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Colliding black holes are systems of profound interest in both gravitational-wave astronomy and in
gravitation theory, and a variety of methods have been developed for modeling their dynamics in detail. The
features of these dynamics are determined by the masses of the holes and by the magnitudes and axes of
their spins. While masses and spin magnitudes can be defined in reasonably unambiguous ways, the spin
axis is a concept that, despite great physical importance, is seriously undermined by the coordinate freedom
of general relativity. Despite a great wealth of detailed numerical simulations of generic spinning black hole
collisions, very little attention has gone into defining or justifying the definitions of the spin axis used in the
numerical relativity literature. In this paper, we summarize and contrast the various spin direction measures
available in the SPEC code, including a comparison with a method common in other codes, we explain why
these measures have shown qualitatively different nutation features than one would expect from post-
Newtonian theory, and we derive and implement new measures that give much better agreement.
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I. INTRODUCTION

The age of gravitational-wave astronomy has arrived.
In the short time since it began operation, the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
has detected five clear gravitational-wave events from binary
black hole mergers [1–5], with many more expected to
follow, and a revolutionary multimessenger observation
of colliding neutron stars [6]. After decades of effort,
researchers are probing the strong-field dynamics of space-
time itself, with steadily increasing reach and precision.
Like all cutting-edge science, gravitational-wave physics

is a continuous conversation between observational and
theoretical efforts. One theoretical technique of particular
importance for exploring the strong-field dynamics of
spacetime is numerical relativity, the direct computational
solution of Einstein’s field equations [7,8]. Numerical
relativity can provide a picture of spacetime dynamics
with no approximations other than the usual truncation
error of numerical calculation, which, in principle, is
straightforward to control.
Unfortunately, along with the exact treatment of space-

time geometry that numerical relativity provides, there
also arises a great deal of ambiguity associated with the
general covariance at the heart of Einstein’s theory. For
mathematical analysis, all fields are represented in some
coordinate system, however (with some technical caveats),
the theory is fundamentally ambivalent about what coor-
dinate system is used. Standard approximation techniques
such as the post-Newtonian expansion [9,10] and black
hole perturbation theory [11] assume the existence of a
subset of preferred coordinate systems in which deviations
of the spacetime metric from its stationary state are small.

In numerical relativity, one often makes vague statements
about whether a coordinate system (a gauge, in this context)
is “good” or “bad,” but generally very little effort goes into
formalizing such statements beyond what is necessary to
expect a stable evolution and sensible behavior of the
evolving fields.
One of the quantities computed in numerical relativity of

particular physical importance is black hole spin. The
parameter space of noneccentric binary black hole systems
is seven-dimensional—described by the ratio of the holes’
masses and the three spin components on each hole. Other
parameters, such as the total mass of the system, the time of
the merger, and the distance to the detector, are important for
data analysis but fundamentally unimportant for source
modeling, as they can be altered trivially in postprocessing.
The detections that LIGO has made thus far have claimed
precisemeasurements of the black holemasses, but relatively
rough measurements of the black hole spins and their states
of alignment. Black hole spin is a phenomenon that imprints
itself less strongly on gravitational waves than black hole
mass, but it is a key near-term target for precision measure-
ment as LIGO’s sensitivity improves.
A rich and increasingly relevant bodyof literature exists on

treating binary black hole systems with arbitrarily aligned
spins in numerical relativity, exploring basic dynamical
processes such as spin flips [12,13], remnant kicks due to
asymmetric wave generation [14–20], and of course the
increasingly crucial work of numerical relativity groups at
filling out catalogs of binary black hole waveforms [21–24],
and tuning approximate waveform models to numerical
results [25–29]. Beyond this, a plethora of dynamical effects
associated with spin alignment have been studied, a non-
comprehensive list of which would include [30–35].
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While the spin axis is clearly a crucial element of modern
numerical relativity simulations, with an increasingly
strong connection to gravitational-wave data analysis, its
basic definition is somewhat vague and generally ad hoc in
numerical relativity treatments. Much of this centers on its
inherent gauge ambiguity: it is defined by its alignment
with the coordinate axes of the simulation, assuming an
unphysical Euclidean background geometry. While the spin
magnitude can be defined and practically computed in a
number of gauge-invariant ways [36–39], the spin axis
requires greater care and finesse. In the long run, one can
hope that the physical content that is currently described
with the spin axis might be replaced with more basic,
gauge-invariant concepts such as relationships among
horizon multipoles [40–42]; for the near term, it is
important to at least be specific about what is meant by
spin axis in various code bases and to be aware of the
peculiarities of specific measures of the axis.
In particular, the definition of the spin axis used in the

SPEC code [43] is nontrivial and has never been described in
the literature, though multiple papers have been written that
used this measure at a fundamental level. In particular, in
Ref. [44], the precession dynamics in SPEC simulations
were compared with expectations from post-Newtonian
(PN) theory. While most features agreed quite well between
numerical relativity and post-Newtonian theory, the spins
of the individual black holes were found to nutate in a
surprising way, qualitatively different from the expectations
of PN theory. In this paper, we will argue that this
unexpected nutation behavior can be traced back to a
peculiarity of SPEC’s default spin-axis measure (and, to our
knowledge, the measures used in all recent numerical
relativity calculations) and can be removed with the use
of a different measure of the spin axis.
The paper is organized as follows: In Sec. II, we lay out

some mathematical preliminaries that will be useful in the
further discussion. In Sec. III, we summarize existing
definitions of the black hole spin axis, including the
definition employed in the SPEC code. Along the way,
we summarize a few of the theoretical motivations (boost
invariance, centroid invariance) that led to its introduction.
Then, in Sec. IV, we compare these various spin measures
in the case of a nontrivially precessing binary black hole
merger, and we describe the surprising nutation features by
which the SPEC spin measure differs qualitatively from PN
results. In Sec. V, we employ a more straightforward
technique, defining the spin axis by a quasilocal angular
momentum formula using coordinate rotation generators.
This straightforward method has significant theoretical
drawbacks, which we will outline (relegating some par-
ticularly tedious details to the Appendix), but we find that
the practical ambiguities are minimal, and some of them
(boost ambiguity) can be understood and mitigated through
more careful analysis of the underlying mathematics. This
provides a new measure of the black hole spin axis, which

preserves some of the advantageous features of SPEC’s
previous measure, while agreeing much better with post-
Newtonian expectations. Finally, in Sec. VI, we summarize
these results and outline some prospects for future work.

II. MATHEMATICAL PRELIMINARIES

The standard techniques for computing black hole spin
in the modern numerical relativity literature, including the
techniques of this paper, are founded upon the following
quasilocal angular momentum formula:

J ¼ 1

8π0

I
ω⃗ · ϕ⃗dA; ð1Þ

where the integral is carried out over a spatial two surface,
normally of spherical topology (in practice, an apparent
horizon), ϕ⃗ is some rotation-generating vector field, and ω⃗
is the normal-tangential projection of the (undensitized)
canonical momentum conjugate to the spatial metric

ωμ ¼ ðK ρν − KgρνÞhρ
μ sν; ð2Þ

where s⃗ is the unit normal to the integration two surface,
tangent to the spatial slice, hρ

μ ¼ δρμ þ uμuρ − sμsρ is the
projector tangent to this two surface (uμ is the timelike
normal to the spatial slice), Kμν is the extrinsic curvature of
the spatial slice, and gμν ¼ ψμν þ uμuν is the spatial metric
(the spacetime metric ψ projected down to the spatial slice).
The clunky introduction of a subscript in π0 ≔ 3.14159… is
due to the fact that it will eventually become convenient
to use the letter π to denote a potential associated with
momentum.
There are various justifications for this quasilocal angu-

lar momentum formula in the literature. It arises in the
quasilocal charge constructions of Brown and York [45]. It
naturally arises again in the formalisms of isolated and
dynamical horizons [46–48], though there the spatial slice
is often taken to be the horizon world tube (which is
spacelike for a dynamical horizon). The result is the same,
though, for either slicing, so long as the rotation generator
is chosen in such a way as to make J boost invariant, as we
will discuss below. This angular momentum formula can
also be shown to be equivalent to the Komar angular
momentum in axisymmetric spacetimes [49].
Because both ω⃗ and ϕ⃗ are defined to be tangent to the

two surface, it is natural to write Eq. (1) in a basis that
makes this explicit,

J ¼ 1

8π0

I
ωAϕ

AdA; ð3Þ

where capital latin letters index the two-surface tangent
bundle. In this paper, we will frequently consider the man-
ner in which quantities transform with respect to the boost-
gauge freedom, that is, the freedom to alter the slicing of
spacetime near the two surface, while leaving the two
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surface itself fixed. For this, it is convenient to introduce a
Newman-Penrose null tetrad [50], lμ, nμ, mμ, m̄μ, where
lμnμ ¼ −1, mμm̄μ ¼ 1, and all other dot products vanish.
Furthermore, we will adapt this tetrad to the two surface, as
in the Geroch-Held-Penrose (GHP) variant of the formal-
ism [51,52], such that the real and imaginary parts of m⃗ are
tangent to the two surface, and the real null vectors ⃗l and n⃗
are, respectively, its outgoing and ingoing null normals.
Finally, we fix the remaining scaling freedom in ⃗l and n⃗ by
adapting them to the timelike normal to the slicing u⃗ and
the spacelike normal to the two surface, within the slicing s⃗,
such that

⃗l ¼ 1ffiffiffi
2

p ðu⃗þ s⃗Þ; n⃗ ¼ 1ffiffiffi
2

p ðu⃗ − s⃗Þ; ð4Þ

u⃗ ¼ 1ffiffiffi
2

p ð⃗lþ n⃗Þ; s⃗ ¼ 1ffiffiffi
2

p ð⃗l − n⃗Þ: ð5Þ

Substituting these formulas into the standard formula for
the extrinsic curvature of the slicing

Kμν ¼ −gρ
μgσν∇ρuσ; ð6Þ

where gρ
μ ¼ δρμ þ uμuρ is the projector to the spatial slice, it

is straightforward to express the normal-tangential projec-
tion ω⃗ in terms of the tetrad legs. Specifically,ωA represents
a connection on the bundle of normal vectors to the two
surface in spacetime,

ωA ¼ eρ
Anσ∇ρlσ; ð7Þ

where the vectors e⃗A (A ¼ 1, 2) are the two tangent vectors
to the two surface (in other words, the normalized real and
imaginary parts of m⃗). While this form will be most
convenient for our purposes, it is worth noting that this
expression can be massaged further into standard GHP spin
coefficients [defined, e.g., in Eq. (4.5.22) of Ref. [52] ],

ωA ¼ ðβ0 − β̄ÞmA þ ðβ̄0 − βÞm̄A: ð8Þ

The combinations of coefficients shown here are indeed the
connection coefficients that relate the tetrad derivative
operator δ ≔ mμ∇μ to the GHP derivative operator ð
[the surface-gradient operator in a formalism that cova-
riantly recasts tensors on the two surface into weighted
scalars, as described in Sec. (4.12) of Ref. [52] ] for
quantities Q of spin-weight zero and boost-weight �1,
namely, components of spacetime vectors normal to the two
surface,

