
 

Accelerating parameter inference with graphics processing units

D. Wysocki, R. O’Shaughnessy, and Jacob Lange
Center for Computational Relativity and Gravitation, Rochester Institute of Technology,

Rochester, New York 14623, USA

Yao-Lung L. Fang
Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA

and National Synchrotron Light Source II, Brookhaven National Laboratory,
Upton, New York 11973, USA

(Received 14 February 2019; published 16 April 2019)

Gravitational wave Bayesian parameter inference involves repeated comparisons of gravitational wave
data to generic candidate predictions. Even with algorithmically efficient methods such as RIFTor reduced-
order quadrature, the time needed to perform these calculations and the overall computational cost can be
significant compared to the minutes to hours needed to achieve the goals of low-latency multimessenger
astronomy. By translating some elements of the RIFTalgorithm to operate on graphics processing units, we
demonstrate substantial performance improvements, enabling dramatically reduced overall cost and latency.
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I. INTRODUCTION

The Advanced LIGO [1] and Virgo [2] ground-based
gravitational wave (GW) detectors have identified several
coalescing compact binaries [3–8]. The properties of the
sources responsible have been inferred via the Bayesian
comparison of each source with candidate gravitational
wave signals [3–12]. Many more are expected as observa-
tories reach design sensitivity [13]. Both to handle the rapid
pace of discovery and particularly to enable coordinated
multimessenger follow-up, GW observatories should be
able to reconstruct the evidence for a signal being present in
the data along with the full source parameters of coalescing
binaries as fast as possible [14,15]. However, particularly
when using the best-available waveform models, these
calculations can be very costly. For binary neutron stars
(BNS), detailed inferences even using simplified wave-
forms take weeks. Even for massive binary black holes
(BBH), these calculations can take months for costly time-
domain effective-one-body models which incorporate the
effects of precession.
Several strategies have been developed to reduce the

computational cost of parameter estimation [9,16–20].
Approaches that have appeared in the literature include
generating the approximate solutions more quickly
[21–26]; interpolating some combination of the waveform
or likelihood [9,23,24,27–31]; or adopting a sparse repre-
sentation to reduce the computational cost of data handling
[9,16,18,20,26,32,33]. Not published but also important are
code optimization projects that improve infrastructure,
such as better parallelization for LALINFERENCE [12,34].
Some methods, however, achieve rapid turnaround through

simplifying approximations. The RIFT/rapidPE strategy
described in [9,10,35,36] eschews these simplifications,
performing embarrassingly parallel inferences even for
costly models. However, the method as previously imple-
mented still had a significant net computational cost and
noticeable startup time, limiting its diverse potential appli-
cations. Previously, B. Miller developed a custom-coded
implementation of the relevant likelihood on graphics
processing units (GPUs), suggesting substantial perfor-
mance improvements were possible [37,38]. The PYCBC

search code [39] and its PYCBC-inference extension [40]
can also make use of several GPU hardware-accelerated
operations. In this paper, we describe a variant of the RIFT
approach which flexibly translates one of its algorithms to
operate on GPUs and adjusts its workflow to exploit the
speed improvements this reimplementation affords.
This paper is organized as follows. In Sec. II, we review

the underlying marginalized likelihood calculations
used by RIFT and their updated GPU implementation. In
Sec. III, we quantify the improved performance of our
GPU-accelerated code, while assessing operating settings
which facilitate increased performance. In Sec. IV, we
describe the performance of the end-to-end pipeline on the
synthetic nonspinning signals used in Sec. III. In Sec. V, we
summarize our results and discuss their potential applica-
tions to future GW source and population inference.

II. METHODS

A. Parameter inference with the RIFT likelihood

ILE—a specific algorithm to “integrate (the likelihood)
over extrinsic parameters”—provides a straightforward and
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efficient mechanism to compare any specific candidate
gravitational wave source with real or synthetic data
[9,35,36,41], by marginalizing the likelihood of the data
over the seven coordinates characterizing the spacetime
coordinates and orientation of the binary relative to the
Earth. Specifically the likelihood of the data given
Gaussian noise, relative to Gaussian noise, has the form
(up to normalization)

lnLðλ; θÞ ¼ −
1

2

X
k

hhkðλ; θÞ − dkjhkðλ; θÞ − dkik

− hdkjdkik; ð1Þ

where hk are the predicted responses of the kth detector due
to a source with parameters (λ, θ) and dk are the detector
data in each instrument k; λ denotes the combination of
redshifted massMz and the remaining parameters needed to
uniquely specify the binary’s dynamics; θ represents the
seven extrinsic parameters (four spacetime coordinates for
the coalescence event and three Euler angles for the
binary’s orientation relative to the Earth); and hajbik ≡R∞
−∞ 2dfãðfÞ�b̃ðfÞ=Sh;kðjfjÞ is an inner product implied by
the kth detector’s noise power spectrum Sh;kðfÞ. In practice
we adopt both low- and high-frequency cutoffs fmax, fmin
so all inner products are modified to

hajbik ≡ 2

Z
jfj>fmin;jfj<fmax

df
½ãðfÞ��b̃ðfÞ
Sh;kðjfjÞ

: ð2Þ

The joint posterior probability of λ, θ follows from Bayes’
theorem:

ppostðλ; θÞ ¼
Lðλ; θÞpðθÞpðλÞR

dλdθLðλ; θÞpðλÞpðθÞ ; ð3Þ

where pðθÞ and pðλÞ are priors on the (independent)
variables θ, λ. For each λ, we evaluate the marginalized
likelihood

