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The necessary and sufficient condition for a conservative perfect fluid energy tensor to be the energetic
evolution of a classical ideal gas is obtained. This condition forces the square of the speed of sound to
have the form c2s ¼ γp

ρþp in terms of the hydrodynamic quantities, energy density ρ and pressure p, γ being

the (constant) adiabatic index. The inverse problem for this case is also solved, that is, the determination
of all the fluids whose evolutions are represented by a conservative energy tensor endowed with the
above expression of c2s , and it shows that these fluids are, and only are, those fulfilling a Poisson law. The
relativistic compressibility conditions for the classical ideal gases and the Poisson gases are analyzed in
depth and the values for the adiabatic index γ for which the compressibility conditions hold in physically
relevant ranges of the hydrodynamic quantities ρ, p are obtained. Some scenarios that model isothermal or
isentropic evolutions of a classical ideal gas are revisited, and preliminary results are presented in applying
our hydrodynamic approach to looking for perfect fluid solutions that model the evolution of a classical
ideal gas or of a Poisson gas.
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I. INTRODUCTION

In the relativistic framework, a perfect fluid is usually
assumed to be a perfect energy tensor, T ≡ ðρþ pÞu ⊗
uþ pg, solution to the conservation equations∇ · T ¼ 0. It
can model a test fluid in any given space-time, or the source
of a solution of the Einstein field equations G ¼ kT.
Nevertheless, complementary physical requirements on
the hydrodynamic quantities (the unit velocity u, the energy
density ρ, and the pressure p) must be imposed for T to
represent the energetic evolution of a realistic thermody-
namic fluid in local thermal equilibrium.
As it is well known, a fluid whose all possible energetic

evolutions in local thermal equilibrium are described by
perfect energy tensors is necessarily Pascalian and with
vanishing heat conductivity. Its equations are those of the
Eckart’s thermodynamic scheme [1] for this case, and lead
to the introduction of the thermodynamic quantities: matter
density n, specific internal energy ϵ, temperature Θ, and
specific entropy s. On the other hand, we will restrict the
fluids obeying these equations to verify general constraints
of physical reality, namely the positivity conditions of some

of their quantities, the energy conditions [2] and the
relativistic compressibility conditions [3,4].
Elsewhere [5] we have shown that, given a perfect

energy tensor in a space-time domain, the question of
whether or not it admits the above thermodynamic scheme
can be detected by conditions just involving the hydro-
dynamic quantities ðu; ρ; pÞ, namely that the indicatrix
function χ ¼ _p=_ρ be an equation of state, χ ¼ χðρ; pÞ, and
then it is the square of the speed of sound c2s . This result
offers a purely hydrodynamic characterization of the local
thermal equilibrium and solves the generic direct problem
[6], i.e., the determination of the set TF of all perfect energy
tensors corresponding to all possible evolutions of the set F
of all perfect fluids. In Ref. [6] we have also solved the
generic inverse problem for a perfect energy tensor T,
i.e., the determination of the set FT of all perfect fluids
for which T is the energetic description of a particular
evolution.
Nevertheless, because of its practical applications, solv-

ing a specific direct problem for a family of fluids may be
more interesting than to solve the generic one. We have
studied in [6] the specific direct problem for the family of
the generic ideal gases, i.e., those defined by the equation
of state p ¼ knΘ. These results have allowed us the study
of the Stephani universes that can be interpreted as an ideal
gas in local thermal equilibrium [7], and the determination
of the associated thermodynamics.

*Also at Observatori Astronòmic, Universitat de València, E-
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Furthermore, elsewhere [8] we have shown that two of
the relativistic compressibility conditions can be formu-
lated in terms of the hydrodynamic quantity χðρ; pÞ, the
square of the speed of sound, so that we have a hydro-
dynamic characterization for these two constraints.
Here we apply all these hydrodynamic approaches to the

classical ideal gas, defined by the equations of state,
p ¼ knΘ and ϵ ¼ cvΘ. The interest of this study is
twofold. On one hand, the classical ideal gas is defined
by simple equations of state and it allows us to go further
away in obtaining and interpreting the results, so that the
present study is useful to gain a better understanding of the
concepts and conclusions obtained in Refs. [6,8]. On
the other hand, the classical ideal gas is a good model
for realistic fluids in the low temperature range, so that our
results can be applied in looking for new physically
interesting solutions, or in interpreting already known ones
in this range.
In Sec. II we present the basic elements concerning the

local thermal equilibrium assumption, and we outline some
results on the above-mentioned hydrodynamical approach.
Section III is devoted to studying the specific direct and

inverse problems for the classical ideal gas (CIG): we show
that the square of the speed of sound χðρ; pÞ ¼ γp

ρþp, where γ
is the adiabatic index, characterizes a CIG evolution (direct
problem), and we obtain all the thermodynamic quantities
of the CIG in terms of the hydrodynamic quantities ρ and p
(specific inverse problem). Moreover, for each of the values
of γ, we obtain the domain of the variable π ¼ p=ρ where
the thermodynamic quantities are positive and the relativ-
istic compressibility conditions hold. We show that this
domain is relevant for γ > 1.
Section IV is devoted to solving the generic inverse

problem for a CIG indicatrix function, and we show that the
fluids that have the same speed of sound that a CIG are, and
only are, the Poisson gases, that is, the gases fulfilling the
Poisson law p ¼ βðsÞnγ. Then, we study the compress-
ibility conditions for the Poisson gases and we analyze the
stronger restrictions on the adiabatic index obtained by
Taub [9] from a kinetic theory approach.
We have pointed out in [6] that energy tensor that fulfill a

barotropic relation p ¼ pðρÞ can model particular evolu-
tions of a nonbarotropic perfect fluid. In Sec. V we obtain
the barotropic relation of a CIG in isothermal evolution and
we model an isothermal atmosphere and a self-gravitating
isothermal sphere.
The above models have been established without refer-

ence to any heat equation. Otherwise, the current relativistic
Fourier equations impose a strong constraint on the temper-
ature when the conductivity coefficient does not vanish.
In Sec. VI we take into account this fact in dealing with
a model for a self-gravitating CIG sphere in thermal
equilibrium.
In Sec. VII we obtain the barotropic relation of a

CIG in isentropic evolution and we consider the

Friedmann-Lemaître-Robertson-Walker (FLRW) models
that fulfill this constraint. The study of the field equations
shows that these models are defined by a pressure that is a
power of the expansion factor.
In Sec. VIII we present preliminary results on perfect

fluid solutions of the field equations that can be interpreted
as a CIG in local thermal equilibrium. For the case of fluids
in irrotational motion we show that our hydrodynamic
characterization implies that, in comoving coordinates, the
pressure is, up to an arbitrary function of the spatial
coordinates, a power of the determinant of the spatial
metric. Then, for the spherically symmetric metrics with
geodesic motion and 2-sphere curvature changing with the
comoving radial coordinate, we show that the only CIG
solutions are the FLRW models considered in Sec. VII.
Interestingly, work in progress seems to show that the

known perfect fluid exact solutions to Einstein equations
do not verify the CIG constraint exactly. Thus, it can be
suitable to look for exact solutions that approximate a CIG
at low temperatures, which is the range where the CIG
model is realistic. In Sec. VIII we also propose a way to
approximate a CIG from a generic ideal gas by using the
indicatrix function χðρ; pÞ.
Finally, in Sec. IX we present several remarks and report

some work in progress.

