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We derive the kinematic Hamiltonian for the so-called “new general relativity” class of teleparallel
gravity theories, which is the most general class of theories whose Lagrangian is quadratic in the torsion
tensor and does not contain parity violating terms. Our approach makes use of an explicit expression for the
flat, in general, nonvanishing spin connection, which avoids the use of Lagrange multipliers, while keeping
the theory invariant under local Lorentz transformations. We clarify the relation between the dynamics of
the spin connection degrees of freedom and the tetrads. The terms constituting the Hamiltonian of the
theory can be decomposed into irreducible parts under the rotation group. Using this, we demonstrate that
there are nine different classes of theories, which are distinguished by the occurrence or nonoccurrence of
certain primary constraints. We visualize these different classes and show that the decomposition
into irreducible parts allows us to write the Hamiltonian in a common form for all nine classes,
which reproduces the specific Hamiltonians of more restricted classes in which particular primary
constraints appear.
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I. INTRODUCTION

General relativity (GR) is usually formulated using the
Levi-Civita connection induced by a pseudo-Riemannian
metric. Alternatively, one may employ other connections,
such as the flat connections used in teleparallel [1,2] or
symmetric teleparallel gravity [3], in order to obtain sets of
field equations equivalent to those of GR. In this work we
consider teleparallel gravity, where the field variables are
the 16 components of a tetrad (or vierbein), instead of the
10 components of a metric. Nowadays it is known that 6
components are related to local Lorentz transformations,
while at most 10 encode the gravitational interaction. How
many of them actually encode dynamical degrees of free-
dom (d.o.f.) of a teleparallel theory of gravity is not
conclusively answered in general, and to gain insight into
this question is one motivation for this work.
Large varieties of teleparallel theories of gravity have

been constructed [4–6]. Since the building block of these
theories is the torsion of the teleparallel connection and not
the curvature of the Levi-Civita connection, second order
derivatives of the fundamental fields do not appear in the
Lagrangians, as long as no terms with additional derivatives
on the torsion are introduced, and so no Gibbons-Hawking-
York boundary term is required. In this way the teleparallel
formulation allows for more freedom in the construction of

gravity theories with second order derivative field equations
than the metric approach. Moreover, teleparallel gravity
theories can be understood as gauge theories with a Yang-
Mills theorylike structure [7–9], which brings gravity closer
to the standard model of particle physics, and might hence
open a path to its unification with the other fundamental
forces in physics. The other prominent reason to construct
modified theories of gravity is to shed light on astrophysical
observations which lack explanation within GR coupled to
standard model matter only; the most famous ones being the
dark matter and dark energy phenomena.
Before studying the phenomenology of modified tele-

parallel theories of gravity it is essential to identify those
which are self-consistent, i.e., to understand the properties
of their d.o.f. and if they contain ghosts. This can be
done best in terms of a full-fledged Hamiltonian analysis
in terms of the Dirac-Bergmann algorithm for constrained
Hamiltonian systems. It is known that the teleparallel
equivalent of general relativity (TEGR), which yields the
same dynamics and solutions for the metric defined by the
tetrads as general relativity and contains no additional
d.o.f., is self-consistent and ghost-free [10–16]. The hope is
that this is not the only contender of the class of healthy
teleparallel theories of gravity in this sense. Because of the
complexity in the calculation of the constraint algebra, the
Hamiltonian analysis for modified theories of gravity is not
done for all the models considered in the literature. With
this work we aim to contribute to this goal.
One widely studied class of modified teleparallel theo-

ries of gravity are the fðTÞ models. They are based on the
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Lagrangian T employed in TEGR, and can be thought of as
the teleparallel counterpart of fðRÞ theories considered in
the metric formalism. While it is known that TEGR and GR
are equivalent, this is in general not true for fðTÞ and fðRÞ
theories. The Hamiltonian analysis of fðTÞ theories has just
recently been presented [15,17] with the conclusion that
there are three propagating d.o.f., which differs from
previous results [18,19]. Other, more general models are
based on a Lagrangian that is a free function of the three
parity even scalars that are quadratic in the torsion tensor
and do not involve further fields than the tetrads [20]. Their
Hamilton analysis is still missing, and, due to the generality
of the model, could be very involved. However, among
these general models, there are the new general relativity
(NGR) models [21]: the most general class of teleparallel
theory of gravity in four spacetime dimensions, whose
Lagrangian is quadratic in the torsion tensor and contains
only the tetrad and its first derivatives. This class is
parametrized by three constant parameters appearing in
the Lagrangian and contains TEGR for a special choice of
the parameters.
Various work has been performed on NGR. Solar system

constraints have been investigated [21] as well as the
propagation and polarization modes of gravitational waves
on a Minkowski spacetime background [22]. This analysis
found that already on the linearized level, in general, NGR
models predict more than two gravitational wave polar-
izations. However, it was also found that there exist NGR
models different from TEGR with two gravitational wave
polarizations. What remains open from the analysis of the
linearized theory is if it differs from the full nonlinear
theory. On the nonlinear level strongly coupled fields may
appear, similar to what was pointed out in early attempts
to formulate massive gravity theories [23]. A complete
Hamiltonian analysis is needed in order to answer this
question.
In this article we work towards the goal of a full

Hamiltonian description of NGR. In particular, we derive
the fully generic kinematic Hamiltonian for NGR, which is
valid for any choice of the parameters appearing in the
action. Further, we discuss the occurrence of primary con-
straints depending on the parameters of the theory. This
analysis is an important cornerstone for further studies of
NGR in its Hamiltonian formulation. Knowing the primary
constraints, it is possible to calculate the successive Poisson
brackets, and thus to derive the full constraint algebra, which
implies the number of d.o.f. of the theory. In addition, it is
the starting point to study the presence or absence of ghosts,
and hence to test the viability of different theories within the
NGR class. Further, the 3þ 1 Hamiltonian formalism also
leads to the initial value formulation of NGR, required for
numerical calculations, such as the precise prediction of
gravitational wave signatures.
Hamiltonian analyses of specific theories within the

NGR class besides TEGR have been studied [24,25].

