PHYSICAL REVIEW D 99, 084012 (2019)
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In this paper, we analyze the deflection angle of light by the Brane-Dicke wormhole in the weak field
limit approximation to find the effect of the Brane-Dicke coupling parameter on the weak gravitation
lensing. For this purpose, we consider new geometric techniques, i.e., Gauss-Bonnet theorem and optical
geometry in order to calculate the deflection angle. Furthermore, we verify our results by considering the
most familiar geodesic technique. Moreover, we establish the quantum corrected metric of the Brane-Dicke
wormhole by replacing the classical geodesic with Bohmian trajectories, whose matter source and
anisotropic pressure are influenced by Bohmian quantum effects and calculate its quantum corrected
deflection angle. Then, we calculate the deflection angle by naked singularities and compare with the result
of the wormhole. Such a novel lensing feature might serve as a way to detect wormholes, naked
singularities and also the evidence of Brane-Dicke theory.
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I. INTRODUCTION

Last year researchers detected the first neutron star
collision [1]. It was an epochal discovery. This is only
just the beginning of gravitational wave astronomy. Since
the discovery of gravitational waves, many of the modified
gravity theories have faced difficulties solving the problems
that they were invented for. Furthermore, new data from the
months since this discovery made life more and more
difficult for the defenders of the many remaining modified-
gravity theories [2]. To solve this issue, physicists analyze
the rotating neutron stars or black holes to find some
differences between their observations and general rela-
tivity estimates—the inconsistencies predicted by some
alternative gravitational theories. These systems allow
astronomers to study gravity on a new scale and with
new precision. In every new observation, these alternative
gravitational theories are becoming increasingly difficult to
solve the problems they have invented. For an alternative
gravitational theory to work, it must replicate not only dark
matter and dark energy, but also general relativity estimates
in all standard contexts. One of the proposed modifications
of general relativity theory is the Brans-Dicke (BD) theory
[3] which is in the category of Galileon theories similar to
dilaton theories, chameleon theories and quintessence that
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attempt to get rid of dark energy and explain the expansion
of the Universe. There are only a few sets of dimensions in
which string theory is consistent in itself, and the most
promising is four-dimensional gravity which defines our
Universe [4]. However, a ten-dimensional BD theory of
gravity was founded and to regain the seriousness of our
Universe, you have to get rid of the six dimensions and take
the BD coupling parameter @ which is a dimensionless
constant, to infinity. The BD gravitation theory is a
theoretical framework for explaining gravity (a scalar
tensor theory) where the gravitational interaction is medi-
ated by the scalar field as well as the general relativity
tensor field [5]. They also predict that gravitational waves
are emitted more slowly than light. Although the gravity
constant G is not assumed to be constant, é is replaced by a
scalar field such as ¢, which can vary depending on
location and time. The BD coupling parameter @ can be
selected to match the observations [6]. The BD theory also
predicts the deviation of light and the continuity of planets
orbiting the Sun and the deflection angle depends on the
BD coupling constant ®. This means that from the
observations of the astronomical systems it is possible to
put an observational lower limit on the possible omega
value. Moreover, general relativity is derived from the
Brans-Dicke theory at the boundary of omega’s infinity [7].

Wormbhole: physicist Einstein’s solution of the field
equations in the general theory of relativity similar to a
tunnel between two black holes in spacetime or a tunnel
between other points. Traveling short distances between the
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stars makes the wormholes attractive for space travel. It was
also claimed that the tunnel would allow a wormhole to
travel back into the past. However, the wormholes are
intrinsically unstable. Although exotic stabilization
schemes have been proposed, there is no evidence for
the wormholes [8—28]. One of the way to detect the nature
of the wormhole is to use gravitational lensing [29-34].

In this work, we study the BD wormhole solutions to
investigate the gravitational lensing in weak field limits.
Recently, Gibbons and Werner (GW) have proposed a
method to obtain the deflection angle by black holes in the
weak field limit [35]. Optical geometry is used to calculate
the Gaussian curvature /C and then using the following
Gauss-Bonnet theorem, one can find the deflection angle
for the asymptotically flat spacetimes:

&:—/AmICdS, (1)

which gives exact results for the bending angle in leading
order terms. Then this new method by GW was applied
to a variety of spacetime metrics of black holes and
wormholes [36-63].