II. LOCAL THERMAL EQUILIBRIUM: BASIC
CONCEPTS AND HYDRODYNAMIC APPROACH

The energetic description of the evolution of a perfect
fluid is given by its energy tensor T:

T ¼ ðρþ pÞu ⊗ uþ pg: ð1Þ
where ρ, p and u are, respectively, the energy density,
pressure and unit velocity of the fluid. A divergencefree T,
∇ · T ¼ 0, of this form is called a perfect energy tensor.
These conservation equations take the expression:

dpþ _puþ ðρþ pÞa ¼ 0; ð2Þ
_ρþ ðρþ pÞθ ¼ 0; ð3Þ

where a and θ are, respectively, the acceleration and
the expansion of u, a dot denotes the directional derivative
with respect to u of a scalar quantity q, _q ¼ uðqÞ ¼ uα∂αq,
and dq denotes the space-time exterior derivative,
dq ¼ ∂αqdxα.
A barotropic evolution is an evolution along which the

barotropic relation dρ ∧ dp ¼ 0 is fulfilled. It is to be
noted that barotropic evolutions may be followed by any
fluid, whatever its equations of state, barotropic or not. A
perfect energy tensor describing energetically a barotropic
evolution is called a barotropic perfect energy tensor.
The thermodynamic scheme for a relativistic perfect

fluid is obtained as the Pascalian and of vanishing heat
conductivity restriction of the general thermodynamic
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scheme by Eckart [1]. The energy density ρ is decomposed
in terms of the matter density n and the specific internal
energy ϵ:

ρ ¼ nð1þ ϵÞ; ð4Þ

requiring the conservation of matter:

∇ · ðnuÞ ¼ _nþ nθ ¼ 0; ð5Þ

where ∇ · X ¼ ∇αXα is the divergence of a vector field X.
When n ¼ nðρ; pÞ > 0, and according to a classical argu-
ment, it is always possible to identify an integral divisor
of the one-form Λ≡ ð1=nÞdρþ ðρþ pÞdð1=nÞ with the
(absolute) temperature Θ of the fluid, allowing us to define
the specific entropy s by the local thermal equilibrium
equation:

Θds ¼ dϵþ pdð1=nÞ: ð6Þ

When, in addition to (2) and (3), a perfect energy tensor T
also satisfies (4), (5) and (6), we will say that T evolves in
local thermal equilibrium (l.t.e.).
We have already shown [5,6] that the notion of l.t.e.

admits a purely hydrodynamic formulation: a perfect
energy tensor T describes a thermodynamic perfect fluid
in l.t.e. if, and only if, its hydrodynamic quantities fu; ρ; pg
fulfill the hydrodynamic sonic condition:

ð_ρd _p − _pd_ρÞ ∧ dρ ∧ dp ¼ 0: ð7Þ

When the perfect energy tensor is nonisoenergetic, _ρ ≠ 0,
condition (7) states that the space-time function χ ≡ _p=_ρ,
called indicatrix of local thermal equilibrium, depends
only on the quantities p and ρ, χ ¼ χðp; ρÞ. Moreover this
function of state represents physically the square of the
speed of sound in the fluid, χðρ; pÞ≡ c2s .
Note that the above quoted result solves the generic

direct problem, i.e., the determination of the set TF of all
the perfect energy tensors corresponding to all possible
energetic evolutions of all perfect fluids F. In Ref. [6] we
have also solved the inverse problem for a perfect energy
tensor T, and we have shown that the set FT of all perfect
fluids for which T is the energetic description of a particular
evolution is determined up to two arbitrary functions of
the entropy.
In practice, solving a restricted direct problem may be

more interesting than solving the generic one. In this way
we have solved in [6] the direct problem for the family of
ideal gases G, which is defined by the equation of state:

p ¼ knΘ; k≡ kB
m

: ð8Þ

Now the hydrodynamic sonic condition states [6]: the
necessary and sufficient condition for a nonbarotropic

(dρ ∧ dp ≠ 0) and nonisoenergetic (_ρ ≠ 0) perfect energy
tensor T ¼ ðu; ρ; pÞ to represent the l.t.e. evolution of an
ideal gas is that the indicatrix function χ ≡ _p=_ρ be a
function of the quantity π ≡ p=ρ, χ ¼ χðπÞ ≠ π.
This statement characterizes the set TG of all the perfect

energy tensors which are the energetic evolution of a
nonbarotropic ideal gas f ∈ G. In Ref. [6] we have solved
the specific inverse problem by obtaining, in terms of ρ
and p, all the thermodynamic quantities that define the
thermodynamic scheme of an ideal gas.

III. CLASSICAL IDEAL GAS: HYDRODYNAMIC
CHARACTERIZATION

Let us study now the evolution (direct problem) of the
classical ideal gas (CIG), that is to say, we consider any
ideal gas verifying (8) and

ϵ ¼ cvΘ; ð9Þ

cv > 0 being the heat capacity at constant volume. From
(8) and (9) it follows that a CIG satisfies the classical γ-law:

p ¼ ðγ − 1Þnϵ; γ ≡ 1þ k
cv

; ð10Þ

γ being the adiabatic index. On the other hand the l.t.e.
Eq. (6) implies that a CIG has the characteristic equation

ϵ ¼ ϵðn; sÞ ¼ β̄ðsÞnγ−1; β̄ðsÞ≡ exp
s − s̄0
cv

: ð11Þ

And from (10) and (11) it follows that any CIG fulfills a
Poisson law1:

p ¼ βðsÞnγ; βðsÞ ¼ ðγ − 1Þβ̄ðsÞ: ð12Þ

We know [6] that the only intrinsically barotropic ideal
gases are those satisfying ϵðΘÞ ¼ cvΘ − 1. Thus a CIG is,
necessarily, nonbarotropic dρ ∧ dp ≠ 0, and we can take
the hydrodynamic quantities ðρ; pÞ as coordinates in the
thermodynamic plane. Then, from the above expressions
(4), (8), (9), (10) and (11), we obtain:

nðρ; pÞ ¼ ρ −
p

γ − 1
; ϵðρ; pÞ ¼ p

ðγ − 1Þρ − p
; ð13Þ

sðρ; pÞ ¼ s0 þ cv ln
p

½ρðγ − 1Þ − p�γ : ð14Þ

1The classical γ-law (10) and the Poisson law (12) are
equations of state. A fluid that fulfills (10) or (12) is called a
γ-gas or a Poisson gas, respectively. A Poisson gas in isentropic
evolution fulfills a Poisson adiabatic law p ¼ β0nγ. In Sec. IV
Table I gives the equations of state that define the diverse families
of perfect fluids concerned in this paper and summarizes some of
our results.
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Moreover, the square of the speed of sound can be
calculated as χðρ; pÞ ¼ −s0ρ=s0p, and we obtain:

c2s ¼ χðρ; pÞ≡ γp
ρþ p

: ð15Þ

We summarize these results in the following.

Lemma 1: In terms of the hydrodynamic quantities
ðρ; pÞ, the matter density n, the specific internal energy ϵ,
the specific entropy s and the speed of the sound cs of a
classical ideal gas are given by (13), (14) and (15).

As shown in Ref. [6,8], a nonbarotropic and isoenergetic
(_ρ ¼ 0) perfect energy tensor evolves in l.t.e. if, and only if,
it is isobaric, _p ¼ 0, and then it admits any thermodynamic
scheme. In particular, it will admit the thermodynamics of
any CIG. Thus, we have:

Proposition 1: The necessary and sufficient condition
for a nonbarotropic and isoenergetic (_ρ ¼ 0) perfect energy
tensor T ¼ ðu; ρ; pÞ to represent the l.t.e. evolution of a
CIG is that it be isobaroenergetic: _ρ ¼ 0, _p ¼ 0. Then T
represents the evolution in l.t.e. of any CIG, and the specific
internal energy ϵ, the matter density n, the specific entropy s
and the speed of sound cs are given by (13), (14) and (15).

