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We analyze the thermodynamics of massless bosonic systems in D-dimensional anti–de Sitter
spacetime, considering scalar, electromagnetic, and gravitational fields. Their dynamics are described
by Pöschl-Teller effective potentials and quantized in a unified framework, with the determination of the
associated energy spectra. From the microscopic description developed, a macroscopic thermodynamic
treatment is proposed, where an effective volume in anti–de Sitter geometry is defined and a suitable
thermodynamic limit is considered. Partition functions are constructed for the bosonic gases, allowing the
determination of several thermodynamic quantities of interest. With the obtained results, general aspects of
the thermodynamics are explored.
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I. INTRODUCTION

Asymptotically anti–de Sitter geometries gained a new
relevance with the anti–de Sitter/conformal field theory
(AdS=CFT) correspondences [1–3]. In the best-known sce-
nario, this duality establishes a dictionary between gravita-
tional dynamics in anti–de Sitter spacetime and N¼ 4
supersymmetric Yang-Mills theory. Generalizations were
proposed, considering other geometries and field theories,
leading to the gauge/gravity correspondences. Applications
in a variety of physical settings were developed, from
fundamental quantum gravity models to phenomenological
condensed matter systems.
Despite the present success of the AdS=CFT program,

relevant questions remain for the complete understanding
of the duality. In particular, there are still open issues
concerning the relation between the thermodynamics of the
gravity and field theory sides. Specifically focusing on the
gravitational physics, thermodynamic aspects of asymp-
totically AdS spacetimes have received considerable atten-
tion in recent years [4–17].
An important related theme is the behavior of a thermal

gas in AdS spacetime, eventually collapsing to form a black

hole. Hawking and Page, within a Euclidean path integral
approach, considered the thermodynamics of thermal gases
and black holes in AdS space [18]. They observed that the
Schwarzschild-anti de Sitter (SAdS) and the thermal AdS
geometries are different phases of a single physical system.
In the presentwork,we consider the thermal anti–de Sitter

spacetime, that is, the setup treated by Hawking-Page in the
no–black hole regime. We analyze the thermodynamics of
bosonic systems in AdS geometry within a real time
approach. Scalar, electromagnetic, and gravitational fields
are considered. A fundamental issue in this framework is the
perturbative and quantum dynamics in AdS background.
Results concerning the decomposition of fields of interest in
AdS are commented in Refs. [19–23]. The quantum scalar
field in AdS spacetimewas considered in Refs. [24–26], and
the quantization of the electromagnetic field was studied in
Refs. [27–30].
To characterize the thermodynamics of a bosonic gas in

AdS geometry, a unified framework for the quantization of
the scalar, electromagnetic, and gravitational fields is
introduced. Energy spectra for the physical modes are
derived, and partition functions are constructed. In a suitable
thermodynamic limit, quantities of interest are calculated,
and an overall analysis is performed. The present work
suggests that AdS geometry qualitatively behaves as a
confining box (as expected), but with correction terms
reflecting the nontrivial geometric background.
The structure of this paper is presented in the following.

In Sec. II, the AdS spacetime and the fields of interest are
introduced. In Sec. III, the bosonic systems are quantized,
and the energy spectra are determined. In Sec. IV, the
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thermodynamics of the considered scenarios are analyzed.
A qualitative description of the thermodynamic character-
istics and instabilities of the considered systems is pre-
sented in Sec. V. Final remarks are made in Sec. VI. We use
signature (−;þ; � � � ;þ) and natural units with G ¼ ℏ ¼
c ¼ kB ¼ 1 throughout this paper.

II. ANTI-DE SITTER SPACETIME
AND FIELD EQUATIONS

A. Background geometry

In this work, we consider the D-dimensional AdS
spacetime. More precisely, we will denote as AdS geometry
the universal covering space of the maximally symmetric
Lorentzian geometry with negative constant curvature.
With this definition, AdS geometry does not contain any
closed timelike curves, and it is a well-behaved solution of
vacuum Einstein equations with a negative cosmological
constant Λ.
The D-dimensional AdS geometry (M, gμν) can be

locally described as a product of a two-dimensional
manifold M2 and the (D − 2)-dimensional sphere SD−2.
The subspaceM2 is spanned by a timelike coordinate t and
a radial spacelike coordinate r. The coordinate system
based on fθ1; θ2;…; θD−2g describes SD−2. With this
decomposition, the background metric can be written in
the form

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2γijdθidθj; ð1Þ

where γij is the metric of the (D − 2)-dimensional unit
sphere SD−2,

γijdθidθj ¼ ðdθ1Þ2 þ sin2θ1ðdθ2Þ2 þ � � �
þ sin2θ1 � � � sin2θD−2ðdθD−2Þ2; ð2Þ

and the function fðrÞ is given by

fðrÞ ¼ 1þ r2

L2
: ð3Þ

The parameter L, the “AdS radius,” is related to the negative
cosmological constant Λ as

L2 ≡ −
ðD − 1ÞðD − 2Þ

2Λ
: ð4Þ

The choice of the foliation in Eq. (1) is suitable to the
investigation of the equations of motion associated to the
bosonic fields.
A convenient chart is based on the so-called tortoise

coordinate x, defined as

x≡
Z

dr
fðrÞ ¼ L arctan

�
r
L

�
: ð5Þ

For the AdS geometry, a simple expression for the function
rðxÞ can be obtained, r ¼ L tanðx=LÞ. In terms of the
tortoise coordinate x, the metric g̃ab on the two-dimensional
AdS geometry (M2, g̃ab) is written as

g̃abdyadyb ¼ sec2
�
x
L

�
ð−dt2 þ dx2Þ; ð6Þ

with y0 ¼ t and y1 ¼ x. In the following sections, the
covariant derivatives on M, M2, and SD−2 are denoted by
∇μ, ∇̃a and Di, respectively.
Anti-de Sitter spacetime has interesting properties. An

important feature of this geometry is that its spatial infinity
is timelike. Massless particles reach spatial infinity in a
finite time, according to a static observer. Assuming
specific boundary conditions, usually denoted as “reflexive
boundary conditions” [24], massive and massless particles
can be confined into AdS geometry.
From those considerations, AdS spacetime can be

interpreted as a box with an effective volume Veff ,
associated to a given static observer. Consider an inertial
observer that sends a massless particle outward. According
to this observer, the time t∞ for the particle to reach spatial
infinity is

t∞ ¼ π

2
L: ð7Þ

A natural definition for an effective radius (Reff ) is
Reff ≡ ct∞ ¼ cπL=2, where we have introduced back the
speed of light c for clarity. Neglecting nonessential pro-
portionality factors, we define an effective volume asso-
ciated with AdS geometry as

Veff ≡ LD−1: ð8Þ

The notion of an AdS effective volume will be important
for the implementation of a thermodynamic limit on the
field dynamics at the anti–de Sitter spacetime. Further
comments on this definition will be presented in Sec. V D.

B. Massless scalar field

The simplest bosonic system considered is a massless
scalar field Φ satisfying the Klein-Gordon equation,

□Φ ¼ 0; ð9Þ

where□ is the Laplace-Beltrami operator. We expand Φ in
terms of scalar spherical harmonics SkS as
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Φðt;x;fθigÞ¼
X∞
l¼0

X
fmig

�
L tan

�
x
L

��
−D−2

2

ϕsc
l ðt;xÞSkSðfθigÞ:

ð10Þ

In Eq. (10), fk2Sg are the eigenvalues of SkS [19], given by

k2S ¼ lðlþD − 3Þ; l ¼ 0; 1; 2;…: ð11Þ

The integers fmig label the modes in each subspace
spanned by the eigenmodes of SkS .
The equation of motion for each mode ϕsc

l is obtained by
straightforward substitution of the expansion (10) in
Eq. (9),

∂2ϕsc
l ðt; xÞ
∂t2 ¼

� ∂2

∂x2 − VscðxÞ
�
ϕsc
l ðt; xÞ; ð12Þ

where VscðxÞ is a scalar effective potential, the explicit
expression of which is

VscðxÞ ¼ 1

L2

�
Asc

cos2ðxLÞ
þ Bsc

sin2ðxLÞ
�
: ð13Þ

The coefficients Asc and Bsc for the massless scalar
potential are

Asc ¼ DðD − 2Þ
4

; ð14Þ

Bsc ¼ k2S þ
ðD − 2ÞðD − 4Þ

4

¼ lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ
4

; ð15Þ

with the multipole index l assuming values in
l ¼ 0; 1; 2;….

