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Classical phenomenological aspects of acoustic perturbations on a draining bathtub geometry where a
surface with a reflectivityR is set at a small distance from the would-be acoustic horizon, which is excised,
are addressed. Like most exotic compact objects featuring an ergoregion but not a horizon, this model is
prone to instabilities when jRj2 ≈ 1. However, stability can be attained for sufficiently slow drains when
jRj2 ≲ 70%. It is shown that the superradiant scattering of acoustic waves is more effective when their
frequency approaches one of the system’s quasinormal mode frequencies.
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I. INTRODUCTION

Analogue models for gravity have proven to be a
powerful tool in understanding and probing several
classical and quantum phenomena in curved spacetime,
namely the emission of Hawking radiation and the ampli-
fication of bosonic field perturbations scattered off spinning
objects, commonly dubbed superradiance. It was Unruh
who first drew an analogue model for gravity relating the
propagation of sound waves in fluid flows with the
kinematics of waves in a classical gravitational field [1].
This seminal proposal unfolded a completely unexpected
way of exploring gravity and opened a track to test it in the
laboratory. A summary of the history and motivation
behind analogue gravity can be found in [2].
The analogy between the propagation of sound waves in

a nonrelativistic, irrotational, inviscid, barotropic fluid
and the propagation of a minimally coupled massless
scalar field in a curved Lorentzian geometry was primarily
established by Visser [3,4], who also formulated the
concepts of acoustic horizon, ergoregion and surface
gravity in analogue models. The correspondence is purely
kinematic; i.e., only kinematic aspects of general relativity,
such as event horizons, apparent horizons and ergoregions,
are carried over into fluid mechanics. The effective geom-
etry of the flow is mathematically encoded in a Lorentzian
metric, commonly dubbed acoustic metric, governed by
the fluid equations of motion and not by Einstein’s field
equations. In other words, the dynamic aspects of general
relativity do not map into fluid mechanics. This partial
isomorphism thus offers a rather simple way to disentangle
the kinematic and dynamic contributions to some important
phenomena in general relativity.
Dumb holes, the acoustic analogues for black holes

(BHs), bear several structural and phenomenological simi-
larities to BHs. For instance, the draining bathtub vortex
[3,5], or simply draining bathtub, which features both an

ergoregion and an acoustic horizon, is a Kerr BH analogue.
The model describes the two-dimensional flow of a non-
relativistic, locally irrotational, inviscid, barotropic fluid
swirling around a drain. The fluid velocity increases
monotonically downstream. The region where the magni-
tude of the fluid velocity exceeds the speed of sound
defines the ergoregion. Nearer the drain is the acoustic
horizon, which comprises the set of points in which the
radial component of the fluid velocity equals the speed of
sound. Any sound wave produced inside the acoustic
horizon cannot escape from the region around the drain.
The phenomenology of the draining bathtub model has

been widely addressed over the last two decades. For
instance, works on quasinormal modes (QNMs) [6,7],
absorption processes [8] and superradiance [9–12] showed
that this vortex geometry shares many properties with Kerr
spacetime.
Kerr BHs are stable against linear bosonic perturbations

[13–16]. The event horizon absorbs any negative-energy
physical states which may form inside the ergoregion and
would otherwise trigger an instability. In fact, as first shown
by Friedman [17], asymptotically flat, stationary solutions to
Einstein’s field equations possessing an ergoregion but not
an event horizon may develop instabilities, usually called
ergoregion instabilities, when linearly interacting with scalar
and electromagnetic field perturbations, especially if rapidly
spinning. Ergoregion instabilities are known to affect a
plethora of exotic compact objects (ECOs) [18–26]. These
are loosely defined in the literature as objects without event
horizon, more massive than neutron stars and sufficiently
dim not to have been observed by state-of-the-art electro-
magnetic telescopes and detectors yet. Examples include
boson stars [27], anisotropic stars [28], wormholes [29],
gravastars [30], fuzzballs [31], black stars [32], superspinars
[33], Proca stars [34], collapsed polymers [35], 2 − 2 holes
[36] and anti–de Sitter bubbles [37]. All these ECOs may be
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prone to light ring instabilities [38]. The time scale of such
instability, however, is unknown. An exhaustive review
including references (if existing for a given ECO model)
on the formation, stability and electromagnetic and gravi-
tational signatures of such objects can be found in [39].
The recent gravitational-wave (GW) detections [40–45]

from compact binary coalescences heralded the dawn
of a brand new field in astronomy and astrophysics.
The newborn era of precision GW physics is expected to
probe strong-field gravity spacetime regions in the vicinity
of compact objects and, most importantly, to provide
the strongest evidence of event horizons. While current
electromagnetic-wave and GWobservations do support the
existence of BHs, some other exotic alternatives are not
excluded yet—not even those which do not feature an event
horizon. There has been a renewed interest in these exotic
alternatives over the last decades because some ECOs can
mimic the physical behavior of BHs, namely those whose
near-horizon geometry slightly differs from that of BHs,
such as Kerr-like ECOs [25,26]. These objects feature an
ergoregion and are endowed with a surface with reflective
properties at a microscopic or Planck distance from the
would-be event horizon of the corresponding Kerr BH. The
presence of an ergoregion and the absence of an event
horizon are the two key ingredients for ergoregion insta-
bilities to develop. Indeed, perfectly reflecting Kerr-like
ECOs exhibit some exponentially growing QNMs and are
unstable against linear perturbations in some region of
parameter space. However, the unstable modes can be
mitigated or neutralized when the surface is not perfectly-
[reflecting] but partially-reflecting, i.e., when dissipative
effects are considered.
This work focuses on classical phenomenological

aspects of a draining bathtub model whose acoustic horizon
is replaced by a surface with reflective properties. The
physical behavior of this “toy model” is quite similar to that
of Kerr-like ECOs. Although the experimental realization
of such system is not evident at present, it is still fruitful to
explore this theoretical setup, as it may provide some
insights into the generic features of ECOs and even be
useful for possible future experiments.
The present paper is organized as follows. Section II

covers in brief the main mathematical and physical features
of the draining bathtub geometry, introduces the equation
governing acoustic perturbations and discusses the proper-
ties of its solutions. Numerical results regarding QNM
frequencies and amplification factors of the system are
presented Sec. III, complemented with a low-frequency
analytical treatment in the Appendixes A and B.

