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We study configurations consisting of a gravitating spinor field ψ with a nonlinearity of the type λðψ̄ψÞ2.
To ensure spherical symmetry of the configurations, we use two spin-1

2
fields forming a spin singlet.

For such systems, we find regular stationary asymptotically flat solutions describing compact objects.
For negative values of the coupling constant λ, it is shown that, by choosing physically reasonable values of
this constant, it is possible to obtain configurations with masses comparable to the Chandrasekhar mass. It
enables us to speak of an astrophysical interpretation of the obtained systems, regarding them as Dirac stars.
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I. INTRODUCTION

In recent decades, various fundamental fields have
achieved widespread use in a variety of cosmological
and astrophysical applications. In particular, this applies
both to modeling the present accelerated expansion of the
Universe [1] and to describing its early inflationary stage
[2]. For this purpose, various scalar (boson) fields with spin
0 are most frequently employed. Such fields are also widely
used in modeling compact astrophysical strongly gravitat-
ing objects—boson stars [3].
However, there may exist gravitating objects consisting

of fields with nonzero spin. They may be systems supported
by fields with integer spin: Yang-Mills configurations [4]
(consisting of massless vector fields) or Proca stars [5]
(consisting of massive vector fields). In the case of spin-1

2

fields, the literature in the field offers both gravitating
configurations with noninteracting spinor fields [6,7]
and objects supported by nonlinear fields. In particular,
nonlinear spinor fields have been used in obtaining cylin-
drically symmetric solutions in Ref [8] (stringlike configu-
rations) and in Ref. [9] (wormhole solutions) and also in a
cosmological context in Refs. [10–14], where the role of
spinor fields in the evolution of anisotropic universes
described by the Bianchi type I, III, V, VI, and VI0 models
or of an isotropic Friedmann-Robertson-Walker universe is

studied. In turn, for spherically symmetric systems, loca-
lized regular solutions have been found in Refs. [15,16].
The papers [17,18] study models of the universe filled with
tachyon and fermion fields interacting through the Yukawa
scalar field. In Ref. [19], a topologically nontrivial solution
with a spinor field within the Einstein-Dirac theory has
been obtained.
Configurations consisting of spinor fields are prevented

from collapsing under their own gravitational fields due to
the Heisenberg uncertainty principle. The distinctive fea-
ture of such systems is that, since the spin of a fermion has
an intrinsic orientation in space, a system consisting of a
single spinor particle cannot possess spherical symmetry. In
order to ensure the latter, one can take two fermions having
opposite spin, i.e., consider two spinor fields. For each of
such spinors, the energy-momentum tensors will not be
spherically symmetric (due to the existence of nondiagonal
components), but their sum will give a tensor compatible
with spherical symmetry of the spacetime (see below
in Sec. II).
In the case of configurations supported by noninteracting

spinor fields, their total mass M ∼M2
p=μ, where μ is the

spinor field mass, and it is generally much smaller than the
Chandrasekhar mass, MCh ∼M3

p=μ2. In the present paper,
we consider the case of nonlinear spinor fields and show
that in this case there is a possibility of increasing the total
mass considerably.
We emphasize here that in the present paper we will

consider a system supported by a classical spinor field.
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Following Ref. [20], by the latter, we mean a set of four
complex-valued spacetime functions that transform accord-
ing to the spinor representation of the Lorentz group. But it
is obvious that realistic spin-1

2
particles must be described

by quantum spinor fields. It is usually believed that there
exists no classical limit for quantum spinor fields. However,
classical spinors can be regarded as arising from some
effective description of more complex quantum systems
(for possible justifications of the existence of classical
spinors, see Ref. [20]).
The paper is organized as follows. In Sec. II, we present

the general-relativistic equations for the systems under
consideration. These equations are solved numerically in
Sec. III for different values of the coupling constant λ,
and the possibility of obtaining configurations with astro-
physical masses of the order of the Chandrasekhar mass is
demonstrated. Finally, in Sec. IV, we summarize and
discuss the obtained results.

