (and

likewise for F2). This approach makes essentially no
assumptions about the integrand’s support but the achiev-
able accuracy is limited in practice by the inefficiencies of
working with a low-order scheme and a global grid.
Only a small part of the world sheet is important in the

limiting results. The second approach is cubature, an
adaptive algorithm for numerical integration based on the
algorithm of Genz and implemented in routine Cuhre in
the Cuba package [106]. The basic integration rule for
the two-dimensional application is degree 13. We begin
by identifying a part of the world sheet in which the
integrand is above some threshold (say > 10−12), apply
an integration rule, repeatedly subdivide the region to
estimate the global integral and errors and stop when
errors are sufficiently small. This method, being higher
order and more selective about the choice of points,
achieves higher accuracy for a given computational cost
but sometimes terminates too early if errors are
misestimated.

3. KT cases I and II

The main text compares the case I and II results for 1D to
those found by direct integration over the 2D world sheet.
We used the rectangular area centered on the field point and
of size �L=2 in both ζ1 and ζ2 which encompasses the

entire string loop image. We parametrized the Gaussian
width and the Θ function with n and m:

dchar ¼
L
2n

ðE11Þ

w ¼ d4char ðE12Þ

σ0 ¼ ðmdcharÞ2 ðE13Þ

and let n range from 4 to 7 and set m ≥ 0.24 We
accumulated the contributions to the integrals only for
points with G > 10−4 for each choice of n and m. This
cutoff effectively removed any effect of cusps lying off the
string image. We checked sensitivity to the cutoff by
recalculating with G > 10−3 and G > 10−2, finding no
differences, and will drop further mentions of this
parameter.
Case I is intrinsically the simplest calculation since the

image of the string loop is smooth, without cusps or kinks.
Several series of integrations using 2D uniform grids were
performed. We studied the convergence for the following
sequences:

(i) m ¼ 0 (no over-retardation), Θ (exactly causal),
n ¼ 4–6.25

(ii) m ¼ 0 (no over-retardation), Θtanh (smoothed cau-
sality), n ¼ 4–5.5

(iii) m ¼ 0.1 (over-retardation), Θ (exactly causal),
n ¼ 4–5.75.

For the integration for a specific m and n we estimated the
quadrature errors by halving the grid spacing and looking at
successive differences in the answers (hereafter, Cauchy
errors). We repeated the process until the Cauchy errors
were small. We then generated sequences for varying n. In
these we observed smooth, steady convergence to the [1D]
results.
We extrapolated numerical results to n ¼ ∞ by fitting

each component F with the form FðnÞ ¼ Fð∞Þ þ ae−bn.
Fð∞Þ, a and b are found from numerical results at three
specific values of n. Table II summarizes the results for one
sequence with fixed m ¼ 0 and an exact Θ function. The
second column gives the extrapolated force solution for
each component, the third is an estimate of the size of the
systematic errors in extrapolation (by fitting different grid
based calculations) and the fourth is the difference of Fð∞Þ
and the [1D] results. The [1D] results include the hidden
delta function at the field point and the line integral with no
over-retardation and exact causality. Note that the error
with respect to the [1D] results is ≲4 × 10−3 for the

24Note δðσÞ ∼ e−σ
2=2χ2=ð ffiffiffiffiffi

2π
p

χÞ and σ ∼ ds2 ∝ L2 implies that
χ ∝ d2char ∝ σ0. However, we use Gaussian width w ∝ χ2 ∝ d4char
and σ0 ∝ d2char. Of course, both the width and the over-retardation
parameter decrease as w → 0 or n → ∞.
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individual components of Fρ
1 and ≲3 × 10−5 for Fρ