The main motivation of the paper is to find the effect of
the BD coupling parameter on the deflection angle by the
wormhole. To do so, the paper is organized as follows: In
Sec. II, we investigate the deflection angle of light by BD
wormbhole class II using the geodesic method and the new
method by GW. In Sec. III, we study the deflection angle of
light by BD wormhole class I using the geodesic and the
new method by GW, then we verify our results. In Sec. IV,
we establish the quantum corrected metric of BD wormhole
class I as well as analyze the quantum corrected deflection
angle of light from it using the new method by GW. In
Sec. V, we study the weak gravitational lensing by naked
singularities. Finally, the results of this paper are summa-
rized in Sec. VL.

II. BRANE-DICKE WORMHOLE CLASS 11

The field equations of the BD field are given as
follows [7]:

87
A W
(¢ ),p 3 _|_ 2(0 s
1 8x 10) 1 .
Rpw - Egm/R = _ETﬂD - E ¢;ﬂ¢;b - Eg;wqﬁ;/)qﬁ’p s
1 .
- g [¢;M;b — G (¢’p);p]’ (2)

where T, is the energy-momentum tensor for matter
excluding the ¢ field, and w is a parameter without any
dimensions. One can obtain the metric of new BD worm-
hole class II using the above BD field equations as [7]

ds? = —e®Rap + {1 - @] e
R
+ R*[d0 + sin’0d¢?), (3)
where
®(R)=a,=0, R=ref(1+B/ )Z(ilgx)l_c
(4)
B Foms o r> —2BCr(R) + B*\?
gm0 bR =R|1- (“EglE ) |
(5)
and
e = (‘”T”)_l > 0. (6)

Note that 5(R) and ®(R) represent the shape and redshift
functions, respectively. The term ¢, is the integration
constant. The throat of the wormhole occurs at R = R,,
ie., b(Ry) = R. The value of r{ can be obtained from

Eq. (5)
ﬁ:EC{li(l—%ﬂ, (7)

where r( represents the radius of the wormhole throat. By
using the above value of r(j)t, we can obtain the value of R%
from Eq. (4). An important feature of wormhole geometry
is that the shape function b(R) must satisfy the flaring-out
condition

bR) = RE'(R) _ (8)

b*(R)
in which b'(R) = 42 < 0 must be satisfied at the wormhole
throat. Here p,; < 0 so that the scalar field plays the role of
exotic matter at the wormhole throat, which violates the
weak energy condition [7]. It is to be noted that R — oo as
r — oo and @ — 0as R — co. The ®(R) function is zero
everywhere; therefore no horizon exists and ®(R) — 0
as R — oo.

A. Deflection angle of Brane-Dicke wormhole
class II using the geodesic method

In order to calculate the geodesics of BD wormhole class
II, the Lagrangian L can be defined by the metric (3)
through a derivative to a parameter § along the path as
follows:
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r(3) r(5) + B
et (1 B\ (L= B/
ere(e ) +é/r<s>>
x (6% + sin20¢?). )

By following the standard procedure, setting 2L =0 for
photons, we derive the two constants of motion of the

geodesics at the equatorial plane 6 =7 i.e.,
oL B \*/1=B/r(3)\*>2.
_2 1 = < 5)= f,
Karva & )< +r(§)> <1+B/r(5v)) "
(10)
oL . N
P, = T —21(3) = —&. (11)

Furthermore, we consider a new variable v(¢), which is
associated to the old radial coordinate as r = @, which

leads to the identity
roodr
¢ do

1 dv

For the sake of simplicity, we use the metric conditions
& =1and 7 = b for Egs. (9)—(12) and after some algebraic
manipulations we obtain the following relation

dv\2 _(1-B%*)* (1-Bv\72€¢
g 2 1+ Bo

After solving the above equation, we get

(ﬁ) _ vE RGPy
dv V(1= B2 — p2)2=?