C. Electromagnetic field

A more complex bosonic perturbation in AdS back-
ground is the electromagnetic field. Its dynamics is deter-
mined by the electromagnetic tensor Fμν, subjected to
Maxwell’s equations,

∇νFμν ¼ 0; ∇½σFμν� ¼ 0: ð16Þ
From the classical electromagnetic tensor Fμν, the potential
Aμ is defined as

Fμν ¼ ∇μAν −∇νAμ: ð17Þ
The equations of motion (16) can be decomposed into two
parts, decoupling Aμ into vector and scalar modes (Ael-vc

μ

and Ael-sc
μ , respectively). Each of these modes, after being

expanded in terms of appropriate spherical harmonics,

generates a set of second order linear differential
equations, characterized by certain effective potentials.
In the following, the formalism presented in Refs. [19–21]
will be used.

1. Electromagnetic vector modes

Electromagnetic vector modes Ael-vc
μ can be written as an

expansion in vector harmonics fVkV
i g as

Ael-vc
μ dxμ ¼

X∞
l¼1

X
fmig

ϕel-vc
l ðxÞVkV

i dzi; ð18Þ

where ϕel-vc
l ðxÞ is the master variable associated to this

mode. The function ϕel-vc
l ðrÞ represents the radial modes of

Ael-vc
μ . The vector spherical harmonics VkV

i satisfy the

eigenvector equation ðDjDj þ k2VÞVkV
i ¼ 0, with eigenval-

ues fk2Vg given by

k2V ¼ lðlþD − 3Þ − 1; l ¼ 1; 2;…: ð19Þ
Using the expansion (18), it is obtained a differential

equation associated to the master variable ϕel-vc
l ðxÞ The new

wave equation has the same form of Eq. (12), but with an
effective potential Vel-vcðxÞ given by

Vel-vcðxÞ ¼ 1

L2

�
Ael-vc

cos2ðxLÞ
þ Bel-vc

sin2ðxLÞ
�
: ð20Þ

The coefficients Ael-vc and Bel-vc are

Ael-vc ¼ ðD − 2ÞðD − 4Þ
4

; ð21Þ

Bel-vc ¼ k2V þ 1þ ðD − 4Þ2
4

¼ lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ
4

; ð22Þ

with the multipole index l ¼ 1; 2;….

2. Electromagnetic scalar modes

Electromagnetic scalar modes Ael-sc
μ can be written in

terms of two quantities, a vector Aa orthogonal to Sn and a
scalar quantity A. Hence, with a convenient decomposition
in spherical harmonics, Ael-sc

μ can be expressed as

Ael-sc
μ dxμ ¼

X∞
l¼1

X
fmig

ðAlaSkSdya þ AlDiSkSdθiÞ: ð23Þ

From the first Maxwell equation in (16), one obtains that

∇̃a

��
L tan

�
x
L

��
D−4

ð∇̃aAl þ kSAa
lÞ
�

¼ 0; ð24Þ
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where the quantity k2S is the scalar harmonic eigenvalue
presented in Eq. (11). The result in Eq. (24) implies [19]
that there is a function ϕel-sc

l satisfying

∇̃aϕ
el-sc
l ¼ gab

�
L tan

�
x
L

��
D−4

ð∇̃bAl þ kSAb
lÞ: ð25Þ

A master variable ϕ̃el-sc
l is then introduced,

ϕ̃el-sc
l ≡

�
L tan

�
x
L

��
−D−4

2

ϕel-sc
l ; ð26Þ

and in terms of ϕ̃el-sc
l , electromagnetic scalar modes are

characterized by a wave equation in the form (12) with the
effective potential [19]

Vel-sc ¼ 1

L2

�
Ael-sc

cos2ðxLÞ
þ Bel-sc

sin2ðxLÞ
�
: ð27Þ

The constants Ael-sc and Bel-sc are given by

Ael-sc ¼ ðD − 4ÞðD − 6Þ
4

; ð28Þ

Bel-sc ¼ k2S þ
ðD − 2ÞðD − 4Þ

4

¼ lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ
4

; ð29Þ

with the multipole index l ¼ 1; 2;….

D. Gravitational perturbation

Quantum properties of the gravitational field can be
considered in a field theory effective approach.
Gravitational perturbations propagating in AdS spacetime
can be expanded in terms of harmonic functions on SD−2.
The perturbed Einstein equations are then expressed in
terms of a set of gauge invariant quantities [22]. These
quantities are combinations of the metric perturbations hμν,
which are related to the perturbed spacetime metric gμν as

gμν ¼ gð0Þμν þ hμν; ð30Þ

with gð0Þμν representing the AdS metric. By taking appro-
priate combinations of gauge invariant variables con-
structed from hμν, the perturbative equations are reduced
to three decoupled sets. They furnish the tensor, vector, and
scalar perturbations, which will be described in the follow-
ing with the formalism of Refs. [19–21].

1. Gravitational tensor modes

Gravitational tensor perturbations are present in space-
times with dimension equal to or larger than 5. This set of

gravitational modes can be represented in terms of tensor
spherical harmonics as follows,

hab ¼ 0; hai ¼ 0;

hij ¼
X∞
l¼2

X
fmig

2

L2tan2ðxLÞ
HT

lðt; xÞT kT
ij ; ð31Þ

where T kT
ij are transverse traceless harmonic tensors on

SD−2, with the quantities fk2Tg defined as

k2T ¼ lðlþD − 3Þ − 2; l ¼ 2; 3;…: ð32Þ

Using the master variable [19] given by

ϕgr-t
l ≡

�
L tan

�
x
L

��D−6
2

HT
l ; ð33Þ

the equation of motion for the gravitational tensor mode
assumes the form of Eq. (12), with an effective potential
Vgr-t written as

Vgr-t ¼ 1

L2

�
Agr-t

cos2ðxLÞ
þ Bgr-t

sin2ðxLÞ
�
: ð34Þ

The coefficients Agr-t and Bgr-t are

Agr-t ¼ DðD − 2Þ
4

; ð35Þ

Bgr-t ¼ k2T þ 2þ ðD − 2ÞðD − 4Þ
4

¼ lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ
4

; ð36Þ

with the multipole index l ¼ 2; 3;….

2. Gravitational vector modes

Gravitational vector modes can be expanded in terms of
vector harmonic functions VkV

i as

hab ¼ 0; hai ¼
X∞
l¼2

X
fmig

1

L tanðxLÞ
flaðt; xÞVkV

i ;

hij ¼
X∞
l¼2

X
fmig

2

L2tan2ðxLÞ
HV

l ðt; xÞVkV
ij : ð37Þ

The quantities VkV
ij are vector-type harmonic tensors on

SD−2 built from the transverse harmonic vectors VkV
i , with

the eigenvalue k2V presented in Eq. (19). From the functions
fla and HV

l , a new gauge invariant quantity Zla is defined:
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Zla ≡ flaðt; xÞ − L2tan2
�
x
L

�
∇̃a

�
HV

l ðt; xÞ
tan ðxLÞ2

�
: ð38Þ

A master variable ϕgr-vc
l is implicitly introduced by the

relation

Zla ¼
�
L tan

�
x
L

��
−ðD−4Þ

ϵab∇̃bϕgr-vc
l ; ð39Þ

where ϵab is the Levi-Civita tensor in M2. In terms of
ϕgr-vc
l , vector-type gravitational modes satisfy a wave

equation with the form of Eq. (12) [20], where the effective
potential Vgr-vc is

Vgr-vc ¼ 1

L2

�
Agr-vc

cos2ðxLÞ
þ Bgr-vc

sin2ðxLÞ
�
: ð40Þ

The constants Agr-vc and Bgr-vc are given by

Agr-vc ¼ ðD − 2ÞðD − 4Þ
4

; ð41Þ

Bgr-vc ¼ k2V þ 1þ ðD − 2ÞðD − 2Þ
4

¼ lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ
4

; ð42Þ

with the multipole index assuming values in l ¼ 2; 3;….

3. Gravitational scalar modes

Gravitational scalar perturbations can be expanded in
terms of scalar harmonic functions fSkSg as

hab ¼
X∞
l¼2

X
fmig

flabðt; xÞSkS ;

hai ¼
X∞
l¼2

X
fmig

1

L tanðxLÞ
flaðt; xÞSkS

i ;

hij ¼
X∞
l¼2

X
fmig

2

L2tan2ðxLÞ
½HL

lðt; xÞγijSkS þHS
lðt; xÞSkS

ij �:

ð43Þ

The terms SkS
i and SkS

ij are scalar-type harmonic vectors and
tensors on SD−2, respectively, built from the scalar har-
monic functions SkS as

SkS
i ¼−

1

kS
DiSkS ; SkS

ij ¼
1

k2S
DiDjSkS þ1

2
γijSkS : ð44Þ

Gauge invariant quantities can be defined for l ≥ 2 and
written in terms of a master variable ϕgr-sc

l (after a rather
involving procedure, as seen for example in Ref. [21]).