II. DRAINING BATHTUB MODEL

A. Acoustic metric

The draining bathtub geometry introduced by Visser [3]
describes the irrotational flow of a barotropic and inviscid
fluid with background density ρ0 in a plane with a sink at

the origin. The irrotational nature of the flow together with
the conservation of angular momentum require the back-
ground density to be constant, i.e., position-independent.
As a result, the background pressure p0 and the speed of
sound c are also constant throughout the flow. Furthermore,
it follows from both the equation of continuity and the
conservation of angular momentum that the unperturbed
velocity profile v0 of the flowing fluid is given in polar
coordinates ðr;ϕÞ by

v0 ≡ vðrÞ0 er þ vðϕÞ0 eϕ; ð1Þ

with vðrÞ0 ¼ −A=r and vðϕÞ0 ¼ B=r, where A;B ∈ Rþ. er
and eϕ are the radial and azimuthal unit vectors, respec-
tively. A general velocity profile v, allowing for perturba-
tions, can be written as the gradient of a velocity potential
Ψ, i.e., v ¼ ∇Ψ. When v ¼ v0, Ψ ¼ Ψ0ðr; θÞ≡ A log rþ
Bϕ (apart from a constant of integration).
In polar coordinates ðt; r;ϕÞ, the line element of the

draining bathtub model has the form [5,46]

ds2 ¼ −c2dt2 þ
�
drþ A

r
dt
�

2

þ
�
rdϕ −

B
r
dt
�

2

; ð2Þ

where the constant prefactor ðρ0=cÞ2 has been omitted.
Equation (2) has the Painlevé-Gullstrand form [47].
The flow is stationary and axisymmetric; i.e., the metric

tensor in Eq. (2) does not depend explicitly on t nor on ϕ. In
polar coordinates, the Killing vectors associated with these
continuous symmetries are ξt ≡ ∂t and ξϕ ≡ ∂ϕ, respec-
tively. This geometry has an acoustic horizon located at
r ¼ rH ≡ A=c and a region of transonic flow defined by
rH < r < rE, where rE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
=c is the location of

the ergosphere.1

Performing the coordinate transformation

dt̃ ¼ dt −
Ar

c2r2 − A2
dr; ð3Þ

dϕ̃ ¼ dϕ −
AB

rðc2r2 − A2Þ dr; ð4Þ

one can cast Eq. (2) in the form [10,11,48]

ds2 ¼ −fðrÞdt̃2 þ ½gðrÞ�−1dr2 − 2B
c
dt̃dϕ̃þ r2dϕ̃2; ð5Þ

where

fðrÞ ¼ 1 −
A2 þ B2

c2r2
and gðrÞ ¼ 1 −

A2

c2r2
: ð6Þ

1The speed of the flowing fluid is ϕ—independent and given
by v0 ≡ kv0k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
=r. It equals the speed of sound at

r ¼ rE and exceeds it everywhere in the region rH < r < rE.
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The coordinates ðt̃; r; ϕ̃Þ are equivalent to the Boyer-
Lindquist coordinates commonly used to write the Kerr
metric.

B. Acoustic perturbations

1. Model

Perturbations to the steady flow can be encoded in the
velocity potential by adding a term to it, i.e., by considering
Ψ ¼ Ψ0 þΦ, whereΦ is the perturbation. The equations of
motion governing an acoustic perturbation in the velocity
potential of an irrotational flow of a barotropic and inviscid
fluid are the same as the Klein-Gordon equation for a
minimally coupled massless scalar field propagating in a
Lorentzian geometry [3]. In effect, the perturbationΦ in the
velocity potential satisfies the equation

□Φ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð7Þ

where □≡∇μ∇μ is the D’Alambert operator and ∇μ

denotes the covariant derivative. In the present case, the
index μ runs from 0 to 2, with 0 referring to the time
coordinate t and 1 and 2 to the spatial coordinates r and ϕ,
respectively.
One is interested in (2þ 1)—dimensional objects whose

geometry is described by Eq. (2) from r0 to infinity, where
r0 is the location of a surface with reflectivity R. Such
objects will hereafter be referred to as ECO-like vortices.
Perfectly reflecting and perfectly absorbing surfaces are
defined by jRj ¼ 1 and R ¼ 0, respectively. The model
sets the surface at a small distance from the would-be
acoustic horizon, i.e., at r0 ¼ rHð1þ δÞ, where 0 < δ ≪ 1.
The requirement that δ ≪ 1 allows ECO-like vortices to
feature an ergoregion (r0 < rE).

2

For the sake of simplicity, the uniform scalings r →
Ar=c and B → B=A will hereafter be adopted [6,11]. Note
that these linear transformations are equivalent to set A ¼
c ¼ 1 in Eqs. (2) and (5).

2. Perturbation equation

From the existence of the Killing vectors ξt and ξϕ, one
can separate the t- and ϕ-dependence of the field Φ, which
in turn can be expressed as a superposition of modes with
different frequencies ω and periods in ϕ, i.e.,

Φðt; r;ϕÞ ¼
Xþ∞

m¼−∞

Z þ∞

−∞
dωe−iωtRωmðrÞeþimϕ; ð8Þ

where RωmðrÞ, dubbed radial function, is a function of
the radial coordinate only and depends on B, ω and m.