Additionally, this line of research extends to the
Hamiltonian formulation of more general Poincaré
gauge theories, where both torsion and curvature are
present [26,27].
The main difference between the previous studies and

the approach we present in this article lies in the method
which is employed in order to implement the vanishing
curvature of the teleparallel connection. Previous studies
can mainly be divided into two groups, either assuming
a vanishing spin connection (which is known as the
Weitzenböck gauge) [10,15–17,25], or an arbitrary spin
connection, whose curvature is then enforced to vanish by
using Lagrange multipliers in the action functional [12,13].
Here we use a different ansatz, by allowing for a non-
vanishing spin connection, as mandated by the covariant
formulation of teleparallel gravity [1,2], which is obtained
explicitly by applying a local Lorentz transformation to the
vanishing Weitzenböck gauge spin connection. This spin
connection is flat by construction, and we will show that it
enters only as a gauge d.o.f.
The article is organized as follows: In Sec. II we present

the Lagrangian for new general relativity. Then we write
down the Lagrangian in 3þ 1 decomposition and derive
its conjugate momenta, and discuss the gauge fixing, in
Sec. III. In Sec. IV we perform a decomposition into
irreducible parts and find the possible primary constraints.
Finally the kinematic Hamiltonian is written down in
Sec. V, where we use the irreducible parts to write it
in a block structure showing the most general expression. In
Appendix we sketch how one can derive the Hamiltonian
without fixing the gauge. Index conventions throughout
this article are such that capital Latin indices A;B;C;…
are Lorentz indices running from 0 to 3, Greek indices
μ; ν; ρ;… are spacetime indices running from 0 to 3, and
small Latin indices i; j; k;… are spatial spacetime indices
running from 1 to 3. A dot over a quantity always denotes
derivative with respect to x0 _X ¼ ∂0X. The signature con-
vention for the spacetime metric employed is ð−;þ;þ;þÞ.

II. THE NEW GENERAL
RELATIVITY LAGRANGIAN

Teleparallel theories of gravity are formulated in terms of
tetrad fields θA, their duals eA and a curvature-free spin
connection ωA

B, which can at least locally be constructed
out of local Lorentz transformations ΛA

B. In local coor-
dinates ðxμ; μ ¼ 0;…; 3Þ on spacetime they can be
expressed as

θA ¼ θAμdxμ; eA ¼ eAμ∂μ;

ωA
B ¼ ωA

Bμdxμ ¼ ΛA
CdðΛ−1ÞCB ¼ ΛA

C∂μðΛ−1ÞCBdx
μ;

ð1Þ

and satisfy
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θAðeBÞ ¼ θAμeBμ ¼ δAB; θAμeAν ¼ δνμ: ð2Þ

Implementing the flat teleparallel spin connection in this
way has the advantage that it avoids the use of Lagrange
multipliers as done in Refs. [12,28]. The spacetime metric
gμν, which is a fundamental field in other gravity theories
such as GR, here becomes a derived quantity defined by

gμν ¼ ηABθ
A
μθ

B
ν; gμν ¼ ηABeAμeBν: ð3Þ

The fundamental tensorial ingredient from which actions
for the fields are built are the first covariant derivatives of
the tetrad with respect to the covariant derivative defined by
the spin connection

TA ¼ DθA ¼ ð∂μθ
A
ν þ ωA

Bμθ
B
νÞdxμ ∧ dxν

¼ 1

2
TA

μνdxμ ∧ dxν; ð4Þ

which is nothing but the torsion of the connection. Using
the covariant derivative D in the definition of the torsion
ensures a covariant transformation behavior under local
Lorentz transformations of the tetrad [1,2]. Changes of
index types on tensors are performed by multiplication with
tetrad components, for example, Tμ

ρσ ¼ TA
ρσeAμ.

We now consider the most general Lagrange densities, in
four spacetime dimensions, quadratic in torsion, which can
be built from the components TA

μν of the torsion tensor and
the tetrad alone, while not introducing further derivatives or
parity violating terms. This class of theories can be para-
metrized in terms of three free parameters c1, c2, and c3,
and its Lagrangian is given by

LNGR½θ;Λ� ¼ LNGRðθ; ∂θ;Λ; ∂ΛÞ
¼ jθjðc1Tρ

μνTρ
μν þ c2Tρ

μνTνμ
ρ þ c3Tρ

μρTσμ
σÞ

¼ jθjGαβ
μνρσTα

μνTβ
ρσ ¼ jθjGAB

μνρσTA
μνTB

ρσ:

ð5Þ

In the last equality we introduced the convenient
supermetric or constitutive tensor representation of the
Lagrangian [8,9,15], where below the metric must be
read as a function of the tetrads1

GAB
μνρσ ¼ c1ηABgρ½μgν�σ − c2e

½μ
B g

ν�½ρeσ�A − c3e
½μ
A g

ν�½ρeσ�B : ð6Þ

Teleparallel theories of gravity with the action

S½θ;Λ� ¼
Z
M
LNGR½θ;Λ�d4x ð7Þ

are called NGR theories of gravity [21]. Choosing the
parameters of the theory to be c1 ¼ 1

4
, c2 ¼ 1

2
, and c3 ¼ −1

the theory reduces to TEGR [4].