II. FORMULATING THE PROBLEM AND
GENERAL EQUATIONS

We consider compact gravitating configurations consist-
ing of a spinor field and modeled within the framework of
Einstein’s general relativity. The corresponding action for
such a system can be represented in the form [the metric
signature is ðþ;−;−;−Þ]

S ¼ −
c3

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ Ssp; ð1Þ

where G is the Newtonian gravitational constant, R is the
scalar curvature, and Ssp denotes the action of the spinor
field. This action is obtained from the Lagrangian for the
spinor field ψ with the mass μ,

Lsp ¼
iℏc
2

ðψ̄γμψ ;μ − ψ̄ ;μγ
μψÞ − μc2ψ̄ψ − FðSÞ; ð2Þ

which contains the covariant derivatives ψ ;μ ¼ ½∂μ þ 1=
8ωabμðγaγb − γbγaÞ�ψ , and γa are the Dirac matrices in the
standard representation in flat space [see, e.g., Ref. [21],
Eq. (7.27)]. In turn, the Dirac matrices in curved space,
γμ ¼ eμaγa, are obtained using the tetrad eμa, and ωabμ is
the spin connection [for its definition, see Ref. [21],
Eq. (7.135)]. Finally, this Lagrangian contains an arbitrary
nonlinear term FðSÞ, where the invariant S can depend on
ðψ̄ψÞ; ðψ̄γμψÞðψ̄γμψÞ or ðψ̄γ5γμψÞðψ̄γ5γμψÞ. Here, we will
study the case of the simplest nonlinearity FðSÞ ∝ ðψ̄ψÞ2.
Varying the action (1) with respect to the metric and the

spinor field, we derive the Einstein equations and the Dirac
equation in curved spacetime:

Rν
μ −

1

2
δνμR ¼ 8πG

c4
Tν
μ; ð3Þ

iℏγμψ ;μ − μcψ −
1

c
∂F
∂ψ̄ ¼ 0; ð4Þ

iℏψ̄ ;μγ
μ þ μcψ̄ þ 1

c
∂F
∂ψ ¼ 0: ð5Þ

The right-hand side of Eq. (3) contains the spinor field
energy-momentum tensor Tν

μ, which can be represented
(already in a symmetric form) as

Tν
μ ¼

iℏc
4

gνρ½ψ̄γμψ ;ρ þ ψ̄γρψ ;μ − ψ̄ ;μγρψ − ψ̄ ;ργμψ �− δνμLsp:

ð6Þ

Next, taking into account the Dirac equations (4) and (5),
the Lagrangian (2) takes the form

Lsp ¼ −FðSÞ þ 1

2

�
ψ̄
∂F
∂ψ̄ þ ∂F

∂ψ ψ

�
:

For our purpose, we choose the nonlinear term appearing in
this Lagrangian in a simple power-law form,

FðSÞ ¼ −
k

kþ 1
λðψ̄ψÞkþ1; ð7Þ

where k, λ are some free parameters. Below, we take k ¼ 1
to yield

FðSÞ ¼ −
λ

2
ðψ̄ψÞ2: ð8Þ

[Regarding the physical meaning of the constant λ, see
Eq. (25) below.]
Since in the present paper we consider only spherically

symmetric configurations, it is convenient to choose the
spacetime metric in the form

ds2¼NðrÞσ2ðrÞðdx0Þ2− dr2

NðrÞ−r2ðdθ2þsin2θdφ2Þ; ð9Þ

where NðrÞ ¼ 1–2GmðrÞ=ðc2rÞ, and the function mðrÞ
corresponds to the current mass of the configuration
enclosed by a sphere with circumferential radius r;
x0 ¼ ct is the time coordinate.
In order to describe the spinor field, it is necessary to

choose the corresponding ansatz for ψ compatible with the
spherically symmetric line element (9). This can be done as
follows (see, e.g., Refs. [7,22,23]),

ψT ¼ 2e−i
Et
ℏ

��
0

−g
�
;

�
g

0

�
;

�
if sin θe−iφ

−if cos θ
�
;

