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We investigate the propagation of primordial gravitational waves within the context of the Horndeski
theories; for this, we present a generalized transfer function quantifying the subhorizon evolution of
gravitational wave modes after they enter the horizon. We compare the theoretical prediction of the
modified primordial gravitational wave spectral density with the aLIGO, Einstein telescope, LISA, gLISA
and DECIGO sensitivity curves. Assuming reasonable and different values for the free parameters of the
theory (in agreement with the event GW170817 and stability conditions of the theory), we note that the
gravitational wave amplitude can vary significantly in comparison with general relativity. We find that in
some cases the gravitational primordial spectrum can cross the sensitivity curves for the DECIGO detector
with the maximum frequency sensitivity to the theoretical predictions around 0.05–0.30 Hz. From our
results, it is clear that the future generations of space based interferometers can bring new perspectives to
probing modifications in general relativity.
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I. INTRODUCTION

The LIGO collaboration reported the first direct detec-
tion of gravitational waves (GWs) through the GW150914
event [1]. Some time later other GW events have been
reported [2–6]. Recently, the multimessenger astronomy
arises with the detection of a binary neutron star merger by
the LIGO and Virgo interferometers (GW170817 event
[7]), and subsequently with the electromagnetic counter-
parts (GRB 170817A event [8]). All these detections
indicate a new era in modern astrophysics and cosmology,
opening a new spectrum of possibilities to investigate
fundamental physics. More specifically, in the cosmologi-
cal context, the GW170817 event has imposed strong
constraints on modified gravity/dark energy models [9–14].
An important source of GWs not detected until the

present time is GWs of cosmological origin, i.e., the
primordial gravitational waves (PGWs). The future detec-
tion of such waves by space-borne interferometers, or by
the measurements of the B-mode of polarization of the
cosmic microwave background (CMB) radiation, will bring
unique information about the physics of the early Universe.
This is because the PGW spectrum is sensitive to the
evolution of the Universe in the inflationary epoch in which
the scale factor grows exponentially, while the Hubble
horizon is kept constant. In this scenario, the initial

quantum tensor modes are inside the Hubble volume,
and become effectively classical as the Universe expands
and they leave the horizon. This quantum-to-classical
transition provides the metric perturbation, of quantum
origin, equivalent to a stochastic variable in the Hubble
crossing. The perturbations reenter progressively the
Hubble horizon during the evolution of the Universe,
leading to a GW signal which is, therefore, intrinsically
stochastic (see, e.g., [15], for a review).
Although they have not yet been detected, an upper

bound of PGWs in a specific scale can be currently
quantified through the tensor-to-scalar ratio r parameter
from the CMB data. The current borders are r < 0.10, by
the Planck team within the minimum ΛCDM (cosmologi-
cal constant plus cold darkmatter) model at 95% confidence
level by combining the spectra of temperature fluctuations,
low polarization, and lensing [16]. When combined in a
joint analysis with BICEP/Keck CMB polarization experi-
ments, we have tighter borders, namely, r < 0.06 [17].
However it is expected that the future generations of space
interferometers could detect the PGWs, or even put strong
bounds in their amplitudes. Contrary to the ground-based
LIGO interferometer, which has a sensitivity frequency
band ranging from 10 Hz to 1 kHz, space-based GWs
detectors are able to achieve lower frequencies for which
the inflationary PGWs are expected to have higher ampli-
tudes. The most notable example of a space interferometer,
which has been under study for several years is the LISA
mission, aiming to detect GWs in the 10−4–1 Hz band [18].
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On the other hand, the proposed space mission DECIGO
intends to detect GWs in a frequency band located between
LISA and LIGO (0.1 to 10 Hz) [19]. In a similar frequency
band, a geosynchronous version of the LISA detector
(gLISA) has also been proposed in order to operate
simultaneously with LISA [20]. The frequencies of the
order of nanohertz, on the other hand, can be achieved only
by the pulsar timing technique, specifically by using arrays
of millisecond pulsars. At this time, efforts are under way in
order to improve the sensitivity in this band [21].
In practice, the spectrum of PGWs is not only deter-