ðQ ¼ δQ� ðβ̄0 − βÞQ: ð9Þ

Because ωA geometrically represents a connection, it is
natural (and will be of practical use below) to define its

corresponding curvature. We can do this with the surface’s
covariant derivative ∇A and its antisymmetric Levi-Civita
tensor ϵAB ¼ −im½Am̄B�,

Ω ¼ ϵAB∇AωB ð10Þ

¼ −im½Am̄B�∇AωB: ð11Þ

The scalar quantity Ω is the imaginary part of the complex
curvature of a two-surface embedding, defined by Penrose
and Rindler [52],

Ω ¼ ℑ½σσ0 − ρρ0 −Ψ2 þΦ11 þ Λ�; ð12Þ

where ρ and ρ0 are the GHP coefficients representing the
complex expansions of ⃗l and n⃗, respectively, σ and σ0 are the
coefficients representing the shears, Φ11 and Λ are compo-
nents of the spacetime Ricci curvature, which wewill take to
vanish in this paper (due to Einstein’s field equations and the
assumption of vacuum), and Ψ2 is the Weyl scalar that is
intuitively taken to represent the nonradiative part of the
spacetime Weyl tensor (though rigorous statements upon
those lines require the choice of a special tetrad; see, e.g.,
[53,54]). The real part of the complex curvature, which we
will not invoke here, is the familiar Gaussian curvature of the
two surface. It should be noted that σ0 and ρ0 vanish on an
isolated horizon, and thus in vacuum Ω is simply the
imaginary part ofΨ2, up to a sign. Furthermore, the quantity
ℑ½Ψ2� in this basis is precisely the normal-normal component
of the magnetic part of the spacetime Weyl tensor,
Bss ¼ Bijsisj, which is referred to intuitively as the “horizon
vorticity” in Refs. [55–59].
The boost-gauge transformation that often appears in

discussion of quasilocal quantities is a transformation that
leaves the two surface unchanged but boosts the spatial
slice around it. If the timelike normal to the spatial slice u⃗
and the spacelike normal to the two surface within the
spatial slice s⃗ are defined as in Eqs. (5), then this boost is
easily described by a rescaling of the null normals

⃗l ↦ expðaÞ⃗l; ð13Þ

n⃗ ↦ expð−aÞn⃗; ð14Þ

where a is some scalar on the two surface, representing the
rapidity of the boost at each point.
Under such a transformation, it is readily seen from

Eq. (7) that the quasilocal angular momentum density ω⃗ is
not invariant, but rather transforms as

ωA ↦ ωA −∇Aa: ð15Þ

However, because this correction term is a pure gradient,
the curvature quantity Ω, defined in Eq. (10), is boost
invariant.
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The boost invariance of Bss is even simpler to argue,
since it is simply the imaginary part of the Weyl scalar Ψ2.
In terms of tetrad vectors and the spacetime Weyl tensor
Cμνρσ , Ψ2 is

Ψ2 ¼
1

2
Cμνρσðlμnνlρnσ − lμnνmρm̄σÞ; ð16Þ

which is manifestly invariant under boost transformations.

III. EXISTING TECHNIQUES FOR DEFINING
THE SPIN AXIS

A basic assumption underlying essentially all methods
for computing black hole spin in binary systems is that the
holes can in some sense, at least approximately, be
considered isolated from their partners and from the
dynamics of the surrounding spacetime. This intuitive idea
appeals to the structure of the Kerr geometry, which would
be expected to accurately represent a nearly isolated,
uncharged, vacuum black hole. The event horizon of the
Kerr geometry can be foliated by marginally outer trapped
surfaces, which for a Kerr black hole would coincide with
the two surfaces found by the apparent horizon finder.
Furthermore, as long as the slicing of spacetime conforms
to the global axisymmetry of the Kerr geometry, the
apparent horizon two surface would then also be expected
to be axisymmetric, with the axisymmetry describing a
symmetry under rotations about the spin axis. Hence, under
the assumption that the Kerr geometry is an accurate
approximation of the spacetime near the horizon (or,
quasilocally speaking, that the horizon itself is isolated
in the sense of [46,48]), then the axisymmetry of the
horizon can be used to define the spin axis.1

A. Euclidean line between poles or extrema

To our knowledge, all binary black hole codes other than
SPEC infer the spin axis from an axis of best approximate
horizon symmetry (and an option along these lines is
available in SPEC as well, as we will outline below, though
it is not the default measure). Specifically, the most common
technique applies methods outlined in [60], in which a
Killing vector field is found on a black hole horizon
(or some kind of approximation of a Killing field if an exact
one does not exist) by integrating the Killing transport
equations, a system of ordinary differential equations that
must be satisfied by a Killing vector field along any
given path.
More precisely, the method first identifies a candidate

Killing vector at a point on the horizon. To do this, a three-
dimensional vector space of data is constructed at the

starting point. Then the Killing transport equations are used
to propagate each of the basis vectors around a closed path.
In so doing, the starting vectors are mapped to new vectors
in the same tangent space in which they started. This
mapping is linear, so one can compute corresponding
eigenvalues and eigenvectors. The eigenvector with eigen-
value closest to unity is considered to be the best candidate
for a Killing vector field over the whole horizon, because a
true Killing vector would indeed return to itself under this
transport. Once such a best vector is found at the chosen
starting point, it is propagated to the rest of the horizon
grid again using Killing transport. All published results
that we are aware of that identify an approximate Killing
vector (AKV) field do so using either this method or the
method described below that us used in the SPEC code. In
particular, this technique is the default behavior of the
QuasiLocalMeasures thorn of the Einstein Toolkit [61].
Once such a rotational Killing vector field has been

constructed on the horizon, its poles (the isolated points
where the computed vector field has zero norm, of which
there are hopefully two) can be used to distill a kind of spin-
axis vector as

χ̂iKT ≔ ðxi2 − xi1Þ=N; ð17Þ

where N is a normalization factor chosen to make
δijχ̂

i
KT χ̂

j
KT ¼ 1, and xi1 and xi2 (for i ¼ 1, 2, 3) are the

global Cartesian coordinate values of the two poles. Note
that this does not in itself define a spin vector, but rather a
unit-norm axis vector (unit norm in the Euclidean back-
ground space). We will use the same χ̂ notation for other
axis vector definitions described later in this paper. In order
to define a spin vector, be it an angular momentum vector or
some variant rescaled by some power of the mass, one must
multiply this axis vector by an appropriate magnitude. The
obvious (and ubiquitous) choice is the spin magnitude
defined by Eq. (1), where ϕ⃗ is taken to be the approximate
Killing vector field.
Note also that beginning with Eq. (17) we are making

essential reference to the background coordinates of the
numerical simulation. This is an ambiguous procedure. In
principle, one could remap the spatial coordinates to
achieve an arbitrary change in the χ̂KT vector. This will
unfortunately be a pattern in all of the spin-axis prescrip-
tions described in this paper. The spin-axis vector as
conventionally understood in numerical relativity is not a
true geometric object, but rather defined explicitly in terms
of a particular Euclidean background geometry. Like the
stress-energy pseudotensor of Landau and Lifshitz [62], it
transforms covariantly under global Poincaré transforma-
tions of the spatial coordinates, however, a nonlinear
coordinate transformation would change the underlying
background geometry and thereby change the meaning of
χ̂KT . In the numerical relativity literature, there is a general
hope that the simulation coordinates—normally chosen for

1Note that throughout the remainder of this paper wewill adopt
the common parlance of numerical relativity and use the word
horizon to refer to the two-dimensional marginally trapped
surface computed by the code’s horizon finder.
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code stability and/or computational convenience—are
nonetheless well adapted to the dynamics of the horizon.
In practice, this naive hope is often rewarded. For example,
after a black hole merger, one would expect all fields to
settle to stationary values—that is, for the coordinate time-
translation vector to settle to the stationarity Killing vector
of the eventual Kerr geometry. Indeed, this occurs, to our
knowledge, under all of the standard gauge conditions of
modern numerical relativity codes. Moreover, the spatial
coordinates not only adapt to the late-time stationarity, but
at least in the SPEC code the time slicing even settles to
conventional slicings of black hole perturbation theory,
with horizon multipoles ringing at precisely the frequencies
calculated in perturbation theory [41]. Furthermore, after a
black hole merger, the spacetime describing the remnant
black hole is axisymmetric in simulation coordinates, even
though there is no obvious reason why the coordinate
gauge conditions should find the geometrical symmetries of
the simulated spacetime. This good behavior of the
simulation coordinates is still a somewhat mysterious
phenomenon, deserving of deeper analysis. This mystery
should encourage caution in the use of any background-
dependent methods. But nonetheless, these are the tech-
niques that are ubiquitous in the field and with some
practical justification.
In principle, it may be possible to describe the essential

elements of the black hole spin axis in truly unambiguous
language, e.g., using the formalism for source multipoles on
dynamical horizons defined in Ref. [42]. Here, data on the
horizon are projected against test functions that evolve on the
dynamical horizon in such away as to represent a fixed frame
of reference, in a specific sense. We intend to explore this
approach in future work, but for now we simply note that its
restriction to data on the horizons themselves would cloud
efforts at connecting the evolution of the two distinct holes or
of describing the relationship of spin precession to dynamics
of the encompassing spacetime, as one often wishes to do in
binary black hole simulations. Thus, the techniques used
throughout the current paper stick with background-depen-
dent methods as described above.
The axis vector χ̂KT is not easily adaptable to the SPEC

code, because the approximate Killing vector field con-
structed by the Killing transport method does not lead to a
smooth vector field in the limit of an infinitely refined grid.
Manyof the calculations in SPEC require smooth fields, due to
the pseudospectral numerical methods that suffuse the code.
A different definition of approximate Killing vector

fields, used ubiquitously in the SPEC code, was presented
in [36,38] (essentially the same technique was independ-
ently presented in [37]). Briefly summarizing, the approxi-
mate Killing field ξ⃗ is first presumed to have zero
divergence on the horizon, as required by the trace of
Killing’s equation

DAξ
A ¼ 0; ð18Þ

where DA is the covariant derivative on the horizon two
surface. Such a vector field can easily be constructed from a
scalar potential ζ,