� −if cos θ
−if sin θeiφ

��
; ð10Þ
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where E=ℏ is the spinor frequency, fðrÞ and gðrÞ are two
real functions. This ansatz ensures that the spacetime of the
system under consideration remains static. Here, each row
describes a fermion with spin 1=2, and these two fermions
have opposite spins. Also, each row corresponds to the
spinor ansatz of Ref. [6] and it is related to the spinor ansatz
of Ref. [7] by the expression ψ ½7� ¼ Sψ i, where i ¼ 1; 2 is
the row number from (10). The matrix S is given by the
expression [24]

S¼ 1ffiffiffi
2

p

0
BBB@

eiðθþφÞ=2 −ieiðθ−φÞ=2 0 0

e−iðθ−φÞ=2 ie−iðθþφÞ=2 0 0

0 0 eiðθþφÞ=2 −ieiðθ−φÞ=2

0 0 e−iðθ−φÞ=2 ie−iðθþφÞ=2

1
CCCA:

ð11Þ

Thus, the ansatz (10) describes two Dirac fields, and for
each of them, the energy-momentum tensor is not spheri-
cally symmetric, but their sum yields a spherically sym-
metric energy-momentum tensor.
Now, substituting the ansatz (10) [by multiplying each

row of (10) by the matrix (11)] and the metric (9) into the
field equations (3) and (4), we have

f̄0 þ
�
N0

4N
þ σ0

2σ
þ 1

x

�
1þ 1ffiffiffiffi

N
p

��
f̄

þ
�

1ffiffiffiffi
N

p −
Ē
σN

þ 8λ̄
f̄2 − ḡ2ffiffiffiffi

N
p

�
ḡ ¼ 0; ð12Þ

ḡ0 þ
�
N0

4N
þ σ0

2σ
þ 1

x

�
1 −

1ffiffiffiffi
N

p
��

ḡ

þ
�

1ffiffiffiffi
N

p þ Ē
σN

þ 8λ̄
f̄2 − ḡ2ffiffiffiffi

N
p

�
f̄ ¼ 0; ð13Þ

m̄0 ¼ 8x2
�
Ē
f̄2 þ ḡ2

σ
ffiffiffiffi
N

p þ 4λ̄ðf̄2 − ḡ2Þ2
�
; ð14Þ

σ0

σ
¼ 8xffiffiffiffi

N
p

�
Ē
f̄2 þ ḡ2

σN
þ ḡf̄0 − f̄ḡ0

�
; ð15Þ

where the prime denotes differentiation with respect to the
radial coordinate. Here, Eqs. (14) and (15) are the ð0

0
Þ and

½ð0
0
Þ − ð1

1
Þ� components of the Einstein equations, respec-

tively. The above equations are written in terms of the
following dimensionless variables,

x ¼ r=λc; Ē ¼ E
μc2

; f̄; ḡ ¼
ffiffiffiffiffiffi
4π

p
λ3=2c

μ

Mp
f; g;

m̄ ¼ μ

M2
p
m; λ̄ ¼ 1

4πλ3cμc2

�
Mp

μ

�
2

λ; ð16Þ

whereMp is the Planck mass and λc ¼ ℏ=μc is the constant
having the dimensions of length (since we consider a
classical theory, λc need not be associated with the
Compton length); the metric function N ¼ 1–2m̄=x.
Note here that, using the Dirac equations (12) and (13),
one can eliminate the derivatives of f̄ and ḡ from the right-
hand side of Eq. (15).
For numerical integration of the above equations, we

take the following boundary conditions in the vicinity of
the center,

ḡ≈ ḡcþ
1

2
ḡ2x2; f̄≈ f̄1x; σ≈σcþ

1

2
σ2x2; m̄≈

1

6
m̄3x3;

where the index c denotes central values of the correspond-
ing variables. The expansion coefficients f̄1, m̄3, σ2, ḡ2 can
be found from the set of Eqs. (12)–(15). In turn, the
expansion coefficients σc and ḡc, and also the parameter Ē,
are arbitrary. Their values are chosen so as to obtain regular
and asymptotically flat solutions with the functions
Nðx → ∞Þ; σðx → ∞Þ → 1. In this case, the asymptotic
value of the function m̄ will correspond to the Arnowitt-
Deser-Misner (ADM) mass of the configurations under
consideration.