mined by the evolution of the background cosmology, but it
can be significantly affected by modifications in the general
relativity (GR) theory [22–35], or on early physical aspects
[36–40], such as an inflationary phase. In this work, our
aim is to investigate the propagation of the PGWs in the
context of the Horndeski gravity. In [41] Deffayet et al.
derived the action of the most general scalar-tensor theories
with second-order equations of motion after the general-
izations of covariant Galileons. In [42] it is shown that the
corresponding action is equivalent to that derived by
Horndeski in 1974 [43]. Because it is a general theory
of gravitation, once different modified gravity theories
predict different cosmic evolution, it is possible to
distinguish between scenarios in Horndeski theories from
observations [44–53].
As the main result of this work, we present a generalized

transfer function quantifying the propagation of the PGWs
within Horndeski theories and we evaluate the present
theoretical spectrum and compare it with the sensitivity
curves of different GW experiments, such as aLIGO [54],
DECIGO [55], ET [56] and LISA [57]. In [25] the authors
also present how the modified GW propagation can affect
the transfer function. Here, we show a more general transfer
function, which is compatible with [25] if the time delay
factor is set to zero. Moreover, we find that the spectra can
significantly differ from that predicted by GR and, there-
fore, can in the future be probed observationally.
The manuscript is organized as follows: In Sec. II, we

introduce a method to calculate the GWenergy spectrum in
the context of the Horndeski gravity. In Sec. III, the
prediction for the present spectrum of PGWs is evaluated
and compared with the sensitivity curves of different GW
detectors. Finally, in Sec. IV we summarize our findings
and conclude with our final remarks. As usual, a subindex
zero attached to any physical quantity refers to its value at
the present cosmic time. Also, prime and dot denote the
derivatives with respect to the conformal time and cosmic
time, respectively.

II. PRIMORDIAL GRAVITATIONAL WAVES IN
THE CONTEXT OF THE HORNDESKI GRAVITY

The Horndeski theories of gravity [41,43] are the most
general Lorentz invariant scalar-tensor theories with sec-
ond-order equations of motion. The Horndeski action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

1

8πG
Li þ Lm

�
; ð1Þ

L2 ¼ G2ðϕ; XÞ; ð2Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð3Þ

L4 ¼ −G4ðϕ; XÞRþ G4X½ð□ϕÞ2 − ϕ;μνϕ
;μν�; ð4Þ

L5 ¼ −G5ðϕ; XÞGμνϕ
;μν −

1

6
G5X½ð□ϕÞ3 þ ð5Þ

2ϕ;μνϕ
;μσϕ;ν

;σ − 3ϕ;μνϕ
;μν
□ϕ�; ð6Þ

where the functions Gi (i runs over 2, 3, 4, 5) depend on ϕ
and X ¼ −1=2∇νϕ∇νϕ, withGiX ¼ ∂Gi=∂X. ForG2 ¼ Λ,
G4 ¼ M2

p=2 and G3 ¼ G5 ¼ 0, we recover GR with a
cosmological constant. For a general discussion on the
model varieties for different Gi choices see [58].
In the present work, we are particularly interested in the

evolution of PGW through an expanding Universe. The
evolution of linear, transverse-traceless perturbations for
the tensor modes due to modifications in the gravity theory
is generally described by the following equation [59]:

ḧij þ ð3þ νÞH _hij þ ðc2Tk2=a2 þ μ2Þhij ¼ Γγij; ð7Þ

where hij is the metric tensor perturbation. The four time
dependent parameters are: cT is the GW propagation speed,
μ is the effective graviton mass, ν is related to the running
of the effective Planck mass, and Γ denotes extra sources
generating GWs.
In the context of the Horndeski gravity, the above

equation reads

ḧij þ ð3þ αMÞH _hij þ ð1þ αTÞ
k2

a2
hij ¼ 0; ð8Þ

where we have identified ν ¼ αM, c2T ¼ 1þ αT , μ ¼ 0 and
Γ ¼ 0, where αM and αT are two dimensionless functions
given by