III. 3 + 1 DECOMPOSITION AND
CONJUGATE MOMENTA

In order to derive the Hamilton formulation of the
previously introduced NGR teleparallel theories we need
to split spacetime into spatial hypersurfaces and a time
direction before we derive the canonical momenta of the
field variables. We introduce the 3þ 1 decomposition in
local coordinates ðx0; xiÞ, where the submanifolds x0 ¼
const are the spatial hypersurfaces. As for the Hamiltonian
formulation of general relativity, see, for example, the
modern review [29] and references therein, the metric can
be decomposed into the lapse function α, the shift vector βi,
and the metric on the spatial hypersurfaces hij

gμν ¼
�−α2 þ βiβjhij βi

βi hij

�
; gμν ¼

"
− 1

α2
βi

α2

βi

α2
hij − βiβj

α2

#
:

ð8Þ

Spatial indices i; j;… are raised and lowered with the
components of the spatial metric hij, i.e., βi ¼ βjhij.
In the teleparallel formulation of theories of gravity

we need to apply the 3þ 1 decomposition to the tetrad
θA ¼ θA0dx0 þ θAidxi and its dual eA ¼ eA0∂0 þ eAi∂i
instead of to the metric. They can be further expanded
into lapse and shift by writing

θA0 ¼ αξA þ βiθAi; ð9Þ

where we introduced the components ξA of the normal
vector n to the x0 ¼ const hypersurfaces in the dual tetrad
basis [10]

n ¼ ξAeA; ξA ¼ −
1

6
ϵABCDθ

B
iθ

C
jθ

D
kϵ

ijk: ð10Þ

Lowering and raising upper-case Latin indices with the
Minkowski metric ηAB, the ξA satisfy

ηABξ
AξB ¼ ξAξA ¼ −1; ηABξ

AθBi ¼ ξAθ
A
i ¼ 0: ð11Þ

The dual tetrads and the spatial metric can be expanded into
lapse, shift, and spatial tetrads as

eA0 ¼ −
1

α
ξA; eAi ¼ θA

i þ ξA
βi

α
; hij ¼ ηABθ

A
iθ

B
j:

ð12Þ

1Alternatively, one may introduce the so-called axial, vector,
tensor decomposition of the torsion, in which the NGR Lagran-
gian becomes L ¼ a1Tax þ a2T tens þ a3Tvec [20]. The coeffi-
cients translate as c1 ¼ − 1

3
ða1 þ 2a2Þ, c2 ¼ 2

3
ða1 − a2Þ, and

c3 ¼ 2
3
ða2 − a3Þ.
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Observe the following possible source of confusion. The
spatial components of the tetrad with noncanonical index
positions are defined as θA

i ¼ ηABhijθBj ≠ eAi ¼ θA
i þ

ξA
βi

α . This is related to the fact that in contrast to other
approaches, such as the standard calculation for the

Hamiltonian of GR, we do not expand tensors into com-
ponents parallel or orthogonal to the spatial hypersurfaces,
but parallel to the hypersurfaces or the time direction.
Inserting these expansions into the NGR Lagrangian we

obtain the 3þ 1 split of the theory

LNGR½α; βi; θAi;ΛA
B� ¼ jθjð4GAB

i0j0TA
i0TB

j0 þ 4GAB
ijk0TA

ijTB
k0 þ GAB

ijklTA
ijTB

klÞ

¼
ffiffiffi
h

p

2α
TA

i0TB
j0Mi

A
j
B þ

ffiffiffi
h

p

α
TA

i0TB
kl½Mi

A
l
Bβ

k þ 2αhilðc2ξBθAk þ c3ξAθBkÞ�

þ
ffiffiffi
h

p

α
TA

ijTB
klβ

i½1
2
Mj

A
l
Bβ

k þ 2αhjlðc2ξBθAk þ c3ξAθBkÞ� þ α
ffiffiffi
h

p
· 3T : ð13Þ

The matrix Mi
A
j
B is a map from 3 × 4 matrices to their

duals, i.e., 4 × 3 matrices, and will play an important role
when we express the velocities of the tetrads in terms of
the canonical momenta and vice versa. It can be written in
the form

Mi
A
j
B ¼ 8α2GAB

i0j0

¼ −2ð2c1hijηAB − ðc2 þ c3ÞξAξBhij
þ c2θAjθBi þ c3θAiθBjÞ: ð14Þ

The purely intrinsic torsion scalar on the x0 ¼ const
hypersurface is given by

3T ≡ c1ηABTA
ijTB

klhikhjl þ c2θAiθBjTA
kjTB

lihkl

þ c3θAiθBjhklTA
kiTB

lj ¼ HAB
ijklTA

ijTB
kl; ð15Þ

where the spatial supermetric is

HAB
ijkl ¼ c1ηABhk½ihj�l − c2θB½ihj�½kθl�A − c3θ

½i
Ah

j�½kθl�B:

ð16Þ

In the 3þ 1 decomposed form (13) it is not difficult to
derive the canonical momenta of the tetrads θAμ and the
Lorentz transformations ΛA

B which generate the spin
connection. Time derivatives on the variables of the theory
only appear in torsion terms TA

0i and never act on θA0, due
to the antisymmetry of the torsion tensor in its lower
indices, nor on the lapse α and the shift β. Hence the
canonical momenta of lapse and shift are, not surprisingly,
all identically zero,

πα ¼
∂LNGR

∂ _α
¼ 0; πβi ¼

∂LNGR

∂ _βi
¼ 0: ð17Þ

The canonical momenta of the spatial tetrad components
are given by

αffiffiffi
h

p πA
i ¼ αffiffiffi

h
p ∂LNGR

∂ _θAi
¼ TB

0jMi
A
j
B

þ TB
kl½Mi

A
k
Bβ

l þ 2αhikðc2ξBθAl þ c3ξAθBlÞ�;
ð18Þ

while the momenta for the connection generating Lorentz
transformations turn out to be completely determined from
the momenta of the tetrad.
To see this first observe that the Lorentz group is six-

dimensional and therefore not all components of the ΛA
B

are independent of each other. To reflect this during the
derivation of the corresponding momenta we introduce the
auxiliary antisymmetric field aAB in the following way:

aAB ≔ ηACω
C
B0 ¼ ηC½AΛCjDj _ðΛ−1ÞDB� ⇔ _ΛA

B

¼ aMNη
A½NΛM�

B: ð19Þ

The independent components of the momenta of the
Lorentz matrices are then given by