The function ϕgr-sc
l satisfies a wave equation with the form

of Eq. (12) with an effective potential given by Vgr-sc, where

Vgr-sc ¼ 1

L2

�
Agr-sc

cos2ðxLÞ
þ Bgr-sc

sin2ðxLÞ
�
: ð45Þ

The coefficients Agr-sc and Bgr-sc are given by

Agr-sc ¼ ðD − 4ÞðD − 6Þ
4

; ð46Þ

Bgr-sc ¼ k2S þ
ðD − 2ÞðD − 4Þ

4

¼ lðlþD − 3Þ þ ðD − 2ÞðD − 4Þ
4

; ð47Þ

with the multipole index l ¼ 2; 3;….

III. QUANTIZATION, ENERGY SPECTRA,
AND DEGENERACIES

As seen in Sec. II, for the bosonic fields considered, the
classical dynamics are described by equations of motion
having the form

∂2ϕðt; xÞ
∂t2 ¼

� ∂2

∂x2 − VðxÞ
�
ϕðt; xÞ; ð48Þ

with a Pöschl-Teller [31] effective potential VðxÞ,

VðxÞ ¼ 1

L2

�
A

cos2ðxLÞ
þ B
sin2ðxLÞ

�
: ð49Þ

The constants A and B depend on the specific mode
considered, according to the previous section.
In the approach used for the quantization of the scalar,

electromagnetic, and gravitational perturbations in AdS
spacetime, we consider the quantum properties of the
potential associated to each mode. The first step in the
quantum treatment is to define the one-particle Hilbert
spaceH1 associated to a given perturbation. We start with a
natural domain of functions that are absolutely continuous
in the interval ½0; πL

2
�, together with their first derivatives.

The one-particle Hamiltonian can be introduced as

Ĥ ¼ i
∂
∂t : ð50Þ

That is, the notion of energy is being defined by static
observers following integral curves of ∂=∂t.
From the one-particle sector, the Fock space associated

with the perturbations is constructed through the usual
procedure. Taking into account Eq. (50), the positive and
negative energy modes
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ϕ̃ðxÞe−iϵt; ϕ̃ðxÞeþiϵt ð51Þ

should span a dense subset of H1, where ϕ̃ðxÞ are the
solutions of the “time-independent” version of the equation
of motion (48):

Ô ϕ̃ðxÞ ¼ −ϵ2ϕ̃ðxÞ; Ô ¼ d2

dx2
− VðxÞ: ð52Þ

An important point in the present development is that the
deficiency indices of the operator Ô in Eq. (52) are not zero
for arbitrary values of A and B [21,32]. Indeed, only for
A ≥ 3=4 and B ≥ 3=4, the deficiency indices are zero,
implying that the operator Ô is essentially self-adjoint. In
this case, there is no freedom in the choice of the boundary
conditions. On the other hand, if B ≥ 3=4 and A < 3=4, the
deficiency indices are equal to 1, implying the existence of
an uniparametric family of self-adjoint extensions. In this
case, which is relevant for the present work, there is more
freedom in the choice of boundary conditions. Therefore,
additional conditions must be supplied in order to specify
an adjoint extension of Ô. This issue is related with the fact
that, for the quantum treatment of fields in AdS spacetime,
the geometry is not globally hyperbolic, with its spatial
infinity being timelike. As already commented on in
Refs. [24,33,34], additional conditions must be supplied
for the well-posed-ness of the quantization process. If
A < −1=4, Ô is no longer positive definite, and its
spectrum is unbounded from below. None of the perturba-
tions considered here is in this class of effective potentials.
Finally, for B < 3=4 and A < 3=4, the deficiency indices
are equal to 2, and the extensions are specified by two
parameters and identified with elements of the group Uð2Þ.
This range of A and B is also not relevant here.
Let us initially consider the case where A ≥ 3=4 and

B ≥ 3=4. The general solution of the time-independent
equation (52) with the Pöschl-Teller potential is well
known (see for example Ref. [32]). It can be written as

ϕ̃ðxÞ ¼ C1u1ðxÞ þ C2u2ðxÞ; ð53Þ

where u1ðxÞ and u2ðxÞ are linearly independent solutions of
Eq. (52) given by

u1ðxÞ¼ sin2p
�
x
L

�
cos2q

�
x
L

�

×F

�
ζϵp;q−

1

2
;ζ−ϵp;q−

1

2
;2pþ1

2
;sin2

�
x
L

��
; ð54Þ

u2ðxÞ ¼ sin1−2p
�
x
L

�
cos2q

�
x
L

�

× F

�
ζϵ−p;q; ζ−ϵ−p;q;

3

2
− 2p; sin2

�
x
L

��
; ð55Þ

with

ζϵp;q ¼ pþ qþ Lϵ
2

þ 1

2
: ð56Þ

In Eqs. (54) and (55), F½α; β; γ; z� denotes the Gaussian
hypergeometric function. The parameters p and q are
expressed in terms of the constants A and B as

p ¼ 1

4
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
Bþ 1

4

r
; q ¼ 1

4
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 1

4

r
: ð57Þ

Constants C1 and C2 will be fixed by the boundary
conditions. In the case A ≥ 3=4 and B ≥ 3=4, the function
u2 is not square integrable, and we must set C2 ¼ 0 in
Eq. (53). The asymptotic behavior of u1 at spatial infinity
is [32]

lim
x→πL=2

u1 →
Γð2pþ 1

2
ÞΓð2q − 1

2
Þ

Γðpþ qþ Lϵ
2
ÞΓðpþ q − Lϵ

2
Þ
�
πL
2

−
x
L

�
1−2q

:

ð58Þ

Since ϵ > 0, 2pþ 1=2 > 0 and 2qþ 1=2 > 0, for
q ≥ 3=4, the function u1 is square integrable only for
specific values of ϵ which satisfy [21,32]

pþ q −
Lϵ
2

¼ −n; with n ¼ 0; 1;…: ð59Þ

Condition (59) will give the spectra of the several bosonic
perturbations considered.
The above development is valid in the range A ≥ 3=4

and B ≥ 3=4. However, the inequality A ≥ 3=4 does not
include the electromagnetic and gravitational scalar per-
turbations with D ¼ 5 (A ¼ −1=4) or D ¼ 6 (A ¼ 0).
For A < 3=4, there exists an uniparametric family of

self-adjoint extensions of the operator Ô. The determina-
tion of this family1depends on the asymptotic behavior
of the functions ψ� ∈ DðÔþÞ in the domain of the
adjoint operator Ôþ. For A<3=4, we have as x → πL=2
that [32]

lim
x→πL=2

ψ� → a1uþðxÞ þ a2u−ðxÞ;

u�ðxÞ ¼
�
πL
2

−
x
L

��ð2q−1
2
Þþ1

2

: ð60Þ

The functions u� are square integrable for −1 ≤ 4A < 3.
However, in general, the asymptotic forms of u�, denoted
here by ψ�, are not compatible with a symmetric Ô.
For A ≠ −1=4, the requirement that this symmetry is

1In what follows, in order to use the results of Ref. [32], it is
necessary to make x → πL=2 − x, which implies A ↔ B.
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enforced implies ā1a2 ¼ ā2a1. This last condition can be
parametrized as [32]

a1 cos θ ¼ a2 sin θ; θ ∈
�
−
π

2
;
π

2

�
: ð61Þ

The variable θ introduced in Eq. (61) parametrizes the
boundary conditions. Consequently, θ determines the self-
adjoint extensions Ôθ of Ô for −1=4 < A < 3=4. A
physical interpretation is that θ is a parameter which
controls the amount of particles that can “leak out” at
spatial infinity. Indeed, the case θ ¼ �π=2 (a2 ¼ 0) fixes
ψ�ðπL=2Þ ¼ 0. This condition can be interpreted as a
generalized Dirichlet condition [21] and represents the
reflexive condition at infinity. On the other hand, θ ¼ 0
(a1 ¼ 0) can be interpreted as a generalized Neumann
condition and represents a scenario where spatial infinity is
transparent.
The spectrum ϵθ of the operator Ôθ also depends on θ. For

θ ¼ �π=2, it follows that ϵ�π=2 ¼ ϵ [32]. That is, the
expression (59) is obtained again. The caseA ¼ −1=4 shows
some peculiarities but can be treated in an analogousmanner.
The important point here is that the boundary condition
ψ�ðπL=2Þ ¼ 0 implies that the operator Ô is self-adjoint.
Hence, the one-particle Hilbert space H1 is the set of

functions defined on the dense domain DðRþÞ of smooth
functions with compact support which satisfy reflexive
boundary conditions:

DðRþÞ ¼
�
ϕ̃ðxÞ∶ ϕ̃ ∈ C∞ðRþÞ; suppϕ̃ ⊆

�
0;
πL
2

�
;

ϕ̃ð0Þ ¼ ϕ̃

�
πL
2

�
¼ 0

�
: ð62Þ

In this way, the spectrum of the operator Ô is given by
Eq. (59) for any values of A and B relevant in the
present work.
With the results obtained for the Pöschl-Teller potential,

the spectra of the several perturbations considered can be
derived. Relation (59), combined with definitions (57) for
p and q, plus the specific forms of the constants A and B,
determine the spectra,

ϵmode ¼ 1

L
ð2nþlmodeþDmode−1Þ with n¼ 0;1;…;

ð63Þ

where mode is a label indicating a particular perturbation,
with mode ∈ fsc; el-vc; el-sc; gr-t; gr-vc; gr-scg, and

Dsc ¼ Dgr-t ¼ D; Del-sc ¼ Dgr-sc ¼ Dþ jD− 5j− 3

2
;

Del-vc ¼ Dgr-vc ¼ D− 3; lsc ¼ 0;1;2…;

lel-vc ¼ lel-sc ¼ 1;2;…; lgr-t ¼ lgr-vc ¼ lgr-sc ¼ 2;3;…:

ð64Þ

For clarity’s sake, we also present the explicit form of the
spectrum associated to each considered mode in Table I.
From Eq. (63) (or Table I), we define the spectrum

sequences

ϵmodej ∶ N → fϵmodeg ð65Þ

in such a way that ϵmodej < ϵmodejþ1 . Hence, the index j labels
the energy levels. With the energy spectra determined, their
associated degeneracies can be considered. Indeed, for a
given perturbation, there are in general several modes
associated to a specific energy value ϵmodej . We denote
the degeneracy of the energy ϵmodej asDmode

j . The functions
DmodeðLϵmodej Þ are introduced so the degeneracy of the
energy level j of the indicated mode (Dmode

j ) is written as

Dmode
j ¼ DmodeðLϵmodej Þ: ð66Þ

All the considered spectra can be written as

2nþ l ¼ αmode; ð67Þ

where αmode are obtained from Eq. (63) (or Table I). These
constants do not depend on n nor l. The degeneracies will
be given by the multiplicity of the eigenvalues of the
spherical harmonic modes. Following the development in
Ref. [26],

TABLE I. Energy spectra for massless bosonic fields in AdS geometry with D ≥ 4 and n ¼ 0; 1; 2;….

Field Scalar modes Vector modes Tensor modes

Scalar
(l ¼ 0; 1;…) ϵsc ¼ 2nþlþD−1

L
Electromagnetic
(l ¼ 1; 2;…) ϵel-sc ¼ 1

L ð2nþ lþ D−1þjD−5j
2

Þ ϵel-vc ¼ 2nþlþD−2
L

Gravitational
(l ¼ 2; 3;…) ϵgr-sc ¼ 1

L ð2nþ lþ D−1þjD−5j
2

Þ ϵgr-vc ¼ 2nþlþD−2
L ϵgr-t ¼ 2nþlþD−1

L
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DmodeðLϵÞ ¼ Γðαmode þD − 1Þ
ðD − 2Þ!Γðαmode þ 1Þ ; ð68Þ

with Γ denoting the usual gamma function. For the scalar
and gravitational tensor modes, the degeneracy functions
are

DscðLϵÞ ¼ Dgr-tðLϵÞ ¼ ΓðLϵÞ
ðD − 2Þ!ΓðLϵ −Dþ 2Þ : ð69Þ

Considering the electromagnetic vector and gravitational
vector modes,

Del-vcðLϵÞ ¼ Dgr-vcðLϵÞ

¼ ΓðLϵþ 1Þ
ðD − 2Þ!ΓðLϵ −Dþ 3Þ : ð70Þ

Finally, for the electromagnetic scalar and gravitational
scalar modes,

Del-scðLϵÞ ¼ Dgr-scðLϵÞ

¼ ΓðLϵ − D−1þjD−5j
2

þD − 1Þ
ðD − 2Þ!ΓðLϵ − D−1þjD−5j

2
þ 1Þ

: ð71Þ

IV. THERMODYNAMICS OF BOSONIC SYSTEMS

A. Thermodynamic and quasithermodynamic limits

In the treatment introduced in Sec. III, the fields were
assumed to be free, not allowing direct coupling among the
quantum particles. The AdS geometry has a confining
potential that acts as a box, with an effective volume Veff
defined in Eq. (8). We consider the anti–de Sitter geometry
populated by a thermal gas, composed by massless particles
with a well-defined energy and subjected to the Bose-
Einstein statistics. The number of particles is not con-
served, and the chemical potential μ is constant and null.
Since the bosonic system is in thermal equilibrium with

fixed temperature T and fixed chemical potential (μ ¼ 0), a
grand canonical ensemble is used. For a given mode, the
associated partition function Zmode is

lnZmode ¼ −
X
j

Dmode
j ln

�
1 − exp

�−ϵmodej

T

��
; ð72Þ

where j labels the energy levels andDmode
j is the associated

degeneracy, according to expressions (69)–(71). The par-
tition function of a given field is obtained by summing the
partition functions of the modes related to that field, as will
be explicitly done in the next subsections. A thermody-
namic quantity X linked to a certain bosonic field will be
denoted as Xfield, where field ∈ fsc; el; grg.
Macroscopic quantities can be established if it is possible

to define a proper thermodynamic limit. Using the effective

volume introduced in Eq. (8) and considering that we are
employing a grand canonical ensemble, we define the
thermodynamic limit [35] as

Veff → ∞ with T fixed and μ ¼ 0; ð73Þ

which implies L → ∞ with T fixed and μ ¼ 0.
In order to obtain the thermodynamic limit of the

partition functions in Eq. (72), we consider the norm of
the sequence (ϵmodej ∶ j ¼ 0; 1;…) for the bosonic pertur-
bations. For the spectra in Eq. (63), the associated sequence
norms have the same value Δϵ,

Δϵ≡min ðϵmodejþ1 − ϵmodej Þ ¼ 1

L
: ð74Þ

Result (74) indicates that a continuum limit for the
sequence can be obtained in the limit L → ∞. From the
expression of the partition function, its continuum limit is
derived by rewriting Eq. (72) as a Riemann sum in the form

lnZmode ¼ −LD−1
X
j

Dmode
j

LD−2 ln

�
1 − exp

�
−
ϵmodej

T

��
Δϵ:

ð75Þ

In the thermodynamic limit, Δϵ → 0 and DmodeðLϵÞ ∼
ðLϵÞD−2 for all perturbations discussed. Since
DmodeðLϵÞ ln ½1 − exp ð− ϵ

TÞ�=LD−2 is a bounded continu-
ous function on ϵ, the Riemann sum is approximated by a
Riemann integral,

lim
L→∞

X
j

Dmode
j

LD−2 ln

�
1 − exp

�
−
ϵmodej

T

��
Δϵ

¼
Z

∞

0

DmodeðLϵÞ
LD−2 ln

�
1 − exp

�
−
ϵ

T

��
dϵ; ð76Þ

and an asymptotic expression for lnZmode is obtained:

lnZmode ¼ −L
Z

∞

0

DmodeðLϵÞ ln
�
1 − exp

�
−
ϵ

T

��
dϵ;

with L → ∞: ð77Þ

Equation (77) can be seen as an analogous Thomas-Fermi
approximation in the AdS bosonic systems.
It is also relevant to consider not only the thermodynamic

limit but also how this limit is approached. Hence, in
the present work, we define a quasithermodynamic limit
[36] as

Veff large but finite; withT fixed and μ ¼ 0: ð78Þ

This limit is particularly relevant in the present work.
Unlike the usual thermodynamics in a Minkowski cavity
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(where the thermodynamic limit can be associated to the
cavity radius going to infinity), the finiteness of the AdS
radius is naturally compatible with the quasithermody-
namic limit.
It is convenient to rewrite the partition function (72) in

terms of the “reduced energy” Kmode
j ≡ Lϵmodej as

lnZmode ¼ −
X
j

DmodeðKmode
j Þ ln

�
1 − exp

�
−
Kmode

j

LT

��
:

ð79Þ

The elements of set fKmode
j g are integers that do not depend

on L or T, obtained in a straightforward way from Eq. (63).
We conclude that the partition function Zmode depends on L
and T as

lnZmode ¼ fðLTÞ: ð80Þ

Let us consider the high-temperature regime of the
bosonic systems, that is, LT ≫ 1. In this limit, it is useful
to rewrite the integral expression for lnZmode. Making
ϵ ¼ Tϵ̃,

L
Z

∞

0

DmodeðLϵÞ ln
�
1 − exp

�
−
ϵ

T

��
dϵ

¼ LT
Z

∞

0

DmodeðLTϵ̃Þ ln ½1 − exp ð−ϵ̃Þ�dϵ̃; ð81Þ

and

lnZmode ¼ −LT
Z

∞

0

DmodeðLTϵ̃Þ

× ln ð1 − e−ϵ̃Þdϵ̃
�
1þ o

�
1

LT

��
: ð82Þ

Strictly speaking, this integral representation for lnZmode is
only relevant for LT ≫ 1. In practice, moderate values of
LT are enough to guarantee a reasonable applicability of
the result, as discussed in Sec. V B.
A general expression for the partition function associated

to a given perturbation in the high-temperature regime,
beyond the dominant term ðLTÞD−1, can be obtained.
Expanding the degeneracy function (66) around ϵ̃ ¼ 0,

Dmodeðϵ̃Þ ¼
XD−2

i¼0

1

i!
diDmodeðϵ̃Þ

dϵ̃i

				
ϵ̃¼0

ϵ̃i; ð83Þ

and using the integral representation for the Riemann zeta
function ζ,

ζðsÞ¼−
1

Γðs−1Þ
Z

∞

0

ts−2 lnð1−e−tÞdt; Res> 1; ð84Þ

the partition function (82) can be written as

lnZmode ¼
XD−2

i¼0

diDmodeðϵ̃Þ
dϵ̃i

				
ϵ̃¼0

ζðiþ 2Þ
i!

Γðiþ 1ÞðLTÞiþ1:

ð85Þ

For values of LT close to 1, the integral formula in
Eq. (82) is not useful. In this case, expression (79) for lnZ
can be numerically treated. In the present work, we have
conducted an extensive numerical investigation of the
scalar, electromagnetic, and gravitational partition func-
tions and derived quantities. The results will be reported in
the following sections.
We consider next the low-temperature limit, that is, the

quasithermodynamic limit with a large effective volume
and 0 < LT ≪ 1. In this regime, the fundamental mode of
any perturbation considered dominates the sum in Eq. (79).
An analytic result for the partition function associated to a
given mode can be determined,

lnZmode ¼ −DmodeðKmode
0 Þ ln

�
1 − exp

�
−
Kmode

0

LT

��

¼ DmodeðKmode
0 Þ exp

�
−
Kmode

0

LT

�
;

0 < LT ≪ 1: ð86Þ

Explicit expressions for the scalar, electromagnetic,
and gravitational fields will be presented in the next
subsections.
Once Zmode is obtained, it is straightforward to construct

Zfield. And with the partition functions, all the associated
thermodynamic quantities can be readily calculated. For
example, entropy (Sfield), internal energy (Ufield), and
pressure (Pfield) are given by

Sfield ¼ ∂
∂T ðT ln ZfieldÞ; Ufield ¼T2

∂
∂T ðlnZ

fieldÞ;

Pfield ¼ ∂
∂Veff

ðT ln ZfieldÞ¼TL−ðD−2Þ

D−1

∂
∂Lðln Z

fieldÞ:

ð87Þ

In the next subsections, we will explore specific character-
istics of the particular bosonic fields considered.

B. Thermodynamics of the massless scalar field

We initially consider a thermal gas of “scalar photons” in
anti–de Sitter spacetime. For the massless scalar field, there
is only one mode, implying that the partition function for
field ¼ sc is equal to the partition function for
mode ¼ sc. The degeneracy function DscðLϵscÞ is given
by Eq. (69).
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The low-temperature regime of the massless scalar field
is characterized by the partition function in Eq. (86) with

Ksc
0 ¼ Lϵsc0 ¼ D − 1; DscðKsc

0 Þ ¼ 1: ð88Þ

Hence, in this regime,

ln Zsc ¼ exp

�
−
D − 1

LT

�
; ð89Þ

and from this expression,

Ssc ¼D−1

LT
exp

�
−
D−1

LT

�
; Usc ¼D−1

L
exp

�
−
D−1

LT

�
;

Psc ¼ 1

LD exp

�
−
D−1

LT

�
: ð90Þ

The low-temperature result for ln Zsc is compared to the
numerical evaluation of the partition function in Fig. 1.
The intermediate- and high-temperature regimes of the

scalar gas can be explored with the integral formula (82) for
ln Zsc. Considering the dominant and subdominant terms
(since we are assuming a finite value of LT with LT ≫ 1),

DscðLTϵ̃Þ ¼ ðLTϵ̃ÞD−2

ðD − 2Þ!
�
1 −

ðD − 1ÞðD − 2Þ
2

1

LTϵ̃

þ o

�
1

ðLTϵ̃Þ2
��

: ð91Þ

Using Eq. (91), the integral in Eq. (82) can be evaluated.
The partition function in this limit is

ln Zsc ¼ ζðDÞðLTÞD−1
�
1 −

ðD − 1ÞζðD − 1Þ
2ζðDÞ

1

LT

�
: ð92Þ

The high-temperature expression for ln Zsc is compared to
the numerical evaluation of the partition function in Fig. 1.
It is straightforward to obtain explicit expressions for

thermodynamic quantities, once the partition function is
determined. For instance, the entropy is

Ssc ¼ DζðDÞðLTÞD−1
�
1 −

ðD − 1Þ2ζðD − 1Þ
2DζðDÞ

1

LT

�
; ð93Þ

the internal energy is

Usc ¼ ðD − 1ÞζðDÞTðLTÞD−1
�
1 −

ðD − 2ÞζðD − 1Þ
2ζðDÞ

1

LT

�
;

ð94Þ

and the pressure is,

Psc ¼ ζðDÞTD

�
1 −

ðD − 2ÞζðD − 1Þ
2ζðDÞ

1

LT

�
: ð95Þ

C. Thermodynamics of the electromagnetic field

The next bosonic system to be considered is a thermal
gas of photons. As seen in Sec. II C, the electromagnetic
perturbations can be decomposed in two independent
modes, the electromagnetic vector and scalar perturbations.
Hence, the partition function Zel for a photon gas in
D-dimensional AdS spacetime is given by

lnZel ¼ lnZel-vc þ lnZel-sc; ð96Þ

where Zel-vc
D and Zel-sc

D are the partition functions
associated to the electromagnetic vector and scalar modes,
respectively.
In the low-temperature regime, the values for the con-

stants Kmode
0 ¼ Lϵmode0 associated to the electromagnetic

field are

Kel-vc
0 ¼ D − 1; Kel-sc

0 ¼ Dþ 1þ jD − 5j
2

;

Del-vcðKel-vc
0 Þ ¼ Del-scðKel-sc

0 Þ ¼ D − 1: ð97Þ

In the four-dimensional case, Kel-vc
0 ¼ Kel-sc

0 , and both
scalar and vector modes contribute. In higher dimensions,
Kel-sc

0 < Kel-vc
0 , and the scalar mode dominates. It follows

from Eq. (86) that the leading contribution for the electro-
magnetic partition function in the limit T → 0 is

ln Zel ¼
�
6 exp ð− 3

LTÞ; D ¼ 4

ðD − 1Þ exp ð− D−2
LT Þ; D > 4

: ð98Þ

The low-temperature analytic expression for lnZel is
compared to the numerical evaluation of the partition

FIG. 1. Log-log graphs for ln Zsc with D ¼ 4. The continuous
line is the full numerical evaluation. The dashed lines are the low-
temperature and high-temperature formulas. Results for other
values of D are qualitatively similar.
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function in Fig. 2. From expression (98), some thermody-
namic quantities for the AdS photon gas in the low-
temperature regime are

Sel ¼
(

18
LT exp ð− 3

LTÞ; D ¼ 4

ðD−1ÞðD−2Þ
LT exp ð− D−2

LT Þ; D > 4
; ð99Þ

Uel ¼
(

18
L exp ð− 2

LTÞ; D ¼ 4

ðD−1ÞðD−2Þ
L exp ð− D−2

LT Þ; D > 4
; ð100Þ

Pel ¼
(

6
L4 exp ð− 3

LTÞ; D ¼ 4

D−2
LD exp ð− D−2

LT Þ; D > 4
: ð101Þ

In the high-temperature regime, the degeneracies of the
vector and scalar electromagnetic modes can be written as