Note that the richness of CIG associated with a non-
barotropic and isobaroenergetic perfect energy tensor
depends on two parameters, the adiabatic index γ and
the heat capacity at constant volume cv. This last one
determines through (8) and (10) the particle mass m.
On the other hand, if the perfect energy tensor T is

nonisoenergetic, _ρ ≠ 0, then the indicatrix function χ ≡
_p=_ρ equals the square of the speed of sound [6] and it
is given by (15) for a CIG. Conversely, when the perfect
fluid has this indicatrix, the thermodynamic quantities n, ϵ
and s given in (13) and (14) fulfill the CIG characteristic
equation (11). Thus we can state:

Theorem 1: The necessary and sufficient condition for
a nonbarotropic and nonisoenergetic perfect energy tensor
T ¼ ðu; ρ; pÞ to represent the l.t.e. evolution of a classical
ideal gas with adiabatic index γ is that the indicatrix
function χ ≡ _p=_ρ be of the form:

χ ¼ γp
ρþ p

: ð16Þ

Then, the matter density n and the specific entropy s are
given by (13) and (14), and the constants k and cv are
related by

γ ¼ 1þ k
cv

: ð17Þ

After this theorem it is worth remarking the following
points:

(i) Theorem 1 offers a purely hydrodynamic charac-
terization of the set C of the CIG by solving the
associated direct problem: the determination of the

set Tf of all the perfect energy tensors that are the
energetic evolution of any CIG f ∈ C. It also solves
the specific inverse problem forC: the determination
of the set CT of the CIG whose evolution is
described by a given T ∈ TC.

(ii) In practice, it can be more convenient to verify
directly the condition that characterizes the full setC
without specifying the adiabatic index γ:

d
ðρþ pÞ _p

p_ρ
¼ 0: ð18Þ

If (18) holds, a constant γ exists that satisfies (16),
and then the perfect energy tensor T ¼ ðu; ρ; pÞ
represents the l.t.e. evolution of a CIG with adiabatic
index γ.

(iii) Note that in the nonisoenergetic case the adiabatic
index γ, that is, the quotient k=cv, is fixed by the
hydrodynamic quantities. Remember that the values
γ ¼ 5=3 and γ ¼ 7=5 correspond, respectively, to
monoatomic and diatomic ideal gases. Again, the
freedom to choose cv is related with the particle
mass. Some conditions for physical reality imposing
constraints on the adiabatic index γ will be ana-
lyzed below.

A. Constraints for physical reality:
Compressibility conditions

The Plebański [2] energy conditions are basic con-
straints for physical reality of formal arbitrary media. They
impose algebraic restrictions on the hydrodynamic quan-
tities, and for a perfect energy tensor take the expression
−ρ < p ≤ ρ. For a medium that fulfills the equation of
state of a generic ideal gas (8), it is reasonable to consider a
positive pressure, p > 0. Thus, the energy conditions E for
these media state:

E∶ 0 < π ≤ 1; π ¼ p
ρ
: ð19Þ

When the perfect fluid evolves in l.t.e. some physical
requirements must be imposed on the thermodynamic
quantities. First, the positivity conditions P for the matter
density n and the specific internal energy ϵ:

P∶ n > 0; ϵ > 0; ð20Þ

and second, the relativistic compressibility conditions H
must be fulfilled [3,4]. We have shown in Ref. [8] that, for a
generic ideal gas, the conditions H can be stated in terms of
the indicatrix function, χ ¼ χðπÞ ≠ π:

H∶
π

2πþ1
< χ < 1;

ð1þ πÞðχ − πÞχ0 þ 2χð1 − χÞ > 0:
ð21Þ
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In this paper, where a macroscopic approach is carried out,
the conditions E, P and H are called the constraints for
physical reality.
For a CIG, the positivity constraint P can be stated in

terms of hydrodynamic quantities as a consequence of (13):

Lemma 2: For a CIG, the positivity constraint P, n > 0,
ϵ > 0, hold if, and only if,

γ > 1; π < πm ≡ γ − 1: ð22Þ

Now we study the compressibility constraints H for a
CIG, that is, after (16), for

χðπÞ ¼ γπ

π þ 1
; χ0ðπÞ ¼ γ

ðπ þ 1Þ2 : ð23Þ

If bðπÞ ¼ π
2πþ1

, we have that both derivatives χ0ðπÞ and
b0ðπÞ are positive and decreasing in the domain [0, 1].
Moreover bð0Þ ¼ χð0Þ ¼ 0; bð1Þ ¼ 1=3, χð1Þ ¼ γ=2;
b0ð0Þ ¼ 1, χ0ð0Þ ¼ γ. Consequently, when γ > 1 we have
bðπÞ < χðπÞ in the domain �0; 1�. On the other hand, χ < 1

if π ∈ ½0; 1
γ−1 ½. Thus, we can state:

Lemma 3: If γ > 1, the first of the compressibility
conditions H in (21) holds in the interval:

0 < π < π̃m ≡ 1

γ − 1
: ð24Þ

The second compressibility condition in (21) can be
analyzed taking into account (23) and we obtain:

Lemma 4: If γ > 1, the second of the compressibility
conditions H in (21) holds in the interval:

0 < π < π̂m ≡ γ þ 1

2γ − 1
: ð25Þ

Finally, note that if γ ¼ 2, πm ¼ π̂m ¼ π̃; if γ ≤ 2,
πm < π̂m < π̃; and if γ ≥ 2, π̃m < π̂m < πm. Thus, we
can collect the results of the three lemmas 2, 3 and 4 in
the following.

Proposition 2: For a CIG with adiabatic index γ, the
constraints for physical reality E, P and H are satisfied for
values of π in a nonempty subinterval of [0, 1] if, and only
if, γ > 1. In addition, they hold in the interval:(

0 < π < πm ≡ γ − 1; if 1 < γ ≤ 2;

0 < π < π̃m ≡ 1
γ−1 ; if γ ≥ 2:

ð26Þ

Usually (see, e.g., [10]) the adiabatic index γ is supposed
to be constrained by 1 < γ ≤ 2. Proposition above shows
that, under reasonable physical requirements, the upper
limit for γ can be relaxed. In subsection IVA we will
analyze this apparent contradiction and we will also com-
ment about the stronger restrictions imposed by a model
based on the relativistic kinetic theory.

IV. THE GENERIC INVERSE PROBLEM FOR AN
INDICATRIX OF A CLASSICAL IDEAL GAS

In Sec. III we have solved the specific inverse problem
for the CIG, that is, we have determined the set CT of CIG
having any given perfect energy tensor T ∈ TC as energetic
description. Now we analyze the generic inverse problem
for the CIG: to determine the set FT of all perfect fluids
having a given perfect energy tensor T ∈ TC as energetic
description. The answer to this problem is tantamount to
obtaining the thermodynamics compatible with the expres-
sion (15) of the square of the speed of sound. We can make
use of the following known result [6]:

Lemma 5: Let T be a nonbarotropic and nonisoener-
getic perfect energy tensor that evolves in l.t.e. The
admissible thermodynamics are defined by a matter density
n ¼ nðρ; pÞ and a specific entropy sðρ; pÞ of the form
n ¼ n̄Rðs̄Þ and s ¼ sðs̄Þ, where Rðs̄Þ and sðs̄Þ are arbitrary
real functions, and n̄ðρ; pÞ and s̄ðρ; pÞ are, respectively,
particular solutions of the equations:

n0ρ þ χðρ; pÞn0p ¼ n
ρþ p

; s0ρ þ χðρ; pÞs0p ¼ 0; ð27Þ

χðρ; pÞ being the indicatrix function, χ ≡ _p=_ρ.

