
 

An exact time-dependent interior Schwarzschild solution

Philip Beltracchi* and Paolo Gondolo†

Department of Physics and Astronomy, University of Utah,
115 South 1400 East Suite 201, Salt Lake City, Utah 84012-0830, USA

(Received 10 March 2019; published 12 April 2019)

We present a time-dependent uniform-density interior Schwarzschild solution, an exact solution to the
Einstein field equations. Our solution describes the collapse (or the time-reversed expansion) of an object
from an infinite radius to an intermediate radius of 9=8 of the Schwarzschild radius, at which time a
curvature singularity appears at the origin, and then continues beyond the singularity to a gravastar with
radius equal to the Schwarzschild radius.
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I. INTRODUCTION

Nearly 100 years after its original discovery, the constant
density interior Schwarzschild solution [1] was analyzed in
more detail and shown to behave as a gravastar in the limit
that the radius approaches the Schwarzschild radius RS ¼
2GM [2]. If the radius reaches 9=8RS the pressure at the
center diverges and the convention was this implied a static
solution no longer existed [1,3]. However, the static interior
Schwarzschild solution may be maintained, without modi-
fication, if one accepts a region of negative pressure [4].
While the interior Schwarzschild solution strictly speaking
does not avoid singularities (it is singular where the
pressure diverges [5]) it is a simple and mathematically
valid solution with potential for high compactness and
negative pressures that can be interesting to study in its own
right. For example, Schwarzschild stars in the compact
gravastar limit are stable against radial perturbations [6],
and behave almost exactly as non-black hole extended Kerr
sources [7] when slow rotation is added. Also, if one allows
for a Dirac delta function in the transverse stress at the
radius of the pressure divergence, the singularity has a well-
defined contribution to the Komar integral [2].
In this paper, we show that if one allows for a time-

dependent radius and for anisotropic stress, the interior
Schwarzschild solution generalizes into a new exact sol-
ution to the Einstein field equations. Its line element has the
same form as the static interior Schwarzschild solution
except for a time-dependent radius RðtÞ. For r < RðtÞ,

ds2 ¼ −
1

4

 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

RS

RðtÞ

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

RSr2

RðtÞ3

s !2

dt2

þ
�
1 −

RSr2

RðtÞ3
�−1

dr2 þ r2dθ2 þ r2sin2θdϕ2; ð1Þ

and for r ≥ RðtÞ,

ds2¼−
�
1−

RS

r

�
dt2þ

�
1−

RS

r

�
−1
dr2þr2dθ2þr2sin2θdϕ2:

ð2Þ

The time-dependence of the radius is implicitly defined as
the solution to the equation

1

7a7
−

2

5a5
þ 1

3a3
¼ αtþβ; where a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

RS

RðtÞ

s
ð3Þ

and α and β are determined by the choice of time origin and
collapse or expansion time scale.

II. ENERGY-MOMENTUM TENSOR

The following functions will be used for shortening
some expressions:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

RS

R

r
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

RSr2

R3

r
; R ¼ RðtÞ: ð4Þ

In terms of a and b the interior metric reads

ds2 ¼ −
1

4
ð3a − bÞ2dt2 þ b−2dr2 þ r2dθ2 þ r2 sin2 θdϕ2:

ð5Þ

In the interior Schwarzschild solution the radius R is always
greater than the Schwarzschild radius RS. The energy-
momentum tensor for the standard time-independent interior
Schwarzschild solution contains a constant density and equal
pressures in the radial and transverse directions and no off-
diagonal terms. For the time-dependent solution, the energy-
momentum tensor Tμν demanded by the Einstein equations
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Gμν ¼ 8πGTμν is slightly different. One can isolate the
energy density and pressures on the diagonal by raising an
index, but the off-diagonal terms are no longer symmetric.
Alternatively, one can use tetrads to find the energy tensor
in a local Lorentz frame. In this way, one fixes the functions
on the diagonal to their correct value and also keeps the off-
diagonal terms symmetric. Introducing a tetrad