Del-vcðLTϵ̃Þ ¼ ðLTϵ̃ÞD−2

ðD − 2Þ!
�
1 −

ðD − 2ÞðD − 3Þ
2

1

LTϵ̃
þ o

�
1

ðLTϵ̃Þ2
��

; ð102Þ

Del-scðLTϵ̃Þ ¼

8>>><
>>>:

ðLTϵ̃Þ2
2

f1 − 1
LTϵ̃ þ o½ 1

ðLTϵ̃Þ2�g; D ¼ 4

ðLTϵ̃Þ3
6

f1 − 1
ðLTϵ̃Þ2 þ o½ 1

ðLTϵ̃Þ3�g; D ¼ 5

ðLTϵ̃ÞD−2

ðD−2Þ! f1 − ðD−2ÞðD−5Þ
2

1
LTϵ̃ þ o½ 1

ðLTϵ̃Þ2�g; D > 5

: ð103Þ

It should be noticed that in theD ¼ 5 case the subdominant
term in Eq. (103) is of the order of 1=ðLTÞ2. The
calculation of the associated partition functions is straight-
forward:

lnZel-vc ¼ ζðDÞðLTÞD−1
�
1−

ðD−3ÞζðD−1Þ
2ζðDÞ

1

LT

�
; ð104Þ

lnZel-sc ¼

8>>><
>>>:

ζð4ÞðLTÞ3½1 − ζð3Þ
2ζð4Þ

1
LT�; D ¼ 4

ζð5ÞðLTÞ4½1 − ζð3Þ
6ζð5Þ

1
ðLTÞ2�; D ¼ 5

ζðDÞðLTÞD−1½1 − ðD−5ÞζðD−1Þ
2ζðDÞ

1
LT�; D > 5

:

ð105Þ

With expressions (104) and (105), we obtain the partition
function of the photon gas in the high-temperature regime:

lnZel ¼
8<
:

2ζð4ÞðLTÞ3½1 − ζð3Þ
2ζð4Þ

1
LT�; D ¼ 4

2ζðDÞðLTÞD−1½1 − ðD−4ÞζðD−1Þ
2ζðDÞ

1
LT�; D > 4

:

ð106Þ

The expression for lnZel in Eq. (106) is illustrated in Fig. 2,
where the analytic expression is compared to the numerical
evaluation.
With the formula (106), the entropy, internal energy, and

pressure of the photon gas can be derived:

Sel ¼
(
8ζð4ÞðLTÞ3½1− 3ζð3Þ

8ζð4Þ
1
LT�; D¼ 4

2DζðDÞðLTÞD−1½1− ðD−1ÞðD−4ÞζðD−1Þ
2DζðDÞ

1
LT�; D > 4

; ð107Þ

Uel ¼
(
6ζð4ÞTðLTÞ3½1 − ζð3Þ

3ζð4Þ
1
LT�; D ¼ 4

2ðD − 1ÞζðDÞTðLTÞD−1½1 − ðD−2ÞðD−4ÞζðD−1Þ
2ðD−1ÞζðDÞ

1
LT�; D > 4

; ð108Þ

FIG. 2. Log-log graphs for ln Zel with D ¼ 5. The continuous
line is the full numerical evaluation. The dashed lines are the low-
temperature and high-temperature formulas. Results for other
values of D are qualitatively similar.
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Pel ¼
(
2ζð4ÞT4½1 − ζð3Þ

3ζð4Þ
1
LT�; D ¼ 4

2ζðDÞTD½1 − ðD−2ÞðD−4ÞζðD−1Þ
2ðD−1ÞζðDÞ

1
LT�; D > 4

:

ð109Þ

D. Thermodynamics of the gravitational field

It is finally considered a thermal graviton gas in D-
dimensional AdS spacetime. As seen in Sec. II D, gravita-
tional perturbations can be decoupled in three independent
modes (tensor, vector, and scalar). In the four-dimensional
case, the gravitational tensor mode does not contribute, and
the partition function for the graviton gas is expressed as

ln Zgr ¼ ln Zgr-vc þ ln Zgr-sc; for D ¼ 4: ð110Þ

In five or higher dimensions, all three gravitationalmodes are
relevant, and the gravitational field partition function is
written as

ln Zgr ¼ ln Zgr-t þ ln Zgr-vc þ ln Zgr-sc; for D> 4: ð111Þ

Let us consider the low-temperature limit. Carrying out a
development very similar to the one presented in the
previous subsections, we observe that

Kel-sc
0 ¼Dþ3þjD−5j

2
; Kgr-vc

0 ¼D; Kgr-t
0 ¼Dþ1;

Del-scðKel-sc
0 Þ¼Dgr-vcðKgr-vc

0 Þ¼Dgr-tðKgr-t
0 Þ¼DðD−1Þ

2
:

ð112Þ

If D ¼ 4, both scalar and vector modes are relevant in the
low-temperature regime. For higher dimensions, the scalar
mode dominates.
Using Eq. (86), we obtain in the limit T → 0 that

ln Zgr ¼
(
12 exp ð− 4

LTÞ; D ¼ 4

DðD−1Þ
2

exp ð− D−1
LT Þ; D > 4

: ð113Þ

Result (113) for ln Zgr in the low-temperature limit is
illustrated in Fig. 3, where the analytic result is compared to
the numerical development. Entropy, internal energy, and
pressure are readily calculated:

Sgr ¼
(

48
LT exp ð− 4

LTÞ; D ¼ 4

DðD−1Þ2
2LT exp ð− D−1

LT Þ; D > 4
; ð114Þ

Ugr ¼
(

48
L exp ð− 4

LTÞ; D ¼ 4

DðD−1Þ2
2L exp ð− D−1

LT Þ; D > 4
; ð115Þ

Pgr ¼
(

16
L4 expð− 4

LTÞ; D ¼ 4

DðD−1Þ
2LD expð− D−1

LT Þ; D > 4
: ð116Þ

For the intermediate- and high-temperature regimes,
considering that Dgr-tðLTϵ̃Þ ¼ DscðLTϵ̃Þ, Dgr-vcðLTϵ̃Þ ¼
Del-vcðLTϵ̃Þ, and Dgr-scðLTϵ̃Þ ¼ Del-scðLTϵ̃Þ, combined
with results from previous subsections, the calculation of
the associated partition functions is straightforward:

ln Zgr ¼
(
2ζð4ÞðLTÞ3½1 − ζð3Þ

2ζð4Þ
1
LT�; D ¼ 4

3ζðDÞðLTÞD−1½1 − ðD−3ÞζðD−1Þ
2ζðDÞ

1
LT�; D > 4

:

ð117Þ

Expression (117) for ln Zgr is illustrated in Fig. 3, where
the analytic result is compared to the numerical calculation.
From Eq. (117), the entropy, internal energy, and pressure
associated to the AdS graviton gas are calculated:

Sgr ¼
(
8ζð4ÞðLTÞ3½1− 3ζð3Þ

8ζð4Þ
1
LT�; D¼ 4

3DζðDÞðLTÞD−1½1− ðD−3ÞðD−1ÞζðD−1Þ
2DζðDÞ

1
LT�; D > 4

; ð118Þ

Ugr ¼
(
6ζð4ÞTðLTÞ3½1 − ζð3Þ

3ζð4Þ
1
LT�; D ¼ 4

3ðD − 1ÞζðDÞTðLTÞD−1½1 − ðD−3ÞðD−2ÞζðD−1Þ
2ðD−1ÞζðDÞ

1
LT�; D > 4

; ð119Þ

FIG. 3. Log-log graphs for lnZgr with D ¼ 6. The continuous
line is the full numerical evaluation. The dashed lines are the low-
temperature and high-temperature formulas. Results for other
values of D are qualitatively similar.
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Pgr ¼
(
2ζð4ÞT4½1 − ζð3Þ

3ζð4Þ
1
LT�; D ¼ 4

3ζðDÞTD½1 − ðD−3ÞðD−2ÞζðD−1Þ
2ðD−1ÞζðDÞ

1
LT�; D > 4

:

ð120Þ

V. ANALYSIS OF THE THERMODYNAMICS

In this section, we will explore general characteristics of
the thermodynamics associated to bosonic gases in anti–
de Sitter spacetime. Structural aspects, numerical results,
instabilities, and the issue of a proper thermodynamic
volume will be explored.