π̂AB ¼ ∂LNGR

∂aAB ; ð20Þ

and satisfy

π̂AB ¼ −πCiηC½BθA�i; ð21Þ

which can easily be realized from

∂LNGR

∂aMN
¼ ∂LNGR

∂ _ΛA
B

∂ _ΛA
B

∂aMN
¼ ∂LNGR

∂TC
0k

∂TC
0k

∂ _ΛA
B

∂ _ΛA
B

∂aMN

¼ −
∂LNGR

∂TC
0k

∂TC
0k

∂ _θAi
½θDiðΛ−1ÞBD�

∂ _ΛA
B

∂aMN
ð22Þ

¼ −
∂LNGR

∂ _θAi
½θDiðΛ−1ÞBD�ηA½NΛM�

B: ð23Þ
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The fact that the momenta π̂ are not independent of the
momenta π demonstrates that the ΛA

B are not independent,
but only gauge d.o.f.
In the following, we introduce new field variables

ðα̃; β̃i; θ̃Ai; Λ̃A
BÞ, where θ̃Aiðθ;ΛÞ ≔ θBiðΛ−1ÞAB is the so-

called Weitzenböck tetrad and all other fields are not
changed: α̃ ¼ α; β̃i ¼ βi, and Λ̃A

B ¼ ΛA
B. Using the inverse

of this definition θBi ¼ θ̃AiΛB
A to express the Lagrangian

(5) in terms of the Weitzenböck tetrad yields that
L̃NGR½α; βi; θ̃Ai;ΛA

B� ≔ LNGR½α; βi; θAiðθ̃;ΛÞ;ΛA
B� is in-

dependent of Λ, respectively, Λ̃. The α and βi momenta
are not affected by this field redefinition at all. For the
momenta in the new frame we find the transformation
behavior

π̃A
i ¼ ∂L̃NGR

∂ _̃θAi
¼ πB

iΛB
A;

ˆ̃πMN ¼ ∂L̃NGR

∂aMN
¼ πA

jηA½NθM�
j þ π̂MN; ð24Þ

with inverse transformation

πA
i ¼ π̃B

iðΛ−1ÞBA;
π̂MN ¼ ˆ̃πMN − π̃B

jðΛ−1ÞBAηA½NΛM�
Cθ̃

C
j: ð25Þ

Applying the constraint (21) to the second part of the
transformation (24) shows that in the Weitzenböck gauge
the momenta of the Lorentz transformations all vanish,
ˆ̃πAB ¼ 0.
This reproduces the well-known fact that in teleparallel

gravity the spin connection represents pure gauge d.o.f.
[1,2]. Therefore, without loss of generality, we can set
the spin connection coefficients to zero and work in the
so-called Weitzenböck gauge, in which the connection
coefficients of the spin connection vanish identically.
The Hamiltonian in the Weitzenböck gauge is then given

by the Legendre transform of the Lagrangian where we
have to add the primary constraints we already discovered,
Eqs. (17) and (21) with Lagrange multipliers α̃λ, β̃λi, and π̂λ

H̃NGR½α̃λ; β̃λi; π̃λAB; α̃; π̃α; β̃i; π̃βi ; θ̃Ai; π̂Ai; Λ̃A
B; ˆ̃π

AB�
¼ π̃α _̃αþ π̃βi

_̃β
i þ π̃A

i _̃θ
A
i þ ˆ̃πABãAB þ α̃λπ̃α þ β̃λiπ̃βi

þ ˆ̃πλAB ˆ̃π
AB − L̃NGR½α̃; β̃i; θ̃i; Λ̃�: ð26Þ

The term ˆ̃πABãAB is identical to the term one would use

naively in terms of the canonical variables ∂̃LNGR

∂ _ΛA
B

_ΛA
B, as can

easily be seen from the definition of the auxiliary variable
aAB in Eq. (19). As mentioned α̃ ¼ α, β̃i ¼ βi, and
Λ̃A

B ¼ ΛA
B; L̃NGR½α̃; β̃i; θ̃i; Λ̃� is independent of Λ.

Therefore, on shell, where the constraint ˆ̃πAB ¼ 0 is
implemented, the gauge fixed Hamiltonian does neither
depend on Λ nor on ˆ̃πAB. Moreover the evolution of the

constraints is preserved since their Poisson bracket with
the Hamiltonian vanishes fπ̃α; H̃g ≈ 0, fπ̃βi ; H̃g ≈ 0,
f ˆ̃πAB; H̃g ≈ 0 on the constraint surface π̃α ¼ π̃βi ¼
ˆ̃πAB ¼ 0.
These findings on the level of canonical momenta

demonstrate that we do not need to include the variables
π̃α; π̃βi ;Λ and π̂ in the Hamiltonian and again justify the
approach in Ref. [30]. In the following we will work in the
Weitzenböck gauge and omit the tilde from θ̃; π̃; ˆ̃π for
readability.