The radial function satisfies the ordinary differential
equation (ODE) [9]

�
d2

dr2
þK1ðrÞ

d
dr

þK2ðrÞ
�
RωmðrÞ ¼ 0; ð9Þ

where

K1ðrÞ ¼
1þ r2 þ 2iðmB − ωr2Þ

rðr2 − 1Þ ; ð10Þ

K2ðrÞ ¼
ω2r4 −m2r2 þm2B2 − 2mBωr2 − 2imB

r2ðr2 − 1Þ : ð11Þ

Defining a new radial function SωmðrÞ as

RωmðrÞ ¼ SωmðrÞei
2
½ðω−mBÞ logðr2−1Þþ2mB logðrÞ�; ð12Þ

Eq. (9) becomes

�
d2

dr2
þ L1ðrÞ

d
dr

þ L2ðrÞ
�
SωmðrÞ ¼ 0; ð13Þ

where

L1ðrÞ ¼
r2 þ 1

rðr2 − 1Þ ; ð14Þ

L2ðrÞ ¼
ω2r4 − ðm2 þ 2mBωÞr2 þm2ð1þ B2Þ

ðr2 − 1Þ2 : ð15Þ

It is useful to introduce a tortoise coordinate defined by
the condition [9]

dr�
dr

¼ ½gðrÞ�−1 ¼
�
1 −

1

r2

�
−1
: ð16Þ

Explicitly, the tortoise coordinate is given by

r�ðrÞ ¼ rþ 1

2
log

���� r − 1

rþ 1

����; ð17Þ

which maps the acoustic horizon at rH ¼ 1 to r� → −∞
and r → þ∞ to r� → þ∞. Together with the definition [9]

SωmðrÞ ¼
HωmðrÞffiffiffi

r
p ; ð18Þ

Eq. (13) can be written as

�
d2

dr2�
þ VðrÞ

�
HωmðrÞ ¼ 0; ð19Þ

where the effective potential VðrÞ is given by
2ECO-like vortices reduce to the draining bathtub when δ ¼ 0

and R ¼ 0.
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VðrÞ ¼
�
ω −

mB
r2

�
2

−
gðrÞ
4r2

�
4m2 − 1þ 5

r2

�
; ð20Þ

which has the asymptotic behavior

VðrÞ ∼
�
ω2; r� → þ∞
ϖ2; r� → −∞

; ð21Þ

withϖ ≡ ω −mB. B coincides with the angular velocity of
the would-be acoustic horizon.

3. Asymptotic solutions

The presence of a surface with reflectivity R requires
solutions to Eq. (19) to be a superposition of ingoing and
outgoing waves at r ¼ r0. Thus, following the notation in
[49], general solutions have the asymptotics,

HωmðrÞ ∼
�
e−iϖr� þReþiϖðr�−2r�0Þ; r� → r�0
A−
s e−iωr� þ Aþ

s eþiωr� ; r� → þ∞
; ð22Þ

where r�0 ≡ r�ðr0Þ < 0. For the sake of simplicity, although
R may depend on ω and/or r0 [49–51], this work will
only focus on constant-valued (ω- and r0-independent)
reflectivities.
Perfectly reflecting (jRj2 ¼ 1) boundary conditions

(BCs), generically known as Robin BCs, are given by [52]

cosðξÞHωmðr0Þ þ sinðξÞH0
ωmðr0Þ ¼ 0; ð23Þ

where ξ ∈ ½0; πÞ and the prime denotes differentiation with
respect to r. Note that ξ ¼ 0 corresponds to a Dirichlet BC
(DBC), i.e., Hωmðr0Þ ¼ 0, whereas ξ ¼ π=2 refers to a
Neumann BC (NBC) imposed on HωmðrÞ at r ¼ r0, i.e.,
H0

ωmðr0Þ ¼ 0. Equivalently, DBCs (NBCs) can be defined
by R ¼ −1 (R ¼ 1).3 Perfectly reflecting BCs will here-
after be specialized to DBCs and NBCs only.
The solution in Eq. (22) may be written as a super-

position of modes with asymptotics [18]

Hþ
ωmðrÞ ∼

�
e−iϖr� ; r� → r�0
A−
∞e−iωr� þ Aþ

∞eþiωr� ; r� → þ∞
ð24Þ

H−
ωmðrÞ ∼

�
A−
h e

−iϖr� þ Aþ
h e

þiϖr� ; r� → r�0
eþiωr� ; r� → þ∞

: ð25Þ

Hþ
ωm is a draining bathtub solution (R ¼ 0) of the scatter-

ing problem, whereasH−
ωm is an ECO solution of the QNM

eigenvalue problem (since it is a superposition of ingoing
and outgoing waves at the reflective surface).

From the constancy of the Wronskians of Eq. (19), one
can write the following useful relations between the
coefficients A�

s , A�
h and A�

∞:

ωA−
∞ ¼ ϖAþ

h ; ð26Þ

ωAþ
∞ ¼ −ϖA−�

h ; ð27Þ

ωA−
s ¼ ϖðAþ

h − A−
hRe−2iϖr�

0Þ; ð28Þ

ωðAþ
s A−

∞ − A−
s Aþ

∞Þ ¼ ϖRe−2iϖr�
0 ; ð29Þ

ωðjA−
s j2 − jAþ

s j2Þ ¼ ϖð1 − jRj2Þ: ð30Þ

4. Superradiance

The amplification factor in a scattering process is defined
by [53]

Zðω;RÞ ¼
����A

þ
s

A−
s

����
2

− 1 ¼ −
�
1 −

mB
ω

�
1 − jRj2
jA−

s j2
; ð31Þ

where the last equality follows from the Wronskian relation
in Eq. (30). The amplitude of the reflected wave is greater
than that of the incident wave at infinity (i.e., Z > 0) when
0 < ω < mB. Note that the superradiance condition does
not depend on R.