αM ¼ 1

HM2�

dM2�
dt

; ð9Þ

αT ¼ 2Xð2G4X − 2G5ϕ − ðϕ̈ − _ϕHÞG5XÞ
M2�

; ð10Þ

and M� is the effective Planck mass

M2� ¼ 2ðG4 − 2XG4X þ XG5ϕ − _ϕHXG5XÞ: ð11Þ

The running of the Planck mass, αM, enters as a friction
term and it is responsible for modifying the amplitude of
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the tensor modes acting as a damping term. But it is also
related to the strength of gravity. On the other hand, the
tensor speed excess, αT , modifies the propagation speed of
the GWs quantifying a modification on the GW phase. As
can be seen in the above equations, the functions αM and αT
depend on the parameters of the theory and on the
cosmological dynamics of the scalar field.
Following the methodology presented in [23], we can

describe the subhorizon evolution of GWs in a modified
gravity theory as

h ¼ e−De−ikΔThGR; ð12Þ

where

D ¼ 1

2

Z
τ
αMHdτ0; ð13Þ

ΔT ¼
Z

τð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT

p
Þdτ0; ð14Þ

where D and ΔT correspond to the amplitude damping
and additional time delay of the GWs, respectively. Con-
sequences of the Horndeski theory at cosmological scale
were recently investigated in [24]. Here and through the
text, τ represents conformal time.
In [23] the above equations were obtained in the WKB

approximation for which the GW wavelength is much
smaller than the cosmological horizon. In the case of
PGWs, the modes leave the horizon in the inflationary
period, and the modes with physical frequency f ≳
10−15 Hz reenter the horizon in the radiation era (see,
e.g., [60]). Therefore, in the millihertz frequency band in
which the future LISA detector will operate, or for higher
frequencies, it is reasonable to use this WKB solution to
evaluate the evolution of GWs in the subsequent stages
after inflation. This is because the change in the amplitude
is a cumulative effect throughout the propagation of the
GWs, and for these frequencies, its wavelength is much
shorter than the horizon in the most part of the time of
evolution. The initial conditions of such an evolution are
obtained at the end of inflation [60].
The GW is usually characterized by its amplitude hðk; τÞ

or by its energy spectrum ΩGWðk; τÞ. Here, we are
particularly interested in the GW spectrum, which in the
standard context of GR is given by (see [15] and reference
therein)

ΩGWðk; τÞ ¼
1

12H2a2
½T 0ðk; τÞ�2PtðkÞ; ð15Þ

where Tðk; τÞ is the transfer function that describes the
subhorizon evolution of GW modes after the modes are
deep inside the horizon. It is worth mentioning that the
methodology for computing the transfer function has been
widely discussed in the literature [60–62]. The quantity

PtðkÞ is the amplitude spectrum of GWs at the end of the
inflationary period. Throughout our calculations, let us
adopt

PtðkÞ ¼
k3

2π2
ðjhþk j2 þ jh×k j2Þ ¼ At

�
k
k�

�
nt
; ð16Þ

where At is the tensor amplitude at the reference scale k�,
and nt is the tensor spectral index. Here, hþ;× denotes the
amplitude of the two polarization states ðþ;×Þ of GWs.
In what follows we are interested in generalizing Eq. (15)

in order to introduce the effects of the tensor propagation
modes due to the modifications induced by Horndeski
gravity given by Eq. (8). By definition, we have that the
transfer function is given by

Tðk; τÞ ¼ hkðτÞ
hkðτiÞ

; ð17Þ

where hkðτiÞ is the primordial GW mode that left the
horizon during inflation.
Given the general formulation of GW propagation within