III. NUMERICAL SOLUTIONS

Integration of Eqs. (12)–(15) is performed from the
center of the configuration (at x ≈ 0), where a particular
value of ḡc corresponding to the central density of the
spinor field is specified, to some boundary point where the
functions ḡ; f̄ and their derivatives go to zero. Since with
increasing distance the spinor fields decrease exponentially

fast as ḡ; f̄ ∼ e−
ffiffiffiffiffiffiffiffi
1−Ē2

p
x, this point can be approximately

regarded as some effective radius xeff of the configurations
under investigation (by analogy with the case of boson
stars [3]). Depending on the value of the central density of
the spinor field, xeff is of the order of several hundreds for
ḡc ≈ 0, and it decreases down to xeff ∼ 10 for ḡc ∼ 1; i.e., as
the central density increases, the characteristic sizes of the
configurations under consideration decrease. In turn, the
parameter Ē, starting from the value Ē ≈ 1 for ḡc ≈ 0, at
first decreases as ḡc increases and then can start growing
again. This is illustrated in Fig. 1 where the dependencies
of the Dirac-star total mass M̄ on Ē are shown for different
values of the coupling constant λ̄.
In plotting the above dependencies, we have kept track

of the sign of the binding energy (BE), which is defined as
the difference between the energy of Nf free particles,
Ef ¼ Nfμc2, and the total energy of the system, Et ¼ Mc2,
i.e., BE ¼ Ef − Et. Here, the total particle number Nf is
equal to the Noether charge Q of the system, which is
defined via the timelike component of the 4-current jα ¼ffiffiffiffiffiffi−gp

ψ̄γαψ as Q ¼ R
jtd3x, where in our case jt ¼

N−1=2r2 sin θðψ†ψÞ. In the dimensionless variables (16),
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we then have

Nf ¼ Q ¼ 8

�
Mp

μ

�
2
Z

∞

0

f̄2 þ ḡ2ffiffiffiffi
N

p x2dx:

A necessary, albeit not sufficient, condition for energy sta-
bility is the positiveness of the binding energy. Therefore,
since configurations with a negative BE are certainly
unstable, the graphs in Fig. 1 are plotted only up to Ē
for which the BE becomes equal to 0 (except the case of
λ̄ ¼ −100 where the procedure of obtaining solutions is
very difficult technically, and we could find them only to
BE ≈ 0.21; this corresponds to the leftmost point in
the graph).
It is seen from Fig. 1 that for all λ̄ there is a maximum of

the mass at some value of Ē (or ḡc). Such a behavior of the
curves resembles the behavior of the corresponding “mass–
central density” dependencies for boson stars supported by
a complex scalar field (see, e.g., Refs. [7,25,26]). In the
case of boson stars, the presence of such a maximum
corresponds to the boundary between configurations which
are stable or unstable against linear perturbations [26].
Naively, one might expect that for the Dirac stars a similar
situation will occur. But this issue requires special studies.

A. Limiting configurations for jλ̄j ≫ 1

It was shown in Ref. [7] that the maximum mass of
Dirac stars supported by a noninteracting spinor field is
Mmax ≈ 0.709M2

p=μ. For the mass of a spinor field
μ ∼ 1 GeV, it gives the total mass M ∼ 1014 g, i.e., the
stars with small masses and radii R ∼ 10 fm. (Then, by
analogy to miniboson stars [27], one can speak of mini-
Dirac stars.) In turn, one can see from the results obtained
above that the use of positive values of the coupling

constant λ̄ leads to decreasing the maximum mass. In this
connection, from the point of view of possible astrophysi-
cal applications, it seems more interesting to use negative
values of λ̄. Numerical calculations indicate that as jλ̄j
increases there is a considerable growth in maximum
masses of the configurations under consideration (see
Fig. 1). For clarity, in Fig. 2, we have plotted the
dependence of the maximum mass Mmax as a function
of jλ̄j. In this figure, the solid line corresponds to the
interpolation formula