ξA ¼ ϵABDBζ; ð19Þ

where ϵAB is the two-surface Levi-Civita tensor. Finally, a
condition is imposed on ζ that it minimize the integrated
squared shear of ξ⃗ over the two surface—that is, the
remaining residual of Killing’s equation. This condition
leads to a simple generalized eigenproblem for ζ on the
horizon. This eigenproblem reduces to the eigenproblem of
the horizon Laplacian on a metrically round two sphere,
and hence ζ can be considered a kind of generalized
spherical harmonic, an idea explored further in [41]. If
the horizon is not strongly deformed, the eigenfunction
with the lowest corresponding eigenvalue (that is, the one
corresponding to an AKV with the smallest integrated
squared shear) will also align with the spin axis, when we
can roughly define this axis by independent means. Hence,
the vector ξA ¼ ϵABDBζ serves the same purpose as the
vector defined by the Killing transport method above,
though it is a smooth vector field and an approximate
solution to Killing’s equation in a specific variational sense.
When the approximate Killing vector field ξ⃗ is defined in

this way, its poles are the extrema of the scalar function ζ.
This fact provides a natural connection of the machinery in
the SPEC code to the χ̂KT technique. While the approximate
Killing vector field computed in SPEC is not the same vector
field computed in the Killing transport method, we can
nonetheless carry out an analogous procedure to define and
study a very similar axis measure χ̂ζe, defined by

χ̂iζe ¼ ðxi2 − xi1Þ=N; ð20Þ

where again N is simply a normalization factor, but xi2 and
xi1 are the coordinates of the extrema of ζ.
This procedure, while mathematically straightforward,

becomes slightly tricky in SPEC, where all horizon data are
resolved into a pseudospectral expansion in spherical
harmonics. The high accuracy of the spectral expansion
allows the code to run with rather coarse grids. In particular,
in the runs presented in this paper, the spectral expansion of
horizon data is resolved up to spherical harmonic order
l ¼ 15. This implies a typical spacing between collocation
points of Δϕ ¼ 2π0=ð2lþ 2Þ ≈ 0.2 rad ≈ 11°. In this
paper, we intend to probe nutations of the spin axis to
much higher precision than that. Thus, in finding extrema
of ζ (or of other functions, as we will discuss below), we
must either employ an analytic formula to find locations of
extrema purely from spectral coefficients (and we know of
no such formula), or we must carry out a search procedure
that probes data interpolated between the grid points of the
horizon. To this end, our code first finds extrema of ζ
restricted to the coarse grid of collocation points. It then
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carries out a straightforward gradient-descent algorithm on
the interpolated values of ζ to locate extrema between
collocation points. We have found this technique to be
robust only when the extrema are not near the poles of the
horizon’s spherical coordinate chart, however, the simu-
lations presented here satisfy this requirement. Because, as
we will see, the use of extrema provides no particular
advantage over the techniques already employed in SPEC

(and provides an inferior measure of spin axis to the
methods used later in this paper), we have not attempted
to improve this technique to make it more robust for general
calculations.
This method of defining a spin axis by the Euclidean line

between extrema of a function can also be extended to other
relevant quantities on the horizon. In particular, the
quantities Ω and Bss are more directly related to quasilocal
angular momentum and frame dragging than ζ is and,
therefore, might be expected to be less susceptible to tidal
effects. In this paper, we will also explore quantities called
χ̂Ωe and χ̂Bsse, both defined similar to χ̂ζe, but with xi1 and x

i
2

referring to minima and maxima of Ω and Bss.

B. Angular momentum vector from
coordinate rotation generators

Early in the development of the modern SPEC code, we
explored methods along the lines described above, but were
concerned that the holes, which raise tides on one another,
might deform enough that their best symmetry axis might
not be determined solely by the spin axis, but also by the
orientation of the tidal bulge. For this reason, we explored a
more basic approach, defining the spin axis through
integrals of the form of Eq. (1). Specifically, it was our
hope that a spin vector could be defined as

Ji ¼
1

8π0

I
H
ω⃗ · ϕ⃗idA; ð21Þ

where H refers to the horizon two surface, and the ϕ⃗i are
coordinate rotation vectors. The most familiar definition of
the coordinate rotation vectors is the following:

ϕ⃗i ¼ ηij
kðxj − xj0Þ∂⃗k: ð22Þ

Here ηijk represents the alternating tensor of the flat
background geometry, a totally antisymmetric object with
η123 ¼ 1 in the cartesian, asymptotically inertial coordinate

system of the simulation, and ∂⃗k represent the coordinate
translation vectors of this coordinate system. Throughout
this paper, indices i; j; k;… refer specifically to the basis
associated with the background-coordinate system and are
raised and lowered trivially with the flat metric δij. Indices
a; b; c;… refer to the basis associated with some arbitrary
coordinate system and are raised and lowered with the
physical spatial metric gab like standard coordinate indices.

The three constant quantities xj0 represent centroid coor-
dinates associated with the particular horizon under
consideration.
It is worth noting that another reasonable definition of

the coordinate rotation generators can be used, constructed
from translation one forms

φi ¼ ηijkðxj − xj0Þdxk: ð23Þ

Though these one forms are very closely related to the
vectors in Eq. (22), they are not the same if the physical
spatial metric does not coincide with the background
metric. That is to say,

ϕa
i ≠ δijgabφ

j
b: ð24Þ

In the Appendix, we will explore the relationship between
these two coordinate rotation generators.
Either rotation vector is dependent on the choice of

centroid xk0. There are many ways to fix this centroid, a fact
that we will come back to in detail in Sec. V, and different
conditions for xk0 would be expected to lead to different
angular momentum integrals. The most obvious one, with
which we experimented the most in the early days of the
SPEC code, used horizon averages of the coordinates

xi0 ¼
1

A

I
H
xidA: ð25Þ

Unfortunately, the spin measure defined in this way
showed some features that do not comport with the
behaviors normally associated with black hole spin. The
most glaring of these was a feature in which a supposedly
nonspinning black hole (in an equal-mass binary where
neither hole initially has spin) settles (after the initial burst
of junk radiation) to a hole with spin in the direction
opposite the orbital angular momentum. This much is
perfectly plausible as a real, physical effect—junk radiation
can be absorbed by the holes and can cause them to spin up
slightly. The difficulty comes in the later inspiral, in which
this small (yet numerically well resolved) initial spin,
antialigned with the orbital angular momentum, increases
during the ensuing inspiral. One could expect tidal viscos-
ity effects to spin up initially nonspinning holes, but such
spin-up would be aligned with the orbital angular momen-
tum in a system like this one. By this measure, an initially
nonspinning hole appears to spin up during inspiral in the
direction opposite the expectations from perturbative cal-
culations. This phenomenon will be shown later, where it
can also be noted that the effect is strongly influenced by
the choice of centroid xi0.

C. Axis vector defined by coordinate moments

Given the strange behaviors of Ji described in Sec. III B
and the uncertainties of choosing the centroid xi0, a decision

OWEN, FOX, FREIBERG, and JACQUES PHYS. REV. D 99, 084031 (2019)

084031-6



was made early in the development of SPEC to deemphasize
this spin vector and to instead define the spin axis in a
manner somewhat analogous to the methods of Sec. III A.
However, to avoid the subtleties of root finding described
there, we instead defined the spin axis through coordinate
moment integrals of spin-related quantities on the horizon.
In analogy with χ̂ζe, one could define a similar spin axis
through coordinate moments as

χ̂iζm ≔
1

N

I
H
ζxidA: ð26Þ

Or, again, under the assumption that Ω or Bss might
respond differently to tidal effects, one could define spin
axes through their moments,

χ̂iΩm ≔
1

N

I
H
ΩxidA; ð27Þ

χ̂iBssm
≔

1

N

I
H
BssxidA: ð28Þ

These spin-axis vectors are all defined as unit vectors, not
as full angular momentum vectors, and thus are undefined
in the case of zero spin. It therefore would not make sense
to ask if they share the strange nonphysical spin-up features
of the Ji in Sec. III B. However, the non-normalized forms
of χ̂iΩm, and χ̂

i
Bssm

do indeed vanish (to within the estimated
truncation error of the simulation) for the same equal-mass
nonspinning runs.2 The three measures described here have
two other critical features, which also happen to be shared
with the extremum measures defined in Sec. III A:
(1) Centroid invariance: If the spatial coordinates are

offset by constants, xi ↦ xi þ Δxi, the spin axes
χ̂iζm, χ̂

i
Ωm, and χ̂iBssm

do not change. This is because
the quantities ζ, Ω, and Bss each have zero mean
when integrated over the two surface, and thus if the
Δxi are constants, the additional terms integrate
to zero.

(2) Boost-gauge invariance: As described in Sec. II, it is
useful for theoretical reasons that the spin measure
be unchanged under slicing transformations that
leave the two surface itself fixed. For one, this
invariance ensures that arguments made about the
spin evaluated in the code slicing also apply to the
spin as evaluated on the spacelike dynamical horizon
three surface. All of the quantities that appear in the
above moment integrals are boost-gauge invariant.
ζ is defined intrinsically to the two surface, so it is
manifestly boost-gauge invariant. The invariance of
Ω and Bss was argued in Sec. II.

The measure χ̂Ωm is the default measure of the spin axis
used in the SPEC code and, to our knowledge, has been the
sole measure of spin direction in all publications of SPEC

results. More precisely, SPEC outputs a spin vector, which is
simply the unit vector χ̂Ωm, multiplied by the dimensionless
spin magnitude computed by approximate Killing vector
methods [38].
It should be noted that boost-gauge invariance does not

mean the spin direction measure is slicing invariant. Indeed,
one would not expect an angular momentum vector to be
slicing invariant [63]. If we consider a Kerr black hole,
represented in, say, Kerr-Schild coordinates xμ ¼ ðt; x; y; zÞ,
and then reslice the spacetime using a global Lorentz boost,
then the shape of the horizon, represented in the boosted
spatial coordinates on the boosted time slice, will be length
contracted along the direction of the boost by a factor 1=γ.
Since the spin-axis vectors defined above (at least before
normalization) are linear in the spatial coordinates xi, the
components of these axis vectors along the direction of the
boost are reduced by the same factor. This transformation
means that the angle that the angular momentum vector
makeswith the direction ofmotionvaries with spin and boost
speed in precisely the same way as in special relativity and
post-Newtonian theory under the Pirani spin-supplementary
condition [63]. We have confirmed this transformation
behavior by evaluating these spin-axis measures on boosted
spinning Kerr black holes in SPEC.
Also, while the technique outlined here to define χ̂Ωm

through coordinate moments may seem ad hoc, it actually
arises from Eq. (1) in a straightforward manner. On a sphere
of radius r0 in Cartesian coordinates in a Euclidean
geometry, the rotation vectors can be rewritten as

φi
A ¼ r0ϵABDBxi; ð29Þ

where the three coordinates xi are treated as scalars with
regard to the covariant derivative D on the two surface. If
we use this vector field to evaluate the quasilocal angular
momentum using Eq. (3), then an integration by parts gives

Ji ¼ r0
8π0

I
ωAϵ

ABDBxidA; ð30Þ

¼ r0
8π0

I
xiϵBADBωAdA; ð31Þ

¼ r0
8π0

I
xiΩdA: ð32Þ

In practice, of course, the horizon is not a round sphere
embedded in Euclidean space, so this is simply a motivat-
ing argument, not any kind of derivation. But this argu-
ment, along with the centroid and boost-weight invariance
of χ̂Ωm, were the main motivating factors that led to its
adoption as the default measure of spin axis in SPEC.