eμμ̂ ¼

0
BBBBB@

2
j3a−bj 0 0 0

0 b 0 0

0 0 1
r 0

0 0 0 1
r sin θ

1
CCCCCA; ð6Þ

such that

eμμ̂e
ν
ν̂gμν ¼ ημ̂ ν̂ ¼ diagð−1; 1; 1; 1Þ; ð7Þ

we have

eμμ̂e
ν
ν̂Tμν ¼ T μ̂ ν̂ ¼

0
BBB@

ρ −Sr 0 0

−Sr pr 0 0

0 0 pT 0

0 0 0 pT

1
CCCA: ð8Þ

The energy-momentum tensor can be brought to canonical
from and it is either type I or type IV depending on the sign
of ðρþ prÞ2 − 4S2r (positive or 0 for type I, negative for
type IV). The energy density ρ and radial pressure pr assume
the standard expressions found in the literature [2–4],
although with a time-dependent radius,

ρ≡ −T0
0 ¼ T 0̂ 0̂ ¼

3M
4πR3

;

pr ≡ T1
1 ¼ T 1̂ 1̂ ¼ ρ

b − a
3a − b

: ð9Þ

The radial pressure pr diverges where

r ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8R=RS

p
: ð10Þ

The T μ̂ ν̂ components that differ from the static case are a
new radial momentum flux term Sr and the tangential
pressure pT ,

Sr ¼ −T 1̂ 0̂ ¼ −T 0̂ 1̂ ¼
2ρr _R

bj3a − bjR ;

pT ≡ T2
2 ¼ T3

3 ¼ T 2̂ 2̂ ¼ T 3̂ 3̂ ¼ pr þ Δ: ð11Þ

Here _R ¼ dR=dt and the pressure anisotropy Δ follows
from Einstein’s equations as

Δ ¼ 2ρr2bR3

2πð3a − bÞ
∂
∂t
�

_R
ð3a − bÞb3R4

�
: ð12Þ

All other terms in the energy-momentum tensor are 0 as they
must be for a spherical symmetric time-dependent system.
The static solution is recovered for _R ¼ 0, and it has

Sr ¼ 0 and Δ ¼ 0, i.e., isotropic pressure pr ¼ pT . At the
outer boundary r ¼ RðtÞ, the energy density jumps from ρ
inside to zero outside, the radial pressure prðRÞ vanishes
and is continuous, and the tangential pressure pT assumes
the expression

pTðRÞ¼ΔðRÞ¼−ρ
_R2ð2GMþ8RÞþ2RR̈ð2GM−RÞ

4Rð1−2GM=RÞ3 :

ð13Þ

A natural boundary condition is for the tangential pressure
to be continuous at the surface, i.e., to set pTðRÞ ¼ 0. This
leads to the differential equation

2RR̈ð2GM − RÞ þ _R2ð2GM þ 8RÞ ¼ 0: ð14Þ

We use this equation to determine the time dependence of
the radius RðtÞ.

III. TIME DEPENDENCE OF THE RADIUS

The static solution _R ¼ R̈ ¼ 0, or constant R, satisfies
Eq. (14), as expected. We find that an additional time-
dependent solution exists. The general solution to Eq. (14)
can be found by reexpressing it as an equation for the
function tðRÞ instead of the function RðtÞ using the
formulas for derivatives of inverse functions dt=dR ¼
1= _R and d2t=dR2 ¼ −R̈= _R3. This leads to the linear
differential equation for tðR̃Þ, where R̃ ¼ R=RS,

ð8R̃þ 1Þ dt
dR̃

þ 2ðR̃ − 1ÞR̃ d2t

dR̃2
¼ 0: ð15Þ

The general solution to Eq. (15) can be written as

t − t0
tc

¼ 2

105

�
R̃3=2ð8R̃2 − 28R̃þ 35Þ

ðR̃ − 1Þ7=2 − 8

�
; ð16Þ

where t0 and tc are integration constants. This coincides
with Eq. (3) in the introduction when α ¼ 1