IV. INVERTING THE MOMENTUM-VELOCITY
RELATION

One essential step in the reformulation of a physical field
theory from its Lagrangian to its Hamiltonian description is
to invert the relation between the momenta and the
velocities, to express the latter in terms of the former.
For NGR this amounts to inverting Eq. (18). To do so we
rewrite the equation as a linear map from the space of 4 × 3
matrices to the space of 3 × 4 matrices

SAi ¼ Mi
A
j
B
_θBj; ð27Þ

with a source term SAi, which only depends on the
momenta, the fields, and their spatial derivatives,

SAi½α; β; θAi; πAi�
¼ αffiffiffi

h
p πA

i þ ½DkðαξB þ βmθBmÞ − TB
klβ

l�Mi
A
k
B

− 2αTB
klhikðc2ξBθAl þ c3ξAθBlÞ; ð28Þ

where Di is the Levi-Civita covariant derivative of the
hypersurface metric hij. By inverting this equation we
can reexpress the field velocities in terms of the canonical
variables: the fields themselves and their momenta.
To explicitly invert Eq. (27) we decompose the velocities

of the spatial tetrads into irreducible parts with respect to
the rotation group. It turns out that in this decomposition
the matrix M has a block diagonal structure which can be
inverted block by block. Since for certain combinations of
the c1, c2, c3 parameters of the theory some blocks become
identically zero, we employ the Moore-Penrose pseudoin-
verse of a matrix [15] to display the inverse in a closed form
for all choices of the parameters. This then carries over
when we display the Hamiltonian.
The irreducible decomposition with respect to the

rotation group amounts in defining a vectorial (V), anti-
symmetric (A), symmetric trace-free (S), and trace (T ) part
of the tetrad velocities and their momenta:

_θAi ¼ V _θiξ
A þ A _θjihkjθAk þ S _θjihkjθAk þ T _θθAi; ð29Þ

πA
i ¼ VπiξA þ AπjihkjθAk þ SπjihkjθAk þ TπθA

i: ð30Þ
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Decomposing SAi into the same irreducible parts and using the explicit form of M, see Eq. (14), yields

VSi ¼ −ξASAi

¼ Vπi
αffiffiffi
h

p − 2αc3TB
klhikθBl þ 2ð2c1 þ c2 þ c3Þ½DkðαξB þ βmθBmÞ − TB

klβ
l�ξBhik

¼ −2V _θjhijð2c1 þ c2 þ c3Þ; ð31Þ

for the vector part,

ASmp ¼ θAihi½mSAp�

¼ Aπmp αffiffiffi
h

p − 2αc2hlmhpkTB
klξB − 2ð2c1 − c2Þ½DkðαξB þ βsθBsÞ − TB

klβ
l�θB½mhp�k

¼ −2A _θmpð2c1 − c2Þ ð32Þ
for the antisymmetric part,

SSmp ¼ θAqhqðmSApÞ −
1

3
θAiSAihmp

¼ Sπmp αffiffiffi
h

p − 2ð2c1 þ c2Þ½DkðαξB þ βsθBsÞ − TB
klβ

l�
�
θB

ðmhpÞk −
1

3
hpmθBk

�

¼ −2S _θmpð2c1 þ c2Þ ð33Þ
for the trace-free symmetric part, and

TS ¼ 1

3
θAiSAi

¼ Tπ
αffiffiffi
h

p −
2

3
ð2c1 þ c2 þ 3c3Þ½DkðαξBβmθBmÞ − TB

klβ
l�θBk

¼ −2T _θð2c1 þ c2 þ 3c3Þ ð34Þ

for the trace part.
These equations are easily solved for the velocities in

terms of their dual momenta in case the coefficients

AV ¼ 2c1 þ c2 þ c3; AA ¼ 2c1 − c2;

AS ¼ 2c1 þ c2; and AT ¼ 2c1 þ c2 þ 3c3 ð35Þ
are all nonvanishing. In case one or more of these
coefficients vanish they induce primary constraints:

AV ¼ 0 ⇒ VCi ≔
Vπiffiffiffi
h

p − 2c3TB
klhikθBl ¼ 0; ð36Þ

AA ¼ 0 ⇒ ACij ≔
Aπijffiffiffi
h

p − 2c2hlihjkTB
klξB ¼ 0; ð37Þ

AS ¼ 0 ⇒ SCij ≔
Sπijffiffiffi
h

p ¼ 0; ð38Þ

AT ¼ 0 ⇒ TC ≔
Tπffiffiffi
h

p ¼ 0: ð39Þ

Observe that VCi correspond to 3 constraints, ACmp to 3
(since it is antisymmetric in its indices), SCmp to 5 (since it
is symmetric in its indices, but does not contain the trace
part), and TC corresponds to 1 constraint. For any choice of
the parameters c1, c2, c3 we either can invert the appearing
velocities of the tetrads in terms of the tetrads and their
momenta, or we obtain a constraint from the Lagrangian,
which must be implemented in the Hamiltonian later by a
Lagrange multiplier.
TheMoore-Penrose pseudoinverse of the matrixM in the

irreducible decomposition of the rotation group we
employed is given by the inverse of the separate blocks
if the coefficient in front of the block AV ; AA; AS, or AT is
nonvanishing. In case one of the coefficients is vanishing
the block in the inverse matrix is simply a block of zeros.
For completeness we display M and its Moore-Penrose
pseudoinverse explicitly. Expanding M itself into the
irreducible parts basis

Mi
A
j
B ¼ VMijξAξB þ AM½ir�½js�θCrηACθ

D
sηBD

þ SMðirÞðjsÞθCrηACθ
D
sηBD þ TMθA

iθB
j ð40Þ
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yields

Mi
A
j
B ¼ 2AVξAξBhij − 2AAhi½jhs�rθCrηACθDsηBD

− 2AS

�
hiðjhsÞr −

1

3
hirhjs

�
θCrηACθ

D
sηBD

−
2

3
AT θA

iθB
j: ð41Þ

By using the identity ηAB þ ξAξB ¼ θAiθ
B
jhij one may

check that this representation ofM is indeed identical to its
definition (14). Its pseudoinverse is

ðM−1ÞAC
i k ¼ 1

2
BVξ

AξChik −
1

2
BAhr½shm�nhkrhsiθAmθCn

−
1

2
BS

�
hrðshmÞn −

1

3
hsmhnr

�
hkrhsiθAmθCn

−
1

6
BT θ

A
iθ

C
k; ð42Þ

where the different blocks are implemented by defining
(I ¼ V;A;S;T ) BI ¼ f 0

1
AI

for AI¼0
for AI≠0

.