5. Quasinormal modes

Once physical BCs at r� → r�0 and r� → þ∞ are
imposed, Eq. (19) defines an eigenvalue problem. If one
requires purely outgoing waves at infinity,

HωmðrÞ ∼ eþiωr� ; r� → þ∞; ð32Þ

the eigenvalues, the characteristic frequencies ωQNM, are
called QNM frequencies and the corresponding perturba-
tions Φ are dubbed QNMs [15]. The set of all eigenfre-
quencies is often referred to as QNM spectrum. The QNM
frequencies ωQNM are in general complex, i.e., ωQNM ¼
ωR þ iωI , where ωR ≡ RefωQNMg and ωI ≡ ImfωQNMg.
The sign of ωI defines the stability of the QNM. According
to the convention for the Fourier decomposition in Eq. (8),
if: ωI < 0, the mode is stable and τdam ≡ 1=jωIj defines the
damping e-folding time scale; ωI > 0, the mode is unstable
and τins ≡ 1=ωI defines the instability e-folding time scale;
ωI ¼ 0, the mode is marginally stable or stationary. When
analyzing unstable QNMs, one is commonly interested in
those corresponding to the shortest instability time scales.
In the present case, these are the fundamentalm ¼ 1 QNMs.
The absence of ingoing waves at infinity is equivalent to

setting A−
s ¼ 0 in Eq. (28), i.e., to requiring

Aþ
h =A

−
h ¼ Re−i2ðωQNM−mBÞr�

0 : ð33Þ
3Plugging Hωmðr0Þ ¼ ð1þRÞe−iϖr�

0 and H0
ωmðr0Þ ¼

−iϖð1 −RÞe−iϖr�
0 into Eq. (23), one can show that

R ¼ −½cosðξÞ − iϖ sinðξÞ�=½cosðξÞ þ iϖ sinðξÞ�.
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One can solve Eq. (33) for ωQNM, which yields

ωR ¼ mBþ 1

2r�0
½argðRÞ þ argðA−

h =A
þ
h Þ� ð34Þ

ωI ¼ −
1

4r�0
ðlog jRj2 þ log jA−

h =A
þ
h j2Þ: ð35Þ

argðRÞ dictates the difference in phase between ingoing
and outgoing waves. If R is a positive (negative) real
number, the phase difference is an even (odd) multiple of π.
Thus, NBCs (DBCs) refer to waves reflected in phase
(antiphase). IfR is a complex number, the phase difference
is a multiple of some real number between 0 and π. Without
loss of generality (as far as QNM stability is concerned),
the reflectivity R will hereafter be considered a real
parameter. Note that ωR does not depend on the magnitude
of R. Thus, once argðRÞ is fixed, the introduction of
dissipation (jRj2 < 1) does not affect the real part of the
QNM frequency. On the contrary, the imaginary part
changes with changing jRj2. It follows from Eq. (35) that
jRj2 determines QNM stability. Such stability is achieved
whenever ωI < 0, i.e., when

jRj2 <
����A

þ
h

A−
h

����
2

¼
����A

−
∞

Aþ
∞

����
2

; ð36Þ

where the last equality follows from the Wronskian
relations in Eqs. (26) and (27). The last term in Eq. (36)
is the inverse of the superradiant coefficient for the draining
bathtub (R ¼ 0). Thus, one can write

jRj2 < 1

1þ Z0ðωRÞ
; ð37Þ

where Z0ðωRÞ≡ ZðωR; 0Þ. In other words, the upper bound
on the range of values jRj2 can take to assure stability
is a function of the amplification factors for the draining
bathtub only. The same result can be derived from a
“bounce-and-amplify” argument [26,53]. When jRj2¼1,
the condition in Eq. (37) is satisfied only when Z0 < 0, i.e.,
when the real part of the QNM frequencies does not lie in
the superradiant regime (0 < ωR < mB); otherwise insta-
bilities are triggered.

III. NUMERICAL RESULTS

A. Numerical method

The numerical results to be presented in the following
were obtained using a direct-integration method. The
integration of Eq. (19) is performed using the numerically
convenient expansions,

H̃hðrÞ ¼ Hhðr;ϖÞ þRHhðr;−ϖÞ;
H̃∞ðrÞ ¼ Aþ

s H∞ðr;ωÞ þ A−
s H∞ðr;−ωÞ;

for the radial functionHωmðrÞ in Eq. (22) in the near and in
the far regions, respectively, where

Hhðr;ϖÞ ¼ ðr − rHÞ−iϖ=2
XNh

n¼0

cnðr − rHÞn;

H∞ðr;ωÞ ¼ eþiωr�
XN∞

n¼0

dnr−n:

Note that H̃hðr0Þ ≈ ð1þRδþiϖÞδ−iϖ=2. According to
Eq. (22), Hωmðr0Þ ∼ ð1þRÞe−iϖr�

0 , meaning that one
should require4 H̃hðr0Þ ∼ ð1þRÞδ−iϖ=2, from which fol-
lows thatR ¼ Rδ−iϖ. Nh and N∞ are the number of terms
of the partial sums. The coefficients cn and dn are functions
of ϖ and ω, respectively, and both depend on B and m.
Inserting each expansion into Eq. (19) and equating
coefficients order by order, it is possible to write
c1;…; cNh

(d1;…; dN∞
) in terms of c0 (d0). The latter is

usually set to 1. The choice of Nh and/or N∞ should be a
trade-off between computational time and accuracy. If the
goal is to compute QNM frequencies, one assigns a guess
value to ω and integrates Eq. (19) from r ¼ r∞ to r ¼ r0
using the ansatz H̃∞ with A−

s ¼ 0 so that the solution
satisfies the relations H̃∞ ¼ Hωm and dH̃∞=dr ¼
dHωm=dr at r ¼ r∞, where r∞ stands for the numerical
value of infinity. The previous step is repeated for different
guess values of ω until the solution satisfies the BC in
Eq. (33) (one-parameter shooting). If the algorithm is
numerically stable, variations in N∞ and/or r∞ do yield
similar results. On the other hand, if the aim is to estimate
the amplification factors defined in Eq. (31) for a given
frequency ω, one integrates Eq. (19) from r ¼ r0 to r ¼ r∞
using the ansatz H̃h so that the solution satisfies the
relations H̃h ¼ Hωm and dH̃h=dr ¼ dHωm=dr at r ¼ r0
and then extracts the coefficients A�

s of the ansatz H̃∞ at
infinity.
All numerical integrations were performed using the

integration parameters Nh ¼ 4 and N∞ ¼ 10. When com-
puting QNM frequencies (amplification factors), r∞ was
set to 100 (400). The guess values to the QNM frequencies
were chosen according to the numerical results reported
in [25].