Mmax ≈ 0.415
ffiffiffiffiffi
jλ̄j

q
M2

p=μ; ð17Þ

which holds asymptotically for jλ̄j ≫ 1.
We have found that in the case of the spinor systems

considered here, as in the case of boson stars of Ref. [25],
the large-jλ̄j configurations have the structure that differs
significantly from that of the small-jλ̄j systems. These
distinctions are illustrated in Fig. 3, which shows the spinor
field distributions along the radius for the cases of λ̄ ¼ 0

and λ̄ ¼ −100 (for the case of λ̄ ¼ −100, we take the
configuration with a maximum mass marked by a bold dot
in Fig. 1). It is seen from this figure that in both cases the
main contribution to the energy density (and correspond-
ingly to the mass) is given by the function ḡ. This function
tends exponentially to zero in a characteristic length of 1=μ
for small jλ̄j but for large jλ̄j is characterized by relatively
slow decline out to radii ∼2jλ̄j1=2=μ with exponential decay
only at larger radii (cf. Ref. [25]). For this reason, the
majority of the mass of the large-jλ̄j systems is concentrated
in the region of slow decline, which becomes increasingly
dominant as jλ̄j increases.
As in the case of boson stars of Ref. [25], such a behavior

of the spinor fields enables one to introduce an alternative
nondimensionalization of Eqs. (12)–(15) valid at large

FIG. 2. Maximum Dirac-star masses as a function of jλ̄j. The
solid curve corresponds to the asymptotic relation (17).

FIG. 1. Dimensionless Dirac-star total mass M̄ as a function of
the parameter Ē for λ̄ ¼ −100;−50;−20, 0, and 20. The bold dots
mark the positions of the configurations for which the graphs of
Fig. 3 are plotted.
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jλ̄j: ḡ�, f̄� ¼ jλ̄j1=2ḡ; f̄, m̄� ¼ jλ̄j−1=2m̄, and x� ¼ jλ̄j−1=2x.
Using these new variables and taking into account that
the leading term in Eq. (12) is the third term ð…Þḡ, this
equation yields (in the approximation of f̄ ≪ ḡ)

ḡ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

8

�
1 −

Ē

σ
ffiffiffiffi
N

p
�s
: ð18Þ

Substituting this expression into Eqs. (14) and (15), we
have (to the same accuracy)

dm̄�
dx�

¼ 8x2�ḡ2�

�
Ē

σ
ffiffiffiffi
N

p − 4ḡ2�

�
; ð19Þ

dσ
dx�

¼ 8Ēx�
ḡ2�
N3=2 ; ð20Þ

where now N ¼ 1–2m̄�=x�. As jλ̄j increases, the accuracy
of Eqs. (18)–(20) becomes better. In particular, when
λ̄ ¼ −100, from comparison of the exact and approximate
solutions, one can observe their good agreement, except
the behavior at large radii (see Fig. 3). Since λ̄ does not
appear explicitly in Eqs. (19) and (20), one can use these
limiting equations to determine the rescaled total mass
M̄� ¼ M=ðjλ̄j1=2M2

p=μÞ as a function of the single free
parameter Ē=σc. The corresponding results of numerical
solution of Eqs. (18)–(20) are given in Fig. 4, from which
one can see the presence of a maximum of the mass,

Mmax� ≈ 0.41
ffiffiffiffiffi
jλ̄j

q
M2

p=μ: ð21Þ

One can see that this expression agrees very well with
that given in Eq. (17), and this confirms that the above
approximation is in good agreement with the exact
solution.
As in the case of boson stars of Ref. [25], for the Dirac

star, the ground state of the spinor field is not a zero-energy
state (because of self-gravity). Moreover, at large jλ̄j, the
spinor field is spread over a relatively large length scale
jλ̄j1=2μ−1 ≫ μ−1; this enables one to neglect locally the
derivatives of ḡ and f̄. This allows the possibility of, first,
obtaining the solution of the equation for the spinor field
(12) in the form of (18) when one can neglect the influence
of the function f̄ and its derivative. Second, in the
approximation of neglecting the derivatives, one can
introduce an effective equation of state. To do this, let
us use the components T0