V. THE NGR HAMILTONIAN

To obtain the Hamiltonian from the Lagrangian we use
its definition as Legendre transform omitting the variables

Λ and π̂, as discussed below Eq. (26). We display the
dependencies on the remaining variables explicitly for
clarification, and the square brackets shall indicate that
the function may depend on the spatial derivatives of the
fields,

H½α; βi; θAj; πAk� ¼ _θAi½α; βi; θAj; πAk�πAi
− L½α; βi; θAj; _θAk½α; βr; θAs; πAm��:

ð43Þ

We will suppress these dependencies in the brackets from
now on for the sake of readability. Moreover, we comment
on how to remove the gauge fixing, i.e., how to reintroduce
the dependence on Λ and π̂ at the end of this section.
A sketch on how the calculations would be carried out
without gauge fixing is made in Appendix.
To derive the Hamiltonian explicitly we can first use the

source expression S, defined in Eq. (28), to simplify the
Lagrangian. This can be done by expanding the TA

i0 terms
in Eq. (5) into the time derivatives of the tetrad and
combining them with the M matrices to the source term
whenever possible. By their definition, they can then be
expanded in terms of the momenta and spatial derivatives
acting on the fields. As an intermediate result the
Hamiltonian becomes

H ¼ 1

2
_θAiπA

i −
ffiffiffi
h

p
TB

jk
_θAihij½c2ξBθAk þ c3ξAθBk�

þ 1

2
πA

iDiðαξA þ βjθAjÞ þ
ffiffiffi
h

p
TB

klDiðαξA þ βjθAjÞhik½c2ξBθAl þ c3ξAθBl�

−
1

2
πB

jTB
jkβ

k −
ffiffiffi
h

p
TA

ijTB
klβ

khil½c2ξAθBj þ c3ξBθAj� − α
ffiffiffi
h

p
· 3T : ð44Þ

To eliminate the remaining velocities we expand them into the V, A, S, T decomposition we introduced in the previous
section and replace them according to Eqs. (31) to (34).
Expanding the first term in the irreducible decomposition yields

_θAiπA
i ¼ −V _θi

Vπi þ A _θji
Aπji þ S _θji

Sπji þ 3T _θTπ ð45Þ

¼ α

�VCi
Vπi

2AV
−

ACij
Aπij

2AA
−

SCij
Sπij

2AS
−
3T CT π

2AT

�
þ πA

iDiðαξA þ βmθAmÞ − πA
iTA

imβ
m; ð46Þ

while for the second we find

ffiffiffi
h

p
TB

jk
_θAihij½c2ξBθAk þ c3ξAθBk� ¼ c2TB

jk
A _θmihkmhij − c3TB

jk
V _θihijθBk

¼ α

2AA
c2ξBTB

jk
ACjk þ α

2AV
c3θBkTB

jk
VCj

− ½DiðαξC þ βmθCmÞ − TC
imβ

m�TB
jkhki½c2ξBθCj þ c3ξCθBj�: ð47Þ

Inserting the expressions (45) and (47) into Eq. (44) finally yields the kinematic Hamilton density of the NGR teleparallel
theories of gravity,
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H ¼ α
ffiffiffi
h

p �VCi
VCi

4AV
−

ACij
ACij

4AA
−

SCij
SCij

4AS
−
3T CTC
4AT

− 3T −
ξADiπA

iffiffiffi
h

p
�
− βkðTA

jkπA
j þ θAkDiπA

iÞ

þDi½πAiðαξA þ βjθAjÞ�; ð48Þ

which we here display in terms of the constraints (36) to
(39), as this is the most convenient expression. Observe that,
even though we use the irreducible V, A, S, T decom-
position of the fields to display the Hamiltonian, since in this
form the dependence on the parameters ci becomes most
clear, the canonical variables on which the Hamiltonian
depends are fα; βi; θAj; πAkg. As in general relativity we
immediately see that we deal with a pure constraint
Hamiltonian up to boundary terms. Lapse α and shift β
have vanishing momenta, πα ¼ 0 and πβi ¼ 0, and appear
only as Lagrange multipliers. To obtain the dynamically
equivalent Hamiltonian to the Lagrangian (5) we need to add
possible further nontrivial constraints via Lagrange multi-
pliers. To find all constraints it is necessary to calculate the
Poisson brackets between all primary constraints, check if
they are first class, and, in case they are not, add possible
secondary constraints. This algorithm has to be continued
until a closed constraint algebra is obtained [31].
From our analysis in Sec. IV we conclude that the NGR

theories of gravity decay into nine subclasses depending

on the choice of the parameters c1, c2, and c3, which
correspond to the appearance of different primary class
constraints, in addition to the lapse and shift constraints
arising from the diffeomorphism invariance of the action.
We have visualized these classes in Fig. 1, which we
constructed as follows. We started from the assumption that
at least one of the parameters c1, c2, c3 is nonvanishing,
since otherwise the Lagrangian would be trivial, and
introduced normalized parameters

c̃i ¼
ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c21 þ c22 þ c23
p ; ð49Þ

for i ¼ 1, 2, 3. One easily checks that the constraint classes
we found only depend on these normalized parameters. We
then introduced polar coordinates ðθ;ϕÞ on the unit sphere
to express the parameters as

c̃1 ¼ sin θ cosϕ; c̃2 ¼ sin θ sinϕ; c̃3 ¼ cos θ:

ð50Þ

FIG. 1. Visualization of the parameter space of new general relativity, colored by the occurrences of primary constraints. The radial
axis shows the zenith angle θ, while the (circular) polar axis shows the azimuth angle ϕ, following the definition (50).
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Since the same constraints appear for antipodal points on
the parameter sphere, we restrict ourselves to the hemi-
sphere c̃3 ≥ 0, and hence 0 ≤ θ ≤ π