2. The
size of the 1D-2D differences are comparable, component
by component, to the Cauchy errors for the quadrature
itself. These are much smaller than the contribution of the
delta function at the field point.
We found case I sequences with or without over-

retardation, with or without a smooth causal condition
all smoothly converged to the [1D] answer. It is perhaps
important to emphasize that this consistency is strong
evidence that a single, well-defined limit exists and is
correctly recovered with the 1D analysis for smooth
loops.
We next repeated the case I sequence form ¼ 0 (no over-

retardation), exactly causal Green function, for n ¼ 4–7
using the cubature method. Cubature will be used for most
of the remaining force evaluations because it is more
efficient and has a higher accuracy. We began by selecting
rectangular subregions of the world sheet that can plausibly
contribute to the quadratures of interest. These closely trace
the retarded string image. For example, Fig. 23 illustrates
the field point (red dot) and outlines 128 subregions of
interest for m ¼ 0 and n ¼ 5. The union of all the
subregions encloses the area containing nontrivial inte-

grands in the sense
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ρ ððfρ1Þ2 þ ðfρ2Þ2Þ
q

> 10−8. The

subregion bounds are found numerically. The string loop
image lies within the subregions as n grows large.
The function is integrated by cubature over each separate

subregion and the full answer is the sum over the set. In the
cubature method the subregion is divided repeatedly until
an estimated error tolerance (absolute or relative errors
≲10−6) is reached. Sometimes the error estimate is inac-
curate so we also systematically increased the number of
rectangles from 128 up to 2048, yielding finer and finer
starting conditions. This allows a check that the error
estimates are robust. Once all the subregions are accurately
accounted for the total is calculated.

Figures 24 and 25 plot the log10 absolute differences
between the [2D] and [1D] calculations as a function of n.
The solid lines are for [1D] calculations with the delta
function contribution at the field point. The scale for the
y-axis on the figures is quite different and, as expected, the
error is much larger for F1 than for F2. The errors cease to
decrease exponentially with n in Fig. 25 for 1D-2D
differences of size 3 × 10−5, likely a consequence of the
intrinsic accuracy of the cubature integrations.
In summary, the case I [2D] cubature calculations agree

with the [1D] calculations with a delta function contribu-
tion at the field point.

–2 –1 0 1 2 3 4
σ=ζ2

0.8

1.0

1.2

1.4
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1.8

2.0

τ=ζ1

FIG. 23. The red dot shows the field point for case I for the KT
string loop. The boxes enclose the regions with rms integrands
> 10−8 for m ¼ 0 and n ¼ 5.
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Log10ΔF1
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FIG. 24. The difference between smoothed Green function
based 2D grid evaluation of Fρ

1 and the exact delta function [1D]
evaluation as a function of n for loop I. The [2D] results should
approach the [1D] results as n → ∞ when the Gaussian tends to
the delta function. These results have no over-retardation (m ¼ 0)
and use the exact Θ function for causality. The colors label results
for the four spacetime components of F1; red, yellow, green and
blue correspond to components 0, 1, 2 and 3, respectively. The
ordinate, log10jFρ

1;2D − Fρ
1;1Dj, quantifies the difference, compo-

nent by component, as a function of n. The delta function
contribution at the field point is of order unity and far larger than
the 1D-2D differences. Table II gives detailed information on
individual contributions.
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FIG. 25. Same as Fig. 24 except for Fρ
2.
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Case II is similar to case I except that a cusp occurs on
the image of the string loop. We proceeded in the same
manner, breaking the world sheet up into small subregions
with nontrivial integrands. The main difference from case I
is that there is a significant loss in precision for source
points near the cusp. We had to perform those calculations
with quadruple precision arithmetic. We avoided evaluating
quantities at the cusp itself but sampled points as closely as
needed to estimate the integrated quantities. The integrands
are extremely complicated and we did not perform an
analytic expansion in the vicinity of the cusp. We found
(i) no numerical evidence for singular behavior and
(ii) well-behaved quadratures. Figures 26 and 27 show
the convergence as n increases. The basic conclusion is the
same as for case I: the [2D] numerical results tend to the
[1D] results when the latter include the delta function
contribution at the field point.