0 ¼ ε and T1
1 ¼ −pr of the energy-

momentum tensor (6), where ε is the effective energy
density of the spinor fluid and pr is its radial pressure,

ε̄≡ ε

γ
¼ 8Ē

σ
ffiffiffiffi
N

p ðf̄2 þ ḡ2Þ þ 32λ̄ðf̄2 − ḡ2Þ2; ð22Þ

p̄r ≡ pr

γ
¼ 8

ffiffiffiffi
N

p
ðḡf̄0 − f̄ḡ0Þ − 32λ̄ðf̄2 − ḡ2Þ2; ð23Þ

with γ ¼ c2M2
p=ð4πμλ3cÞ. (Note that, as in the case of boson

stars of Ref. [25], the radial, pr, and tangential, pt ¼ −T2
2,

components of pressure for the Dirac star are not equal to
each other.) For jλ̄j ≫ 1, in the approximation used here,
one can obtain

FIG. 4. Dimensionless Dirac-star total mass M̄� as a function of
Ē=σc for the limiting configurations described by Eqs. (18)–(20).
The graph is plotted only for the values of Ē for which the binding
energy is positive.

FIG. 3. Spinor fields ḡ and f̄ as functions of dimensionless
radius x for λ̄ ¼ −100 and λ̄ ¼ 0. The dashed line shows the
solution to Eqs. (18)–(20) with Ē=σc from the exact ḡc ¼ 0.0275,
λ̄ ¼ −100 model, scaled to λ̄ ¼ −100.
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ε̄� ≡ jλ̄jε̄ ¼ 8ḡ2�

�
Ē

σ
ffiffiffiffi
N

p þ 4ḡ2�

�
; p̄r� ≡ jλ̄jp̄r ¼ 32ḡ4�:

Taking into account the expression (18) for ḡ� and
eliminating from these relations Ē=ðσ ffiffiffiffi

N
p Þ, one can derive

the following effective equation of state:

p̄r� ¼
1

9

	
1þ 3ε̄� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ε̄�

p 

: ð24Þ

The dimensionless quantities appearing here are related to
the dimensional energy density and pressure in the follow-
ing manner: p̄r�; ε̄� ¼ ðpr; εÞ=ε0, where ε0 ¼ ðμc2Þ2=jλj.
Then, the relations (17) and (21), using the expression for λ̄
from Eq. (16), are equivalent to the statement that Mmax ∼
M3

p=
ffiffiffiffiffi
ε0

p
for a fluid star with an equation of state of the

form of Eq. (24) (cf. Ref. [25] where a similar expression
has been obtained for boson stars). In the case of boson
stars, such a limiting transition from a scalar field con-
figuration to a fluid system when the coupling constant
tends to infinity enables one to assume that stable con-
figurations can occur. In fact, both the systems supported
by a relativistic fluid [28] and the configurations consisting
of a complex scalar field [26], located to the left of the first
peak in the mass in the “mass–central density” diagram, are
stable against linear perturbations. It seems reasonable to
suppose that the same stability criterion may be applied for
the spinor field configurations considered in the present
paper. However, this question requires special studies, for
example, by analogy with Ref. [6].
We conclude this section with the expression for the

effective pressure (23), which, by changing the derivatives
f̄0 and ḡ0 using Eqs. (12) and (13), respectively, can be
rewritten as