the Horndeski scenario, we can write a new transfer
function as

Tðk; τÞMG ¼
��

exp

�
−
1

2

Z
τ
αMHdτ0

��

×

�
exp

�
ik
Z

τ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT

p
− 1Þdτ0

���

× Tðk; τÞGR; ð18Þ

where Tðk; τÞGR is the standard transfer function of GR.
The index MG in the above equation means modified
gravity (in the present case, the Horndeski gravity). As
expected, for αM ¼ αT ¼ 0, we recover GR. Substituting
Eq. (18) into Eq. (15), we can quantify the effects of the
Horndeski gravity in terms of the functions αi on the
transfer function, and consequently on a new and gener-
alized primordial energy spectrum ΩGWðk; τÞ. In what
follows, in all the results to be presented in this work, to
calculate Tðk; τÞGR, we use the methodology presented
in [60].
It is usual to choose phenomenologically motivated

functional forms for the functions αi (see, e.g., [63–65]).
Typically, their evolutions are tied to the scale factor aðtÞ or
to the dark energy density ΩdeðaÞ raised to some power n.
In the present work we will adopt the following para-
metrization:

αi ¼ αi0an; ð19Þ

where the label i runs over the set of functions M and T.
Such a parametrization has been frequently considered in
the literature, and it was recently suggested that this form
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encompasses the effects of the different modified gravity
theories (see, e.g., [66]). Hence, this form is particularly
suitable for comparing those theories with cosmological
observations and, therefore, it is also useful for our present
purposes.
On the other hand, the event GW170817 from a binary

neutron star merger together with the electromagnetic
counterpart showed that the speed of GW, cT , is very
close to that of light for z < 0.01, that is, jcT=c − 1j <
10−15 [8]. Thus, as we are interested in calculating the
spectrum at the present time, let us assume from now on
that αT0 ¼ 0 in Eq. (18), in full agreement with the
GW170817 observation. Therefore, the correction on
the time delay factor, which induces a phase shift on the
transfer function, will not be taken into account.
An important point within Horndeski gravity is the

stability conditions of the theory. Appropriate values of
free parameters linked to the αi functions must be taken in
order to have a stable theory throughout the evolution of the
Universe (see [64] and reference therein). Once here the
only parametrization that will model our results is αMðaÞ,
that is, the amplitude damping correction on the standard
prediction, let us only discuss the stability values on the
αMðaÞ function. Following [64], adopting, αM ¼ αM0an,
we have that the stability conditions can be summarized as
follows:
(1) n > 3=2: stable for αM0 < 0.
(2) 0 < n < 3Ωm0=2: stable for αM0 > 0,

where Ωm0 is the dimensionless matter density.
Under these considerations, we can note from Eq. (18)

that the changes in the GW spectrum will be an increase in
the amplitude for the stability conditions 1, and a decrease
when considering the conditions 2. In what follows, let us
only assume values of the pair (n, αM0) within of this range
of values.

III. PGWS EVOLUTION AND SPECTRUM

In the previous section, we saw that the modification
introduced in the PGW spectrum by the Horndeski gravity,
with respect to GR, is encapsulated in the transfer function
given by Eq. (18). Now, in order to analyze the effects in the
evolution of T 0ðk; τÞ exclusively due to the modifications
introduced by the gravity theory, let us consider that the
background cosmology, for both theories starts with the
same inflationary era, followed by the subsequent usual
radiation and matter eras. All the information regarding
inflation comes only from the parametrized inflationary
spectrum given by Eq. (16). The derivative of the transfer
function T 0ðk; τÞ is responsible for the further processing of
such a spectrum during the expansion of the Universe, until
the present time.
Therefore, with the parametrization (19) and with the

above considerations, the transfer function can be obtained
in a straightforward way. In the left panel of Fig. 1, the
evolution of T 0ðk; τÞ as a function of the conformal time is
shown, in comparison with the standard behavior obtained
from GR. In this figure, two different scales are considered,
namely, k ¼ 0.1 Mpc−1 and k ¼ 0.01 Mpc−1. As already
mentioned, the main effect is in the amplitude of the GWs,
once modifications on the phase are not assumed, i.e.,
αT0 ¼ 0. If αM0 is positive, the higher is its value, the
smaller is the amplitude of GWs, while n is kept fixed and
positive. Otherwise, assuming αM0 < 0 and n fixed (and
positive), the GW amplitude increases. Since we are
particularly interested in evaluating the PGW spectrum
at the present time, we also evaluate the present value of
T 0ðk; τÞ as a function of the wave number k. The result is
shown in the right panel of Fig. 1. The corresponding
modifications in the transfer function induced by the
Horndeski gravity leave an imprint on ΩGW resulting in
a final spectrum that deviates from GR.