4. Garfinkle and Vachaspati string

The assumed field point is ðζ1;ζ2Þ¼ðτ;ζÞ¼ð0.3;0.4ÞL.
The kinks are located at ζ2 approximately −0.79 and 1.87.
The [1D] results are given in Table V. These are calculated
from the line integrals, boundary terms at each kink and

the delta function at the field point as described in the
main text.
We introduce a small parameter to “round off” the kinks

as follows.25 We replace δj;b2xLc with a smoothly varying
function of characteristic width Δ:

δjðxÞ ¼
1

2

�
tanh

�
x − xlo

Δ

�
− tanh

�
xhi − x

Δ

��
ðE14Þ

xlo ¼
jL
2

ðE15Þ

xhi ¼ xlo þ
L
2
: ðE16Þ

For L ¼ 2π and Δ ¼ 10−2 changes in the spacetime
configuration of the loop are largely confined to the vicinity
of the kink. They remain invisible at the resolution of
Fig. 13. In the tangent sphere representation, nonzero Δ
connects the green arcs. The linking curves do not lie on the
unit sphere and the position b⃗0 along the curve changes very
rapidly with its argument; i.e., the tangent vector quickly
passes through the gap.
We have integrated the forces using the cubature method

as was done for the KT string using a sequence of
parameters for the m ¼ 0 (no over-retardation) exactly
causal Green function. For n ¼ 4–7 we set Δ ¼ e−1.15129n

(so Δ ¼ 10−2 at n ¼ 4 and 10−3 at n ¼ 6) so that the limit
is the idealized kink solution. The results are shown in
Figs. 28 and 29. Note that the errors in the [2D] results are
far smaller than the size of the individual components that
make up the [1D] calculation (the line integral, the delta
function and the kink contributions).
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n
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1.0

Log10ΔF1
Case II

FIG. 26. Same as Fig. 24 except for loop II.
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FIG. 27. Same as Fig. 24 except for Fρ
2 and loop II.
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n
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FIG. 28. Same as Fig. 24 except for loop III.

25To recap, in the various 1D methods we took care to
accommodate the string discontinuities, the case where the field
point coincides with a source point and the process of patching
different coordinate systems together. The [2D] calculations are
not immune to the first of these issues.
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APPENDIX F: PARAMETRIZED FITS NEAR
THE CUSP FOR THE NONINTERSECTING

KT STRING

In this Appendix we give quantitative numerical fits to
the behavior of the self-force in the vicinity of the cusp for
the nonintersecting KT string (α ¼ 1=2, ϕ ¼ 0) described
in Sec. VI C. We investigated several approaches to fitting
the forces in the vicinity of the cusp.
Here, we begin with fitting the integral part of F μ

conf
since the delta function part is known in analytic form. We
sampled world sheet points about the cusp extending from
2 × 10−2 to 2 × 10−8 in radius and at fixed angle θ and
found that

log jFμj ¼ Aμ
1ðθÞ log xþ Aμ

2ðθÞxþ Aμ
3ðθÞ ðF1Þ

x ¼ log r ðF2Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δτ2 þ δζ2

p
ðF3Þ

fits each ray very well. The ratio of the magnitude
of log jFμj to the root mean square error for one fitted
ray is typically ∼103. We observed that angle-dependent

coefficients Aμ
i ðθÞ varied systematically and we selected

simple parametrized forms. For Ft and Fx the form

Aμ
i ¼ aμi χðθÞb

μ
i ðF4Þ

χðθÞ ¼ lim
r→0

ffiffiffiffiffiffi−γp
r2

ðF5Þ

gave reasonable fits. There are six scalars needed to fit each
of the 2D functions Ft and Fx. For Fy we found that simple
angle-dependent coefficients Aμ

i ðθÞ worked well:

Ai ¼ ai þ biT

�
θ − c
2π

�
ðF6Þ

where TðxÞ is the triangle wave with amplitude 1, period 1,
Tð0Þ ¼ 0 and T 0ð0Þ ¼ 4. There are seven scalars to fit (note
that c is the same fitted parameter for the three Ai). For Fz

the form is tolerably well fit by

Ai ¼ ai þ biU
�
θ −

π

2

�
S
�
θ − c
3π=2

�
− diU

�
π

2
− θ

�
ðF7Þ

whereUðxÞ is the step function (0 for x < 0 and 1 for x ≥ 0),
SðxÞ is the sawtooth wave that varies from 0 to 1 with period
1, Sð0þÞ ¼ 0, and Sð1−Þ ¼ 1. There are nine scalars to fit
(here c ¼ 0.5 is fixed and not varied). Results are summa-
rized in the Table IX below. The fits forFt andFx are close to
1=r because At

2 ∼ Ax
2 ∼ −1 is the dominant term (and at2 ∼

ax2 ∼ −1 and bt2 ∼ bx2 ∼ 0). The fit for Fy is close to log r
(settingAy

2 ¼ 0makes aminimaldifference inQ, as shown in
the table). The fit for Fz requires both Az

1 and Az
2.