2tc
and β ¼

8
105

− t0=ð2tcÞ. The time t0 is the time at which R ¼ ∞.
The time tc sets the timescale for the collapse (tc > 0) or
expansion (tc < 0). While Eq. (16) is an implicit equation
for R̃, it is possible to find asymptotic expressions for R̃ðtÞ in
the regimes t → t0 and t → �∞,
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R̃ðtÞ ≈ 1þ
�
3
t − t0
tc

�
−1=3

; t → t0;

R̃ðtÞ ≈ 1þ
�
7

2

t − t0
tc

�
−2=7

; t → �∞: ð17Þ

Plots of the exact and asymptotic solutions for R̃ðtÞ are
shown in Fig. 1. For reference, our solution gives

dR̃
dt

¼ −
ðR̃ − 1Þ9=2ffiffiffiffĩ

R
p

tc
;

d2R̃
dt2

¼ ðR̃ − 1Þ8ð8R̃þ 1Þ
2R̃2t2c

: ð18Þ

These expressions lead to

Δ ¼ 3ρr2R̃6a16
ðb − aÞð9a2 þ 5ab − 3b2 − a2b2Þ

ð3a − bÞ3b4t2c
; ð19Þ

Sr ¼ −
2rρa9R̃3

j3a − bjbtc
: ð20Þ

The pressure at r ¼ 0 diverges when R̃ ¼ 9=8, which
happens when t−t0

tc
¼ 47072=105 ≈ 448.3. On the surface

of the star (r ¼ R), one has b ¼ a ¼ ð1 − RS=RÞ1=2 and
Δ ¼ 0, as imposed. As t → ∞ for collapse (or −∞ for
expansion), the star radius R → RS, the density becomes
ρS ¼ 3M=ð4πR3

SÞ for r < RS and zero otherwise, the pres-
sure becomes pr ¼ pT ¼ −ρS for r < RS and zero other-
wise. So our solution describes collapse (expansion) of a
constant-density anisotropic object ending (starting) as a

sphere with vacuum equation of state pr ¼ pT ¼ −ρ and
radius equal to the Schwarzschild radius.

IV. ANALYSIS

In this section we analyze the metric functions gttðt; rÞ,
grrðt; rÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðt; rÞp

, where g ¼ detðgμνÞ, the Ricci scalar,
and the matter functions ρðt; rÞ, prðt; rÞ, Δðt; rÞ, and
Srðt; rÞ, paying particular attention to their singularities.
Since RðtÞ is a continuous function of t, we study the
metric, curvature, and matter functions in the variables
r̃ ¼ r=RS, R̃ ¼ R=RS.

A. Metric functions and Ricci scalar

As noted in the Introduction, the metric of our dynamical
solution is formally the same as the metric for the static
solution at radius R. The metric function gttðt; rÞ is

gttðt;rÞ¼

8><
>:
−1

4
ð3a−bÞ2¼−1

4

�
3
ffiffiffiffiffiffiffiffiffi
1− 1

R̃

q
−

ffiffiffiffiffiffiffiffiffiffiffi
1− r̃2

R̃3

q �
2

; r<R;

−ð1−1
r̃Þ; r≥R:

ð21Þ

The metric function gtt is negative everywhere except it
goes to 0 when 3a ¼ b, which happens on the infinite
pressure surface r̃ ¼ R̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8R̃

p
. The interior gtt connects

continuously with continuous derivatives to the
Schwarzschild exterior gtt except at r̃ ¼ R̃ ¼ 1.
The metric function grr is

grrðt; rÞ ¼
8<
:

b−2 ¼ 1

1− r̃2

R̃3

; r < R;�
1 − 1

r̃

�
−1
; r ≥ R:

ð22Þ

It is always positive and goes to infinity at r̃ ¼ R̃ ¼ 1. It
does not have any special behavior connected to the infinite
pressure surface. The interior grr connects continuously
to the Schwarzschild exterior grr but grr does not have
continuous derivatives.
The function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðt; rÞp

is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðt; rÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttgrrr4 sin2 θ

q
: ð23Þ

It goes to zero on the infinite pressure surface indicating a
coordinate singularity.
Profiles of the metric functions gtt, grr, and

ffiffiffiffiffiffi−gp
are

depicted in Fig. 2. The Ricci scalar is given by the expression

R ¼ −8πGð−ρþ 3pr þ 2ΔÞ: ð24Þ

It diverges on the infinite pressure surface, due to divergences
in pr and Δ, and at R → ∞ (t ¼ t0) due to Δ. These are
therefore curvature singularities. The locations of the