p̄r ¼ 8

�
Ē

σ
ffiffiffiffi
N

p ðf̄2 þ ḡ2Þ þ ðf̄2 − ḡ2Þ

− 2
f̄ ḡ
x

þ 4λ̄ðf̄2 − ḡ2Þ2
�
: ð25Þ

This expression permits us to see the physical meaning of
the coupling constant λ̄: the case of λ̄ > 0 corresponds to
the attraction, and the case of λ̄ < 0 corresponds to the
repulsion. Correspondingly, in the case of negative λ̄, the
self-interaction term ensures a counterbalance force to
the gravitational attraction; this eventually enables us to
get configurations with large masses. In turn, the numerical
computations indicate that the magnitudes of the effective
pressure (25) and the pressure gradient dp̄r=dx along the
radius of the configuration are determined by specific
values of the system parameters fλ̄; ḡcg: for each of these
pairs, the pressure p̄r can be positive (negative) with
negative (positive) gradient, or the pressure and the gradient
are alternating functions along the radius.

IV. CONCLUSIONS AND DISCUSSION

The paper studies compact strongly gravitating configu-
rations supported by nonlinear spin-1

2
fields. The use of two

spinor fields having opposite spins enabled us to get a
diagonal energy-momentum tensor suitable for a descrip-
tion of spherically symmetric systems. Consistent with this,
we have found localized regular zero-node asymptotically
flat solutions for explicitly time-dependent spinor fields,
oscillating with a frequency E=ℏ. It was shown that for all
values of E and of the coupling constant λ considered here
these solutions describe configurations possessing a pos-
itive ADMmass. This enables one to use such solutions for
a description of compact gravitating objects (Dirac stars).
From the results obtained earlier for Dirac stars without

nonlinearity, it follows that for typical values of the spinor
field mass total masses of such configurations are
extremely small (see, e.g., Ref. [7]). Here, we show that
the presence of nonlinearity of spinor fields can alter the
situation drastically. In the simplest case, the nonlinearity
can be chosen in a quadratic form of the type λðψ̄ψÞ2. Then,
families of gravitational equilibria may be parametrized
by the single dimensionless quantity λ̄ ¼ λM2

pc=4πℏ3.
Consistent with the dimensions of ½λ� ¼ erg cm3, one can
assume that its characteristic value is λ ∼ λ̃μc2λ3c, where the
dimensionless quantity λ̃ ∼ 1. Then, the dependence of the
maximummass of the systems under consideration on jλ̄j in
the limit jλ̄j ≫ 1 [see Eq. (17)] can be represented as

Mmax ≈ 0.415
ffiffiffiffiffi
jλ̄j

q M2
p

μ
≈ 0.19

ffiffiffiffiffi
jλ̃j

q
M⊙

�
GeV
μ

�
2

:

This mass is comparable to the Chandrasekhar mass for
the typical mass of a fermion μ ∼ 1 GeV. In this respect, the
behavior of the dependence of the maximum mass of the
Dirac stars on the coupling constant is similar to that of
boson stars of Refs. [25,29].
Note that, in the absence of gravity, a nonlinear spinor

field has been investigated in Ref. [30] relating to the
problem of the quantization of an electron. In Refs. [31,32],
it was shown that the corresponding nonlinear Dirac
equation has regular solutions with finite energy (also
without gravity). This permits us to assume that in our case
a nonlinear spinor field can approximately describe fer-
mions (or quarks) which are in some quantum state where
they can be approximately described by some collective
wave function obeying a nonlinear Dirac equation. A
similar situation occurs in considering bosons in a Bose-
Einstein condensate described by the Gross-Pitaevski
equation and also in describing Cooper pairs in a super-
conductor by means of the Ginzburg-Landau equation.
In conclusion, we would like to briefly address the

question of stability of the configurations under consid-
eration. Similarly to models of neutron and boson stars,
which can be parametrized by their central densities, one
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can consider a one-parameter family of Dirac stars des-
cribed by the central value of the spinor field gc. The total
mass is then a function of this parameter, and for any value
of the coupling constant λ, there exists a first peak in the
mass (a local maximum). In the case of neutron and boson
stars, a transition through this local maximum indicates an
onset of instability against perturbations which compress
the entire star as a whole. One can naively expect that in the
case of Dirac stars a similar situation will also take place.
However, this requires special consideration by investigat-
ing the stability of spinor field configurations against, for
instance, linear perturbations.
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