FIG. 1. Left panel: Evolution of the derivative of the transfer function, T 0ðk; τÞ, as a function of the conformal time for two different
scales k ¼ 0.1 Mpc−1 (blue and black lines) and k ¼ 0.01 Mpc−1 (red and green lines). The blue and red lines correspond to the
standard evolution in GR, while the black and green lines show the modified behavior due to the Horndeski gravity with n ¼ Ωm0=2 and
αM0 ¼ 0.1. Right panel: Derivative of the transfer function evaluated today as a function of k.
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In order to compute the present energy density spectrum
we need to consider Eq. (15) evaluated at the present time
τ0. In what follows, we will also assume that nt ¼ −0.01
and At ¼ 10−10 in Eq. (16), in agreement with the last
results of the Planck team [16]. Moreover, a stochastic GW
background is often characterized also by its spectral
density ShðfÞ.1 This quantity is better suited for a direct
comparison with a GW detector. The relation between
ShðfÞ and ΩGWðfÞ is as follows [15]:

ΩGWðfÞ ¼
4π2

3H2
0

f3ShðfÞ: ð20Þ

In computing the PGW spectrum, we have considered
the specific frequency bands of interest that cover the
sensitivity curves of some ground and space based inter-
ferometers. For the ground interferometers we considered
the aLIGO sensitivity and the proposed third generation ET.
For the space planned interferometers, we considered LISA
which is optimized to detect GWs with frequencies of the
order of millihertz, gLISAwhose concept is very similar to
that of LISA, but now the constellation of three spacecrafts
is in a geosynchronous orbit, and finally the DECIGO
projected sensitivity curve.
Figure 2 shows the predicted PGWs spectral density

ShðfÞ considering n fixed and varying αM0 between
positive and negative values according to the stability
conditions of the theory. The amplitude of GWs decays
after the tensor-modes entry into the horizon, while before
the entrance to the horizon the amplitude is practically
constant. The time of horizon entry depends on GW
frequency along the cosmic expansion. Basically, it is

described by the transfer function [60]. It is worth men-
tioning that the resulting spectral density has an oscillatory
behavior which is not shown in Figs. 2 and 3. We are
showing only the maximum value of ShðfÞ which is the
relevant quantity for the PGW detection. Also, we take its
values divided by a factor of 1=2 due the rapid oscillatory
behavior of the spectrum in a detection frequency.
To quantify howmuch the amplitude changeswith respect

to GR, we evaluate the quantity rh ¼ Sh;MG=Sh;GR numeri-
cally which is a constant over the entire frequency range of
interest. For the predictions shown in Fig. 2, we find the
values displayed in Table I. Therefore, as expected, for
αM0 < 0 we have Sh;MG > Sh;GR, and otherwise for
αM0 > 0. Thus, for αM0 < 0 we find that the amplitude
can change from 0.5% to 64.9%, between the assumed
values. For αM0 > 0, we find a decrease in the amplitude
ranging from 6.45% to 99.88%. Also interesting to notice is
that theGWspectral density crosses theDECIGOsensitivity
curve. For the other sensitivity curves, the GW spectral
density is significantly below of the sensitivity predicted for
the experiments.
Figure 3 shows the predicted PGW spectral density

ShðfÞ considering αM0 fixed and varying n between values
according to the stability conditions of the theory. In this
case, the values obtained for rh are shown in Table II.
Again, note that the predicted spectra cross only the
DECIGO sensitivity curve. Figure 4 shows rh as a function
of n, for the values in which the model is stable.
It is worth stressing that we are assuming a minimum and

conservative inflationary model. Once the PGW amplitude
is also very sensitive to the inflationary model and its
corresponding parameters, the spectrum could well be
detected by LISA for some of these models (see, e.g.,
[67] for some results), although one has to pay attention to
the observational limits imposed by the parameter r.
Finally, let us briefly discuss our results regarding the

construction of viable gravity models. In light of the recent

FIG. 2. Left panel: Theoretical prediction of the GW spectral density for some values of αM0 < 0 with n ¼ 2 in all cases. Right panel:
Same as the left panel, but for some values of αM0 > 0 and n ¼ Ωm0=2 fixed, where we takeΩm0 ¼ 0.30. All values are according to the
stability condition of the theory. The predicted sensitivity curves for some ground and space based GWs detectors are also shown.