A. Structural aspects

Quasihomogeneity, that is, homogeneity of degrees
different of one and zero, is an essential characteristic of
a well-defined equilibrium thermodynamics [37,38]. While
quasihomogeneity is explicit in the strict thermodynamic
limit, it is not so beyond this limit, in the quasithermody-
namic regime. However, the partition functions can be
written as Zfield ¼ fðLTÞ, as seen in Eq. (80). It follows
that quasihomogeneity is recovered, demanding that LT
should be a homogeneous function of degree zero (other-
wise, different powers of LT will give different degrees).
We note that it is the same requirement due to scaling
arguments for the consistency of the Schwarzschild-anti de
Sitter thermodynamics [16,38,39].
The condition Zfield ¼ fðLTÞ, besides ensuring qua-

sihomogeneity, also furnishes a consistency result. This
restriction on the form of the function Zfield implies that

Pfield ¼ T2

ðD − 1ÞLD−2
d

dðLTÞ fðLTÞ

¼ Ufield

ðD − 1ÞLD−1 ; ð121Þ

where the expressions in (87) were used. Taking into
account our definition of Veff in Eq. (8),

Pfield ¼ 1

D − 1

Ufield

Veff
: ð122Þ

The equation of state (122) shows that the massless bosonic
gases behave as a null fluid, as expected. We conclude that
the proposal for the effective volume in Eq. (8) is
compatible with the general thermodynamic description
for the bosonic systems treated in the present work. More
comments on this topic will be presented in Sec. V D.
Let us consider the low-temperature limit of a massless

bosonic field in AdS spacetime. Taking into account results
(90), (99), and (114), it follows that the entropy behaves as

Sfield ∝ exp

�
−
Kfield

S

LT

�
; 0 < LT ≪ 1; ð123Þ

where Kfield
S is a positive constant which depends on the

particular field and dimension considered. Entropy tends to
zero as the temperature approaches absolute zero, and
therefore the AdS bosonic systems respect the third law of
thermodynamics.
In the high-temperature regime, the general qualitative

behavior of the AdS bosonic systems can be analyzed. With
the integral formula (82) for the partition functions and
DmodeðLTϵ̃Þ ¼ ðLTϵ̃ÞD−2½1þ oð 1

LTÞ� for large (but finite)
LT, we obtain

lnZfield ¼ −ðLTÞD−1
Z

∞

0

ln ½1 − exp ð−ϵ̃Þ�dϵ̃

∝ TD−1Veff : ð124Þ

Therefore,

Ufield ∝ Pfield ∝ TD: ð125Þ

Result (125) indicates that the bosonic fields in AdS
spacetime obey the D-dimensional Stefan-Bolzmann law
in the thermodynamic limit.
It is instructive to consider the energy of a given mode

radiated per unit frequency, the AdS-analogous Planck
formula. In the quasithermodynamic limit, using Eqs. (82)
and (87),

UmodeðTÞ

¼ T2

�
−L

Z
∞

0

DmodeðLϵÞ ∂
∂T ln

�
1 − exp

�
−
ϵ

T

��
dϵ

�

¼
Z

∞

0

DmodeðLϵÞ Lϵ
expðϵTÞ − 1

dϵ: ð126Þ

It follows that the spectral distribution of energy
ŨmodeðT; ϵÞ, with the angular frequency ω ¼ ϵ, is given by

ŨmodeðT; ϵÞ ¼ DmodeðLϵÞLϵ
expðϵTÞ − 1

: ð127Þ

We define the energy density per unit frequency as

ũmodeðT; ϵÞ≡ ŨmodeðT; ϵÞ
Veff

: ð128Þ

The quantity ũmodeðT; ϵÞ will furnish the AdS-analogous
Planck formulas. For example, the explicit expression for
ũscðT; ϵÞ is
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ũscðT; ϵÞ ¼ 1

ðD − 2Þ!
�
1 −

ðD − 1ÞðD − 2Þ
2

1

Lϵ

�
ϵD−1

expðϵTÞ − 1
:

ð129Þ

From Eq. (129), the relative difference between the spectral
energy density, considering the AdS and the usual cavity
thermodynamics, is of the order of 1=ðLϵÞ. Similar results
can be obtained for the other modes and fields.

B. Numerical results

We performed an extensive numerical investigation of
the partition functions and associated quantities presented
in previous section. In addition to the field label fsc; el; grg,
dimension D, AdS radius L, and temperature T, the
numerical analysis introduces new parameters for the actual
(numerical) calculations: the maximum number of energy
levels Nmax considered in the sum (72) and the approximate
number of digits Nprec in floating-point operations.
Alternatively, instead of Nmax, one could use the maximum
values for the multipole and overtone numbers, denoted by
lmax and nmax, respectively. We considered scalar, electro-
magnetic, and gravitational fields with spacetime dimen-
sion varying from 4 to 10. The ranges of LT used in this
work were selected in order to include both the low- and
high-temperature regimes. In these limits, the numerical
and analytic results were compared. Usual choices of LT
ranges included the interval (0.1,15). Typical calculations
were performed with lmax ¼ 50 and nmax ¼ 50.
Attempting to minimize the rounding error, we used2 a
high precision scheme with Nprec ¼ 50.
We observed that the functions lnZfield are monoton-

ically increasing in the dimensionless parameter LT,
growing exponentially with low LT and as a power law
with high LT. The intermediate-temperature regime
smoothly connects the low- and high-temperature limits.
No discontinuities or divergences were observed in these
quantities. This result is illustrated in Fig. 4, where graphs
for ln Zgr are presented for several values of D. The
qualitative behavior is the same for other fields and
dimensions. As expected, the analytic expressions in the
low- and high-temperature limits are compatible with the
numerical results, as illustrated in Figs. 1–3.
An issue is the convergence of the numerical and analytic

results produced. Specifically, we focus on the partition
functions written as discrete sums, and the integral versions
of those quantities obtained by analogous Thomas-Fermi
approximations. The integral formulas for lnZfield are
good approximations for the partition functions if LT is
higher than a given number (an analogous Thomas-Fermi

critical temperature). Typically, good concordance is
already observed with LT ≈ 5.
More precisely, convergence can be characterized by the

behavior of the relative difference Δmode between the
expressions defined with sums and integrals:

Δmode≡
				 ln Zmode

sum − ln Zmode
integral

ln Zmode
sum

				: ð130Þ

Our numerical results indicate that Δmode tends to zero as a
power law in the form

Δmode ∝
1

ðLTÞD−1 : ð131Þ

We illustrate the dependence of Δmode with LT in Fig. 5,
considering the scalar gas. Results for the other modes and
fields are qualitatively similar.

FIG. 5. Log-log graphs for Δsc in terms of LT, considering the
scalar gas with D ¼ 4, 5, 6. The bullets are the numerical results,
and the straight lines are the power-law fits. For D ¼ 4, 5, 6, the
fits are Δsc ¼ 1.52 × ðLTÞ−2.95, Δsc ¼ 1.78 × ðLTÞ−4.01, and
Δsc ¼ 2.08 × ðLTÞ−5.08. respectively.

FIG. 4. Log-log graphs for lnZgr as a function of LT with
D ¼ 4, 5, 6. Results for other fields and dimensions are
qualitatively similar.

2The numerical calculations were performed within the Math-
ematica environment, where the parameter Nprec can be arbitrar-
ily fixed. However, the computational effort can be significant
with a large value of Nprec.
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Concerning the internal energy, entropy, and pressure,
the general behavior of these quantities is largely indepen-
dent of the field and dimension. The functions Ufield,
Sfield, and Pfield are positive definite and tend to zero as
T tend to zero. With a constant effective volume, Ufield

and Sfield are monotonically increasing in T, growing as a
near exponential with low T and as a power law with high
T. With the temperature constant, Pfield grows monoton-
ically as the effective volume increases. These character-
istics are illustrated in Figs. 6–8.

C. Thermodynamic instabilities

Thermodynamic instabilities are identified by the behav-
ior of quantities such as the thermal capacities and
compressibility. Let us initially consider the thermal capac-
ity at constant volume (Cfield

V ), defined as

Cfield
V ≡ ∂Ufield

∂T
				
Veff

: ð132Þ

Since the functions Ufield with constant L are monoton-
ically increasing, Cfield

V is always positive. Therefore, the

system is stable for any constant volume process. Sample
graphs for the thermal capacities are presented in Fig. 9.
We consider now the isothermal compressibility βfieldT ,

defined as

βfieldT ≡ −
1

Veff

∂Veff

∂Pfield

				
T
: ð133Þ

Our numerical results indicate that the pressure Pfield

is a monotonically increasing function in Veff (with con-
stant T). It follows that βfieldT is always negative. This
means that the system is unstable under isothermic proc-
esses (that is, considering only variations in the cosmo-
logical constant). The general behavior of βfieldT is
presented in Fig. 10.
The instability generated by βfieldT < 0 is expected,

since the usual photon gas in a cavity also presents this
phenomenon [40]. For instance, let us consider the high-
temperature regime. In the thermodynamic limit, the
isothermal compressibility can be written as

FIG. 8. Log-Log graphs for Pgr as a function of L with D ¼ 4,
5, 6. In the graphs, T ¼ 1. The results are qualitatively similar for
other fields and values of D and L.