2χ̂iζm does not have a non-normalized form, because ζ, defined
by an eigenvalue problem, has no definite scale unless some
normalization condition is applied to it.
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IV. DISCREPANCIES BETWEEN THESE
MEASURES AND POST-NEWTONIAN RESULTS

The previous section outlined six different options for
defining the spin axis in numerical relativity, each about
equally well motivated. All involve scalar quantities on the
horizon (specifically, the scalar curvature Ω of the horizon’s
normal bundle, which very naturally distills the boost-
invariant information from the quasilocal angular momen-
tum density; the normal-normal component of the magnetic
part of the Weyl tensor Bss, called the horizon vorticity in
Ref. [55], which equalsΩwhen the horizon is stationary and
can be easily related to differential frame dragging; and the
potential ζ associated with an approximate symmetry of the
horizon). Further, these scalar quantities could be distilled
into an axis either by taking integral moments over the
horizonwith respect to the backgroundCartesian coordinates
or by tracing a coordinate line between their extrema. The
SPEC code, by default, uses moments of Ω, while most non-
SPEC papers trace a line between the poles of the approximate
symmetry vector (a technique that we will model here with
lines between the extrema of ζ).Wehave alsomentioned, and
will explore in greater detail below, the fact that one could
simply insert coordinate rotation generators into the angular
momentum formula, a strategy that unfortunately presents
even more subtleties and ambiguities.
Given the many options for defining the spin axis, it

would be helpful to calculate the discrepancies among these
measures in a representative case, as a rough measure of
how well they might be trusted as measures of the specific
physical quantity that they are all meant to represent. This
section is devoted to such a comparison.
We consider a merger that involves simple though

nontrivial nutation properties. This simulation is of par-
ticular interest because the nutations were found (using the
standard measure from the SPEC code, χ̂Ωm) to display
features that are qualitatively inconsistent with expectations
from post-Newtonian theory [44]. The case is a low-
eccentricity inspiral of black holes with mass ratio 5∶1,
in which the less massive hole is nonspinning and the more
massive hole has spin magnitude 0.5m2

1 (where m1 is the
mass of this larger hole, 5=6 the total mass m of the
system), with initial spin direction (according to the χ̂Ωm
measure) tangent to the initial orbital plane. This simulation
was referred to as q5_0.5x in Ref. [44], and further details
can be found in [22], where this configuration is numbered
0058, though for this study we reran the simulation to add
the new spin measures.

A. Estimate of numerical uncertainty

Because the spin-axis measures we describe below will in
some cases differ by very small amounts, we must be careful
to account for the inherent numerical uncertainty of the
calculations. The SPEC code uses a rather elaborate system of
adaptive mesh refinement, so detailed convergence analysis

is not straightforward. The situation for the calculations in
this paper is even more complicated, as many of our
calculations involve calculus on the horizon itself, which
is itself resolved to some finite spectral order, again chosen
adaptively.
As a rough measure of numerical truncation error, one

can simply measure the angle between corresponding axis
measures in the two highest-resolution calculations
described in this paper. Figure 1 shows such a comparison
for the particular measures χ̂Ωm (coordinate moments of Ω),
χ̂ζm (moments of ζ), χ̂Ωe (extrema of Ω), χ̂ζe (extrema of ζ),
and the normalized Ĵ computed using the coordinate rotation
vectors of Eq. (22). This image implies that one could expect
the spin-axis measures quoted in this paper to be accurate to
within a fraction of a degree over most of the inspiral. It
should come as no surprise, given the numerical issues
involved, that the axis measures defined by extrema are
particularly noisy, especially at very early times as the
horizons ring in response to the absorption of junk radiation.
A close analysis of these extremum-based curves also show
occasional glitches at which the spin axis jumps discontin-
uously. The locations of extrema can jump discontinuously
even for a function that changes smoothly, so discontinuous
jumps could conceivably be physical in origin, however, we
do not claim to have isolated them in any numerically well-
defined sense. Thankfully, over most of the inspiral these
unresolved discontinuities are smaller in magnitude than the
error from direct comparison of continuous segments (of
order 0.1° for χ̂Ωe, and slightly smaller for χ̂ζe). The bottom

FIG. 1. Angle, in degrees, between spin-axis measures com-
puted in two highest-resolution simulations of the merger
described in this section, for five different such measures. The
top two curves show estimated error in measures based on the
axis between extrema of Ω or ζ. The lower curves show errors in
spin-axis measures based on the coordinate rotation vectors ϕ⃗i
defined in Eq. (22) (blue, smoother) and those inferred by
coordinate moments of Ω and ζ (orange and red, respectively,
and mostly overlapping on this scale).
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three curves in Fig. 1, describingmeasures based on integrals
over the horizon, show significantly less error early in the
simulation.
Another feature in the bottom four curves of Fig. 1 isworth

noting: they appear to show roughly the same accumulation
of error over the course of the inspiral despite their being
computed in very different ways. One might naturally
conclude that the accumulated error in these three spin-axis
measures is not primarily due to truncation error in the spin-
axis calculation, but rather due to accumulated error in the
orbital phase over the course of the inspiral. Such accumu-
lated phase error would create an apparent dephasing of the
spin, simply because the comparisons between different
resolution simulations in Fig. 1 are made at matching
coordinate times rather than at matching orbital phase.
Such dephasing would cause the higher-resolution spin axis
to systematically lead or lag that at lower resolution, even if
the overall precession tracks agree much better.
In Figs. 2 and 3, we enlarge a region of the spin

precession track, on a slice through the 3D vector space
of spin vectors (scaled to unit norm in the global vector
space, to ease the inference of angular discrepancies).
Markers on the lines show data for specific measurement
times. As expected, the distance between the two tracks is
significantly less than the distance of the labeled grid
points, indicating that timing delay seems to dominate the
error shown in Fig. 1, at least at late times. A more
optimistic estimate of the axis uncertainty would be the
typical shortest angular distance between spin curves at the
two highest resolutions, which we estimate to be roughly
0.02 degrees for measures based on function moments
(χ̂ωm, χ̂Bssm, χ̂ζm) or any of the coordinate rotation

generators. This estimate is also consistent with the angular
distances shown at early times in Fig. 1.
An optimistic estimate of the axis error is shown in

Fig. 4. Here, as a rough means of correcting for possible
orbital dephasing, at each time step of the high-resolution
simulation, the spin axis is compared to all time steps of the
second-highest-resolution simulation, and the smallest
relative angle, in degrees, is shown in Fig. 4. We emphasize
that this measure is both rough (there is discretization error
from the fact that both simulations have data dumped only

FIG. 2. Parametric plot of x and y components of normalized
spin-axis vector computed from coordinate rotation generators
defined in Eq. (22), for our two highest-resolution simulations,
with the inset showing that the tracks themselves follow one
another more closely than the individual data points at equal
times. Analogous graphs are qualitatively similar for all of our
spin-axis measures.

FIG. 3. Parametric plot of x and z components of normalized
spin-axis vector computed from coordinate rotation generators
defined in Eq. (22), for our two highest-resolution simulations,
with the inset showing that the tracks themselves follow one
another more closely than the individual data points at equal
times. Analogous graphs are qualitatively similar for all of our
spin-axis measures.

FIG. 4. An optimistic representation of the numerical error in
the integral-based axis measures. Each time step of the highest-
resolution run is compared to the best of all time-delayed
counterparts in the second-highest resolution.
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every 0.5M of coordinate time) and possibly optimistic (the
comparison made here would be insensitive to relative
precessions if they happen to follow the same precession
track). Nonetheless, relative angles below 0.01° throughout
most of the run (until, we presume, faster precession makes
the discretization error more problematic) add further
weight to our rough estimate of 0.02° errors in all spin
measurements except those based on function extrema (for
which we stick to a more conservative estimate of 0.1°).

B. Analysis of standard axis measures

In Figures 5–8, we summarize the discrepancies between
these measures, for the same simulation whose numerical
error was discussed above.
Figure 5 shows the difference between an axis deter-

mined by the line between extrema and an axis determined
by coordinate moments. Curves are shown comparing these
measures for the three scalar quantities ζ, Bss, and Ω,
though the latter two curves overlap to the eye. The fact that
the measures differ more for Ω and for Bss than for ζ is
likely because Ω and Bss carry higher multipolar structure.
Indeed, the ζ quantity is considered in Ref. [41] to define a
pure dipole, in a spectral sense, which would be expected to
agree reasonably well with a coordinate dipole, for which
the moment measure and extremum measure would be
expected to agree exactly.

FIG. 5. Angle (in the Euclidean background space) between
spin axes defined using coordinate moments and using a line
between extrema. The data for the horizon vorticity Bss (green
curve) and the closely related curvature Ω of the normal bundle
(red curve) overlap so precisely that only one can be seen in this
figure. For all three scalars, agreement is to within about a degree
throughout the inspiral. For reference, the orbital period in the
early inspiral is approximately 400m, so the oscillations in these
curves are on the timescale that one would expect from the
rotation of a tidal bulge.

FIG. 6. Angle (in the Euclidean background space) between
spin axes defined using Bss and Ω, either using coordinate
moments or a line between extrema. The measures agree
remarkably well, a sign that Bss is very nearly equal to Ω, as
one would expect for holes that are not undergoing strong
dynamical processes. In fact, the measures agree to within a
hundredth of a degree right up to the formation of the common
horizon. It should be noted that we estimate the numerical
truncation error of both of these measures to be roughly on
the order of 0.02°, significantly greater than either of these
discrepancies. Thus, even these differences could be largely due
to numerical truncation.