Lmarg ≡
Z

Lðλ; θÞpðθÞdθ ð4Þ

via direct Monte Carlo integration over almost all param-
eters θ, where pðθÞ is uniform in four-volume and source
orientation. For the event time parameter, we marginalize
by direct quadrature, for each choice of the remaining
Monte Carlo parameters. For the remaining dimensions, to
evaluate the likelihood in regions of high importance, we
use an adaptive Monte Carlo integrator as described in [9].
This marginalized likelihood can be evaluated efficiently

by generating the dynamics and outgoing radiation in all
possible directions once and for all for fixed λ, using a
spherical harmonic decomposition. Using this cached
information effectively, the likelihood can be evaluated

as a function of θ at a very low computational cost.
A dimensionless, complex gravitational-wave strain

hðt;ϑ;ϕ; λÞ ¼ hþðt;ϑ;ϕ; λÞ − ih×ðt;ϑ;ϕ; λÞ ð5Þ

can be expressed in terms of its two fundamental polar-
izations hþ and h×. Here, t denotes time, and ϑ and ϕ are
the polar and azimuthal angles for the direction of gravi-
tational wave propagation away from the source. The
complex gravitational-wave strain can be written in terms
of spin-weighted spherical harmonics −2Ylmðϑ;ϕÞ as

hðt; ϑ;ϕ; λÞ ¼
X∞
l¼2

Xl
m¼−l

Dref

D
hlmðt; λÞ−2Ylmðϑ;ϕÞ; ð6Þ

where the sum includes all available harmonic modes
hlmðt; λÞ made available by the model; where Dref is a
fiducial reference distance; and where D, the luminosity
distance to the source, is one of the extrinsic parameters.
Following Pankow et al. [9], we substitute expression (6)

for hlm into the expression hkðtÞ ¼ Fþ;khþðtkÞ þ
F×;kh×ðtkÞ for the detector response hk, where tk ¼ tc −
x⃗k · n̂ is the arrival time at the kth detector (at position x⃗k)
for a plane wave propagating along n̂ [9]. We then
substitute these expressions for hk into the likelihood
function (1) thereby generating [9]

lnLðλ; θÞ ¼ ðDref=DÞRe
X
k

X
lm

ðFk−2YlmÞ�Qk;lmðλ; tkÞ

−
ðDref=DÞ2

4

X
k

X
lml0m0

× ½jFkj2½−2Ylm��−2Yl0m0Uk;lm;l0m0 ðλÞ
þ ReðF2

k−2Ylm−2Yl0m0Vk;lm;l0m0 Þ�; ð7Þ

where Fk ¼ Fþ;k − iF×;k are the complex-valued detector
response functions of the kth detector [9] and the quantities
Q, U, V depend on h and the data as

Qk;lmðλ; tkÞ≡ hhlmðλ; tkÞjdik
¼ 2

Z
jfj>flow

df
Sn;kðjfjÞ

e2πiftk h̃�lmðλ; fÞd̃ðfÞ;

ð8aÞ

Uk;lm;l0m0 ðλÞ ¼ hhlmjhl0m0 ik; ð8bÞ

Vk;lm;l0m0 ðλÞ ¼ hh�lmjhl0m0 ik: ð8cÞ

In RIFT, the marginalization in Eq. (4) over extrinsic
parameters is performed by evaluating this likelihood
lnLðλ; θÞ on long arrays θα of extrinsic parameters,
including Dα but excluding time. Treating the block of
quantities that arise in one sequence of evaluations together,
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the expressions Q, F, U, V, and D can be considered as
multidimensional arrays. For example, FkðθαÞ is a matrix
indexed over k (detectors) and α (extrinsic parameters);

−2YlmðθkÞ is a matrix of shape ðmodesÞ × ðextrinsicÞ; and
Dα is a one-dimensional array over α. By contrast, the U, V
are arrays of shape ðdetectorsÞ × ðmodesÞ2 and are inde-
pendent of extrinsic parameters. While Q depends explic-
itly on time, and varies rapidly on short timescales, F varies
on the Earth’s rotation timescale, so we approximate F as
time independent.
At a fixed set of intrinsic parameters λ, ILE will

repeatedly evaluate the time-marginalized likelihood for
each candidate Monte Carlo set of extrinsic parameters θ:

LmargT ≡
Z

L
dt
T
; ð9Þ

where T is a small coincidence window consistent with the
candidate event time; here and previously, T ¼ 0.3 s.
Because we treat the parameter asymmetrically when
marginalizing over all extrinsic parameters, we likewise
organize a multidimensional array representation of Q to
emphasize the special role of time: for each k, l, m we
construct a uniformly sampled time series Qk;lmðλ; τÞ vs τ,
truncating it to a narrow coincidence window. In effect, we
represent Q by a matrix Qk;lmðλ; tþ n̂ · xkÞ with shape
ðdetectorsÞ × ðmodesÞ × ðextrinsicÞ × ðtimeÞ. In terms of
these multidimensional arrays, rewriting sums as matrix
operations, the likelihood can be equivalently expressed as

lnL ¼ Dref

D
Re½ðFYÞ†Q�

−
D2

ref

4D2
½ðFYÞ†UFY þ ðFYÞTVFY�; ð10Þ

where this symbolic expression employs an implicit index-
summation convention such that all naturally paired indices
are contracted. The result is an array of shape ðtimeÞ×
ðextrinsicÞ.