2
; this is equivalent to

identifying antipodal points on the sphere and working with
the projective sphere instead, provided that we also identify
antipodal points on the equator c̃3 ¼ 0. We then considered

ðθ;ϕÞ as polar coordinates on the plane in order to draw the
diagram shown in Fig. 1. Note that antipodal points on the
perimeter, such as the two gray points for the most
constrained case, are identified with each other, since they
describe the same class of theories. To summarize, we find
the following constraints:

Theory Constraints Location in Fig. 1

AI ≠ 0 ∀ I ∈ fV;A;S; T g No constraints white area
AV ¼ 0 VCi ¼ 0 red line
AA ¼ 0 ACji ¼ 0 black line
AS ¼ 0 SCji ¼ 0 green line
AT ¼ 0 TC ¼ 0 blue line
AV ¼ AA ¼ 0 VCi ¼ ACji ¼ 0 turquoise point
AA ¼ AS ¼ 0 ACji ¼ SCji ¼ 0 purple point (center)
AA ¼ AT ¼ 0 ACji ¼ TC ¼ 0 orange point
AV ¼ AS ¼ AT ¼ 0 VCi ¼ SCji ¼ TC ¼ 0 gray points (perimeter)a

aThis is actually only one point in the parameter space, since antipodal points on the perimeter correspond to the same theory.

In order to understand the d.o.f. and derive the full
Hamiltonian of the theory, we would need to calculate the
Poisson brackets and deduce whether they are first or
second class constraints and if more constraints appear
(secondary, tertiary, etc). For teleparallel equivalence
to general relativity this has already been done in
Refs. [10–12,14–16,28,30] and it was found that the
dynamical equivalent Hamiltonian to TEGR can be
expressed with the help of two sets of Lagrange multipliers,
Vλi and Aλij, as

HTEGR ¼
ffiffiffi
h

p
ðVλiVCi þ AλijACijÞ þDi½πAiðαξA þ βjθAjÞ�

− α
ffiffiffi
h

p �
1

4
SCij

SCij −
3

8
TCTCþ 3T þ ξADiπA

iffiffiffi
h

p
�

− βkðTA
jkπA

j þ θAkDiπA
iÞ: ð51Þ

In the future we aim to derive the dynamically equivalent
Hamiltonians for all nine classes we identified among
the NGR theories of gravity. By introducing additional
Lagrange multipliers Sλij and Tλij in the short-hand notation

VH ¼
(
α

ffiffiffi
h

p VCi
VCi

4AV
for VA ≠ 0ffiffiffi

h
p

Vλi
VCi for VA ¼ 0;

AH ¼
(
−α

ffiffiffi
h

p ACij
ACij

4AA
for AA ≠ 0ffiffiffi

h
p

Aλij
ACij for AA ¼ 0;

ð52Þ

SH ¼
8<
:−α

ffiffiffi
h

p SCij
SCij

4AS
for SA ≠ 0ffiffiffi

h
p

Sλij
SCij for SA ¼ 0;

TH ¼
8<
:−α

ffiffiffi
h

p 3TCij
TCij

4AT
for TA ≠ 0ffiffiffi

h
p

Tλij
TCij for TA ¼ 0;

ð53Þ

we can display a first step towards the dynamical Hamiltonians

H ¼ ðVH þ AH þ SH þ THÞ − αð
ffiffiffi
h

p
3T − ξADiπA

iÞ − βkðTA
jkπA

j þ θAkDiπA
iÞ þDi½πAiðαξA þ βjθAjÞ�

þ secondary-; tertiary-;… constraints: ð54Þ

However, the list of secondary-, tertiary-, … constraints,
which have to be added in addition, has to be investigated
separately for the nine classes we derived. Even within a
single class there may appear different constraint algebras.
For example, in the class with all AI being nonzero, the

Poisson bracket of the Hamilton constraint with itself in
general generates new constraints since the Poisson brack-
ets of the Hamiltonian and momenta constraints do not
form a closed algebra. However, for particular values of the
parameters the terms which cause this behavior are absent
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from the action, thus allowing the Poisson brackets to close
[25]. Because of the lengthiness of the calculations even in
seemingly simple cases such as TEGR [11] we present
these studies in separate articles. Another potential issue
that must receive attention is the possible bifurcation of
constraints, i.e., the situation where the closing or non-
closing of the Poisson brackets depends on the particular
values of the fields, as found in previous studies [32], which
we plan to investigate in detail in further work.
Before we conclude this article we like to add one more

remark on the gauge fixing. The Hamiltonian we obtained
is derived in the Weitzenböck gauge. To remove the gauge
fixing and to reintroduce the variables Λ and π̂, which we
removed in the course of the discussion in Sec. III, the
following two steps have to be performed. First replace the
Levi-Civita covariant derivatives Di in Eq. (54) by a total
covariant derivative Di which also acts on the Lorentz
indices of the objects appearing,

DiπA
j → DiπA

j ¼ DiπA
j − ωB

AiπB
j; ð55Þ

and, second, add the constraint (21) with the help of a
Lagrange multiplier. The result is a gauge invariant
Hamiltonian depending on the field variables α; βi;
θAi; πAi, and ΛA

B as well as π̂AB.