FIG. 7. Angle (in the Euclidean background space) between
spin axes defined using ζ andΩ, either using coordinate moments
or a line between extrema. The curves are visually identical ifΩ is
replaced by Bss. Interestingly, the two scalars agree to within our
rough estimate of numerical truncation, so long as the axis is
defined using coordinate moments of. The measures agree far less
well when extrema are used. This is apparently a consequence of
the higher-multipole structure present in Bss and Ω, already noted
in Fig. 5.
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Figure 6 shows the differences between using Bss and Ω,
either via moments or extrema. The agreement is remark-
ably good, well under our rough estimate of 0.02° numeri-
cal uncertainty. This implies that the premerger dynamics
are not strong enough to cause Ω and Bss to substantially
differ from one another.
Figure 7 shows the differences between a spin axis

determined by the symmetry generator ζ and the normal-
bundle curvature Ω, either via coordinate moments or
extrema. Here, the moment measures agree much better
(differences of order 0.05°) than the extremum measures
(differences of order 1°). The greater variation in extremum
measures is again due to the fact that Ω has a more
nondipolar structure than ζ. This nondipolar structure is
largely filtered out from the coordinate moments.
As a final direct comparison, we show the discrepancy

between the default measure of spin axis in SPEC (moments
of Ω, χ̂Ωm) with our model of the standard non-SPEC
measure (the line between rotation poles, which we model
as the line between extrema of ζ, χ̂ζe). The discrepancy is
within half a degree for much of the inspiral, implying that
both measures would be essentially equally good for rough
measurements of the spin axis and its secular precession,
but without further theoretical justification, likely neither is
trustworthy for the finer nutation features that motivate the
current work.
To further explore the variation in these axis measures, we

repeat a procedure from Ref. [44] that allows us to trace out
the finer nutation features without the distraction of the
secular precession. The method is based around the idea of a
coprecessing frame. We begin by computing a running
average of any given spin-axis vector χ̂ (represented as a
vector in the space associated with the flat reference
geometry of the xi coordinates), averaging over a few orbital

periods (therefore multiple nutation cycles) to define a
slowly, steadily rotating vector ê1. We then compute the
time derivative of this steadily rotating vector and normalize
it to define another basis vector ê2.We then complete the triad
with a simple cross product: ê3 ¼ ê1 × ê2. The nutation,
referring to the variation in spin axis that occurs within the
window of time averaging, would be represented by the
quantities χ⃗ · ê2 and χ⃗ · ê3. Figures 9 and 10 apply this
technique to plot the nutation about the slowly varying orbit-
averaged precession axis. In both cases, we also include the
nutation expected from a post-Newtonian calculation, which
we compute using equations available in Ref. [44]. The post-
Newtonian calculations tell us to expect purely vertical
nutations (that is, nutations purely perpendicular to the
direction of the averaged precession of the spin axis) with
amplitude of approximately 0.05°. Themoments of ζ,Ω, and
Bss all roughly agree with this vertical nutation expected
from post-Newtonian theory, yet they add a horizontal
component (that is, along the direction of the averaged
precession of the spin axis), which does not vanish as
expected, and indeed exceeds the vertical nutation by
approximately a factor of 5. The axis measures defined by
extrema nutate even more wildly, with a significant increase
in the vertical nutation in χ̂ζe and even more significant
variations in χ̂Ωe and χ̂Bsse, again attributable to the higher
multipolar structure of these quantities. One can also note a
two-leavedquality to the curves inFigs. 9 and 10, particularly

FIG. 8. Angle (in the Euclidean background space) between the
default SPEC spin axis and our model of the standard spin axis in
non-SPEC codes.

FIG. 9. Nutation of the spin axes χ̂ζm and χ̂ζe, along with the
nutation expected from post-Newtonian theory. The quantity
χ⃗ · ê2 is plotted on the horizontal axis and χ⃗ · ê3 on the vertical
axis, where êi are defined in the text. The expectation from post-
Newtonian theory is that the nutation should be represented as
purely vertical oscillation on this chart, whereas the measure
involving moments of ζ implies unphysical horizontal nutations
greater than the vertical nutations by approximately a factor of 5.
The measure involving extrema of ζ (our model of the standard
non-SPEC axis measure) shares these unphysical horizontal
nutations, as well as drastically enlarged vertical nutations.
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on the curves for extremum-based measures (green). We
assume this is due to remaining eccentricity in the simulation,
with two nutation cycles per orbital cycle, one with slightly
greater separation than the other.

V. ANOTHER LOOK AT COORDINATE
ROTATION GENERATORS

It should not be particularly surprising that the spin-axis
measures defined in Sec. III behave in a qualitatively
different fashion than the spin of post-Newtonian theory.
Even aside from the subtle questions of gauge ambiguity,
a much larger issue is that there simply is no reason that the
axis of approximate horizon symmetry (defined either by
poles or by moments), or the same axes defined by horizon
vorticity, should behave dynamically in the same manner as
the spin defined in post-Newtonian theory. They are simply
different quantities, intuitively expected to agree in some
vague approximate sense, but not with the kind of precision
that is available in modern numerical relativity codes.
In order to bring the discussion back to concepts directly

associated with angular momentum, we return to the
quasilocal formula in Eq. (21). Again, this spin measure
was explored in the early days of the SPEC code, but
abandoned. It was abandoned in part because it did not
satisfy the useful technical conditions of centroid invari-
ance or boost-gauge invariance, but a more direct reason
was the nonphysical behavior it exhibited in binaries of
small spin. This behavior, in a simple simulation of an

equal-mass nonspinning inspiral, can be seen in Fig. 11.
The holes are nonspinning according to the well-defined
spin magnitude computed using approximate Killing vec-
tors [36–38]. After the initial ringing, a small but well-
resolved spin in the −z direction arises (that is, in the
direction opposite the orbital angular momentum). More
troubling is that this nonzero spin grows over the course of
the inspiral, still in the direction opposite the orbital angular
momentum. This spin-up is opposite (and much stronger
than) what would be expected from tidal spin-up.
Figure 11 includes curves showing two choices of

centroid. The blue curve uses the centroid computed directly
from the coordinate shape, assuming no spatial curvature,

xi0;flat ¼
1

A0

I
H
xidA0; ð33Þ

where dA0 refers to the surface area element inferred on the
horizon two surface H from the flat background geometry.
Thegreen curve shows the spin computed similarly, but fixing
the centroid using the physical curved-space geometry,

xi0;curved ¼
1

A

I
H
xidA: ð34Þ

Figure 11 not only shows the unphysical apparent spin-up,
it also clearly shows that it is strongly dependent on the

FIG. 10. Nutation of the spin axes χ̂Ωm and χ̂Ωe, along with
the nutation expected from post-Newtonian theory. The quantity
χ⃗ · ê2 is plotted on the horizontal axis and χ⃗ · ê3 on the vertical
axis, where êi are defined in the text. The quantity χ̂Ωm, which is
the default measure of spin axis in the SPEC code, shares with χ̂ζm
the large unphysical nutations in the horizontal direction. The
nutation of χ̂Ωe is even stranger, due to the higher multipolar
structure in Ω. We have also constructed the analogous diagram
for χ̂Bssm and χ̂Bsse, confirming that the nutations for that quantity
are visually identical to those shown here.

FIG. 11. Component of spin, on either black hole, along
direction of orbital angular momentum, in a binary of equal-
mass initially nonspinning black holes. When the spin is
measured using the simple coordinate rotation vectors of
Eq. (22), the holes spin up in the direction opposite expectations
from perturbation theory. This spin-up, while small, is well
resolved by the code. Moreover, this spin-up is strongly influ-
enced by the choice of the coordinate centroid defining the
rotation vectors. When the surface angular momentum density ωA
is boost fixed, by setting its gradient potential π [defined in
Eq. (38)] to zero, the spin (with either centroid) remains zero to
well within the accuracy of numerical truncation throughout the
entire inspiral (including a sharp but numerically unresolved
spin-up after the formation of the common horizon).
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choice of centroid. Thus, by fixing the centroid in a
reasonableway, onemight hope to cure the apparent spin-up.
More precisely, if the centroid coordinates are offset by

three constants xi0 ↦ xi0 − Δxi, then the coordinate rotation
vectors defined by Eqs. (22) or (23) transform as

ϕ⃗i ↦ ϕ⃗i þ ηij
kΔxjτ⃗k; ð35Þ

where τ⃗k is the translation-generating vector used in the

definition of the rotation generator (∂⃗k for ϕ⃗i, δklgab∂bxl for
φ⃗i). The result of this transformation on the angular
momentum integral (21) is the familiar

Ji ↦ Ji þ ηij
kΔxjpk; ð36Þ

where

pk ≔
1

8π0

I
ω⃗ · τ⃗kdA: ð37Þ

This quantity is naturally interpreted as a quasilocal linear
momentum and has been explored numerically in Ref. [64].
Its significance here lies in the fact that, if a hole is in
motion, then the centroid ambiguity directly implies an
ambiguity in the spin magnitude and axis defined by the
components Ji in the global background coordinates. This
ambiguity (of separating spin angular momentum from
orbital angular momentum) is familiar from even basic
Newtonian physics and post-Newtonian theory. In the
nonrelativistic context, the ambiguity is generally fixed
by placing the centroid at the center of mass of the moving
object. In the relativistic context, however, this strategy
fails because the concept of the center of mass is not
Lorentz covariant [63].

A. Hodge decomposition and boost-fixed
coordinate spin

The above ambiguity in the black hole centroids is not
the only ambiguity that we must contend with. Another
arises from the fact that the black hole is necessarily an
extended object. Let us decompose the ω⃗ quantity into two
scalar potentials on the horizon,

ωA ¼ DAπ þ ϵABDBϖ: ð38Þ

If we know the vector ω⃗, then the potentials π andϖ can be
readily computed through a Poisson equation on the two
surface,

D2π ¼ DAω
A ¼ Π; ð39Þ

D2ϖ ¼ ϵABDAωB ¼ Ω: ð40Þ

Note that because the sources Π and Ω are pure derivatives,
they integrate to zero on the two surface, the necessary

condition for them to lie within the image of the horizon
Laplacian operator and thus for solutions π and ϖ to exist.
These potentials are defined only up to a constant, but
the constant is irrelevant in reconstructing ωA and hence the
spin. (In SPEC, these potentials can be computed, and the
constant is fixed by the condition that π and ϖ integrate
to zero.)
Note that because Ω is boost-gauge invariant, the

potential ϖ defined by Eq. (40) is also boost-gauge
invariant. The other potential π is not boost-gauge invariant
and for interesting physical reasons. Under a boost-gauge
transformation, ⃗l ↦ ea ⃗l, n⃗ ↦ e−an⃗, ω⃗ transforms as

ωA ↦ ωA −DAa; ð41Þ

DAπ þ ϵABDBϖ ↦ DAπ þ ϵABDBϖ −DAa; ð42Þ

and hence we can infer that, up to an additive constant,
π ↦ π − a. In the context of the rotation generators φ⃗i
defined in Eq. (23), we will find that π is directly related to
the quasilocal linear momentum, so it is no surprise that it is
boost dependent.
Now, return to the quasilocal angular momentum for-

mula in Eq. (21) (suppressing global coordinate indices
i; j; k;… for simplicity). Substitute the above scalar
decomposition and integrate by parts