B. Accelerated evaluation via efficient multiplication

To accelerate the code, after precomputing the inner
products U, V, Q, we simply shift them to the graphics
card, and then carry out all calculations necessary to
implement Eqs. (10) and (9) on the GPU. These arrays
are only a few kilobytes. We then construct blocks of 104

random extrinsic parameters θα with the CPU; transfer
them to the board; and use on-board code to construct 104

values for lnLmarg. To enable this implementation with
portable code, we use CUPY [42], a drop-in replacement for
equivalent NUMPY code used for the CPU-based version of
ILE. For the most costly part of the calculation—the inner
products necessary to evaluate QlmðtÞ, accounting for
distinct time-of-flight-dependent time windows for each
interferometer’s data—we use a custom Compute Unified

Device Architecture (CUDA) kernel to perform the neces-
sary matrix multiplication. With these changes alone, the
likelihood evaluation is roughly 60× faster on equivalent
hardware. After this update, individual likelihood evalu-
ation costs are not the performance- or cost-limiting feature
of RIFT-based source parameter inference. Instead, the
overhead associated with the adaptive Monte Carlo inte-
grator and with the (CPU-based) inner product evaluations
for Q, U, V dominate our computational cost.

C. Tradeoff between Monte Carlo integration
and accuracy

Each marginalized likelihood evaluation has a relative
uncertainty of order 1=

ffiffiffiffiffiffiffi
neff

p
, where the number of effective

samples neff ¼ ϵNit increases linearly with the total number
Nit ofMonte Carlo evaluations performed by ILE. Therefore,
to increase (decrease) our accuracy for each likelihood
evaluation by a factor of A will require a factor of A2 more
(fewer) iterations. We adopt a fixed threshold on neff .
We do benefit slightly by reusing the adaptive

Monte Carlo integrator for each extrinsic point λ. Since
the integrator has already identified the likely range of sky
locations and distances on the first iteration, each sub-
sequent evaluation of the marginalized likelihood can
converge marginally more quickly.

III. ANALYSIS OF MARGINALIZED
LIKELIHOOD EVALUATION COST

We illustrate the code using two synthetic signals: a
binary black hole with masses m1;2 ¼ 35, 30 M⊙ and a
binary neutron star with masses 1.4 M⊙ and 1.35 M⊙. We
perform this analysis on heterogeneous LVC Collaboration
computing resources described in more detail in the
Appendix, to assess our variable performance across
architectures. Notably, we investigate the following GPU
options: (a) GTX 1050 Ti at LIGO-CIT, available in large
numbers; (b) V100, available on selected high-performance
machines; and (c) GTX 1050 at LIGO-LHO. Unless
otherwise noted in the text, we will discuss code configu-
rations using CPU only and GPU (b) using 4096 Hz
sampling and only the l ¼ 2, m ¼ �2 modes. In this
section, we conservatively report computational costs for
parameters λ which are close to or within the posterior.
Because of their consistency with the data, the marginalized
likelihood calculations converge the most slowly, as they
have the best-determined extrinsic parameters.

A. Synthetic source generation and analysis settings

We generate synthetic data for a two-detector LIGO
configuration, assuming operation at initial (BBH) or
advanced (BNS) design sensitivity. Both signals are gen-
erated with SEOBNRv4 effective-one-body waveform
approximation [43], with a zero-noise data realization.
To qualitatively reproduce the noise power spectrum and
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amplitude of typical binary black hole observations in
O1 and O2, the binary black hole signal has source distance
200 Mpc, chosen so SNR ≃ 14. Similarly, to qualitatively
reproduce the analysis of GW170817, our synthetic binary
neutron star is placed 100 Mpc away, so the signal
amplitude is SNR ≃ 31.
We perform a multistage iterative RIFT analysis of these

signals with the time-domain SEOBNRv4 (BBH) or
TaylorT4 [44] (BNS) approximation, under the simplifying
assumption that both objects are point particles with zero
spin. For both sources, we adopt the fiducial distance prior
pðDLÞ ∝ D2

L, selecting a maximum distance roughly 5
times larger than the known source distance: 1 Gpc for the
binary black hole and 500 Mpc for the neutron star. We
adopt a uniform prior on the component (redshifted) masses
mi;z (and, when appropriate, spins χi;z). Unless otherwise
noted, all mass quantities described in this work are
redshifted masses mk;z ¼ ð1þ zÞmk. For the binary black
hole we generate the signal with fmin ¼ 8 Hz and analyze
the signal with fmin ¼ 10 Hz; for the binary neutron star,
we generate the signal with fmin ¼ 20 Hz and analyze it
with fmin ¼ 23 Hz.