For a CIG the indicatrix function takes the form (15),
with γ > 1, and then the functions n and s given in (13) and
(14) are particular solutions of (27). Then, from lemma 5 a
straightforward calculation leads to:

Lemma 6: If a perfect fluid evolves in l.t.e. and the
speed of sound is the function of state c2s ¼ χðρ; pÞ ¼ γp

ρþp,
γ > 1, then it is a Poisson gas, that is, it fulfills the
Poisson law:

p ¼ βðsÞnγ; γ > 1: ð28Þ
In order to prove the converse statement we need to

know the characteristic equation for a Poisson gas, which
easily follows from (28) and the local thermal equilibrium
relation (6):

Lemma 7: The thermodynamic characteristic equation
of a Poisson gas is given by:

ϵðn; sÞ ¼ β̃ðsÞnγ−1 þ αðsÞ; β̃ðsÞ ¼ βðsÞ
γ − 1

: ð29Þ

In particular, when αðsÞ ¼ 0 this equation characterizes the
γ-gases, that is, the gases fulfilling a classical γ-law:

p ¼ ðγ − 1Þnϵ; γ > 1: ð30Þ
And if, in addition, βðsÞ ¼ β0es is imposed, the CIG is
obtained.

Note that the characteristic equation (29) of a Poisson
gas depends on two arbitrary functions of the specific
entropy, β̃ðsÞ and αðsÞ. They correspond to the two
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arbitrary functions that give the richness of admissible
thermodynamic schemes of the generic inverse problem
presented in Lemma 5. Thus the generic specific entropy is
a function of the specific entropy of a CIG given in (14):

sðρ; pÞ ¼ fðxÞ; x≡ ½ρðγ − 1Þ − p�p−1=γ: ð31Þ
From this expression, the square of the speed of sound
can be calculated as c2s ¼ χðρ; pÞ ¼ −s0ρ=s0p, and we
obtain (15). Thus, the indicatrix function of a Poisson
gas is that of a classical ideal gas. This result and Lemma 6
allow us to state:

Proposition 3: The Poisson gases defined by (28) are,
and only are, the media that evolve in l.t.e. with an
indicatrix function of the form χðρ; pÞ ¼ γp

ρþp, γ > 1.

From Lemma 7 and Proposition 3 it results that the
indicatrix function of a material medium satisfying a
classical γ-law is (16). Now αðsÞ ¼ 0 corresponds to taking
in Lemma 5 Rðs̄Þ ¼ 1 and n̄ðρ; pÞ equals the matter density
of a CIG. Therefore:

Proposition 4: The γ-gases, fulfilling a γ-law, are, and
only are, the media that evolve in l.t.e. with an indicatrix
function of the form (16) and that have a CIGmatter density.

A. Constraints for physical reality

From the above results, the study of the constraints for
physical reality presented in subsection III A for a CIG
can be extended to the γ-gases and the Poisson gases. The
γ-gases are submitted to identical constraints as the CIG as
a consequence of Proposition 4. For the Poisson gases the
expressions of the matter density n and the specific internal
energy ϵ are more generic than in the case of a CIG. Thus,
the second of the positivity constraint P in (22) does not
hold necessarily, and then the second compressibility
constraint H given by (25) applies for 1 < γ ≤ 2. Therefore:

Proposition 5: For a γ-gas, defined by the condition
(30), the constraints for physical reality are satisfied in the
interval given by (26):(

0 < π < πm ≡ γ − 1; if 1 < γ ≤ 2;

0 < π < π̃m ≡ 1
γ−1 ; if γ ≥ 2:

:

For a Poisson gas, defined by the condition (28), the
constraints for physical reality are satisfied in the interval
given by (

0 < π < π̂m ≡ γþ1
2γ−1 ; if 1 < γ ≤ 2;

0 < π < π̃m ≡ 1
γ−1 ; if γ ≥ 2:

ð32Þ

Most of the thermodynamic expressions presented in
previous sections on CIG and Poisson gases can be found
in the literature or can be deduced from known

thermodynamic relations. In particular, from (13) and

(15) we obtain c2s ¼ γϵðγ−1Þ
1þγϵ , an expression for the speed

of sound that can be found, for example, in Ref. [11]. It is
also known [10] that the speed of sound in a Poisson gas
can be written as (15). Nevertheless, our approach brings
new insights on the subject:

(i) This approach offers the sufficient condition of this
last statement, that is, it shows that the equation of
state (15) characterizes the Poisson gases.

(ii) It also emphasizes the purely hydrodynamic nature
of this characterization, and it presents the answer
to the inverse problem for the indicatrix function
(15) for the set C of CIG, the set Γ of the γ-gases,
and the set P of the Poisson gases. Moreover, it
easily clarifies the inclusion relationship between
these three sets of fluids, C ⊂ Γ ⊂ P, an issue often
unclear in the literature, and furthermore it shows
that the setG ∩ P of the ideal gases that are Poisson
gases are those with ϵ ¼ cvΘþ ϵ0; the case ϵ0 ¼ 0
(CIG) arises for a γ-gas, that is, G ∩ Γ ¼ C. On the
other hand, this approach allows to solve the
inverse problem for the energy tensor, leading, in
particular, to the result that the set P of the Poisson
gases are the answer to the inverse problem for both
the CIG and the γ-gases, that is, P ¼ FTC

¼ FTΓ
,

where FTC
and FTΓ

are, respectively, the set of all
perfect fluids f ∈ F whose all possible evolution
energy tensors TC are those corresponding to any
of the CIG, and the set of all perfect fluids f ∈ F
whose all possible evolution energy tensors TΓ are
those corresponding to any of the γ-gases. Table I
summarizes all these results.

(iii) Compressibility conditions for a Poisson gas were
analyzed in Ref. [10], and sufficient conditions in
the quantities n, p were also presented. Here our
approach offers in Propositions 2 and 5 necessary
and sufficient conditions for the selected constraints
for physical reality, and allow to state them in terms
of the purely hydrodynamic equation of state
c2s ¼ χðρ; pÞ.

Usually, in the literature on thermodynamic perfect
fluids [10,11], the adiabatic index is considered constrained
by 1 < γ ≤ 2. Nevertheless, our results in Propositions 2
and 5 show that values of the adiabatic index greater than 2
could model physically reasonable media (CIG, γ-gases, or
Poisson gases) in physically relevant ranges of the hydro-
dynamic quantity π.
The constraint γ ≤ 2 was deduced by Taub [9] by

imposing the limit cs < 1 for the speed of the sound, a
requirement that is included in the compressibility con-
ditions (21). The contradiction between our statements and
the Taub’s result is only apparent. Indeed, he deduced the
constraint for γ by analyzing the behavior of cs at high
temperature, a fact that is consistent with our upper-limit
π < π̃ for γ ≥ 2.
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The difficulties in finding perfect fluid solutions of the
Einstein equation modeling realistic media are well known
(see, e.g., Sec. VIII). Thus, in the framework of the general
relativity theory it may be of interest to deal with equations
of state that, not being valid in the whole range, are
meaningful in a relevant range of the hydrodynamic
quantities ρ and p.
In this paper our point of view on the physical constraints

is directly macroscopic, not derived from the kinetic theory
of gases. Nevertheless, we believe that it is worthwhile to
comment about the Taub inequality obtained from a kinetic
approach [9]:

n2 ≤ ρðρ − 3pÞ: ð33Þ

For a CIG and a γ-gas the mater density takes the
expression n ¼ nðρ; pÞ given in (13). Then, for γ ≥ 5=3
there is no value of π ∈�0; 1½ fulfilling the Taub inequality
(33). Thus, the kinetic theory implies γ < 5=3 for these
media. Nevertheless, the matter density of a Poisson gas
is of the form RðsÞnðρ; pÞ, where RðsÞ is an arbitrary
function of the specific entropy. Consequently, for any
γ > 1, we can select in the inverse problem a matter density
n̄ ¼ R0nðρ; pÞ, with R0 such that (33) is fulfilled.
Moreover, the temperature Θ can be taken such that the
gas ideal equation of state (8) is verified. Therefore,
Poisson ideal gases with any γ > 1 are compatible with
the Taub inequality (33).