B. Quasinormal modes

Figure 1 shows the fundamental m ¼ 1 QNM frequen-
cies of perfectly reflecting ECO-like vortices with different

4Using Eq. (17), one can show that e−iϖr�
0 ¼

e−iϖr0ð δ
δþ2

Þ−iϖ=2 ∼ δ−iϖ=2, where the last step holds as long
as δ ≪ 1.
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characteristic parameters5 fδ; Bg for DBCs (R ¼ −1) and
NBCs (R ¼ 1). Note that the bottom panels are plots of the
absolute value of ωI. As pointed out in Sec. II, ωR depends
on argðRÞ but not on jRj2. This means that the top panels
of Fig. 1 give information about the real part of the QNM
frequencies of both perfectly and partially reflecting ECO-
like vortices.
The results are qualitatively similar for both BCs. At first

order in B (i.e., for B≲ 0.1), ωR is a linear function of the
angular velocity B, as one would expect from Eq. (34). The
initial value (corresponding to B ¼ 0) depends on r�0 or,
more precisely, on the inverse of log δ, in accordance with
Eq. (17). Similarly, ωI grows monotonically with increas-
ing rotation. Both ωR and ωI change sign from negative to
positive as B increases. Within numerical accuracy, the sign
changes occur at the same critical value Bc, meaning ωR,
ωI < 0 when B < Bc and ωR, ωI > 0 when B > Bc. In
other words, QNMs turn from stable to unstable as the fluid
spins faster and faster and, furthermore, perfectly reflecting

ECO-like vortices admit zero-frequency (ω ¼ 0) QNMs.
Similar phenomenological aspects regarding the interaction
of massless bosonic fields with perfectly reflecting Kerr-
like ECOs have been reported in [25,26,54]. It was shown
in particular that some ECOs or ECO analogues can only
support static configurations of a scalar field for a discrete
set of critical radii [54–57]. This also holds true for the
present case, as shown in the Appendix B.
The aforementioned instability finds its origin in the

possible existence of negative-energy physical states inside
the ergoregion. In general, in BH physics, the absence of an
event horizon turns horizonless rotating ECOs unsta-
ble [17,25]. The event horizon of Kerr BHs, which can
be regarded as a perfectly absorbing surface (R ¼ 0),
prevents the falling into lower and lower negative-energy
states. The same does not occur when considering perfectly
reflecting BCs, hence the development of instabilities.
All the positive frequencies in the top panels of Fig. 1

refer to exponentially growing modes which meet the
superradiance condition, that is to say that acoustic per-
turbations with such frequencies are amplified (Z > 0)

FIG. 1. Real (top) and imaginary (bottom) parts of the fundamental m ¼ 1 QNM frequencies of ECO-like vortices with a perfectly
reflecting surface at r0 ≡ rHð1þ δÞ, 0 < δ ≪ 1, where rH is the would-be acoustic horizon of the corresponding draining bathtub, as a
function of the rotation parameter B, for DBCs (left) and NBCs (right). The left (right) arms of the interpolating functions refer to
negative (positive) frequencies. The colored dots are zero-frequency (marginally stable) QNMs.

5Since δ ≪ 1, δ is a more suitable parameter than r0.
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when scattered off perfectly reflecting ECO-like vortices,
thanks to the transfer of angular momentum and energy
from the latter to the former. According to Eq. (37), only
the absence of superradiant amplification when R ¼ 0
(Z0 < 0) guarantees exponentially decaying responses of
perfectly reflecting (jRj2 ¼ 1) ECOs to external linear
perturbations. From a dynamical point of view, the insta-
bility is expected to result in the scatterer spinning slower
and slower until its fundamental QNM mode, whose
frequency depends on B, starts decaying rather than
growing over time, which occurs when B ¼ Bc (note that
Z < 0 when B < Bc). The instability domain of ECO-like
vortices is depicted in Fig. 2. The threshold decreases
monotonically as r0 → rH (i.e., as δ → 0).
Is there any way of preventing ECO-like vortices from

developing instabilities without changing B? The answer is
affirmative. In the presence of superradiance (Z0 > 0),
unless B < Bc, it is clear that only partially reflecting
ECO-like vortices may be stable. However, attention must
be paid to the fact that an ECO with jRj2 < 1 is not
perforce dynamically stable. In fact, for each frequency
satisfying the superradiance condition, there is a range of
values jRj2 can take to assure stability. Using the small-
frequency approximations in Eqs. (A15) and (A16),
Eq. (37) takes the explicit form

jRj2 <
����ΓðmÞ2 þ iπψ iχðω=2Þ2m
ΓðmÞ2 − iπψ iχðω=2Þ2m

����
2

; ð38Þ

where χ ¼ βðβ −mÞ−1Qm−1
n¼0 ðβ −mþ nÞ2. The upper

bound on jRj2 represents the threshold for the manifesta-
tion of ergoregion instabilities and depends both on ω
and B, as shown in Fig. 3.

One is interested in setting restrictions on jRj2 which are
frequency-independent, in order to avert exponentially
growing linear perturbations regardless of their frequency.
The absolute upper bound on jRj2 from Eq. (37), herein
dubbed maximum reflectivity, is set by the maximum
amplification factor when R ¼ 0, i.e., to the minimum
of the function ð1þ Z0Þ−1, and is therefore independent of
δ. For sufficiently slow drains (B ≤ 1), ECO-like vortices
are stable against acoustic perturbations of any frequency
as long as jRj2 ≲ 70%.