B. Massive compact binary black holes

Previously, each instance of ILE examined one intrinsic
point λ. The overall cost of this ILE evaluation involved
three parts: a startup cost, a setup cost, and a Monte Carlo
integration cost. The startup cost τstart is associatedwith code
setup followed by reading, data conditioning, and Fourier
transforming the data. The setup cost τsetup arises from
waveform generation and the inner products U, V, Q.
Finally, the Monte Carlo cost τmc ¼ Nadτad þ Nitτeval
increases with the number of Monte Carlo iterations Nit
with and the number of timesNad the sampling prior used in
adaptive Monte Carlo (MC) integrator is regenerated from

themost recent nchunk data points, in proportion to their cost.
In the standard configuration, the adaptive sampling prior is
regenerated every nchunk iterations (i.e., Nad ≃ Nit=nchunk),
regenerating a sampling prior in two sky location parameters
and distance. The choice of one λ for each instance of ILE
was due to the substantial time τMC, which vastly dominated
the overall computational cost. For example, for a typical
analysis of a short signal—a typical binary black hole signal
with fmin ¼ 20 Hz and m1 ≃m2 ≃ 30 M⊙—this version
has cost elements as shown in Table I, based on the
assumption that the MC terminates after Nit ≃ 2 × 106

iterations using nchunk ≃ 104. The marginalized likelihood
described above converges incredibly rapidly to a small
value if the candidate model is inconsistent with a signal (or
the absence thereof) in the data, with only Nit ≃Oð104Þ
evaluations needed.
With the new low-cost LmargT evaluations, however, the

startup and setup costs τstart, τsetup now can be comparable
to or in excess of the total time used to evaluate the
marginalized likelihood Lmarg. In fact, the total time per
Monte Carlo evaluation τit ¼ τmanage þ τeval spent in
general-purpose overhead τmanage will be much larger than
the time τeval spent carrying out scientific calculations by
evaluating the likelihood. For these reasons, we reorganize
the workflow, so each instance of ILE loops over Neval
different choices for λ. Additionally, particularly for mas-
sive binary black holes, we investigate two additional
performance improvements. First and foremost, we lower
the sampling rate, thus lowering the startup cost τstart and
particularly setup cost τsetup. Previously and out of an
abundance of caution, ILE employed a sampling rate
1=Δt ¼ 16384 Hz for all calculations, but terminated all
inner products in Eq. (2) at roughly fmax ¼ 2048 Hz or
less. Reducing the sampling rate by a factor s will reduce
the cost of all operations with time series—they are shorter.

TABLE I. Profiling performance: Binary black holes. Evaluation costs for the marginalized likelihood on default hardware, for a two-
mode system ðl; mÞ ¼ �2 analyzing T ¼ 8 s of data with a massive binary black hole m1 ¼ 35 M⊙, M2 ¼ 30 M⊙. The last column
indicates peak GPU utilization.

Version S rate [Hz] Modes [m] τstart [s] τsetup [s] τad τit;like ½μs� τit;rest ½μs� TILE
Neval

[s] GPU use [%]

CPU 16384 �2 20 2.4 540 20 690
4096 �2 20 20

CPU 16384 �2;�1 20 1.5 680 20 1060
4096 �2;�1 20 20

GPU (a) 16384 �2 20 270
4096 �2 20 45

GPU (b) 16384 �2 20 1.8 1 0.85 20 28 15
4096 �2 20 1.2 1 0.75 20 25

GPU (b) 16384 �2;�1 20 1 4.2 20 38
4096 �2;�1 20 1 2.5 20 35

GPU (c) 16384 �2 20 6 18 58 160
4096 �2 20 3.7 11 58 140 ≃50
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Depending on the relative cost of overhead vs array
operations, τsetup and the cost per evaluation τeval decrease
modestly because of this effect. Also following Pankow
et al., to ensure safe inner products over short data sets in
the presence of very narrow spectral lines, we operated on a
significantly padded data buffer and modified the noise
power spectrum by truncating the inverse power spectrum
to a finite response time. For binary black holes, the degree
of padding was significantly in excess of the signal
duration. Instead and following LALINFERENCE [12], we
adopt a much shorter inverse spectrum truncation length, a
much shorter padding buffer, and a Tukey window applied
to the data to remove discontinuities at the start and end of
each segment. Reducing the duration of data analyzed by a
factor s0 will reduce the cost τsetup by a factor s0. Combining
these factors, the overall computational cost TILE=Neval of
each marginalized likelihood evaluation is

TILE=Neval ¼
τstart
Neval

þ ½τsetup þ Nadτad þ Nitτit�: ð11Þ

The first rows in Table I show our estimated breakdown
of these elements of the computational cost, for a
typical binary black hole signal with fmin ¼ 20 Hz and
m1 ≃m2 ≃ 30 M⊙. Because of the extremely high cost of
adaptive overhead, we only adapt in two parameters,
corresponding to sky location; and we only adapt until a
marginalized likelihood evaluation returns significant
lnLmarg. As a result, Nad (the number of adaptive stages
per likelihood evaluation) scales as Nit=nchunk=Neval and
does not increase with the overall number of samples, so the
overall evaluation time scales as