FIG. 1. Time dependence of the radius RðtÞ. The solid (orange)
line is the full solution. The dashed (blue and gray) lines are
the early and late time approximations. The (red) point
marks the central pressure divergence at R̃ ¼ 9=8, ðt − t0Þ=tc ¼
47072=105. The plot has an inset region showing earlier times in
more detail.
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singularities in coordinates ðarctan r̃; arctanðR̃ − 1ÞÞ is
depicted in Fig. 3. The first line of singularities follows
the infinite pressure surface. Its endpoints are
A ¼ ð0; arctan 1

8
Þ, corresponding to r̃ ¼ 0, R̃ ¼ 9=8, and

B ¼ ðπ=4; 0Þ, corresponding to r̃ ¼ 1, R̃ ¼ 1. The second
line of singularities is at R → ∞. Its endpoints are
C ¼ ð0; π=2Þ and D ¼ ðπ=2; π=2Þ.

B. Energy density and radial pressure

The radial pressure prðt; rÞ and energy density ρðt; rÞ
profiles for our dynamical solution are the same as in the
static solution at any R. For completeness we show them in

Fig 4. The density profile is constant inside the object and
zero outside. The radial pressure pr is small compared to the
density ρ at large radii R. At smaller R, pr at the center
becomes larger than ρ, eventually diverging when R̃ ¼ 9=8.
For 9=8 > R̃ > 1, the pressure is negative (pr < −ρ) at
the center and has a divergence at the surface of infinite
pressure. This pr < −ρ behavior causes violation of the
weak and null energy conditions. In the R̃ → 1 limit, the
pressure everywhere in the interior approaches a constant
value −ρs, and the surface of infinite pressure moves to the
surface of the star.

(a)

(c)

(e)
(f)

(d)

(b)

FIG. 2. Plots of the metric functions gtt [panels (a) and (b)], grr [panels (c) and (d)], and
ffiffiffiffiffiffi−gp

[panels (e) and (f), normalized over the
r2 sin θ spherical factor] for various star radii R. Panels (a), (c), and (e) depict R ≤ 1.2RS; panels (b), (d), and (f) depict R ≥ 1.2RS.
Profiles are labeled by R̃ ¼ R=RS. These are the same as for the static solution of the same radius. Note that when R̃ ≤ 9=8, gtt and

ffiffiffiffiffiffi−gp
go to 0 at the radius of the infinite pressure surface. Also, as R̃ → 1, the value of grr at r̃ ¼ 1 goes to infinity.
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C. Pressure anisotropy

A convenient dimensionless quantity related to the
pressure anisotropy function Δðt; rÞ is Δ̃ ¼ Δt2c=ðρsR2

SÞ.
We plot it in Fig. 5. The function Δ has two lines of
singularities, which are lines AB and CD shown in Fig. 3.
The function Δ̃ assumes the following limiting form near
the infinite pressure surface (line AB)

Δ̃≈−
6R̃0ðR̃0−1Þ9ð4R̃0−3Þð9−8R̃0Þ
½3ð4R̃0−1ÞδR̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9−8R̃0

p
δr̃�3

; near line AB;

ð25Þ

where δR̃ ¼ R̃ − R̃0, δr̃ ¼ r̃ − R̃0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8R̃0

p
. Thus the line

AB is a line of third order poles 1=y3 in Δ̃ except at its
endpoints, where the numerator of Eq. (25) goes to 0 and Δ̃
has essential singularities. Near point A

Δ̃ ≈
r̃2

21236ð9 − 8R̃Þ3 ; near r̃ ¼ 0; R̃ ¼ 9

8
: ð26Þ

This is an essential singularity of type x2=y3. Near point B,

FIG. 3. Diagram showing the singularities of the Ricci scalar
and the pressure anisotropy Δ. The singularity associated with the
infinite pressure surface is the blue line bounded by A and B. The
singularity at R → ∞ is the red line joining C and D. The dotted
black line is the surface of the object on which the anisotropy is
set to 0 by our boundary condition.