We have also fit four parameter, ad hoc forms. These are
generally less good than the previous set and the quality
varies considerably. It is best in the quadrants without the
visible fold and it remains difficult to fit all quadrants
together. The results (given in Table X) imply that the t- and
x-components diverge as 1=r, where r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2 þ ζ2
p

is the
Euclidean distance on the world sheet. A possible diver-
gence in the y- and z-components cannot be ruled out, but is
certainly not as strong as the t- and x-components.

TABLE IX. Fits based on log jFj ¼ A1 log xþ A2xþ A3 where x ¼ log r and AiðθÞ are specific forms described
in the text. Q is the ratio of the mean log jFj to the root mean square error of the fit.

μ a1 b1 a2 b2 a3 b3 Q

t 0.0512 −0.0474 −0.996 −0.000301 2.982 −0.110 123
x 0.0207 −0.0497 −0.998 −0.000625 3.027 −0.108 123

μ a1 b1 a2 b2 a3 b3 c Q

y 0.931 0.651 0.00119 0.0349 3.096 −1.429 0.314 87
0.942 0.335 � � � � � � 3.084 −1.089 0.314 82

μ a1 b1 d1 a2 b2 d2 a3 b3 d3 c Q

z 1.053 −0.961 0.617 0.0145 −0.0524 0.0396 0.679 2.495 −1.422 0.5 87
0.925 −0.490 0.262 � � � � � � � � � 0.815 1.992 −1.041 0.5 30

4.5 5.0 5.5 6.0 6.5 7.0
n
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FIG. 29. Same as Fig. 24 except for Fρ
2 and loop III.
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In addition to the full fits, we have made simpler one-
dimensional fits along the coordinate axes. Table XI gives
fits to j logF μ

conf j as a power law in j log τj along the
coordinate axis ζ ¼ 0. We have separately fit the total force
and just the part of the force that comes from the integral
contribution. For the t- and x-components of the total force
the scaling is clear and unambiguous. There is a measurable
difference in the amplitude of the force before and after the

cusp formation even though the rate of divergence is
identical. (The delta function contribution scales as 1=r
for t- and x-components.) The amplitude difference or
Stokes phenomenon is smaller in the integral piece than in
the total. The delta function contribution is related to the
choice of the retarded Green function and the dichotomy
of emission and absorption near the cusp. The y- and

TABLE X. Two-dimensional fits to log jF μ
conf j near the cusp (0.0013 < fτj; jζjg < 0.0021) using the form aþ

b log
ffiffiffiffiffiffi−γp þ c cos θ þ d sin θ where cos θ ¼ τ=r, sin θ ¼ ζ=r and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ ζ2

p
. The fit goodness is quantified by

ϵ, the root mean square error between the fit and the actual data (both as logs), and Q, the ratio of the total variation
in logF μ

conf divided by ϵ. “All” means a single fit to the whole plane; þþ means the fit restricted to τ ≥ 0 and ζ ≥ 0

and similarly for þ−, −þ and −−. Asymptotically F ∝ 2b=τ for ζ ¼ 0 and 2b=ζ for τ ¼ 0.