TILE;mod =Neval ¼
τstart þ τadNit=nchunk

Neval
þ ½τsetup þ Nitτit�

ð12Þ
≃ ðτstart=20 sÞ þ 10ðτad=μsÞ
þ 2½ðτit;liike=μsÞ þ τit;rest=μs�; ð13Þ

where in the latter expression we substitute the usual values
of Nit ≃ 2 × 106, nchunk ≃ 104, and Neval ≃ 20 conserva-
tively adopted for problems involving many degrees of
freedom d (between 6 to 8). We target Neval ≃ 20 so that
startup and other one-time costs are not a significant
contributor to the overall run-time. In this configuration,
the run-time per marginalized likelihood is around
TILE=Neval ≃ 25 s for a binary black hole. Of this 25 s,
only roughly 1.5 s corresponds to evaluating the likelihood,
implying the cost τit ≃ 1.5=Nit ≃ 7.5 × 10−7. Likewise,
because overhead dominates over array manipulations,
an analysis with 16 kHz time series requires only margin-
ally more time than the corresponding 4 kHz analysis.
Conversely, the overhead of performing the Monte Carlo
integrator (including both τad and τit;rest) is a quite

substantial contribution to the overall run-time for the
best-available hardware.
For low-latency analyses, we need to assess the overall

wall clock time needed to perform an analysis, often with a
restricted number NGPU of available GPU-enabled
machines. To complete Nnet likelihood evaluations with
these resources requires

Tnet;mod ¼ Nnet

NGPUNeval
TILE;mod

¼ Nnet

NGPU

�
τstart þ τadNit=nchunk

Neval
þ ½τsetup þ Nitτit�

�
:

ð14Þ

Typically we target Neval ≲ 3 × 104, NGPU ≃ 100, or
roughly 300× the cost per individual marginalized like-
lihood evaluation. For the binary black hole configuration
described above, marginalized likelihood evaluations will
complete in about 100 min on a cluster of (b), or more
realistically 200 min on a cluster of (a). This number can be
reduced to tens of minutes with a modestly larger GPU
pool, or by marginally more conservative convergence
thresholds neff or Nit. This discussion ignores the latency
introduced by the gaussian process (GP) interpolation stage
at the end. We will revisit accelerated GP interpolation in
subsequent work.
The ILE likelihood generates waveform dynamics and

hlmðtÞ once per evaluation λ. Waveform generation can
contribute significantly to the time needed to evaluate
lnLmarg for extremely costly waveform models which
require τwf a significant fraction of τsetup. That said, the
tests described above used relatively costly waveform
generation with hlmðtÞ allocation requiring τwf ≃ 1.2 s at
4 kHz and 1.9 s at 16 kHz.
The ILE likelihood lnLmargT involves sums over modes,

with the most expensive likelihood and setup operations
(involving Q) growing linearly with the number of modes
used. This increased cost is most apparent in Table I when
comparing the columns corresponding τit;like for GPU
(b) between the �2 and ð�2;�1Þ rows. The cost of
evaluating lnLmargT with four modes is roughly twice that
of runs with two modes, as expected.
In a heterogeneous computing environment, code per-

formance varies substantially with available resources, as
seen by contrasting corresponding results for (a), (b), and
(c) in Table I. For the slowest hardware, the overall run-time
will be only a factor of a few smaller than the corresponding
CPU-only run-time.

C. Binary neutron stars

Table II shows the corresponding performance break-
down for our fiducial binary neutron star, which has signal
SNR ¼ 32. In this analysis, we have adopted the TaylorT4
model with l ¼ 2 and all m ¼ �2, �1 modes as our
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fiducial analysis template. This source has a significantly
longer duration and a higher amplitude, both of which
contribute to slower convergence and longer run-time.
Low-mass compact binaries such as binary neutron stars

have much longer inspiral times from the same starting
frequency of 20 Hz: roughly 160 s. Nominally, the
manipulation of a corresponding power-of-two duration
data (256 s) involves 32× more costly Fourier transforms
and time integrations than the BBH analysis described
above. (An array of 256 s of data at 16 kHz corresponds to
32 Mb.) Comparing τsetup appearing in Tables I and II, we
indeed find our BNS analysis requires a factor of order 32×
longer to set up all necessary inner products. Unlike the
BBH analysis, the inner product evaluation costs in τsetup
now dominate the overall evaluation time TILE=Neval.
Improved performance arises in part from reusing our

adaptive integrator, which (after the first marginalized
likelihood evaluation) can exploit tight localization
afforded by the many BNS cycles available in band and
the high amplitude of our fiducial BNS signal. In some
cases, the Monte Carlo integral converges to our target
accuracy in of order 10× fewer steps than for BBH.
Additionally, particularly for first-stage RIFT grids, the
improved performance arises from our choice of initial
grid: many points fit poorly and are identified as such well
before the fiducial 2 × 106 Monte Carlo iterations. Both
sources of improved performance relative to the BBH
analysis are independent of the choice of hardware.
For the closed-form post-Newtonian approximation used

in the study above, waveform costs are a modest contri-
bution to overall run-time, contributing only 4.1 s to τsetup at
16 kHz. For other approximations not available in closed
form, the waveform generation cost for binary neutron star
inspirals can be much more substantial, particularly as fmin
decreases below the 20 Hz used in this study.
While GPU cards have finite memory, the modest size of

our underlying data arrays and intermediate data products
on-board ensures that we are unlikely to saturate this
bound, even for 16 kHz data, unless we investigate
significantly lower starting frequencies or employ vastly
more angular modes hlm.