J ¼ 1

8π0

I
H
ðDAπ þ ϵABDBϖÞϕAdA; ð43Þ

8π0J ¼ −
I
H
πðDAϕAÞdAþ

I
H
ϖðϵABDAϕBÞdA: ð44Þ

The first integral in this final expression is not boost-gauge
invariant, while the second integral is (note that the rotation
generator ϕ⃗ is taken to be projected tangent to the two
surface and hence is manifestly boost-gauge invariant). We
could choose to fix boost gauge with the condition π ¼ 0,
which is always accessible given the transformation law for
π. This fixing of boost gauge was employed by Korzynski
[65] in a different but related approach to quasilocal black
hole spin (involving conformal Killing vectors on the
horizon, rather than the global coordinate rotations con-
sidered here). But there is another way to think about the
condition in the current context.
The offending boost-dependent term in Eq. (44) also

involves the quantity ∇Aϕ
A, the divergence of the rotation

generator. If ϕ⃗were a true Killing vector on the two surface,
then this divergence would vanish simply due to the trace of
Killing’s equation.
As a simple motivating case, consider a metrically round

two sphere embedded in truly Euclidean three space. The
Killing vector fields that generate rotations about the center
of this sphere are tangent to it and thus also Killing vectors
of the surface. One can show that the vector fields that
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generate rotations about a point offset from the center of the
sphere, when projected down to the surface, have nonzero
surface divergence. Furthermore, this surface divergence is
linear in the offset vector. Hence, in Euclidean space, one
can fix the centroid ambiguity by insisting that the rotation
generator has zero divergence.
On an arbitrary two surface, in curved or flat geometry, it

is no longer true that simple translation of background-
coordinate rotation generators can always render the
projected field divergence free. However, one can always
project out the divergence-free part of ϕ⃗, using a Hodge
decomposition analogous to that already employed for ω⃗,

ϕA ¼ DAαþ ϵA
BDBβ; ð45Þ

β ¼ D−2ðϵABDAϕBÞ; ð46Þ

ϕDF
A ¼ ϵA

BDBβ: ð47Þ

Such a projection might be considered a generalized
translation of the coordinate rotation generator.
Either viewpoint (fixing boost gauge to render π ¼ 0 or

deforming the rotation generator to remove its divergence
while preserving its curl) leads to the following very simple
gauge-fixed coordinate spin vector:

Jibf ≔
1

8π0

I
H
ϖðϵABDAϕ

i
BÞdA; ð48Þ

where ϕ⃗i, for i ¼ 1, 2, 3, are the three coordinate rotation
generators. We refer to this quantity as the boost-fixed
coordinate spin vector. It should be noted that at this point
we are being agnostic about the definition of the coordinate
rotation vector. This concept of boost fixing the coordinate
spin applies either for the generators ϕ⃗i defined in Eq. (22)
or φ⃗i defined in Eq. (23).

B. Behavior under changes of coordinate centroid

As noted in Eq. (36), when the coordinate centroid is
offset, our spin measures can change because orbital
angular momentum becomes reclassified as spin and vice
versa. As mentioned in Sec. VA, this centroid ambiguity is
entangled with the boost-gauge ambiguity because trans-
lation of the coordinate centroid is associated (at least in
simple cases) with changing the pure gradient part of the
rotation generator, which due to parity considerations only
interacts in the spin calculation with the boost-dependent
potential π. Indeed, a very deep parallel exists when the φ⃗i
rotation generators are used.
In Eq. (44), we see that the boost-gauge-dependent

potential π is integrated with the surface divergence of
the rotation generator, while the boost-gauge-independent
potential ϖ is integrated against the curl of the rotation
generator. In the Appendix, we show that the φ⃗i rotation
generators, which are constructed using translation one

forms dxi, have a surface curl that is independent of the
coordinate centroid [Eq. (A20)] and a surface divergence
that is linear in it [Eq. (A17)]. The term that is boost-gauge
dependent is also the term that is centroid dependent, and if
boost gauge is fixed by setting the potential π to zero, then
the centroid dependence disappears completely.
One way to think of this surprising coupling of boost

dependence with centroid dependence is that the condition
π ¼ 0 amounts to measuring the spin in a comoving frame.
Translating the coordinate centroid affects the spin through
a term proportional to the quasilocal linear momentum
defined in Eq. (37). But in this case the coordinate trans-
lation generator is dxk and the momentum is

8π0pk ¼
I

ωA∂AxkdA; ð49Þ

¼ −
I

ðDAω
AÞxkdA; ð50Þ

¼ −
I

ðD2πÞxkdA: ð51Þ

Fixing boost gauge such that π ¼ 0means that in this boost
gauge the linear momentum vanishes, and hence displace-
ments cannot affect the spin. The important technical
consequence of this is that the boost-fixed spin measure
of Eq. (48), when computed using the φ⃗i rotation gen-
erators, is also centroid independent.
This remarkably satisfying connection between boost

and centroid freedom unfortunately does not carry over to
the case when the rotation generators are ϕ⃗i, constructed

from vectorial translation generators ∂⃗i. This fact is all the
more disappointing because, as we will see in the next
subsection, the ϕ⃗i rotation generators give much better
agreement with post-Newtonian nutation than the φ⃗i
generators.
In Eqs. (A28) and (A25), we see that the surface curl of

ϕ⃗i includes a term proportional to xj0 and the physical
metric’s Christoffel symbols of the first kind Γ½da�c, anti-
symmetrized on the first pair of indices (as opposed to the
pair associated with the torsion tensor that we take to
vanish). This combination of Christoffel symbols does not
vanish, in general, and is proportional to partial derivatives
of the components of the physical metric.
The fact that simply boost fixing to π ¼ 0 does not provide

a centroid-invariant spin measure for the ϕ⃗i generators can
also be seen from the linear momentum of Eq. (37). Hodge
decomposing the ω⃗ field again, pk becomes

8π0pk ¼ −
I

ϖϵA
BDBτ

A
k dA −

I
πDAτ

A
k dA: ð52Þ

The first integral on the right-hand side here does not
necessarily vanish. The coordinate-translation-generating
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vector fields τ⃗k ¼ ∂⃗k need not be curl free, even when
projected down to the two surface. Therefore, the odd-parity
momentum potential ϖ, which cannot be altered by the
choice of boost gauge, contributes to the linear momentum.
Therefore, settingπ ¼ 0 does notmake the linearmomentum
vanish and therefore does notmake the spinmeasure centroid
independent.
This complication does not mean that it is impossible to

choose a boost gauge in which pk ¼ 0. In fact, one can
easily enforce this by choosing some set of three or more
linearly independent basis functions on the sphere, repre-
senting the boost-gauge transformation function aðθ;ϕÞ in
this basis, and solving a matrix problem to set the trans-
formed pk to zero. This kind of boost fixing would render
the spin measure centroid invariant, however, it seems
needlessly elaborate, and worse, we see no physical
motivation for choosing the particular basis functions used
on the sphere. This issue could warrant deeper study in the
future, but we will ignore it for the remainder of this paper.
Instead, we will continue to use the words “boost fixed” to
refer to a boost gauge in which π ¼ 0, even though in the
context of the rotation generators ϕ⃗i, constructed from

translation generators ∂⃗k, this condition does not render the
quasilocal linear momentum zero, nor does it make the
boost-fixed spin measure centroid invariant.

C. Associated ambiguity of the spin axis

Webegan this sectionwith a demonstration that the simple
coordinate spin vector of Eq. (21) is at least slightly
dependent on the choice of centroid for the coordinate
rotation generator. This dependence is directly analogous
to a translation ambiguity that exists even in Newtonian
physics, and post-Newtonian theory as well, in which the
spin vector is defined only after a certain spin-supplementary
condition has been imposed [63]. It is extremely tempting to
generalize the standard spin-supplementary conditions of
post-Newtonian theory to the context of full numerical
relativity. We intend to pursue this path in future research,
however, such a generalization would necessarily involve
quasilocal energy, a concept that has been very well studied
(the approach of Brown and York [45], in particular, is
directly related to the angular momentum arguments treated
here). However quasilocal energy is famously a much more
subtle concept than the simple angular momentum con-
structions employed here, sowemust consider this extension
beyond the scope of the current work.
Instead, here we simply view the centroid ambiguity as

another inherent ambiguity of the coordinate spin angular
momentum. This ambiguity can be fixed by choosing
particular centroids, such as those defined in Eqs. (33) and
(34), or by employing the boost-invariant measure defined in
Eq. (48), as long as the rotation generators φ⃗i are used.
In Fig. 12, we visualize the nutation computed with

three kinds of coordinate spin measure, which use the
rotation vectors φ⃗i computed from the one forms

φi ≔ ϵijkðxj − xj0Þdxk. Specifically, we have fixed xj0 using
the flat-space centroid [Eq. (33)] condition, the curved-
space centroid [Eq. (34)] condition, and the boost-fixed
variant of the spin measure [Eq. (48)], which we have found
to be independent of the choice of xj0 when the rotation
vectors φ⃗i are used. Despite the nice mathematical features
of the φ⃗i rotation vectors, it is clear that calculating spin
using these rotation generators does not provide any
qualitative improvement over the standard SPEC measure,
which uses coordinate moments of the Ω scalar.
Intriguingly, the spurious horizontal nutations are approx-
imately equal using all the measures shown (though the
phase difference between horizontal and vertical nutations
is different than for the measures involving Ω or ζ). The
similarity of the horizontal nutations in all of these cases
might imply that they all arise from the same source, which
we assume is the bulging of the horizon’s coordinate
shape as the spatial separation vector changes relative
to the spin directions. It should also be noted that the
boost-fixing procedure, while it does fix boost gauge
and might be taken to slightly reduce spurious vertical
nutations (which can be compared with the post-Newtonian

FIG. 12. Nutation in a coprecessing frame using the coordinate
rotation generators φ⃗i, which are constructed from translations
defined by the one form κi ¼ dxi. This choice of rotation vector is
very nicely behaved, mathematically speaking, however, it does
not appear to improve upon the spurious nutations along the
direction of secular precession, seen also with the spin measures
using moments of Ω (SPEC standard) or extrema of zeta (our
model of the common standard outside of the SPEC code). The
boost-fixing procedure described around Eq. (48) does not appear
to provide an obvious improvement over the standard coordinate
spin calculation, at least with regard to agreement with the
precession track of an analogous post-Newtonian calculation,
denoted by the heavy black line. All three of our φ⃗i-related
coordinate spin measures seem qualitatively on par with the SPEC-
standard measure, though intriguingly the phase lag between
horizontal nutations and vertical nutations is different for the
coordinate spin measures than for the moments of Ω.
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nutation track drawn heavily in black), does not appear to
have any significant effect on the spurious horizontal
nutation.
In Fig. 13, we see a drastic improvement that occurs with

these measures when the rotation vectors are changed from

φ⃗i to ϕ⃗i ≔ ϵij
kðxj − xj0Þ∂⃗k. The spurious horizontal nuta-

tions have decreased by an order of magnitude, down to a
level where they are comparable with the deviations in the
vertical nutation from post-Newtonian expectations. Again,
the boost-fixing procedure does not seem to make a notable
qualitative difference.
It may be tempting to argue that ϕ⃗i would inevitably

behave better than φ⃗i, because the translation vectors ∂⃗k

from which the former are constructed are the true trans-
lation generators. In a geometrical sense, though, this is not
completely obvious. Near the horizon of a black hole,

neither the φ⃗i nor the ϕ⃗i will satisfy Killing’s equation, and
in the limit of flat geometry, both sets will satisfy it
(assuming both the xi and the xa coincide with the
Cartesian system in that limit). One distinction to be noted

is that the three ∂⃗i vectors constitute a mutually commuting
triple, whereas the three vector fields κ⃗i with components
κai ¼ gabδij∂bxj do not necessarily commute.
As a final demonstration of the improved behavior

of these coordinate spin axes, we repeat the kind of fit
to post-Newtonian theory carried out in Ref. [44]. We solve
the same post-Newtonian equations as in that research,
though we note that, while this reference includes an
extremely convenient compilation of orbital, spin-orbit,
and spin-spin terms from a variety of sources, it currently
includes a few typographical errors. The quantity γ should
read