V. ISOTHERMAL EVOLUTION OF
A CLASSICAL IDEAL GAS

We know [6] that a general (nonbarotropic) perfect
fluid admits barotropic evolutions. For example, this
occurs when the fluid evolves by keeping constant a
determined function of state. When this function of state
is not the specific entropy s, this evolution is, necessarily,
isobaroenergetic, _ρ ¼ _p ¼ 0 [6]. Here we study the iso-
thermal evolution of a CIG, and we offer two elementary
examples.

A generic ideal gas in isothermal evolution fulfills
a barotropic evolution relation2 of the form p ¼ π0ρ [6].
Now we determine what the constant π0 means in the case
of a CIG.
If a CIG evolves at constant temperatureΘ0, from (4), (8)

and (9) we obtain:

p
ρ
¼ π0 ≡ kΘ0

1þ cvΘ0

¼ ðγ − 1Þϵ
1þ ϵ

< 1; ð34Þ

kΘ0 ¼
ðγ − 1Þ − π0
ðγ − 1Þπ0

: ð35Þ

Then, we have:

Proposition 6: A perfect energy tensor T ¼ ðu; ρ; pÞ
represents the isothermal evolution of a CIG if, and only
if, it is isobaroenergetic, _ρ ¼ _p ¼ 0, and the following
barotropic relation holds:

p ¼ π0ρ; 0 < π0 < 1: ð36Þ

Conversely, an isobaroenergetic and barotropic energy
tensor with barotropic relation (36) represents the iso-
thermal evolution of any CIG. For a given specific adiabatic
index γ, the product kΘ0 is constrained by the condition
(35) and the specific internal energy ϵ, the matter density n,
and the specific entropy s are given by (13) and (14), the
constants k and cv being related by (17).

A. Relativistic model of isothermal atmosphere

The external gravitational field to a spherically sym-
metric object is given by the Schwarszchild metric:

ds2¼−α2dt2þα−2dr2þ r2dΩ2; α≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1−

2μ

r

r
: ð37Þ

TABLE I. Different families of fluids that are considered in this paper (first column) and the functions of state that define them (second
column). The third column shows their characteristic equation ϵ ¼ ϵðs; nÞ, and the fourth one shows, for some cases, equations of
state that also characterize them. Finally, the fifth column shows the square of the speed of sound χ in terms of the hydrodynamic
quantity π ¼ p=ρ. Note that each classical ideal gas is a γ-gas, and each γ-gas is a Poisson gas, and the three families have the same
indicatrix function χðπÞ. Moreover and ideal gas is a Poisson gas if, and only if, the specific internal energy ϵ is a linear function of the
temperature Θ. And the classical ideal gases are the ideal gases that are γ-gases.

Definition Characteristic equation Equivalent conditions χ ¼ c2s ≡ − s0ρ
s0p

Ideal gas p ¼ knΘ ϵ ¼ ϵðsþ k ln nÞ χ ¼ χðπÞ ≠ π

Poisson gas p ¼ βðsÞnγ ϵ ¼ β̃ðsÞnγ−1 þ αðsÞ χ ¼ γπ
1þπ χ ¼ γπ

1þπ

γ − Gas p ¼ ðγ − 1Þnϵ ϵ ¼ β̃ðsÞnγ−1 χ ¼ γπ
1þπ

Poisson ideal gas p ¼ knΘ ; p ¼ βðsÞnγ ϵ ¼ e
s−s0
cv nγ−1 þ ϵ0 p ¼ knΘ ; ϵðΘÞ ¼ cvΘþ ϵ0 χ ¼ γπ

1þπ

Classical ideal gas p ¼ knΘ ; ϵðΘÞ ¼ cvΘ ϵ ¼ e
s−s0
cv nγ−1 p ¼ knΘ ; p ¼ ðγ − 1Þnϵ χ ¼ γπ

1þπ

2Not to be confused with an equation of state.
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Let us consider a test classical ideal gas at rest around this
object in a spherical configuration. We have then _ρ¼ _p¼0.
Moreover, the hydrodynamic equations (2)–(3) for the
unit velocity u ¼ α−1∂t, the energy density ρðrÞ and the
pressure pðrÞ become:

p0ðrÞ ¼ −ðρþ pÞ α
0

α
: ð38Þ

Then, as a consequence of Proposition 6, if the CIG
evolves at constant temperature Θ0, then p ¼ π0ρ, where
π0 is given in (34). Thus, (38) becomes:

p0ðrÞ ¼ −2νp
α0

α
; ν≡ 1þ π0

2π0
; ð39Þ

and integrating this equation we have:

pðrÞ ¼ C
α2ν

¼ C

ð1 − 2μ
r Þν

¼ p0

"
1 − 2μ

r0

1 − 2μ
r

#
ν

: ð40Þ

It is worth remarking that the Newtonian model of
isothermal atmosphere of a classical ideal gas leads to:

pðrÞ ¼ Ce
λ
r ¼ p0e

λð1r− 1
r0
Þ; λ≡ μ

kΘ0

: ð41Þ

For low temperatures, kΘ0 ≪ 1, ν approaches λ, and for
weak gravitational field, μ ≪ r, (40) and (41) have the
same behavior.

B. A model of self-gravitating isothermal sphere

The gravitational field generated by a static spherically
symmetric distribution of matter is modeled by the metric:

ds2 ¼ −α2dt2 þ β−2dr2 þ r2dΩ2; ð42Þ

α ¼ αðrÞ; β ¼ βðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mðrÞ
r

r
; ð43Þ

where the mass function mðrÞ and the pressure pðrÞ are
submitted to the differential system:

m0ðrÞ ¼ 4πr2ρ; ð44Þ

p0ðrÞ ¼ −
ðρþ pÞðmþ 4πr3pÞ

rðr − 2mÞ ; ð45Þ

and they fulfill the initial conditions mð0Þ ¼ 0 and
pð0Þ ¼ pc. Moreover, the gravitational potential αðrÞ
can be obtained from Eq. (38). A way to close the
Oppenheimer-Volkoff equations (44)–(45) is to impose a
barotropic constraint ρ ¼ ρðpÞ.
The solution of the system (44)–(45) under the baro-

tropic relation p ¼ π0ρwas studied by Chandrasekhar [12],

and he showed that it becomes an Emden-like equation,
as in the classical problem of an isothermal gas. In this
paper by Chandrasekhar and in a more recent one by
Chavanis [13] this barotropic model is called a relativistic
“isothermal” model due to its similarity to the isothermal
Newtonian case.
It is worth remarking that this model is indeed an

exact isothermal relativistic solution as a consequence of
Proposition 6: it performs the evolution at constant temper-
ature Θ0 of any ideal gas (we can take any adiabatic index
γ), with Θ0 constrained by (35). But it could also model
any self-gravitating isothermal generic ideal gas [6] and,
particularly, a Synge relativistic gas [14] evolving at
constant temperature as considered in Ref. [15].
Of course, this assertion has been established without

reference to any heat equation and it remains valid under
the hypothesis of vanishing conductivity. Otherwise, the
local thermal equilibrium implies necessarily a gradient of
temperature attached to the gradient of the gravitational
potential as a consequence of a result by Tolman [16,17].
This fact was previously pointed out in Ref. [15] (see also
Ref. [13] and next section).