IV. PERFORMANCE AND VALIDATION
DEMONSTRATIONS WITH FULL PIPELINE

To better illustrate code performance in realistic settings,
we also describe end-to-end analyses with the original and
modified code. In a full analysis, many of the initially
proposed evaluation points λ either are not or are margin-
ally consistent with the data. As a result, most marginalized
likelihood evaluations in the first iteration proceed
extremely rapidly. As the high-cost and low-cost evalua-
tions are generally well mixed between different instances,
the overall time to complete the full first iteration is
typically much lower than subsequent iterations. With a
well-positioned and sufficiently large initial grid, few
follow-on iterations are needed.

A. Binary black hole analysis

Modest-amplitude short-duration binary black holes
empirically constitute the most frequent detection candi-
dates for current ground-based GW observatories [11].
Because of their brevity and hence broad posterior, the
RIFT code’s interpolation-based method converges rapidly.
Combined with the low cost of each iteration, these sources
require an exceptionally low commitment of resources and
can be performed in extremely low latency, as desired. To
demonstrate this, we use the GPU-accelerated code with
Neval ¼ 20, analyzing data with fsample ¼ 4096 Hz. We use
100 points in the first iteration, in a very coarse mass grid
(i.e., spacing comparable to typical astrophysical mass
scales), followed by 20 points in each subsequent iteration.
Figure 1 shows our results. The final posterior is already
well explored with the initial grid points, and converged by
the second iteration. Conversely, on average all iterations
required roughly 45 s per λ to evaluate their grid on GPU
(a) hardware. This configuration therefore converged
within the 30 min needed for the first two iterations. We
can achieve a smaller turnaround time for an otherwise
identical analysis by adjusting Neval appropriate to the
available hardware. While this low-dimensional problem
does not capture all fitting and automation challenges
associated with high-dimensional fully precessing binaries,

TABLE II. Profiling performance: Binary neutron stars. Evaluation costs for the marginalized likelihood on default hardware,
analyzing T ¼ 8 s of data with a binary neutron stars m1 ¼ 1.4 M⊙, M2 ¼ 1.35 M⊙, with convergence threshold neff > 50.

Version S rate [Hz] Modes [m] τstart [s] τsetup [s] τad τit;like ½μs� τit;rest ½μs� TILE
Neval

[s] GPU use [%]

CPU 16384 �2, �1 35 26 0.14 680 25 590
4096 �2, �1 35 25

GPU (a) 16384 �2, �1 35
4096 �2, �1 35 60–450

GPU (b) 16384 �2, �1 35 26 0.07 2.4 35 16
4096 �2, �1 35 11.5 0.1 2.4 24

GPU (c) 16384 �2, �1 35 71 20 38 105
4096 �2, �1 35 28 12 60
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it does capture the low cost and rapid response possible
with RIFT.

B. Binary neutron star analysis: Assuming zero spin

Significant-amplitude binary neutron star mergers are the
most important scenario for rapid parameter inference, as
low latency can enable multimessenger follow-up [11]. In
our second test we compare two workflows, one with the
original embarrassingly parallel RIFT code using Neval ¼ 1
and one with the “batched” GPU-accelerated code with
Neval ¼ 20, analyzing data with fsample ¼ 4096 Hz. In this

example, we use 100 initial points spread over the two mass
dimensions Mz, δ, adding 20 evaluations per iteration.
We choose this simple low-dimension, small-size, and
slowly converging configuration to facilitate visualization
of the grid, posterior, and convergence. The initial coarse
grid covers a region Mz ∈ ½1.1962; 1.1970� M⊙ and
δ ∈ ½0; 0.25�, ensuring the posterior was smaller than our
initial coarse grid spacing. The top panels of Fig. 2 show
posterior distributions derived from the first several RIFT
iterations, while the bottom panels show convergence
diagnostics. Because our analysis uses a post-Newtonian

FIG. 1. Convergence of BBH analysis: Zero spin. Results for marginal posterior distributions of our fiducial synthetic binary black
hole. Solid contours show credible intervals; solid one-dimensional distributions show marginal cumulative distribution functions
(CDFs) and probability density functions (PDFs) for the corresponding variables; and colored points indicate the location λ and value of
the underlying marginalized likelihood evaluations. Left panel: Posterior distribution over M and δ ¼ ðm1 −m2Þ=M. Right panel:
Marginal 1d CDFs of M, showing convergence. Bottom left panel: Mean and variance of the array lnLmargðλjÞ for j ¼ 1; 2;…; Neval

indexing all candidate sets of intrinsic parameters λj performed in that iteration, showing that after the first iteration the candidate points
are consistent with the posterior (i.e., no proposed point has very low lnLmarg). Bottom right panel: The estimated evidence Z ¼R
dλLmarg vs the iteration number. As a systematic fitting error dominates our error budget, the Monte Carlo error is not shown.
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model to interpret a signal generated with SEOBNRv4, the
peak posterior density is slightly offset from the synthetic
signal’s parameters
This specific workflow configuration reduces overall

core usage by maximizing GPU use per iteration: after the
first iteration, only one GPU is active. Specifically, with the
updated RIFT workflow used here, with one instance
analyzing each 20 evaluations, we use five coreþ GPU
pairs in the first iteration, followed by one coreþ GPU
for remaining iterations. By contrast, with the original

CPU-only RIFT code analyzing each λ in parallel, this
process requires roughly 20 core-minutes per λ, using 100
cores in the first iteration and 20 cores in each subsequent
evaluation.Note that becauseNeval ¼ 20 for theGPU is larger
than the (hardware and fsample dependent) speed-up factor
between the CPU and GPU implementation, the overall wall
clock time needed for an end-to-end analysis is larger for the
GPU workflow. We can achieve a comparable or smaller
turnaround time for an otherwise identical analysis by adjust-
ing Neval appropriate to the available hardware.