C. Superradiant scattering

Figure 4 illustrates the amplification factors for super-
radiant m ¼ 1 acoustic linear perturbations scattered off
ECO-like vortices with δ ¼ 10−6, B ¼ 0.6 and different
reflectivities. The numerical results were obtained via the
direct-integration method described previously, whereas
the analytical ones were computed using the small-
frequency approximations in Eqs. (A15) and (A16) via
Eq. (A18). The closeness between numerical and analytical
results is evident. The data for different reflectivities
share some qualitatively features: the amplification factors
appear to vanish at the endpoints of the superradiant regime
(i.e., at ω ¼ 0 and ω ¼ mB) and have a maximum value.
The graph referring to the draining bathtub (R ¼ 0) is in
agreement with numerical results previously reported in the
literature [6,7]. The maximum amplification is about 8%
whenR ¼ 0, meaning the maximum reflectivity is approx-
imately 92% when B ¼ 0.6. When jRj2 is nonvanishing,
a resonance becomes noticeable around a frequency of
about 0.372 (dotted vertical lines in Fig. 4), which matches
the real part of a QNM frequency precisely. Like in
classical mechanics, an acoustic linear perturbation extracts
more angular momentum and energy when its frequency

FIG. 2. Ergoregion instability rotation parameter threshold of
the fundamental m ¼ 1 QNMs of perfectly reflecting ECO-
like vortices for both DBCs (R ¼ −1) and NBCs (R ¼ 1).
The shaded regions refer to the domain of the instability.

FIG. 3. Plot of ð1þ Z0Þ−1 as a function of the rotation
parameter B and of the frequency ω of acoustic perturbations.
When jRj2 < ð1þ Z0Þ−1, ECO-like vortices are dynamically
stable. Note that the upper limit on jRj2 decreases as B increases.
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coincides with the object’s proper frequencies of vibration.
The peak’s height is determined by the imaginary part of
ωQNM [49], being maximum when ωI ¼ 0. As shown in
Fig. 5, the QNM which sets the peaks in Fig. 4 is

marginally stable when R ≈ 0.964 (dotted vertical line
in Fig. 5). Figure 6 confirms that the maximum value
of the amplification factor occurs indeed for a reflectivity
around 0.964.
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10– 3

10– 2

10– 1

100

Z
1

Numerical
Analytical

= 0.00 = 0.25

max(Z1)
0.00 7.7%
0.25 13.1%
0.50 24.8%
0.75 68.1%

0.0 0.2 0.4 0.6 0.8 1.0
10–5

10–4

10–3

10–2

10–1

100

/mB

Z
1

= 0.50

0.0 0.2 0.4 0.6 0.8 1.0

/mB

= 0.75

R = 0.372

FIG. 4. Numerical and analytical values of the amplification factors for superradiant (0 < ω < mB) acoustic perturbations withm ¼ 1
scattered off a ECO-like vortex with B ¼ 0.6 and featuring a surface with reflectivity R at r0 ¼ rHð1þ δÞ, where rH is the would-be
acoustic horizon of the corresponding draining bathtub and δ ¼ 10−6. The resonance matches the real part of the fundamental QNM
frequency of the vortex-like ECO (dotted vertical lines).
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R 0.372

FIG. 5. Imaginary part of the QNM frequency which sets the
peaks of the amplification factors plotted in Fig. 4, as a function of
the reflectivityR. ωI vanishes atR ≈ 0.964 (dotted vertical line).

FIG. 6. Analytical approximation for the amplification factors
plotted in Fig. 4 in the neighborhood of the fundamental m ¼ 1
QNM frequency for reflectivities near R ≈ 0.964.

CARLOS A. R. HERDEIRO and NUNO M. SANTOS PHYS. REV. D 99, 084029 (2019)

084029-8



IV. CONCLUSION

GW astronomy opens a new window on the Universe
and is expected to unveil spacetime features in the
vicinity of compact objects, testing both general relativity
and BH physics predictions. However, present GW
observations are not precise enough to (indirectly) probe
the true nature of BH candidates and do not rule out
alternative scenarios. This has been one of the strongest
motivations behind ECO models. Their phenomenology
has been widely addressed in search of alternatives to the
BH paradigm.
Following this trend, this work aimed to explore the

phenomenology of acoustic perturbations of an analogue
model for ECOs built from the draining bathtub geometry,
named herein ECO-like vortices. These objects feature an
ergoregion and are endowed with a surface with reflective
properties rather than an acoustic horizon. Although ECO-
like vortices do have the key ingredients to trigger
ergoregion instabilities, it turns out that dissipation miti-
gates or even neutralizes exponentially growing modes.
The analysis led to two main conclusions, supported by a

low-frequency analysis and by direct-integration numerical
calculations. First, when the object’s surface is perfectly
reflecting (jRj2 ¼ 1), an instability develops when the
vortex is spinning at a rate above some critical value of
the rotation parameter. Despite the dependence of the
instability domain on the location of the surface, it
generally occurs when B > Oð0.1Þ. The instability is
intimately linked to the ergoregion, where negative-energy
physical states can form. These cannot be absorbed by the
vortex’s surface and, therefore, cause the exponential
growth of acoustic perturbations. The ergoregion instability
of ECO-like vortices is attenuated or neutralized when its
surface is not perfectly but partially reflecting. An absorp-
tion coefficient greater than approximately 30% prevents
unstable QNMs to develop in ECO-like vortices with B
below unit. The results are similar to those reported in
[25,26,49] and attests that a general way of preventing such
instabilities from arising is to incorporate dissipativelike
effects into the surface.
Second, the stimulation of exponentially growing QNMs

is optimized for more reflective surfaces and, therefore, is
expected to generate narrower spectral lines in the emission
cross sections, similarly to those in the absorption cross
sections of spherically symmetric ECOs [49]. An interest-
ing extension of the work presented herein would precisely
be to compute the emission cross sections of ECO-like
vortices, as it would be useful in probing the effects of
dissipation upon superradiant scattering in possible future
experiments. Implementing a setup which reproduces the
ECO-like vortex introduced here appears to be a thorny
issue. This would require to place a right circular cylinder at
the acoustic horizon of a vortex flow.
Moreover, the reflectivity R was assumed to be

frequency-independent. A possible future extension may

lift this assumption and consider ECOs with frequency-
dependent reflectivities.
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APPENDIX A: ANALYTICAL ANALYSIS