+12=0. (13)

where

1-Bv\C
E= . 1
<1+Bv) (15)

In order to obtain the solution of differential Eq. (14), we
use the following relation [64]

Ap =r+a, (16)
where & represents the deflection angle. The deflection

angle can be obtained by following the same procedure of
Ref. [65]

a = 2|¢v:1/b - ¢1J:0| —-T. (17)

After solving Eq. (14) and considering the leading order
terms, we obtain

CB
47+(’)(BZ c?). (18)
For the value of C the deflection angle can be written as
follows:

B

WJF O(B?, C?). (19)

a~8

B. Deflection angle of Brane-Dicke wormhole
class IT using the new method

Now we calculate the deflection angle of Brane-Dicke
wormbhole class II using the Gauss-Bonnet theorem [35].
The optical metric of Eq. (3) corresponding to the given
shape function b(R) is given as follows:

2 _ B2V /p— B\ 2C
ar = : ) <F+B) dr
r

,
B\*/1-B/r 2-2¢
L W TR

One can rewrite the above metric as follows:

di* = h, dVd)¥ = dv* + E(v)dg?. (21)

It is to be noted that (u,v = r,¢) and h = det 71””. The
Gaussian optical curvature can be given [34]

fC_RicciScalar_ 1 (drd d§+ dr 2d2§
2 &) |dvar dv dr \dv) dr*]

(22)

Using Eq. (22), we obtain the Gaussian optical curvature
from Eq. (20) as follows:

K~-=2

- )
B om.e). (23)

In order to calculate the deflection angle, we consider the

straight line approximation as r(¢) = ﬁ Thus the

deflection angle can be calculated from given equation [34]

/ / Kds. (24)

singp

After substituting Eq. (23) into Eq. (24), we obtain

) L

sing

) (2CB + r)drdp.  (25)
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The above equation implies

CB

G4—-+ OB C?), (26)

Hence, we find the same deflection angle as in Eq. (18)
so, we get the same deflection angle as in Eq. (19) for the
value of C.

III. BRANE-DICKE WORMHOLE CLASS 1

The metric of the new BD wormhole class II is defined
as [7]

OR)=0, R= r(l +iz> exp [1 —iarctan(é)}ﬁo,

(28)
o -a]- (R
and

A. Deflection angle of Brane-Dicke wormhole
class I using the geodesic method

The Lagrangian of metric (27) can be defined as
follows:

. bR .. .
ds? = —e2@®) g2 | [1 _%] dR*+ R*[d0* +sin’0d¢?),
(27)
where
2L = [

Setting 2L = 0 for photons and considering the deflection
of planar photons at the equatorial plane 0 =7, two
constants of motion of the geodesics are derived at the
equatorial plane 6 = g i.e., [64],

(31)

|
For the sake of simplicity, we use the metric con-
ditions €=1 and ¢ = b for Egs. (31)-(34) and after
some algebraic manipulations we obtain the following
relation

7 B (2(%) L B2 5
P, = 2—4 =2 we&mm[@n PG =2,
¢ » 0__Y%eemamuV(1+lﬂv%(—2Bv+zr—B%ﬁnq2<gg>2
(32) B 7(1+B*1?>4+2B(Cv+ Bv?))v? de
aZ . 2arctan[E])? 2,2\14
ot b? v
Furthfarmore, we conside.r a new yariable v(¢), WhiCh' is Bo e(garctan[é]y(l +B%?) 2
associated to the old radial coordinate as r = 11(171) which + ; . (35)
leads to the identity
rod 1d
U (34)
¢ dé vede The above equation implies
J
d b(1+ B*v*)(2B -1+ B%?
- (Lt B7) 280+ n{-1+ B07) | 56
v z(1+2BCv + 332112)\/—1921;2 + elzaenl)™(1 4 B24?)42
By using the relation from Eq. (36), we can derive the following deflection angle
4B - 8BC 8
MT’H O(B2, T%). (37)
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For the value of C the equation can be written as

B B a)ﬂB 3w*7B
a~42
b

— - B, C?).
8 5 m + O(B*, C*%). (38)
B. Deflection angle of Brane-Dicke wormhole
class I using the new method
In order to find the wormhole optical metric, we consider

ds®> = 0. In the equatorial plane we suppose 6 = 7 and
df = 0 and using Egs. (28) and (29) in Eq. (27), we get