FIG. 2. Convergence of BNS analysis: Zero spin. Results for marginal posterior distributions of our fiducial synthetic neutron star.
Solid contours show credible intervals; solid one-dimensional distributions show marginal CDFs and PDFs for the corresponding
variables; and colored points indicate the location λ and value of the underlying marginalized likelihood evaluations. Left panel:
Posterior distribution overM and δ ¼ ðm1 −m2Þ=M. Right panel: Marginal 1d CDFs ofM, showing convergence. Bottom left panel:
Mean and variance of lnLmarg on the evaluation points, showing that after the first iteration the candidate points are consistent with the
posterior (i.e., no proposed point has very low lnLmarg). Bottom right panel: Z ¼ R

dλLmarg vs the iteration number. As a systematic
fitting error dominates our error budget early on, the Monte Carlo error is not shown.
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C. Binary neutron star analysis: Assuming
nonprecessing spin

Binary neutron star models with more parameters such as
spin and tides require correspondingly larger numbers of
points in the initial grid and per iteration. Fortunately, the
number of observationally significant and accessible
dimensions is often substantially less than the prior
dimensionality. In practice,we use roughly 20×more points
per iteration for precessing massive BBH systems (d ¼ 8)

or for spinning binary neutron stars with tides (d ¼ 6). As a
result, we can still achieve relatively rapid turnaround on a
high-dimensional binary neutron star analysis even in
resource-constrained environments.
As a concrete demonstration of a realistic modest-latency

analysis using the GPU-accelerated code, we reanalyze
our fiducial binary neutron star signal, accounting
for the possibility of nonzero (aligned) neutron star
spins. Our initial grid consists of 5000 points, spread

FIG. 3. Demonstration of low-latency spinning analysis: Results for marginal posterior distributions of our fiducial synthetic neutron
star, assuming the binary has nonprecessing spins. Solid contours show credible intervals; solid one-dimensional distributions show
marginal CDFs and PDFs for the corresponding variables; and colored points indicate the location λ and value of the underlying
marginalized likelihood evaluations. Only evaluations with marginalized log-likelihoods within 30 of the maximum are shown, to
increase contrast. The solid curves show an analysis with SEOBNRv4_ROM. Left panel: Posterior distribution over M,
δ ¼ ðm1 −m2Þ=M, and χeff . Right panel: Marginal 1d CDFs of δ, showing convergence. Bottom left panel: Mean and variance of
lnLmarg on the evaluation points, showing that after the first iteration the candidate points are consistent with the posterior (i.e., no
proposed point has very low lnLmarg). Bottom right panel: Z ¼ R

dλLmarg vs the iteration number. As a systematic fitting error
dominates our error budget early on, the Monte Carlo error is not shown.
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approximately uniformly across a four-dimensional hyper-
cube Mz ∈ ½1.1962; 1.1970� M⊙, δ ∈ ½0; 0.25�, and χi;z ∈
½−0.05; 0.05�. Subsequent iterations use 500 random draws
from the estimated posterior samples produced from the
previous iteration. Because our fiducial post-Newtonian
model (TaylorT4) as implemented in LALSUITE [34] does
not include spin, we employ both the SEOBNRv4_ROM
and SpinTaylorT4 waveform approximations for nonpre-
cessing binaries, omitting higher-order modes. For
SEOBNRv4_ROM, we use 48 GPU (c) enabled nodes;
for SpinTaylorT4, we use 100 GPU (a) nodes. Figure 3
shows our results.
Due to our self-imposed resource constraints on Neval ¼

20 and the number of GPUs, the first iteration is resource-
limited and requires of order ð5000=20=100Þ ≃ 2.5 to
ð5000=20=48Þ ≃ 5 times as long as the first iteration
of the zero-spin BNS analysis described above. Each
marginalized likelihood evaluation in the first iteration
(as well as subsequent iterations) requires roughly 60 s
for both SpinTaylorT4 and SEOBNRv4ROM, on average.
Subsequent marginalized likelihood iterations are not
resource limited and complete in roughly 35 min, depend-
ing on hardware. As previously, we can achieve a compa-
rable or smaller turnaround time for an otherwise identical
analysis by adjusting Neval appropriate to the available
hardware.