(a)

(c)
(d)

(b)

FIG. 4. Density [panels (a) and (b)] and radial pressure [panels (c) and (d)] functions for various star radii R. Panels (a) and (c) depict
R ≤ 1.2RS; panels (b) and (d) depict R ≥ 1.2RS. Profiles are labeled by R̃ ¼ R=RS. These are the same as for the static solution of the
same radius. Note the surface of infinite pressure present when R ≤ 9=8RS and the negative pressure region inside of it.
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Δ̃ ≈
6ðR̃ − 1Þ9

ð4 − r̃ − 3R̃Þ3 þ
8ðR̃ − 1Þ8

ð4 − r̃ − 3R̃Þ2 −
2ðR̃ − 1Þ7

3ð4 − r̃ − 3R̃Þ
þ ðR̃ − 1Þ7gðr̃; R̃Þ; r̃ ¼ 1; R̃ ¼ 1; ð27Þ

where gðr̃; R̃Þ is a nonsingular function well approximated
by

gðr̃; R̃Þ ≈ 2

3ðCR̃ − r̃ − 1 − CÞ −
AðR̃ − 1Þ3

ðBR̃ − r̃þ 1 − BÞ4 ; ð28Þ

B¼1.8629316; C¼3.5717930; A¼ð9þ55CÞðB−1Þ4
96ðC−1Þ :

ð29Þ

The expression for A ensures Δ̃ ¼ 0 at r ¼ R. Here there
are essential singularities of the type x9=y3, x8=y2,
and x7=y.

Near the line CD (R → ∞) the limiting form of Δ̃ is

Δ̃ ≈
15

8
r̃2ðR̃2 − r̃2Þ; R̃ ≫ 1: ð30Þ

This diverges with R̃2 except at points C and D which again
are essential singularities.

D. Momentum density

A convenient dimensionless quantity related to Sr is
S̃r ¼ Srtc=ðρsRSÞ. Figure 6 shows plots of −S̃r.
The function Sr can also be examined at the points on

Fig. 3. The limiting forms are

S̃r≈−
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9−8R̃0

p
ðR̃0−1Þ9=2

R̃3=2
0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9−8R̃0

p
δr̃þ3ð4R̃0−3ÞδR̃j

ðnear line ABÞ

ð31Þ

again using δR̃ ¼ R̃ − R̃0, δr̃ ¼ r̃ − R̃0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8R̃0

p
.

(a) (b)

FIG. 5. Rescaled anisotropy function at the same stellar radii as in Fig. 4. Panel (a) depicts R ≤ 1.2RS; panel (b) depicts R ≥ 1.2RS.
Profiles are labeled by R̃ ¼ R=RS. For larger R the anisotropy becomes roughly a quartic polynomial and rapidly decreases with
decreasing R. For R near RS, the anisotropy is heavily localized near the pole in radial pressure.

(a) (b)

FIG. 6. Rescaled momentum function at various star radii R. Panel (a) depicts R ≤ 1.2RS; panel (b) depicts R ≥ 1.2RS. Profiles are
labeled by R̃ ¼ R=RS. For R near RS, the momentum is heavily localized near the infinite pressure surface.
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S̃r ≈
−r̃

2137j8R̃ − 9j R̃ ¼ 9=8; r̃ ¼ 0 ðnear point AÞ;

ð32Þ

S̃r≈
2ðR̃−1Þ9=2
j4−3R̃− r̃jþhðr̃; R̃Þ; R̃¼ 1; r̃¼ 1 ðnear point BÞ;

ð33Þ
S̃r ≈ −r̃; R̃ ≫ 1 ðnear line CDÞ: ð34Þ

Here hðr̃; R̃Þ is a nonsingular function. We see from
Eq. (31) that the line AB is a line of singularities of type
1=jyj in Sr. From Eq. (32), Sr has a singularity of type x=jyj
at point A, and from Eq. (33), Sr has a singularity of type
x9=2=jyj at point B. The line CD is not singular except at
point D where S̃r diverges as −R̃.