VI. CLASSICAL IDEAL GAS SPHERES IN
THERMAL EQUILIBRIUM

If a fluid has a nonvanishing heat conductivity coef-
ficient κ, the energy flux q, the temperature Θ and the fluid
acceleration a are constrained by the relativistic Fourier
equation [1]:

q ¼ −κð⊥d lnΘþ aÞ; ð46Þ

where ⊥ denotes the orthogonal projector to the fluid
velocity; for a function f, ⊥df ¼ df þ _fu.
When the energy flux vanishes we obtain the constraint

a ¼ −⊥d lnΘ3 and, if the fluid is at rest with respect to the
static gravitational field (42), this condition leads to:

αΘ ¼ C ¼ constant; ð47Þ

and we recover the above-cited result by Tolman [17].
If we consider a spherical distribution of a CIG in

thermal equilibrium, from (4), (8), (10) and (47) we obtain:

ρ ¼
�

1

kC
αþ 1

γ − 1

�
p; ð48Þ

and the hydrostatic equation (38) becomes:

3It is known that Eq. (46) leads to a noncausal thermodynam-
ics. The proposed alternatives in causal extended thermodynam-
ics [11] also lead to a ¼ −⊥d lnΘwhen the energy flux vanishes.
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p0ðαÞ ¼ −p
�

1

kC
þ γ

γ − 1

1

α

�
; ð49Þ

which leads to:

pðαÞ ¼ Kα−
γ

γ−1e−
α
kC: ð50Þ

Note that (48) and (50) give a barotropic relation,
dρ ∧ dp ¼ 0, in a parametric form: ρ ¼ ρðαÞ, p ¼ pðαÞ.
And from here, we can obtain an implicit barotropic
relation ψðρ; pÞ ¼ 0. On the other hand, from (8) and
(47) we obtain:

nðΘÞ ¼ K̄Θ
1

γ−1e−
1
kΘ: ð51Þ

Ifwe consider a test classical ideal gas in the Schwarzschild
gravitational field (37) we have α2 ¼ 1 − 2μ

r . Then (47), (50)
and (51) offer a model of atmosphere in thermal equilibrium.
Instead, for a self-gravitating distribution, the stelar

structure equations can be written for the functions mðrÞ
and αðrÞ:

m0ðrÞ ¼ 4πr2ρðαÞ; ð52Þ

α0ðrÞ ¼ α
mþ 4πr3pðαÞ
rðr − 2mÞ ; ð53Þ

where ρðαÞ and pðαÞ are given in (48) and (50), respec-
tively. A similar reasoning for the case of a classical
monoatomic gas (γ ¼ 5=3), and in particular the expression
(51) for this specific case, can be found in the above-cited
paper by Tolman [16].

VII. ISENTROPIC EVOLUTION OF A
CLASSICAL IDEAL GAS

When a nonbarotropic perfect fluid has an isentropic
evolution, this evolution is performed by a barotropic
energy tensor, the barotropic relation p ¼ ϕðρÞ depending
on the perfect fluid characteristic equation [6]. For a CIG,
and also for a γ-gas or a Poisson gas, an isentropic
evolution implies that the process is polytropic, that is,
an adiabatic Poisson law holds: p ¼ β0nγ , β0 ¼ constant.
From our purely hydrodynamic approach an isentropic

evolution means that the function of state xðρ; pÞ given
in (31) takes a constant value, and we obtain a specific
barotropic relation. More precisely we have:

Proposition 7: A perfect energy tensor T ¼ ðu; ρ; pÞ
represents the isentropic evolution of a CIG if, and only if,
the following barotropic relation holds:

ðγ − 1Þρ ¼ pþ Bp1=γ; B ¼ constant: ð54Þ

Conversely, the barotropic evolution (54) represents the
isentropic evolution of a CIG with adiabatic index γ.
Moreover, the matter density n is given by

n ¼ B
γ − 1

p1=γ: ð55Þ

The adiabatic Poisson law (55) follows from (13) and
(54). The first statement in Proposition above is also valid
for both a γ-gas and a Poisson gas. And the expression
for the matter density in (55) is valid for a γ-gas as a
consequence of Proposition 4. On the other hand, for a
Poisson gas we evidently have that the matter density
fulfills an adiabatic Poisson law p ¼ Anγ, where A is now a
constant that can be taken independent of B.
The analysis of fluids with polytropic evolution has been

widely considered in literature. For example, the study
of polytropic self-gravitating spheres is a basic topic in
both Newtonian and relativistic astrophysics (see, e.g.,
Refs. [18,19]). A purely hydrodynamic approach to this
problem would imply the study of the relativistic structure
equations (44)–(45) under the barotropic constraint (54).
But we do not consider this question here, focusing instead
on the analysis of the FLRW universes that model a CIG in
isentropic evolution.

A. Classical ideal gas FLRW models

The Friedmann-Lemaître-Robertson-Walker universes
are perfect fluid space-times with line element:

ds2 ¼ −dt2 þ R2ðtÞ
½1þ 1

4
ϵr2�2 ðdr

2 þ r2dΩ2Þ; ð56Þ

with ϵ ¼ 0; 1;−1, and homogeneous energy density and
pressure given by:

ρ ¼ 3 _R2

R2
þ 3ε

R2
≡ ρðRÞ; ð57Þ

p ¼ −ρ −
R
3
∂Rρ≡ pðRÞ: ð58Þ

Evidently, we have a barotropic evolution, dρ ∧ dp ¼ 0.
Nevertheless, in looking for physically relevant models
we must impose a physically realistic barotropic relation
p ¼ ϕðρÞ. Then, (58) enables us to determine ρðRÞ, and
(57) becomes a Friedmann equation for RðtÞ. The signifi-
cant cosmological models for radiation and matter domi-
nant eras are obtained by taking ρ ¼ 3p and p ¼ 0,
respectively.
What are the generalized Friedmann equations when

the energy content is a classical ideal gas with adiabatic
index γ? The homogeneity of the hydrodynamic quantities
ρ and p implies that, necessarily, the evolution is at constant
entropy. Then, as a consequence of Proposition 7, the
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barotropic relation is of the form (54). A straightforward
calculation allows us to integrate equation (58) and to
determine pðRÞ, and then ρðRÞ, and one obtains:

Proposition 8: The classical ideal gas FLRW models
are defined by the generalized Friedmann equation (57)
with the energy density ρðRÞ given by:

ρðRÞ ¼ n0

�
R0

R

�
3

þ p0

γ − 1

�
R0

R

�
3γ

: ð59Þ

In terms of the expansion factor R, the pressure, the matter
density and the temperature are given by:

pðRÞ ¼ p0

�
R0

R

�
3γ

; nðRÞ ¼ n0

�
R0

R

�
3

; ð60Þ

ΘðRÞ ¼ p0

kn0

�
R0

R

�
3ðγ−1Þ

: ð61Þ

For γ ¼ 5=3 we obtain a model of monoatomic gas, and
for γ ¼ 7=5 a model of diatomic gas. The cosmological
model with decoupled matter and radiation follows by
taking γ ¼ 4=3. And with a limiting procedure we can
recover the pressureless solution (p0 ¼ 0) and any γ-model,
p ¼ ðγ − 1Þρ, if n0 ¼ 0, and in particular the radiation-
dominant solution (γ ¼ 4=3).
It is worth remarking that the results in Proposition 8 also

apply to model a γ-gas in expansion. And for a Poisson gas
the model depends on one more parameter allowing two
different values for the constants n0 in (59) and in (60)
and (61).
The above classical ideal gas FLRW models have

been achieved by imposing the barotropic relation (54).
Nevertheless, these models can also be obtained by
requiring p ∝ R−3γ . Indeed, Eq. (58) can be solved under
this assumption and we obtain the expression (59) for ρðRÞ.
Thus, we have:

Corollary 1: The classical ideal gas FLRW models in
Proposition 8 are, and only are, the FLRW models with a
pressure of the form (60).