V. CONCLUSIONS

We have demonstrated that the marginalized likelihood
lnLmargðλÞ appearing in the RIFT/rapidPE parameter infer-
ence calculation can be evaluated at fixed λ in tens of
seconds on average for both binary black holes and binary
neutron stars. This performance improvement could enable
very low latency source parameter inference for compact
binaries, which can be of use for targeting multimessenger
follow-up observations via sky localization and precise
source characterization. This prospect is particularly inter-
esting because RIFT can often achieve this performance
using computationally costly models for binary merger
with rich physics such as higher modes or eccentricity, as
the waveform generation cost does not usually limit code
performance.
In addition to producing results rapidly, RIFT results can

be produced with a noticeably smaller overall resource
footprint than loosely similar lalinference (LI) analyses,
even without tuning to optimize RIFT pipeline settings. As
a concrete and nonoptimized example, for all five of the
iterations of the spinning binary neutron star parameter
inference with SEOBNRv4_ROM from 20 Hz described in
this work, our RIFT analysis expended roughly 14 core-
days. By contrast, a TaylorF2 analysis of GW170817 with
LI in Markov-chain Monte Carlo mode starting from 23 Hz
required 228 core-days. For precessing binary black holes
using SEOBNRv3, the improvement is equally substantial:
10 core-days for a 10-iteration investigation of a synthetic

GW150914-like source with RIFT, vs 291 core-days for a
LI analysis of GW170729. We defer detailed relative
benchmarking using comparably converged parameter
inference to future work.
The overall code performance and thus latency can be

further decreased substantially, notably by converting the
Monte Carlo random number generation and inner products
to GPU-based operations. In such a configuration, the
marginalized likelihood code would perform almost all
calculations (except waveform generation) on a GPU, with
minimal communication off the board. This configuration
should further reduce the average time needed to compute
lnLmargðλÞ for both binary black holes (which are
Monte Carlo limited) and binary neutron stars (which
are inner-product limited). We anticipate a further factor
of roughly 10 reduction in overall evaluation time can be
achieved soon. At that level of performance, a single
8-GPU machine with contemporary hardware could per-
form parameter inference less than 10 min. Since binary
compact objects intersect our past light cone only once
every roughly 15 min, accounting for all past history, such a
configuration would be able to address low-latency param-
eter inference for the duration of second-generation
ground-based observing. Alternatively, if larger resource
pools are available in low latency, both the original and the
now GPU-accelerated RIFT can perform extremely rapid
parameter inference if large iterations are performed
completely in parallel (i.e., Neval ≃ 1).
By allowing models with higher-order modes to be used

in low latency, our code can exploit the tighter constraints
which higher modes can enable on the properties of low-
mass binaries with suitable amplitudes and orientations.
These tighter constraints could better inform low-latency
source classification and hence multimessenger follow-up
observations of compact binary mergers.
Beyond low-latency multimessenger astronomy, rapid

parameter inference enables new applications. For exam-
ple, every parameter inference provides evidence for a
signal being present in the data; with rapid parameter
inference, this evidence could be used as (the last stage in a
hierarchical pipeline for) a detection statistic [45]. This
approach can identify individual events and even a pop-
ulation. Alternatively and in many ways equivalently,
one can identify a population of GW sources without
assuming any one is real, by applying parameter inference
to more candidate events and self-consistently separating
foreground and background [46,47].
When suitable surrogate models are available, the overall

code performance and thus latency could yet again be
further reduced by eliminating the iteration and fitting
stages entirely, performing one Monte Carlo integration at
once [48]. This approach exploits a linear representation of
hlmðtÞ via basis functions, to enable rapid likelihood
evaluation as a function of both extrinsic parameters and
λ. Though not necessarily or compactly available for all
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surrogate models, particularly for the small basis sizes
necessary to fit onboard GPUs, this approach could enable
exceedingly low latency at a small computational cost.
This alternative architecture would be exceptionally well
suited to the alternative applications of low-latency PE
described above.
The use of CUPY enables our code to be highly portable

across architectures and heterogeneous GPU environments,
while transitioning smoothly between GPU and CPU
modes. The techniques we used here will be transported
to other Bayesian inference modeling codes used to
interpret GW observations [49,50].
In this work, we have focused exclusively on profiling a

simplified pipeline to produce posterior distributions for
detector-frame intrinsic parameters. The code also produces
reliable extrinsic parameter distributions [9]. With some
postprocessing, this pipeline provides joint posterior dis-
tributions for all intrinsic and extrinsic parameter distribu-
tions together; examples of these distributions have been
published elsewhere [11]. Presently, rather than harvest
extrinsic information from every iteration, we harvest joint
intrinsic and extrinsic information with a single final
iteration, which we will implement shortly in our produc-
tion pipeline.
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APPENDIX: PROPERTIES OF RESOURCES USED

LIGO-CIT worker nodes, denoted by (a) in the text, are
principally S6 nodes with 2-CPU ×8 core Opteron 2.3 GHz
machines with 16 Gb of RAM, with GTX 1050 Ti cards
with 4 Gb of RAM. For LIGO-CIT, profiling reports reflect
performance averaged over the whole cluster and hence
lacks the detailed reporting produced for the other con-
figurations. LIGO-LHO worker nodes with GPUs, denoted
by (c) in the text, are a heterogeneous configuration mostly
consisting of (a). Unlike profiling at LIGO-CIT, the
profiling for LIGO-LHO reflects controlled tests on a
single node. The V100 machine (ldas-pcdev13, denoted
by (b) in the text) is a 24-core ES-2650 v4 machine with 4
GPUs, only one of which is active in our tests: Tesla V100
with 16 Gb of RAM. All non-GPU profiling was also
performed on this machine.
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