1In order to make a connection with observations, it is
necessary to evaluate the GW background today in terms of
the present-day physical frequency f ¼ k=2πa0. The spectral
density ShðfÞ is given in Hz−1.
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observational bound on cT from the event GW170817,
within the framework of Horndeski gravity, the only option
to suppress the terms leading to an anomalous speed is to
consider that G4;X ≈ 0 and G5 ≈ constant. Based on these
conditions, we can write the running of the Planck mass
given by Eq. (9) as

αM ¼
_ϕ

H

G4;ϕ

G4

: ð21Þ

Based on these considerations, one of the surviving
classes of models is the nonminimally coupled theories in
which the scalar field ϕ has a coupling with the curvature
scalar R in the form G4ðϕÞR. This class includes the metric
fðRÞ gravity and the Brans-Dicke (BD) theory. For a recent
review and classification of models based on the
GW170817 event, see [68]. The original BD theory, for
instance, is obtained by settingG4 ¼ ϕ. By substituting this
in Eq. (21) it is possible to obtain ϕ as a function of the
redshift. The result is shown in Fig. 5, where it is

FIG. 3. Left panel: Theoretical prediction of the GW spectral density for some values of n with αM0 ¼ 0.1 in all cases. Right panel:
Same as the left panel, but for αM0 ¼ −0.1. In both panels we take Ωm0 ¼ 0.30. All values are according to the stability condition of the
theory. The predicted sensitivity curves for some ground and space based GWs detectors are also shown.

FIG. 4. Ratio of the GW spectral densities, Sh;MG=Sh;GR, as a
function of n keeping αM0 fixed, according to the predicted values
within the stability conditions of the theory.

TABLE II. Ratio between the spectral density of PGWs in
Horndeski gravity and in GR for the spectra shown in Fig. 3.

αM0
0.1 −0.1

n Ωm0=2 Ωm0 3Ωm0=2 1.5 2.5 5.0

rh 0.513 0.717 0.801 1.069 1.041 1.020

TABLE I. Ratio between the spectral density of PGWs in
Horndeski gravity and in GR for the parameters of Fig. 2.

n 2 Ωm0=2

αM0 −1.0 −0.1 −0.01 0.01 0.1 1.0
rh 1.649 1.051 1.005 0.936 0.513 0.001

FIG. 5. Evolution of ϕ=ϕðz ¼ 0Þ at late times. We have
considered values of αM0 and n within values compatible with
the stability of the theory.
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considered only values of αM0 and n compatible with the
stability of the theory.

IV. FINAL REMARKS

We have investigated the PGW propagation in the
context of the Horndeski theories. Assuming a generic
parametrization for the αi functions, the effects are quanti-
fied by changes on the PGW spectra.
As a general conclusion, we found that the PGW

spectrum is considerably sensitive to the value of αM0

such that if αM0 < 0 (αM0 > 0) the amplitude is larger
(smaller) than that predicted by the GR theory. For positive
αM0, the spectrum is also sensitive to n, but if αM0 is
negative, only tiny modifications are induced in the
amplitude due to the choice of different values of n.
The predicted present-day spectra were compared

with different GW experiments, showing that it can be

detected only by the DECIGO detector, at least in the
conservative scenario we have adopted. Hence, we found
that interesting constraints can be imposed on the param-
eters of the Horndeski gravity by combining the future
detection of the PGW spectrum with the bounds on the
speed of GWs. Therefore, such constraints will be a
valuable tool to identify the surviving classes of theories
of gravity.
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