A number of relevant quantities, such as QNM frequen-
cies and amplification factors, can be computed analytically
in the low-frequency regime (ω ≪ 1) using matching-
asymptotic techniques [22]. Contrarily to previous works
[58], mostly focused on the BH case (R ¼ 0), here the
presence of outgoing waves near the would-be acoustic
horizon is considered and the problem is solved for a
generic reflectivity R. For that purpose, the spacetime
region outside the reflective surface at r ¼ r0 is split into a
region near the would-be acoustic horizon, i.e., in the limit
r − rH ≪ 1=ω, and a region far from it, i.e., at infinity,
where r ≫ rH. In the following, besides the condition
Bω ≪ 1, the assumption ϖ ≪ 1 for frequencies in the
superradiant regime is also considered. One starts looking
for asymptotic solutions to Eq. (13) in each spacetime
region and imposing the BC in Eq. (33), and then matches
them in the overlapping region, where 1 ≪ r − rH ≪ 1=ω.
To solve Eq. (13) in the far region, it is convenient to

rewrite it in the form,

�
Δ

d
dr

�
Δ

d
dr

�
þ
�
ωr −

mB
r

�
2

−
Δm2

r

�
SωmðrÞ ¼ 0;

ðA1Þ

where ΔðrÞ ¼ rgðrÞ. When r ≫ rH and Bω ≪ 1, Eq. (A1)
reduces to a Bessel ODE,

�
r2

d2

dr2
þ r

d
dr

þ ðω2r2 −m2Þ
�
SωmðrÞ ¼ 0; ðA2Þ

whose general solution is a linear combination of Bessel
functions of the first and second kinds,

SωmðrÞ ¼ AJmðωrÞ þ BYmðωrÞ; ðA3Þ

where A;B ∈ C. The large-r behavior of the asymptotic
solution in Eq. (A3) is
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SωmðrÞ ∼
ffiffiffiffiffiffiffiffi
2

πωr

r
½A cosðωr − ςÞ þ B sinðωr − ςÞ�; ðA4Þ

where ς≡ πðmþ 1=2Þ=2, which can be written in terms of
the radial function HωmðrÞ and as a superposition of
ingoing and outgoing waves. In effect,

HωmðrÞ ∼
ðAþ iBÞe−iðωr−ςÞ þ ðA − iBÞeþiðωr−ςÞffiffiffiffiffiffiffiffiffi

2πω
p : ðA5Þ

The amplitudes of the ingoing and outgoing waves are
proportional to (Aþ iB) and (A − iB), respectively. The
main goal of the asymptotic matching is to find expressions
for A and B in terms of r0 (or δ), R, B, m and ω.
The small-r behavior of the asymptotic solution in

Eq. (A3) is

SωmðrÞ ∼A
ðω=2Þm
Γðmþ 1Þ r

þm − B
ΓðmÞ

πðω=2Þm r−m: ðA6Þ

In the near region, by defining

SωmðrÞ ¼ r−m½gðrÞ�−iϖ2TωmðrÞ; ðA7Þ

introducing the new coordinate z ¼ r−2 and using the
conditions Bω ≪ 1 and ϖ ≪ 1, one can bring Eq. (13)
into the hypergeometric form

�
zð1 − zÞ d2

dz2
þ ½γ − ðαþ β þ 1Þz� d

dz
− αβ

�
TωmðzÞ ¼ 0;

ðA8Þ

where 2α ¼ 2þm − iϖ, 2β ¼ m − iϖ and γ ¼ mþ 1. It
is easy to check that α, β and γ satisfy the relations
α − β ¼ 1, αþ β ¼ 2α − 1 ¼ 2β þ 1 and γ − α − β ¼ iϖ.
The hypergeometric differential equation has three

singular points: z ¼ 0, 1, ∞. Its most general solution in
the neighborhood of z ¼ 1 reads

TωmðzÞ ¼ CT i
ωmðzÞ þDð1 − zÞγ−α−βTo

ωmðzÞ; ðA9Þ

where C;D ∈ C, T i
ωmðzÞ ¼ 2F1ðα; β; αþ β − γ þ 1; 1 − zÞ

and To
ωmðzÞ ¼ 2F1ðγ − β; γ − α; γ − α − β þ 1; 1 − zÞ.

2F1ðα; β; γ; zÞ is the hypergeometric function. Since
T i
ωmð1Þ ¼ To

ωmð1Þ ¼ 1, one finds that the small-r behavior
of the asymptotic solution in Eq. (A9) is

TωmðzÞ ∼ C þDð1 − zÞþiϖ: ðA10Þ

Using Eqs. (18) and (A7), one can show that

HωmðrÞ ∼ Ce−iϖr� þDeþiϖr� ðA11Þ

near the would-be acoustic horizon, where

C≡ C
�
rþ 1

rer

�
−iϖ

; D≡D
�
rþ 1

rer

�þiϖ
: ðA12Þ

Therefore, the BC (33) turns into

D
C
¼ R

�
r20

r20 − 1

�
iϖ

: ðA13Þ

Given that γ ∈ Z, one must be careful when analyzing
the large-r (small-z) behavior of the asymptotic solution
(A9) [59,60]. One can show that [58]

T i
ωmðzÞ ∼ T i

� ð−1Þm−1

mðα −mÞmðβ −mÞm
z−m þ ψ i

�
;

To
ωmðzÞ ∼ T o

� ð−1Þm−1

mð1 − αÞmð1 − βÞm
z−m þ ψo

�
;

where

T i ≡ ð−1Þmþ1

m!

Γðαþ β −mÞ
Γðα −mÞΓðβ −mÞ ;

ψ i ≡ ψðαÞ þ ψðβÞ − ψðmþ 1Þ − ψð1Þ;

T o ≡ ð−1Þmþ1

m!