P > o, o, 2 arctan[E])q 2
dt2 _ |: 0(7'2 +Bz)(—23r+7rr2 _an')e(,, t [r]):| r2

r((r* + B*) + 2B(Cr + B))
n FO("Z"’Ez) @

r

arctan :| d¢2 (39)

We calculate the Gaussian optical curvature of the
wormhole as follows:

I’C _ RicciScalar
2

—eGarcanl})’ ropr 4BCr?
A% T T -

+ O(B%,C?). (40
71'3/)7(2) [ r ] ( ). (40)

In order to calculate the deflection angle we consider the
straight line approximation as r(¢) = g Thus the deflec-
tion angle can be calculated from the given equation [34]

/ / Kds. (41)

singp

By putting Eq. (40) into (41), we get

o —eGureanl®) (g ABE -
G / / - [ : } deth,, drdep.

singy ﬂ() r
(42)
The above equation implies
4B - 8BC 3
a:TﬂJrO(Bz,Cz), (43)

which is the same as in Eq. (37). Thus, for the value of C,
we can also find the same result as in Eq. (38).

IV. BRANE-DICKE WORMHOLE WITH
QUANTUM CORRECTIONS TO CLASS I

In this section we analyze the BD wormhole metric (27)
with the effects of quantum corrections. For this purpose we
focus on the quantum correction effects. The Einstein
equations in the energy-momentum tensor remain the same
under the influence of quantum corrections

- n 1 ~ -
Gup = Ry — = GupR = 8T, (44)

[\

where Tff,f and G, denote the effective energy-momentum
tensor and Einstein tensor, respectively. The T¢l can be
defined as follows:

T =T, + T (45)

Here T,, represents the energy-momentum tensor which
can be expressed as

TZ = (_ﬁ’Pr’P()’Pqﬁ)’ (46)

where j stands for energy density and P,, Py, P,,, show the

nonzero components of diagonal terms. The term TS} can
be given as

Togm — (—pleom), o) peom) pleom) - (47)

According to the definition of 4-momentum we have

p; = ho;S. (48)

By using the wave function solution the geodesic equation
can be modified due to the relativistic quantum potential
which can be defined by [34,66]

OR
V, =h*— 49
0 = (49)

The nonzero components of the stress-energy tensor can be
given as [60]

h
81

i}

~(cor.) _ P corr.) _ P(corr.)

_ pleor)
F; ¢ —P(;OH _

75 (50)

=N

here # stands for dimensionless constant. The nonzero
components from the Einstein tensor G, of the metric (27)
are given as

s b'(R) - b(R) b(R)\ @'
Gl=-—"12, G =-= 21 =22 =
! R? R3 + R )R
_ b(R) bR-b
G9: 1 =228 cD// <I>’2—7q>’
1= (1" | @ s
PR—b _, /
2 +_ bl
2R*(R - b) R
G} =G (51)

By utilizing the metric (27) and Eq. (44), we get the
following set of Einstein field equations
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PR) = s V(R - %]
e =g (-2 F- -

Py(R) = Py(R)

1 b(R) b'R—b
- 1_ = (I)// (I)/ 2_7@/
8ﬂ< R)[ ) = SRR =)
b'R-b @ A
—— @ =Z_nm. (52)
2R*(R — b) R R*

The geometry of the wormhole under the influence of
quantum effects can be derived by shifting the shape
function as follows:

i
b_)beff:b_ﬁ' (53)
Also
o1 hip
®(R) - Y(R) = zln (1 + F) (54)

The Einstein field equations in terms of effective shape
function can be expressed as follows:

1 best(R)\ [< - bLyR — by =
— [ ==zt Y Y2 — eff [ !
87[ < R * ( ) 2R(R - beff)
bR —bey -, Y
o lettt? TR 7y , 55
ZRZ(R ) R ( )
where
hi A\ !
Yl — —F (1 +R2> ’

., hf ap\ ! 2h i A\ !
Y”:F<l+?> [3_F 1+ﬁ . (56)