γ ¼ x

�
1þ 3 − ν

3
xþ 3δσl þ 5sl

3
x3=2 þ 12 − 65ν

12
x2 þ

�
30þ 8ν

9
sl þ 2σlδ

�
x5=2

þ
�
1þ ν

�
−
2203

2520
−
41π2

192

�
þ 229ν2

36
þ ν3

81

�
x3 þ

�
60 − 127ν − 72ν2

12
sl þ

18 − 61ν − 16ν2

6
σlδ

�
x7=2

þ x2ðs⃗20 − 3ðs⃗0 · l⃗Þ2Þ
�
; ð53Þ

and the quantity b7 should read

b7¼
�
476645

6804
þ6172

189
ν−

2810

27
ν2
�
slþ

�
9535

336
þ1849

126
ν−

1501

36
ν2
�
δσlþ

�
−
16285

504
þ214745

1728
νþ193385

3024
ν2
�
π: ð54Þ

We keep all terms in these expressions and the rest of the post-Newtonian expressions given in Ref. [44] and handle the
evolution of the x parameter using the simple TaylorT1 approximant. We match by minimizing the same integral as in that
paper, an integral of

S ≔ hð∠LÞ2i þ hð∠χ1Þ2i þ hðΔΩÞ2i; ð55Þ

FIG. 13. Nutation in a coprecessing frame using coordinate
rotation generators ϕ⃗i, which are constructed from translations

defined by the standard coordinate translation vectors τ⃗i ¼ ∂⃗i. To
keep the graph from getting cluttered, we have chosen a single
cycle of precession near the beginning of the inspiral (after junk
radiation has dissipated), though later cycles are qualitatively
similar, as in other figures of the nutation track above. All four of
the nutation tracks shown have dramatically better qualitative
agreement with the post-Newtonian expectation (heavy black
curve), with the spurious horizontal nutations reduced by an order
of magnitude compared with the other measures in this paper. The
remaining horizontal nutations are now roughly equal to the
discrepancy of the vertical nutations with the post-Newtonian
track, and hence we suspect they may all be due to remaining
inaccuracies of the numerical relativity simulation such as
numerical truncation error (which we have estimated to be
around 0.02°), residual orbital eccentricity (the post-Newtonian
calculation assumes a noneccentric orbit), or possibly genuine
nonlinear behavior in the numerical relativity simulation.
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where ∠L is the angle (in radians) between the orbital
angular momentum axis of the PN solution and that
computed from coordinate trajectory data in the numerical
relativity solution, ∠χ1 is the angle between PN and
numerical-relativity (NR) spin axes (on the larger
hole—the smaller hole is nonspinning), and ΔΩ ≔
ðΩPN −ΩNRÞ=ΩNR, where ΩPN ¼ x3=2=m, and ΩNR
is the angular velocity of the NR solution, again computed
using coordinate trajectory data. The angled brackets h:i
refer to a coordinate-time integration, in this case carried
out from t ¼ 4000m to t ¼ 5500m, in rough agreement
with the window used in Ref. [44].
The discrepancy of four numerical-relativity axis mea-

sures, versus best-fit post-Newtonian values, is shown in
Fig. 14. The spin measure defined in (48), and the standard
angular momentum with coordinate rotation generators
ϕ⃗i [using the flat-space centroid defined by Eq. (33)],

improves on the two standard axis measures in modern
numerical-relativity literature by an order of magnitude.
We attribute the failure to find better agreement in the
bottom curve, particularly within the matching window
itself, to remaining eccentricity in the numerical-relativity
simulation.

VI. DISCUSSION

The research presented here was motivated by two
specific goals. The first, more modest goal, was to simply
present formally the default definition of spin axis currently
employed in the SPEC code and how it relates to the other
current standard and other similarly well-motivated mea-
sures. The second goal was to explain and resolve the
unphysical nutation features discovered in Ref. [44], which
clouded an otherwise very strong agreement of SPEC

simulations with post-Newtonian results.
On the first point, we have formally defined, in Eq. (27),

the axis measure χ̂Ωm that defines the spin axis in all
currently published SPEC results and which indexes the
simulations cataloged at [22]. Specifically, this measure
defines the spin axis through coordinate moments of a
scalar quantity Ω defined on any two surface in spacetime,
mathematically a scalar curvature of the normal bundle of
the embedding of the two surface in spacetime. Though it
may seem mathematically obscure, this quantity has a long
history in SPEC and in the general formalism of quasilocal
spin. It is also used in SPEC’s standard measure of spin
magnitude and higher current multipoles [36–38,41], as
well as a measure of horizon extremality [39,66]. It is also
very closely related (though not mathematically identical)
to the normal-normal component of the magnetic part of the
spacetime Weyl tensor Bss, which is related to differential
frame dragging at the horizon and referred to as horizon
vorticity in [55–59]. While Ω and Bss are not mathemati-
cally equal, we have shown that for inferring spin axis their
difference is practically negligible at least in the case
considered here. Though the quantity Ω is intricately
related to black hole spin, the use of its coordinate moments
as a measure of spin axis was largely an ad hoc practical
decision, with little theoretical justification.
The other standard measure of spin axis in the current

numerical-relativity literature is the Euclidean line con-
necting the poles of an approximate symmetry of the
horizon. The approximate symmetry in this context is a
vector field computed over the horizon’s coordinate grid via
integration of Killing transport equations. A direct imple-
mentation of this technique would be difficult in SPEC, so
we have instead considered the line connecting poles of
SPEC’s standard approximate Killing vector, defined via a
scalar potential ζ that satisfies a certain eigenproblem
derived from the squared residual of Killing’s equation
[36–38]. This axis measure χ̂ζe, while not precisely the
same as the measure used in other codes, is directly

FIG. 14. Angle between post-Newtonian spin axis and four
possible numerical-relativity spin axes. Fitting the post-New-
tonian initial data to minimize the quantity S defined in the text,
where the integration window of the fit extends from t ¼ 4000m
to t ¼ 5500m. The uppermost curve (light, solid) shows the
discrepancy with χ̂ζe, our model of a standard axis measure
defined by a line between poles of the approximate horizon
symmetry. The intermediate curve (light, dashed) represents the
standard axis measure in the SPEC code, χ̂Ωm, which also differs
from the best-fit post-Newtonian spin axis by approximately a
half degree throughout the inspiral, due to the wild horizontal
oscillations visible in Fig. 10. The bottom curves show the best fit
to spin measures based on the quasilocal angular momentum
formula using ϕ⃗i as rotation generators. The heavy, solid curve
employs the fixing of boost gauge described in the text, while the
heavy dashed curve calculates the spin in the default boost gauge
of the simulation, adapted to the spacetime slicing. These
measures also use the flat-space centroid condition defined in
Eq. (33), but the curved-space centroid gives similar results. As in
the nutation tracks of Fig. 13, agreement with post-Newtonian
expectations is better for the angular-momentum-based measures
by approximately an order of magnitude.
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analogous and so we treat it as a model of the standard
measure in other codes.
While we have not carried out a systematic comparison

of these standard spin measures, in Fig. 8 we have given the
first direct comparison of these spin measures in a non-
trivially precessing binary black hole simulation, showing
that over the course of the inspiral these measures agree to
within approximately a degree over the course of the
inspiral. This is an encouraging sanity check for general
purposes, implying that the distinction is likely unimportant
for calculations requiring only a coarse measure of the spin
axis. At the same time though, it implies that the features of
spin nutation, which in this case oscillate by significantly
less than a degree, cannot be expected to be measured
accurately by these ad hoc prescriptions. We have also
explored other similar variants, such as using a line
between extrema of Ω and Bss, or coordinate moments
of the symmetry potential ζ, finding that extrema of Ω and
Bss vary even more wildly, likely due to their higher
multipolar structure.
With regard to the second goal of this paper—explaining

and mitigating the unphysical nutations discovered in
Ref. [44]—the previous considerations have motivated
our view that these nutations were due to the corruption
of these ad hoc axis measures by the tidal structure, present
in black hole inspiral, that these ad hoc measures none-
theless completely ignore.
To probe spin axis in a more dynamically meaningful

way, we have returned to the quasilocal spin angular
momentum measure defined in Eq. (21). Employing this
formula in this context requires us to make some back-
ground-dependent decision of what to use for the rotation
generators ϕ⃗i. The simple application of coordinate rotation
generators, while not mathematically elegant, is no less
geometrically meaningful than the ad hoc measures cur-
rently employed. There are, however, two reasons to
hesitate before using Eq. (21) with coordinate rotation
generators, reasons that are not shared by the ad hoc
measures in current use: the resulting spin axis will not
necessarily be boost-gauge invariant, and even more trou-
bling, it will depend on the centroid used to define the
coordinate rotation. This latter concern, however, suffuses
the treatment of spin even in Newtonian and post-
Newtonian physics, in which a spin-supplementary con-
dition must be imposed to specify what precisely one
means by the spin vector. With coordinate rotation vectors
as defined in Eq. (22), the quasilocal spin vector can be
written in a form directly analogous to the spin tensor used
in post-Newtonian theory,