Γðmþ 2 − α − βÞ
Γð1 − αÞΓð1 − βÞ ;

ψo ≡ ψðmþ 1 − αÞ þ ψðmþ 1 − βÞ − ψðmþ 1Þ − ψð1Þ:

ðqÞn is the rising Pochhammer symbol and ψð·Þ is the
digamma function [59,60].
Using Eq. (A7) and rearranging the terms, one gets

SωmðrÞ ∼Arþm þ Br−m; ðA14Þ

where

A≡ ð−1Þm−1

m

�
T iC

ðα −mÞmðβ −mÞm
þ T oD
ð1 − αÞmð1 − βÞm

�
;

B≡ ψ iT iC þ ψoT oD:

Equation (A14) exhibits the same dependence on r as
Eq. (A6). Matching the two solutions, it is straightforward
to show that

A ¼ Γðmþ 1Þ
ðω=2Þm A; ðA15Þ

B ¼ −
πðω=2Þm
ΓðmÞ B: ðA16Þ

One can derive some relevant physical quantities from
Eqs. (A15), (A16) and related, namely QNM frequencies
and amplifications factors of acoustic perturbations scat-
tered off ECO-like vortices.
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The very definition of QNM requires the amplitude of
the ingoing wave at infinity to vanish. It then follows from
Eq. (A5) that one must impose

Aþ iB ¼ 0: ðA17Þ

Equation (A17) can be solved using a simple root-finding
algorithm.
On the other hand, according to Eq. (31), the amplifi-

cation factors are given by

Zmðω;RÞ ¼
����A − iB
Aþ iB

����
2

− 1: ðA18Þ

APPENDIX B: STATIC CONFIGURATIONS

In order to study the static configurations of Eq. (9), one
defines the radial function LðrÞ [9],

RωmðrÞ ¼ re
i
2
½ðω−mBÞ logðr2−1Þþ2mB logðrÞ�LωmðrÞ; ðB1Þ

introduces the new coordinate x ¼ r2 − 1 and sets ω ¼ 0,
which reduces the radial equation to

�
d2

dx2
þW1ðxÞ

d
dx

þW2ðxÞ
�
LωmðxÞ ¼ 0; ðB2Þ

where

W1ðxÞ ¼
1

x
þ 1

xþ 1
; ðB3Þ

W2ðxÞ ¼
1

4xðxþ 1Þ
�
m2B2

x
þ 1

xþ 1
þ ð1 −m2Þ

�
: ðB4Þ

Equation (B2) is a standard Riemann-Papparitz ODE.
Defining

LωmðxÞ ¼ xσðxþ 1Þ−1
2GωmðxÞ; ðB5Þ

with 2σ ¼ −imB, and introducing the new coordinate
y ¼ −x, one gets

�
yð1 − yÞ d2

dy2
þ ρð1 − yÞ d

dy
− κλ

�
GωmðyÞ ¼ 0; ðB6Þ

with 2κ ¼ −mð1þ iBÞ, 2λ ¼ −mð−1þ iBÞ and ρ ¼
1 − imB. It is easy to check that κ, λ and ρ satisfy the
relations κ þ λþ 1 ¼ ρ, λ − κ ¼ m and ρ̄ ¼ 2 − ρ, where ρ̄
is the complex conjugate of ρ.
The general solution of Eq. (B6) reads [59]

GωmðyÞ ¼ E12F1ðκ; λ; ρ; yÞ
þ E2y1−ρ2F1ð−λ;−κ; ρ̄; yÞ; ðB7Þ

where E1; E2 ∈ C. Equivalently,

LωmðxÞ ¼ ðxþ 1Þ−1
2·

½E1xσ2F1ðκ; λ; ρ;−xÞ þ E2x−σ2F1ð−λ;−κ; ρ̄;−xÞ�; ðB8Þ

where E2 ≡ ð−1Þ1−ρE2. The small-x behavior of Eq. (B8)
must be written in terms of the radial function HðrÞ for the
BC in Eq. (33) to be applied. One can show that

HωmðrÞ ∼ E1eþimBr� þ E2e−imBr� ðB9Þ

near the would-be acoustic horizon, meaning the BC to be
imposed at r ¼ r0 is

E2=E1 ¼ Reþ2imBr�
0 : ðB10Þ

The large-x behavior of Eq. (B8) can be analyzed by
making use of the linear transformation formula 15.3.7 in
[59] and rearranging the terms. In effect, one gets

LωmðxÞ ¼ ðxþ 1Þ−1
2½F 1xþ

m
2 þ F 2x−

m
2 �; ðB11Þ

with

F 1 ¼
�
E1

ΓðρÞ
λΓðλÞ2 − E2

Γðρ̄Þ
κΓð−κÞ2

�
Γðλ − κÞ; ðB12Þ

F 2 ¼
�
E1

ΓðρÞ
κΓðκÞ2 − E2

Γðρ̄Þ
λΓð−λÞ2

�
Γðκ − λÞ: ðB13Þ

It follows from the explicit expression for the energy flux
across an arbitrary surface at a constant radial coordinate r
that the amplitudes of the ingoing wave and of the outgoing
wave are proportional to (F 1 − iF 2) and (F 1 þ iF 2),
respectively [9]. The absence of ingoing waves at infinity
requires that

F 1 − iF 2 ¼ 0; ðB14Þ

which implies that

E1

E2

¼ Γðρ̄Þ
ΓðρÞ

�
ΓðκÞ
Γð−κÞ

ΓðλÞ
Γð−λÞ

�
2

·

λΓð−λÞ2Γðλ − κÞ − iκΓð−κÞ2Γðκ − λÞ
κΓðκÞ2Γðλ − κÞ − iλΓðλÞ2Γðκ − λÞ : ðB15Þ

On the other hand, Eq. (23) can be written in terms of the
radial function LωmðxÞ,

_Lωmðx0Þ
Lωmðx0Þ

¼ −
3

4ð1þ x0Þ
−

2 cotðξÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x0

p ; ðB16Þ

where the dot denotes differentiation with respect to x. Like
Eq. (B14), Eq. (B16) is a condition on the amplitudes E1

and E2. Explicitly,
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E1

E2

¼ ðr20 − 1Þ−2σ ½ð3 − 4σÞr20 − 3� tanðξÞ þ 2r0ðr20 − 1Þ
½ð3þ 4σÞr20 − 3� tanðξÞ þ 2r0ðr20 − 1Þ : ðB17Þ

Equating the right-hand side of Eqs. (B15) and (B17), one obtains a relation between r0 (or δ), B and m. Once r0 (or δ) and
m are fixed, one can compute Bc; i.e., the critical value of the rotation parameter above which QNMs are unstable. The
instability domain is depicted in Fig. 2.
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