VI. CONCLUSION

We have derived a closed form for the kinematic
Hamiltonian of new general relativity theories of gravity,
starting from its Lagrangian formulation including the
teleparallel spin connection. The latter we implemented
explicitly in terms of local Lorentz transformations, thus
avoiding the need for Lagrange multipliers in the action.
We found that the canonical momenta for the spin con-
nection are not independent and can fully be expressed in
terms of the momenta for the tetrad. Further, only the 12
spatial components of the tetrads have nonvanishing
momenta, while the 4 temporal components can be
expressed in terms of the ADM variables lapse and shift,
whose momenta vanish identically. We have shown that it is
not possible to invert the relation between the time
derivatives of the spatial tetrad components and their
conjugate momenta, which results in the appearance of
up to four types of further primary constraints, depending
on the choice of parameters defining the theory. We find
that the family of NGR theories is divided into nine
different classes, which are distinguished by the presence
or absence of these primary constraints. We visualized the
locations of these nine classes in the parameter space of the
theory, and identified a prototype of a dynamically equiv-
alent Hamiltonian for the different classes, which serves as
a starting point for the continuation towards a complete
systematic Hamiltonian analysis of NGR.
Our results invite further investigations in various direc-

tions. The most logical next step is the calculation of the

Poisson brackets for all possible constraints. This will show
under which circumstances the constraint algebra closes,
and under which circumstances additional constraints must
be included, and finally lead to the full, dynamical
Hamiltonian. It should be noted that the calculation of
the Poisson brackets is straightforward, although it can be
very lengthy, even in the case of TEGR [11]. Naively, the
unconstrained case would be the easiest, since it involves
the least number of constraints to calculate Poisson brack-
ets with. However, the Poisson brackets do not form a
closed algebra, hence are not first class, except for special
cases [25], and thus generate further secondary constraints.
Another class of new general relativity theories of particu-
lar interest besides general relativity is the one where only
the vector constraint AV ¼ 0 is imposed. It has been argued
that this constraint is necessary in order to avoid the
appearance of ghosts at the linearized level [33,34]. The
constraint algebra has been worked out for this case, and it
turns out that also in this case the constraints are not first
class, so that secondary constraints appear [24].
An important result which we expect from the afore-

mentioned further work on the constraint algebra is the
number of d.o.f. for general parameters of new general
relativity. A hint towards the existence of further d.o.f.
compared to TEGR comes from comparing the d.o.f. in
new general relativity with the number of polarization
modes of gravitational waves in the Newman-Penrose
formalism [22]. This result gives a lower bound of the
number of d.o.f., since the polarization modes which
appear in the linearized theory must come from the
fundamental d.o.f. in the complete nonlinear theory.
Once the full Hamiltonian is derived, it can be compared
with the propagators presented in Ref. [35]. Results for a
systematic categorization of theoretical pathologies (tachy-
ons and ghosts) in a large class of theories including NGR
was recently presented in Ref. [36]. Future work could
consist of confirming their results using the Hamiltonian
analysis and getting guidance in which theories are mostly
motivated and perform the full-fledged Hamiltonian analy-
sis in these cases.
The full dynamical Hamiltonian would also be useful for

further tests of NGR with observations, in particular
considering gravitational waves. The results we presented
here show that the vicinity of TEGR in the parameter space,
which is known to be compatible with post-Newtonian
observations in the solar system [21], is composed out of
different classes of possible constraint algebras. Studying
their Hamiltonian dynamics one may expect new results on
the generation of gravitational waves in these theories, from
which tighter bounds on the NGR parameters would be
obtained.
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APPENDIX: HAMILTONIAN ANALYSIS
WITHOUT GAUGE FIXING

Looking at Eq. (18) and noting that the conjugate
momenta are related to each other via an algebraic
equation (21) it at first seems like it is impossible to solve
the velocities for momenta. However, there is a way to
attack this problem and successfully derive the
Hamiltonian. First, we note that Eq. (27) before fixing
the gauge becomes

SAi ¼ Mi
A
j
Bð _θBj − ðΛ−1ÞDCθ

C
j
_ΛB

DÞ
¼ Mi

A
j
BΛB

D∂0ðθCjðΛ−1ÞDCÞ; ðA1Þ

with

SAi½α; β; θAi; πAi�
¼ αffiffiffi

h
p πA

i þ ½ΛB
DDk½ðαξC þ βmθCmÞðΛ−1ÞDC�

− TB
klβ

l�Mi
A
k
B − 2αTB

klhikðc2ξBθAl þ c3ξAθBlÞ:
ðA2Þ

In the Lagrangian, velocities only appear from terms of the
structure

TB
0j ¼ ΛB

D∂0ðθCjðΛ−1ÞDCÞ
− ΛB

DDj½ðαξC þ βmθCmÞðΛ−1ÞDC�: ðA3Þ

Hence, the velocities in the Lagrangian appear exactly as in
Eq. (A1). This means that we can get rid of all velocities
and express them in terms of conjugate momenta by
applying ðM−1ÞAC

i k on both sides of Eq. (A1), where we
have used the same decomposition of the Weitzenböck

tetrad _̃θ
A
i ¼ ∂0ðθBiðΛ−1ÞABÞ as in Eq. (29) into irreduc-

ible parts.
Second, we need to write down the Hamiltonian

together with its primary constraints. The algebraic
relation between the conjugate momenta is a primary
constraint and needs to be added. The Hamiltonian is
then by definition

H ¼ πA
i _θAi þ π̂ABaAB − LðθAi; πAiÞ

− πλABðπ̂BA þ πA
iηB½NθM�

iÞ; ðA4Þ

which is the gauge independent correspondence to
Eq. (26). Using the equation imposed by the Lagrange
multiplier to express all conjugate momenta solely in the
conjugate momenta with respect to the spatial tetrad field
πA

i we get that the Hamiltonian is of the form

H ¼ πA
iΛA

B∂0ðθCiðΛ−1ÞBCÞ − L½α; β; θAi; πAi;ΛA
B�

− πλABðπ̂BA þ πA
iηB½NθM�

iÞ: ðA5Þ

From this we can see that the Hamiltonian can be
expressed in canonical variables without gauge fixing.
By using Eq. (A1) we get

H½α; β; θAi; πAi;ΛA
B; π̂BA�

¼ πA
iðM−1ÞAC

i k SC
k½α; β; θAi; πAi� − L½α; β; θAi; πAi;ΛA

B�
− πλABðπ̂BA þ πA

iηB½NθM�
iÞ: ðA6Þ
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