Si ¼
1

8π0

I
H
ηijkðxj − xj0ÞωkdA; ð56Þ

Sjk ¼ 1

8π0

I
H
ðx½j − x½j0 Þωk�dA; ð57Þ

where ωk ≔ δkleAl ωA. In post-Newtonian theory, the spin-
supplementary condition, which fixes the worldline of the
centroid xj0ðtÞ, is generally stated as a condition on the
spacetime spin tensor, such as Sμνuν ¼ 0 where u⃗ is, say,
the four velocity of the spinning body. The appearance of a
spin tensor raises the tantalizing possibility of enforcing
spin-supplementary conditions of post-Newtonian theory
in the numerical-relativity context. Unfortunately, to do so,
we would also need to define the spacetime components S0i

of our numerical-relativity spin tensor, and to do that would
require implementation of a quasilocal energy measure,
which we intend to pursue in future work.
Instead, we have simply treated the ambiguity of the

centroid xj0 as precisely that, an ambiguity of the formalism.
And we have fixed this ambiguity in two ways, by setting
xj0 to the coordinate center of the horizon (33) and to the
geometric center of the horizon (34). This fixing of the
coordinate centroid can be seen as analogous to the setting
of a spin-supplementary condition in PN calculations, but it
is frustrating that the two formalisms do not have a
common mathematical language.
The measure using coordinate rotation vectors, and

either centroid, also suffers from the boost-gauge ambi-
guity. To deal with this, we have employed a Hodge
decomposition of the quasilocal angular momentum den-
sity ωA to distill its boost-invariant component ϵABDBϖ (in
a manner similar to Korzynski [65]), defining a coordinate
spin measure J⃗bf [Eq. (48)] that is boost invariant. This
boost-gauge fixing did not have a significant impact on the
nutation features of our precessing simulation, however, it
does remove smaller spurious spin features in cases of
weakly spinning holes, as seen in Fig. 11.
When spin is computed using the coordinate rotation

generators ϕ⃗i, with or without the boost-fixing trick, and
with either of the coordinate centroids employed here
(Fig 13), the nutation agrees with post-Newtonian expect-
ations to within our estimated numerical uncertainty of
0.02°, though the nutation track in some cases grazes the
limits of this uncertainty. We expect that the agreement will
improve when we do a better job of reducing the orbital
eccentricity and the various subtle sources of numerical
truncation error, however, such calculations are still
ongoing. We cannot say for certain that we have found a
correct measure of black hole spin axis for all systems,
however, we can say that we have drastically reduced
spurious features that arise from other measures.
We note that the improved nutation behavior of a spin

axis computed from ϕ⃗i might imply improved behavior in
analytical and surrogate models matched to numerical-
relativity results. We encourage further analysis along
these lines.
As a final note, it might be considered imprudent to draw

broad conclusions about the behavior of spin-axis measures
from the one specific system studied here (5∶1 mass ratio,
smaller hole nonspinning, larger hole initially spinning
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about the axis connecting the holes), however, we expect
the features studied here to apply to a much broader range
of cases. In particular, the spurious nutations that have been
our focus—oscillations of the spin axis along the orbital
plane, which are precisely zero in the PN calculations
included here—are well defined and one would expect
them to decouple from initial spin components perpen-
dicular to the orbital plane. A more interesting question is
whether the spin measure supported by this research retains
its quality of agreement with post-Newtonian expectations
in cases where both black holes are spinning, a scenario that
would involve spin-spin interactions. Because the spin-
orbit-based nutations studied here already lie near the limits
of our numerical accuracy, this question will have to wait
for future research.
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APPENDIX: RELATIONSHIP BETWEEN TWO
DEFINITIONS OF THE COORDINATE

ROTATION GENERATOR

Our treatment spin has frequently made reference to
coordinate rotation generators. These are the rotation vectors
associated with the preferred (up to linear transformations)
coordinate system xi associated with the flat background
geometry. These rotation vectors are constructed from
coordinate translation vectors. Unfortunately, when the
background geometry does not match the physical geometry,
there are two natural ways to define coordinate translations.
There are translation vectors τ⃗i ¼ ∂⃗i, whose components in
some arbitrary coordinate system xa are given by the
Jacobian of the transformation

ðτ⃗iÞa ¼
∂xa
∂xi : ðA1Þ

The i index is a label denoting which of the three translation
vectors we are referring to, such as τ⃗1.
There are also, however, translation one forms κi whose

components are given by the inverse Jacobian

ðκiÞa ¼
∂xi
∂xa : ðA2Þ

By the standard properties of coordinate transformations,
these two kinds of translation vectors are dual to one
another, meaning that their interior products satisfy

ιτ⃗jκ
i ¼ κiaτ

a
j ¼ δij: ðA3Þ

However, the two sets of fields cannot be considered dual in
the geometrical sense, because indices a; b; c;… are raised
and lowered with the physical spatial metric gab, while
indices i; j; k;… are raised and lowered with the flat
background metric δij,

κai ≔ δijgabκ
j
b ¼ δijgab

∂xj
∂xb ≠ τai : ðA4Þ

Note that, if the physical metric g were the same as
the reference metric δ, simply represented in different
coordinates, then one could say that gab ¼ Xa

kX
b
l δ

kl

(where Xa
i ≔ ∂xa=∂xi is shorthand for the Jacobian),

and it would then follow that κai would equal τai . The
inequality of these two sets of translation vectors is due
to the inequality of the physical geometry and the flat
reference geometry.
Related to this inequality, it can also be noted that τ⃗i and

κi have different norms,

jτ⃗ij2 ¼ gabXa
i X

b
i ¼ gii; ðA5Þ

jκ⃗ij2 ¼ δijδikgabX
j
aXk

b ¼ δijδikgjk; ðA6Þ
where no sum over i is intended. On the right-hand sides,
we have again used X as a shorthand for the Jacobian
matrix or its inverse, and on the far right sides we have
strained clarity of notation, placing ijk indices on the
physical metric to refer to the physical metric components
evaluated in the reference coordinate basis. Again, these
quantities would be equal if the background metric were the
same as the physical metric, but because we need the
reference metric to refer to a global vector space it must be
flat, and it therefore cannot coincide with the physical
metric.
Beyond the fact that τ⃗i and κi differ locally, there are

important differences in their natures as fields. In particular,
the translation one forms κi, being simple gradients of the
background coordinates xi, automatically have vanishing
curl

dκi ¼ d2xi ¼ 0; ðA7Þ
ϵabc∇bκ

i
c ¼ 0; ðA8Þ

where ∇b is the covariant derivative associated with the
physical metric gab. The translation-generating vectors τ⃗i, on
the other hand (which trivially equal τ⃗i ¼ δijτ⃗j due to the flat
background metric), can have nonzero curl.
This pattern of duality only in the nonmetric sense

carries over to our two definitions of coordinate rotations
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ϕ⃗i ≔ ηij
kδxjτ⃗k; ðA9Þ

φi ≔ ηijkδxjκk: ðA10Þ

Here, δxj ≔ xj − xj0 represents the position, in the back-
ground coordinate system, relative to the coordinate cent-
roid xj0. The duality relationship between τ⃗i and κi imply a
relationship between these rotation generators, familiar
from the case of flat space,

ιϕ⃗j
φi ¼ φi

aϕ
a
j ¼ ηiklηjm

nδxkδxmκlaτan ðA11Þ

¼ ηiklηjm
nδxkδxmδln ðA12Þ

¼ ηiknηjm
nδxkδxm ðA13Þ

¼ δijjδ⃗xj2 − δxiδxj: ðA14Þ

As for the translation vectors, this simple duality
relationship does not mean that the two rotation generators
are equal in a geometrical sense. It is straightforward to
show that ϕa

i ≠ gabδijφ
j
b, their norms differ, and their

derivatives differ.
For our analysis of boost and centroid dependence of the

spin calculated from these coordinate rotation generators, we
need to compute their two surface divergence and curl, after
projecting them down to the two surface. This task is easiest
for φi, because its geometrical index arises simply from a
partial derivative operator. If we introduce a coordinate
system xa, where the first element is constant on the two
surface, while the other two vary, then the projection is
accomplished by a simple change of index letter

φi
A ¼ ηijkδxj∂Axk: ðA15Þ

The two-surface divergence of this is simply

DAφi
A ¼ ηijkðDAxjÞðDAxkÞ þ ηijkδxjD2xk; ðA16Þ

wherewe have noted that theglobal coordinates xi are treated
as scalars with respect to the surface covariant derivative.
Also, when taking derivatives of δxk ¼ xk − xk0, the centroid
coordinates xk0 disappear because they are taken as constants.
The first term above vanishes due to index symmetries and
the remainder is

DAφi
A ¼ ηijkδxjD2xk: ðA17Þ

The surface curl of the φi can be computed similarly as

ϵAB∇Aφ
i
B ¼ ηijkϵ

ABDAðδxjDBxkÞ ðA18Þ

¼ ηijkϵ
ABðDAxjÞðDBxkÞ þ ηijkδxjϵABDADBxk: ðA19Þ

Now the final term vanishes, because the surface covariant
derivative has zero torsion, leaving simply

ϵAB∇Aφ
i
B ¼ ηijkϵ

ABðDAxjÞðDBxkÞ: ðA20Þ

Note that the centroid coordinates xi0 (implicit in δxi) do not
appear in the curl, a point that implies a close relationship
between the boost-gauge fixing and centroid fixing for
spin based on the φi rotation generators, as described in
Sec. V B.
The calculation of surface derivatives of the other

rotation generators ϕ⃗i is somewhat more tedious, requiring
explicit projection onto the two surface, with projector

hab ≔ δab − sasb; ðA21Þ

where ŝ is the unit surface normal. The surface covariant
derivative can be computed by projection of the spatial
covariant derivative∇a, associated with the physical spatial
metric. The divergence is

DAϕ
A
i ¼ hba∇bðhacϕc

i Þ ðA22Þ

¼ hbc∇bϕ
c
i þ ðhba∇bhacÞϕc

i : ðA23Þ

Plugging in the right-hand side of Eq. (A9) for ϕc
i and

simplifying, one finds that the result is

DAϕ
A
i ¼ ηij

kðhac∂axj−kscδxjÞτckþηij
kδxjhac∇aτ

c
k; ðA24Þ

where k ¼ hab∇asb is the trace of the two-surface extrinsic
curvature in the three space. The covariant derivative
of the translation vector (and its dual counterpart) can be
shown to be

∇aτ
b
k ¼ −τbi τck∂a∂cxi þ Γb

acτ
c
k; ðA25Þ

∇aκ
i
b ¼ ∂a∂bxi − Γc

abκ
i
c; ðA26Þ

where Γa
bc are the conventional Christoffel symbols

associated with the physical spatial metric. The first terms
of both of these expressions happen to vanish if one uses
the same coordinates to describe the physical and back-
ground geometries, as one does in numerical codes,
however, to avoid subtle covariance issues we do not make
that assumption here.
The surface curl of the vector-based rotation generator

ϵABDAϕiB ¼ scϵcab∇aðhbdϕd
i Þ ðA27Þ

can similarly be worked out as

ϵABDAϕiB ¼ ηij
kscϵcadð∂axjÞτdk þ ηij

kδxjscϵcad∇aτ
d
k:

ðA28Þ

OWEN, FOX, FREIBERG, and JACQUES PHYS. REV. D 99, 084031 (2019)

084031-20



Note that this expression, in contrast with Eq. (A20),
is dependent on the choice of coordinate center
xi0 because a term involving δxi remains. From
Eq. (A25), one can see that ∇aτ

d
k involves Christoffel

symbols that are not antisymmetrized away by the Levi-
Civita tensor. The nice feature of φi mentioned just

below Eq. (A20), and explored in Sec. V B, is not shared
for ϕ⃗i.
As a final remark, we note that it is possible to derive the

simpler expressions of Eqs. (A17) and (A20) for the other
rotation generators from the expressions in Eqs. (A24) and
(A28), using the substitution τai ↦ δijgabκ

j
b.
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