E. Force analysis

In [8] we found that general time dependent spherically
symmetric systems satisfy a force equation

−
∂pr

∂r −
Gðmþ 4πr3prÞðρþ prÞ

r2ð1 − 2Gm
r Þ þ 2Δ

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Gm
r

r
1ffiffiffiffiffiffiffiffi−gtt

p ∂
∂t
�

Sr
1 − 2Gm

r

�
: ð35Þ

This is a dynamical anisotropic generalization of the
Tolman–Oppenheimer–Volkoff equation. The right-hand
side of Eq. (35) must be 0 for static systems. Here m is
the mass inside radius r. For our solution,

m ¼
	
M r3

R3 ; r < R;

M; r ≥ R:
ð36Þ

The static Schwarzschild interior solution satisfies the
standard isotropic Tolman–Oppenheimer–Volkoff equation
at all points with finite pressure.1 This means that the only
terms that survive in the time-dependent force equation are
the anisotropy force and the changing momentum terms.
Hence Eq. (35) reduces to Eq. (12).
For the collapsing solution (tc > 0) the anisotropy force

acts as a force to slow down the initially rapid collapse. As
the center pressure is diverging, the anisotropy force pulls
inward, see the R̃ ¼ 1.13 and R̃ ¼ 1.125 curves in Fig. 5.
At late times, the anisotropy is positive inside the pressure
divergence and negative outside; this indicates that the
anisotropy force is pulling into the divergence rather than
pushing away.
For the expanding solution (tc < 0), the anisotropy force

is the same at the same values of R, but the momentum term

Sr has opposite sign and increases, rather than decreases,
and the object expands rather than contracts.

F. Energy-momentum tensor type

As mentioned in Sec. II, the energy-momentum tensor
Tμν is type I when ðρþ prÞ2 − 4S2r ≥ 0 and is type IV
otherwise. Using the expressions from Eqs. (9) and (20) we
can obtain a condition for where in the ðr; RÞ plane Tμν is
type I and where it is type IV. It is type I when

r ≤ rIV ¼ tcR̃3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2c=R2

S þ ðR̃ − 1Þ8R̃
q ; ð37Þ

and type IV otherwise. Energy-momentum tensors of
type IV cannot satisfy the weak energy condition [9].
Note that Tμν is type I at r ¼ 0 for all times, but the outer
region of the object where there is more momentum is type
IV if rIV ≤ r < R. The type IV outer region shrinks or
grows with R and disappears when R ≤ rIV , i.e.,

4R̃ð1 − R̃Þ7 ≤ t2c
R2
S
: ð38Þ

V. CONCLUSION

The interior Schwarzschild solution, despite its perhaps
unnatural uniform density, still has interesting properties
such as the Buchdahl limit, the gravastar limit, and the
extended Kerr source. In this paper, we generalize the
interior Schwarzschild solution to include collapse or
expansion. Our solution to the Einstein field equations is
interesting mathematically since it is exact and fairly
simple, allowing for a detailed analysis of its features.
Our expanding solution starts as a sphere of dark energy in
the infinite past and reaches an infinite size at t0. Our
collapsing system starts at an infinite size and asymptoti-
cally approaches a sphere of dark energy at large times.
Therefore our collapsing solution may be thought of as a
kind of formation process for gravastars or dark energy
stars, which in the terminology of [8] are astrophysical
objects with a dark energy core. However, our collapsing
solution involves spacetime singularities and violations of
the weak and null energy conditions. Other formation
processes that are nonsingular and do not violate those
energy conditions exist [8]. It would be interesting to see if
other static or stationary dark energy stars [5,10–22] can be
generalized to include a nontrivial time dependence in a
simple way.
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1It is argued in [2] that the dpr=dr term produces a Dirac delta
function at the infinite pressure surface, which is compensated for
by another Dirac delta function in the anisotropy term.
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