FIG. 6. Log-log graphs for Ugr as a function of the temperature
with D ¼ 4, 5, 6. In the graphs, L ¼ 1. The results are
qualitatively similar for other fields and values of D and L.

FIG. 7. Log-log graphs for Sgr as a function of the temperature
with D ¼ 4, 5, 6. In the graphs, L ¼ 1. The results are
qualitatively similar for other fields and values of D and L.

FIG. 9. Graphs for Cgr
V as a function of the temperature with

D ¼ 4, 5, 6. In the graphs, L ¼ 1. The qualitative behavior is the
same for other fields and dimensions.
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βfieldT ¼ −Kfield
β

LT
TD ; ð134Þ

where Kfield
β is a positive constant which depends on the

dimensionality and of the particular bosonic perturbation.
Expression (134) indicates that there is no contribution for
the compressibility from the dominant term. That is, the
subdominant term dictates the behavior of βfieldT in the
high-temperature limit. A negative subdominant term
implies that the pressure increases with the volume. This
is the observed (and perhaps counterintuitive) behavior in
the AdS bosonic gases. Considering the usual photon gas,
published results (for example Refs. [40,41]) indicate that
the subdominant term is negative, and the behavior of the
usual gas coincides with the behavior of the AdS gas as
described here.3

We can compare the corrections in the Stefan-Boltzmann
law in AdS spacetime with the photon gas confined in a
cavity (considering Minkowski spacetime). In the high-
temperature regime, the energy density of the several
bosonic systems considered have the form

Ufield

Veff
¼ afieldD TD

�
1 −

bfieldD

T
V
− 1
D−1

eff

�
: ð135Þ

Explicit expressions for the constants afieldD and bfieldD
can be readily determined. For example, considering the
electromagnetic field in four dimensions,

Ufield

Veff
¼ π4

15
T4 − 2ζð3ÞV−1

3

effT
3: ð136Þ

Expression (136) can be compared to the analogous
result concerning the photon gas in a cavity, which has
the form [43]

Ufield

Veff
¼ λ1T4 − λ2T2: ð137Þ

We observe that in the usual “Minkowskian cavity” case,
Eq. (137), the term proportional to T3 is not present,
indicating that there is no contribution proportional to the
cavity area in the energy distribution [44]. The conclusions
from this particular case can be generalized for other fields
and dimensions. The presented results show that the AdS
bosonic systems have a different behavior of the usual
photon gas in a cavity, even in the thermodynamic limit.

D. Effective volume and homogeneity

In Sec. II A, the effective volume in AdS spacetime was
introduced within a geometric context. The goal here is to
show that this choice of thermodynamic volume is a
consequence of the homogeneity of the equations of state
in the thermodynamic limit.
Let us consider (in the internal energy description) that

the bosonic systems in AdS background have two inde-
pendent thermodynamic variables: the entropy S and a still
not determined thermodynamic volume V. Besides, as
usual, in the free energy F ¼ −T lnZ ¼ U − TS, the
independent variables are T and V. We want to show that
V is given by the effective volume Veff ≡ LD−1 introduced
in Sec. II A. We are assuming that, in the thermodynamic
limit, entropy and volume are extensive variables (first
order homogeneous), while temperature and pressure are
intensive variables (zeroth order homogeneous).
Considering the hypothesis made, the Euler theorem for

homogeneous functions applies, giving

Ufield ¼ TSfield − PV: ð138Þ

In previous expression, P is the conjugate variable (to be
determined) associated to the volume V. Combining
Eq. (138) with relations (87), we obtain

PV ¼ T ln Zfield: ð139Þ

From Sec. IV, the partition function of a given bosonic
field in the thermodynamic limit can be written as

ln Zfield ¼ AðLTÞD−1; ð140Þ

whereA is a constant which depends on the particular field
considered. Using expression (140),

FIG. 10. Graphs for βgrT as a function of the Veff with D ¼ 4, 5,
6. In the graphs, T ¼ 1. The qualitative behavior is the same for
other fields and dimensions.

3We remark that there is some controversy in the literature
concerning the sign of this subdominant term in the usual
Minkowskian setup (see for example Ref. [42]).
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P ¼ AT
V

ðLTÞD−1: ð141Þ

At this point, we evoke homogeneity again with the
Gibbs-Duheim relation [45]

dGfield ¼ VdP − SfielddT: ð142Þ

In the bosonic systems treated here, formed by noninter-
acting massless fields, Gfield ¼ μ ¼ 0. Therefore,

dP ¼ Sfield

V
dT: ð143Þ

Expression (143) shows that, when the pressure is written
in terms of T, it does not depend on any other variable, that
is P ¼ PðTÞ.
Using relations (141) and (140), an explicit form of the

pressure in terms of the entropy can be determined,

Sfield ¼ kAðLTÞD−1; P ¼ Sfield

V
T
k
; ð144Þ

with a constant k. Solving Eq. (143),

dP ¼ T
k
d

�
Sfield

V

�
þ Sfield

kV
dT ¼ Sfield

V
dT: ð145Þ

From the previous result,

d

�
ln

Sfield

VTD−1

�
¼ 0 ⇒

Sfield

V
¼ CTD−1; ð146Þ

where C is a constant. Finally, using Eq. (144), we obtain

V ¼ Ak
C

LD−1: ð147Þ

The volume V in Eq. (147) coincides with our choice of
effective volume Veff , up to a nonessential multiplicative
constant. We conclude that the definitions of thermody-
namic volume and thermodynamic limit considered in the
present work are compatible with the homogeneity of the
equations of state in the thermodynamic limit.

VI. FINAL REMARKS

In the present work, we considered the equilibrium
thermodynamics associated with massless bosonic fields
in anti–de Sitter spacetime with reflexive boundary con-
ditions. Specifically, scalar, electromagnetic, and gravita-
tional perturbations are treated. The classical dynamics
and the quantization of the several matter contents of
interest are based on Pöschl-Teller effective potentials.
Thermodynamic quantities are calculated for the fields

of interest, and an analysis of the thermodynamics is
performed.
It should be remarked that we do not make the usual

identification of the cosmological constant Λ as propor-
tional to an effective pressure. Although Λ is frequently
treated as a pressure considering black hole thermodynam-
ics [15,46], we consider an alternative formalism compat-
ible with the development presented in Refs. [16,39]. In this
approach, the thermodynamic interpretation of the cosmo-
logical constant is done through an equation of state.
Within this formalism, it is possible to incorporate both
the thermal AdS background thermodynamics and the
SAdS black hole thermodynamics in the same framework.
An important point in the proposed treatment is a

suitable definition of effective volume. This effective
volume has a natural geometric interpretation, being
compatible with the homogeneity of the equations of state
in the thermodynamic limit. Imposing Bose-Einstein sta-
tistics and proper thermodynamic limits (based on the
volume introduced), the thermodynamics is determined.
The proposed definitions of effective volume and AdS
thermodynamic limits should be relevant in other analyses
in anti–de Sitter background.
In the actual calculation of the partition functions and

derived quantities, analytic and numerical tools are
employed. Specifically, analytic results are available in
the low-temperature and high-temperature regimes, while
numeric techniques are (in principle) always applicable.
The analytic and numeric calculations coincide when both
can be performed, corroborating the approach used.
Bosonic thermodynamics in anti–de Sitter background

is, in many ways, similar to the thermodynamics of
more usual physical systems. For instance, both the AdS
bosonic setup and the photon gas in a Minkowskian
cavity have the same low-temperature and high-
temperature behavior. Both scenarios have negative iso-
thermal compressibilities, indicating that they are unstable
under isothermic processes. Nevertheless, there are dis-
tinctions. In the intermediate-temperature regime (with
LT ≈ 1), the AdS thermodynamics is quantitatively differ-
ent from the “usual” boson gas confined in a cavity. In the
high-temperature limit, the subdominant terms do not
coincide.
It is worth pointing out that, although we considered only

bosonic fields, the method presented here can be general-
ized to other physical scenarios. For instance, fermionic
thermal gases in anti–de Sitter are of great interest.
Fermions should be part of the Hawking atmosphere in
an AdS black hole, and therefore they should be relevant in
the Hawking-Page phase transitions. Work along those
lines is currently under way.
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