μ sgn δτ sgn δζ a b c d ϵ Q

t All 3.95292 −0.414102 0.151793 0.0721235 0.131773 4.77971
þþ 3.01226 −0.502883 0.178088 0.212065 0.00341496 163.388
þ− 4.22776 −0.474782 −0.757188 0.686015 0.0569798 11.6713
−þ 3.24345 −0.468097 0.395402 0.427249 0.118002 4.78373
−− 2.69632 −0.502038 −0.0722535 −0.418941 0.0189629 28.1211

x All 3.97366 −0.412535 0.151562 0.0719106 0.131271 4.78016
þþ 3.04136 −0.500672 0.176313 0.20999 0.00282476 196.672
þ− 4.24515 −0.473347 −0.755537 0.684603 0.0567632 11.6804
−þ 3.26301 −0.466743 0.395591 0.425764 0.11768 4.78189
−− 2.72609 −0.499806 −0.0708712 −0.416556 0.0186554 28.457

y All 4.20813 −0.0398377 −0.381031 0.144944 0.134169 2.41009
þþ 3.26127 −0.0948215 −0.0164481 0.48741 0.0189321 7.52428
þ− 3.61753 −0.0744807 −0.580823 −0.340387 0.167632 1.57078
−þ 3.70482 −0.0686625 −0.518819 0.296286 0.019127 8.42306
−− 3.92864 −0.0768625 −0.17871 0.10457 0.0088657 15.2576

z All 2.65579 −0.0161345 −0.344105 0.0271806 0.200512 1.58037
þþ 1.78559 −0.0666965 −0.072034 0.460484 0.00948379 14.77
þ− 1.91589 −0.0211916 −0.156757 −0.808392 0.27011 1.37301
−þ 3.04493 −0.0625678 0.234966 −0.80721 0.0899292 2.78705
−− 2.76864 −0.0513231 0.0852916 0.348301 0.0157434 7.3724

TABLE XI. One-dimensional fits for the variation of log jF μ
conf j

(total and continuous integral contribution) with τ for ζ ¼ 0. The
range of the fit is 0.0013 < jδτj < 0.0021 and the form is
aþ b log jτj. Q is the ratio of the total variation in logF μ

conf
divided by the rms error between the fit and the actual data.

a b Q a b Q

μ sgn δτ Total Integral

t þ 3.56 −1.00 8.9 × 103 3.30 −1.00 6.8 × 103

− 3.08 −1.00 5.6 × 103 3.39 −1.00 7.7 × 103

x þ 3.56 −1.00 2 × 104 3.31 −1.00 1.6 × 104

− 3.08 −1.00 1 × 104 3.40 −1.00 1.5 × 104

y þ 3.27 −0.19 60 3.46 −0.18 65
− 4.43 −0.11 1.1 × 102 4.51 −0.10 1.1 × 102

z þ 1.71 −0.14 82 2.50 −0.09 1.3 × 102

− 2.94 −0.07 1.5 × 102 3.27 −0.05 1.9 × 102

TABLE XII. One-dimensional fits for the variation of
log jF μ

conf j (total and continuous integral contribution) with ζ
at τ ¼ 0. The range of the fit is 0.0013 < jζj < 0.0021 and the
form is aþ c log jζj. Q is the ratio of the total variation in
logF μ

conf divided by the rms error between the fit and the actual
data.

a c Q a c Q

μ sgn δζ Total Integral

t þ 2.78 −1.00 4 × 103 2.56 −1.00 3.3 × 103

− 2.70 −1.00 4 × 103 2.89 −1.00 4.8 × 103

x þ 2.79 −1.00 9 × 103 2.58 −1.00 7 × 103

− 2.71 −1.00 8 × 103 2.90 −1.00 104

y þ 4.00 −0.14 84 4.02 −0.13 85
− 3.77 −0.15 76 3.80 −0.15 77

z þ 2.36 −0.10 120 2.48 −0.09 125
− 2.35 −0.10 110 2.47 −0.09 120
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z-components grow more slowly as the time to the cusp
shrinks and the asymptotics are not as well determined.
Nonetheless, the similarity of total and integral quantities
implies that the delta function contribution which is
constant in r (for the y- and z-components) is subdominant
at the scales probed. Similarly, Table XII considers the
analogous situation for j logF μ

conf j as a power law in j log ζj
along the coordinate axis τ ¼ 0. Again, the scaling with

distance to the cusp is unambiguous. The t- and x-
components diverge like jζj−1 and have similar amplitudes.
The Stokes-like phenomenon seems to be weaker or absent
in the total force than it is in the integral contribution alone
(contrary to the previous example). The string segment
behaves approximately symmetrically along its length.
Again, the y- and z-components grow more slowly as
the cusp is approached.
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