The spacetime metric (27) in terms of quantum corrections
can be rewritten as follows:

hi b(R) hij]~" .
d 2:— 1 =5 dlz ]— ~ =5 dRZ
s ( +R2> + { 7 +R2

+ R2[d6? + sin?0d¢?). (57)

A. Gravitational lensing using the
Gauss-Bonnet theorem

In this subsection we study the deflection of light for the
quantum corrected metric of the BD wormhole given in
Eq. (57). By following the same procedure as in Sec. II, the
Gaussian optical curvature with quantum corrections can be
calculated as follows:

r

—eGacwnl)’\ M Br — 4BChyz?

~ e'x i r n C

K= < B3 ) [ 3 ] +0(8%,C?).
(58)

The asymptotic form of the geodesic curvature is
defined as

) 1

which yields the deflection angle as follows:

4B — 8BChnyz

5 + O(B2, C?). (60)

a~
Hence we find as follows:

B _xBh Bhy  3a’nBh
God gl H T SO RBAT

b b b 4b

O(B2,C?).
(61)

V. DEFLECTION OF LIGHT BY NAKED
SINGULARITIES IN BRANE-DICKE THEORY

The metric of the BD wormhole found first by Agnese
and Camera is defined in the form [6]

, b(R)]™"
ds2 — _ez‘D(R>dt2 + |:1 _ b(R ):| dRZ
+ R*[d0? + sin’0d¢?), (62)
where
20(R) = (|——1In [1 —ﬂ}
I+y r(R)

- 2] 1=rv/2/(147)1/2
R r[l ”} : (63)

BR) _ | Q=R+ 2TTENNE

R 1 —2n/r(R)
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The value of i can be obtained as follows:

1+ 2
"\[11y

here r is the radius of the wormhole throat.

In the case y < 1, there is a singularity at R = 0 and this
point stands for the naked singularity. On the other hand at
the limit of y — 1, the BD reduces to Einstein theory where
the event horizon is at R = 2M that shows the black hole
solution shown by Hawking [5]. Moreover, there is a static
wormhole solution in the BD theory for the case y > 1.

Using the same procedure, first we obtain the optical
metric of the naked singularity case and then calculate the
Gaussian curvature in leading order as follows:

% + O(n?). (66)

; (65)

+
g =r

K~

Then using the Gauss-Bonnet Theorem (GBT) within the
optical naked singularity spacetime (for the case y < 1), we
obtain the deflection angle in weak field limits as follows:

v

17(\/57:17 +8b)y
5 — - 7

a=-2 B2

2
n°m
1/2 e +2 (67)

Note that for the case of y > 1, one can find the
deflection angle of the BD wormhole in weak field limits.

VI. CONCLUSION

In this work, we have analyzed the deflection angle for
the BD wormhole. For this purpose, by using the new
geometric techniques founded by GW, i.e., Gauss-Bonnet
theorem and optical geometry, we have computed the
deflection angle for the BD wormbhole. It is also important

to note that the deflection of a light ray is calculated outside
of the lensing area which shows that the gravitational
lensing effect is a global and even topological effect; i.e.,
there is more than one light ray converging between the
source and observer. Furthermore, we have also calculated
the same result of the deflection angle by using the standard
geodesic technique. Moreover, we have established the
quantum corrected metric of the BD wormhole by replacing
the classical geodesic with Bohmian trajectories, whose
matter source and anisotropic pressure are influenced by
Bohmian quantum effects. We have also studied the
quantum corrected deflection angle for the BD wormhole.
Furthermore, we have investigated the weak gravitational
lensing by naked singularities in BD theory and showed the
difference between the deflection angle of naked singular-
ities and wormholes. In the BD theory, the role of exotic
matter is important for the mass distribution in the Universe
ity>1(orw< -2).

Clearly, the agreement has been shown to arise from
the GBT and the geodesics method for calculating the
deflection angle in weak field limits. This method as a
quantitative tool can be used in any asymptotically flat
spacetime.

The main message of this article is that, these results
provide an excellent tool to directly detect the nature of the
wormholes and naked singularities and also to find evi-
dence of the Brane-Dicke theory.
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