It is worth remarking that all the FLRW models with
pressure depending on the metric function R as (60) can be
interpreted as a CIG in isentropic evolution.

VIII. ON THE CLASSICAL IDEAL GAS
SOLUTIONS OF EINSTEIN EQUATIONS

After theorem 1, the general form for the CIG field
equations follows by adding constraint (16), _p=_ρ ¼ γp

ρþp,
to the usual perfect fluid field equations. And, according
to the energy conservation condition (3), this constraint is
equivalent to:

_p
p
¼ −γθ: ð62Þ

In some specific kinematic or thermodynamic situations
this condition is simpler. Thus, in previous sections we
have considered the field equations for a CIG under
isothermal or isentropic evolutions, both cases leading to
a barotropic evolution relation.
Let us consider now a CIG solution with irrotational

motion. Then, in comoving coordinates the metric tensor
takes the form:

ds2 ¼ −e2νdt2 þ gijdxidxj: ð63Þ

The fluid expansion is θ ¼ ðlnΔÞ·, where Δ2 is the deter-
minant of the spatial metric gij. Then, from (62) we obtain:

p ¼ PðxiÞΔ−γ; Δ≡
ffiffiffiffiffiffiffiffi
jgijj

q
: ð64Þ

Thus, the field equations for an irrotational CIG follow by
replacing the pressure p for the expression (64) in the field
equations in comoving coordinates.
The above result applies to the spherically symmetric

metrics and to their hyperbolic and parabolic counterparts.
Now the metric tensor takes the form:

ds2 ¼ −e2νðt;rÞdt2 þ e2λðt;rÞdr2 þ Y2ðt; rÞdΩ2; ð65Þ

where dΩ2 is a metric of constant curvature k ¼ 0; 1;−1.
Then (64) can be written as:

p−1=γ ¼ 3hðrÞY2eλ; ð66Þ

a condition that can be added to the usual set of field
equations if we look for a classical ideal gas model.

A. Solutions in geodesic motion and admitting
a G3 on S2 with Y 0ðrÞ ≠ 0

Now we focus on the case Y 0 ≠ 0 and a geodesic motion,
that is, ν ¼ 0. Then, the field equations can be partially
integrated and one has [20]:

pðtÞY2 ¼ −2YŸ − _Y2 − εf2ðrÞ; ε ¼ 0; 1;−1; ð67Þ

eλ ¼ Y 0FðrÞ; F2½k − εf2� ¼ 1; k ¼ 0; 1;−1: ð68Þ

Then, the CIG condition (66) leads to p−1=γ ¼
3hðrÞFðrÞY2Y 0 ¼ hðrÞFðrÞðY3Þ0, and we obtain:

Z2 ≡ Y3 ¼ αðtÞaðrÞ þ βðtÞ; ð69Þ

αðtÞ≡ p−1=γ; aðrÞ≡
Z

dr
hðrÞFðrÞ : ð70Þ
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Note that Y 0 ≠ 0 implies a0ðrÞ ≠ 0 and αðtÞ ≠ 0. Moreover,
when Y factorizes we have a vanishing shear and an
homogeneous expansion [20]. Consequently, the FLRW
limit occurs when β ¼ cα, c ¼ constant.
On the other hand, the change Z2 ¼ Y3 allows us to write

the field equation (67) as [20]:

Z̈ þ 3

4
pðtÞZ þ 3

4
ϵf2ðrÞZ− 1

3 ¼ 0: ð71Þ

When ϵ ¼ 0, Eq. (71) can be solved by quadratures for each
election of the function pðtÞ [21]. But we are interested
here in CIG solutions. Then, substituting the expressions
(69) and (70) for Z and p in (71) we have:

Aa2 þ Baþ Cþ 3εf2ðαaþ βÞ43 ¼ 0; ð72Þ

A ¼ AðtÞ≡ 2αα̈ − _α2 þ 3α2−γ; ð73Þ

B ¼ BðtÞ≡ 2½αβ̈ þ βα̈ − _α _βþ3βα1−γ�; ð74Þ

C ¼ CðtÞ≡ 2ββ̈ − _β2 þ 3β2α−γ: ð75Þ

Thus, we have proved:

Lemma 8: The metrics (65) with Y 0 ≠ 0 that model a
classical ideal gas with geodesic motion are defined by four
functions αðtÞ ≠ 0, βðtÞ, fðrÞ and aðrÞ, a0ðrÞ ≠ 0, sub-
mitted to the differential equation (72). The metric func-
tions Yðt; rÞ and λðt; rÞ are given in (69)–(70) and (68),
respectively, and ν ¼ 0.

Equation (72) can be written as:

M3 ¼ φN4; φ ¼ φðaÞ≡ −27εf6; ð76Þ

M ¼ Aa2 þ Baþ C; N ¼ αaþ β: ð77Þ

If we isolate φ in (76) and differentiate with respect t we
obtain:

3 _MN − 4M _N ¼ 0; ð78Þ
and, taking into account (77), we arrive to:

Pa3 þQa2 þ Raþ Sþ 3 ¼ 0; ð79Þ

P ¼ PðtÞ≡ 3α _A − 4_αA; ð80Þ

Q ¼ QðtÞ≡ 3β _Aþ 3α _B − 4_αB − 4_βA; ð81Þ

R ¼ RðtÞ≡ 3β _Bþ 3α _C − 4_βB − 4_αC; ð82Þ

S ¼ SðtÞ≡ 3β _C − 4_βC: ð83Þ

If a0ðrÞ ≠ 0, Eq. (79) implies the four equations PðtÞ ¼
QðtÞ ¼ RðtÞ ¼ SðtÞ ¼ 0 for the two functions αðtÞ and
βðtÞ. From these equations we obtain:

0 ¼ 1

4
½α3S − βα2Rþ β2αQ − β3P� ¼ α6

��
β

α

�
:
�
3

; ð84Þ

and, consequently, β ¼ cα. Then, the four equations
reduce to:

A ¼ Kα
4
3; φðaÞ ¼ K3ðaþ cÞ2; K ¼ constant: ð85Þ

Thus, the metric becomes a FLRW model (56) with
expansion factor RðtÞ ¼ α

1
3. Moreover, the pressure is

p ∝ R−3γ , and taking into account corollary 1, we have
proved:

Proposition 9: The only perfect fluid solutions with
geodesic motion and admitting a G3 on S2 with Y 0ðrÞ ≠ 0,
which can be interpreted as classical ideal gases, are the
FLRW models labeled in Proposition 8.

B. On the exact solutions that approach
a classical ideal gas behavior

The preliminary result given in the previous subsection is
an example of the difficulties in looking for exact solutions
to field equations that model a classical ideal gas in local
thermal equilibrium. Work in progress reveals this fact.
Indeed, elsewhere [22] we have studied class II Szekeres-
Szafron models in local thermal equilibrium and, although
we have found physically realistic solutions, none of them
represents a classical ideal gas. A similar situation occurs in
analyzing the thermodynamic meaning of the Stephani
universes, a task we undertook years ago [7]: there are no
exact classical ideal gas models. Nevertheless, Stephani
models representing a generic ideal gas, and approximating
a classical one at low temperatures can be found (see also
the more recent paper [8]).
The classical ideal gas is a physically realistic model

only at low temperatures. Consequently, it may be inter-
esting to obtain solutions with other thermodynamic
schemes but with analogous behavior at low temperatures.
The most natural way to achieve this is to do what we did
in Ref. [7] (see also Ref. [8]) for the Stephani universes: i.e.,
to look for a generic ideal gas that approximates a
classical one.
The generic ideal gases are characterized by an indicatrix

function χ ≡ _p=_ρ depending only on the hydrodynamic
quantity π ≡ p=ρ, χ ¼ χðπÞ ≠ π [6]. In the particular case
of a classical ideal gas this function and its first derivative
are given in (23). The kth derivative is

χðkÞðπÞ ¼ γ
ð−1Þkþ1k!
ð1þ πÞkþ1

; χðkÞð0Þ ¼ γð−1Þkþ1k!: ð86Þ

Consequently,
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χðπÞ ¼ γ
X∞
k¼1

ð−1Þkþ1πk: ð87Þ

Then, we say that a generic ideal gas with indicatrix
function χ ¼ χðπÞ approximate a classical one at mth
order if:

χðπÞ ¼ γ
Xm
k¼1

ð−1Þkþ1πk þOðπmþ1Þ: ð88Þ

The Stephani ideal gas models obtained in [7] admit a
subfamily that approximate at first order classical ideal gas
models. Moreover these models fulfill the compressibility
conditions in a wide range of the interval [0, 1].
Nevertheless, the class II Szekeres-Szafron metrics that
are generic ideal gas models only approximate a classical
ideal gas at zero order [22].

IX. DISCUSSION AND WORK IN PROGRESS

In this paper the hydrodynamic approach to the local
thermal equilibrium developed in [5,6,8] have been applied
to the classical ideal gas. Thus, the specific direct and
inverse problems for the CIG case have been solved for
both isoenergetic (Proposition 1) and non isoenergetic
evolutions (theorem 1). The compressibility conditions
for the CIG have been revisited from this hydrodynamic
perspective, and we have studied, for any given adiabatic
index γ > 1, the domain of the hydrodynamic quantity
π ¼ p=ρ where they hold (Proposition 2). The analysis of
the extended inverse problem for a CIG shows that the
Poisson gases are characterized by having the indicatrix
function of a CIG (Proposition 3), and the γ-gases are the
Poisson gases with a CIG matter density (Proposition 4).
The compressibility conditions have also been analyzed for
the γ-gases and the Poisson gases (Proposition 4).
A barotropic perfect energy tensor can model the evolu-

tion of a nonbarotropic fluid [6]. Here we obtain the
barotropic relation that a CIG in isothermal evolution fulfills
(Proposition 6), and we apply this result to model an iso-
thermal atmosphere (Sec. VA), an isothermal self-gravitating
sphere (Sec. V B), and a CIG sphere with nonvanishing
conductivity coefficient in thermal equilibrium (Sec. VI). The

barotropic relation of a CIG in isentropic evolution
(Proposition 7) allows us to present a FLRW solution that
models a CIG in l.t.e. (Proposition 8).
Further work will be devoted to obtaining perfect fluid

solutions that model CIG in nonbarotropic evolution. A
first result in this direction presented in Sec. VIII shows that
the only CIG spherically symmetric solutions in geodesic
motion and Y 0 ≠ 0 are the above-mentioned FLRW models
(Proposition 9). A similar limited result seems to derive
from the study of the Szekeres-Szafron solutions that model
a CIG [22]. One can overcome this situation in looking for
exact solutions that approximate a CIG at low temperatures.
A way to control this approximation has been outlined in
Sec. VIII B.
In our search for physically realistic solutions of the

Einstein equations we can directly add the CIG hydro-
dynamic condition (62) [or (16)] to the common perfect
fluid equations, or we can perform a wider study that
includes perfect fluids and thermodynamic schemes differ-
ing from that of a CIG. This is the method we have built in
studying thermodynamic Szekeres-Szafron solutions [22],
and likewise the one we shall use for the analysis of the
thermodynamic behavior of other families of perfect fluid
solutions hereafter.
For a family of perfect fluid solutions of the Einstein

field equations with perfect energy tensor T ≡ ðu; ρ; pÞ, our
method consist in the following steps. In a first step we
impose the generic hydrodynamic constraint (7) and obtain
the indicatrix function χ ¼ χðρ; pÞ for the subfamily that
verifies it. In a second step we detect the subfamily with a
generic ideal gas indicatrix by imposing χ ¼ χðπÞ ≠ π.
Finally, in a third step, when this function does not coincide
with the CIG indicatrix (16) for any value of the involved
parameters, we can look for solutions that approximates a
CIG as proposed in Sec. VIII B.
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[5] B. Coll and J. J. Ferrando, J. Math. Phys. (N.Y.) 30, 2918

(1989).
[6] B. Coll, J. J. Ferrando, and J. Sáez, Gen. Relativ. Gravit. 49,

66 (2017).

[7] B.Coll and J. J. Ferrando,Gen.Relativ.Gravit.37, 557 (2005).
[8] B. Coll, J. J. Ferrando, and J. A. Sáez, arXiv:1812.04383v1

[Gen. Relativ. Gravit. (to be published)].
[9] A. H. Taub, Phys. Rev. 74, 328 (1948).

[10] A. M. Anile, Relativistic Fluids and Magneto-Fluids
(Cambridge University Press, Cambridge, England, 1989).

[11] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics
(Oxford University Press, Oxford, England, 2013).

COLL, FERRANDO, and SÁEZ PHYS. REV. D 99, 084035 (2019)

084035-12

https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1063/1.528477
https://doi.org/10.1063/1.528477
https://doi.org/10.1007/s10714-017-2225-8
https://doi.org/10.1007/s10714-017-2225-8
https://doi.org/10.1007/s10714-005-0042-y
http://arXiv.org/abs/1812.04383v1
https://doi.org/10.1103/PhysRev.74.328


[12] S. Chandrasekhar, A Limiting Case of Relativistic Equilib-
rium in General Relativity, Papers in Honour of J. L. Synge
(L. O’ Raifeartaigh, Oxford, 2013).

[13] P. H. Chavanis, Astron. Astrophys. 381, 709 (2002).
[14] J. L. Synge,TheRelativisticGas (North-Holland,Amsterdam,

1957).
[15] G. S. Bisnovatyi-Kogan and K. Thorne, Astrophys. J. 160,

875 (1970).
[16] R. Tolman, Phys. Rev. 35, 904 (1930).
[17] R. Tolman, Relativity, Thermodynamics and Cosmology

(Clarendon Press, Oxford, 1934).

[18] S. Chandrasekhar, An Introduction to the Study of Stellar
Structure (Dover Publications, New York, 1942).

[19] R. Tooper, Astrophys. J. 142, 1541 (1965).
[20] E. Stephani, H. Kramer, M. A. H. McCallum, C.

Hoenselaers, and E. Hertl, Exact Solutions of Einstein’s
Field Equations (Cambridge University Press, Cambridge,
England, 2003).

[21] C. Bona, J. Stela, and P. Palou, Gen. Relativ. Gravit. 19, 179
(1987).

[22] B. Coll, J. J. Ferrando, and J. A. Sáez, arXiv:1812.09054
[Classical Quantum Gravity (to be published)].

RELATIVISTIC HYDRODYNAMIC APPROACH TO THE … PHYS. REV. D 99, 084035 (2019)

084035-13

https://doi.org/10.1051/0004-6361:20011424
https://doi.org/10.1086/150478
https://doi.org/10.1086/150478
https://doi.org/10.1103/PhysRev.35.904
https://doi.org/10.1086/148435
https://doi.org/10.1007/BF00770329
https://doi.org/10.1007/BF00770329
http://arXiv.org/abs/1812.09054

