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Recently, an extension to the parametrized post-Newtonian (PPN) formalism has been proposed. This
formalism, the parametrized post-Newtonian-Vainshteinian (PPNV) formalism, is well suited to theories
which exhibit Vainshtein screening of scalar fields. In this paper we apply the PPNV formalism to the
quartic and quintic Galileon theories for the first time. As simple generalizations of standard scalar-tensor
field theories they are important guides for the generalization of parametrized approaches to the effects of
gravity beyond general relativity. In the quartic case, we find new PPNV potentials for both screened and
unscreened regions of spacetime, showing that in principle these theories can be tested. In the quintic case
we show that Vainshtein screening does not occur to Newtonian order, meaning that the theory behaves as
Brans-Dicke to this order, and we discuss possible higher order effects.
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I. INTRODUCTION

Due to its dramatic success in explaining observations
ranging from tabletop tests of the gravitational force to
strong-gravity environments such as systems of merging
black holes, general relativity remains the preferred theory
of gravity. Its success on astrophysical and cosmological
scales is perhaps less clear however; here there is consid-
erable evidence for a dark sector in the Universe, comprised
of dark matter and dark energy. Though the dark matter
may represent new particle physics and the dark energy
may be a cosmological constant, it is conceivable that the
evidence for either or both arises from a modification to
gravity.
The question that arises then is how to discriminate

between modified theories of gravity and general relativity.
There are a great number of alternative gravitational
theories which could be tested, so many in fact that it
would be inefficient to test each one separately. A more
effective approach is to construct parametrized frameworks
which can be applied to certain gravitational systems. From
the theoretical side, one can deduce values of the frame-
work’s parameters that given theories predict; then, from
the experimental side, data from these gravitational systems
can be used to put constraints on these parameters. In this

manner, whole sets of theories can be constrained and even
excluded.
Early examples of such parametrized frameworks

became eventually known as the parametrized post-
Newtonian (henceforth PPN) framework [1–3]. As the
name suggests, this formalism parametrizes the gravita-
tional field beyond the limit of Newtonian gravity.
Specifically, it is assumed that the gravitational field is
described—at least in part—by a metric tensor and that
throughout a system such as the Solar System, the metric
tensor can be described as a slightly perturbed Minkowski
spacetime. These perturbations are parametrized in terms of
a set of potentials (the PPN potentials), each of which are
expressible as spatial integrals over components of the
matter stress energy tensor. Crucially, it is then possible to
relate constant coefficients multiplying these potentials to
important observables in the Solar System. Data from lunar
laser ranging and the motion of bodies within the solar
system have significantly constrained many of these con-
stants and in doing so have severely constrained a number
of alternatives to general relativity [3]. Other parametrized
frameworks have been developed over the years [4–22],
adapted to various systems of interest from the strong-field
to cosmology.
If we take the stress energy of matter to be that due to

visible matter in the Solar System, it is clear that the PPN
formalism will be limited if the theory of gravity is such
that the spacetime metric cannot be expressed in terms of
the regular PPN potentials (see e.g., those listed in box 2
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of [3]). This can indeed occur and happens typically in
modified theories of gravity that introduce additional scales
into gravitational physics. A simple example is that of a
scalar field of mass m coupled to matter in a manner that
gives [23] a Yukawa-type ‘e−mr=r’ contribution to the
gravitational field that test particles feel; this contribution is
not covered by the regular PPN potentials, although for
small enough m a perturbative approach in terms of these
potentials can give sufficient accuracy [23,24].
A particularly interesting family of scalar-tensor gravi-

tational theories are the Galileon theories [25], which
introduce a scalar field χ into the gravitational sector.
These theories are a special subset of Horndeski scalar-
tensor theories that possess field equations with no higher
than second-order time derivatives and an emergentGalilean
symmetry of the Lagrangian—up to total derivatives—
under the transformation ∂μχ → ∂μχ þ vμ in Minkowski
spacetime. These theories have attracted much attention as a
potential candidate for dynamical dark energy [26]. The
most general Galileon Lagrangian consists of five indepen-
dent terms: the first two are a term simply proportional to the
Galileon field χ and a canonical kinetic term for χ. The
remaining three terms are noncanonical kinetic terms for χ,
respectively referred to as the cubic, quartic, and quintic
Galileon (named after the order at which χ appears in their
Lagrangians e.g., the cubic Galileon is cubic in χ).
For dimensional reasons, the noncanonical Galileon

kinetic terms involve dimensionful constants and hence
introduce a new scale into gravitation, an energy scale Λ.
For example, consider the case where the Galileon sector is
described by a canonical kinetic term alongside a cubic
Galileon piece. It is known that in static spherical symmetry
situations (and assuming conformal coupling to matter)
there is asymptotically a Brans-Dicke-type fifth force due
to the canonical kinetic term at very large distances from
the central gravitating matter source. Remarkably though,
as one moves to smaller radii, the nonlinear contribution of
the cubic Galileon term becomes more and more important.
At distances from the source much smaller than a certain
radius rV (a scale built from the mass M of the source, the
Planck mass, and the dimensionful coefficient of the cubic
Galileon term), the profile of the scalar field is dominated
by these nonlinear terms and leads to a dramatic suppres-
sion of the fifth-force relative to the Brans-Dicke form. The
scale rV is referred to as the Vainshtein radius, and the
suppression of the fifth-force is referred to as Vainshtein
screening. The existence of Vainshtein screening is impor-
tant for the phenomenological viability of these models: it
provides a simple way for the theory to have a relatively
dominant effect on late-time, large-scale cosmology whilst
having a sufficiently small effect on gravity in the Solar
System to have avoided exclusion by experiment.
Since the detection of the neutron star-neutron star

merger event GW170817 [27,28] and the resulting con-
straint on the gravitational wave speed the quartic and

quintic Galileon theories are no longer strong candidates
for explaining dark energy [29–32]. However, the scale Λ
may be made large enough so that such theories no longer
play the role of dark energy and the gravitational wave
constraints need not apply. As such, the results presented
here serve as an important guide in constraining theories
which deviate from general relativity (GR) in the infrared
(IR), using strong field data.
As in the case of Yukawa-type modifications to a scalar

field profile, the effect of Vainshtein screening is not
covered by the PPN potentials. It is necessary then to
modify the PPN formalism to introduce a parametrization of
fields that is sufficiently general to account for the presence
of Vainshtein screening. Such a proposal was put forth in
[33] and is termed the parameterized post-Newtonian
Vainshteinian formlism (henceforth PPNV). The authors
applied their formalism to the case where the Galileon sector
consisted of a scalar field with a canonical kinetic term
alongside a cubic Galileon term. There are important
benefits from the development of such a formalism:
(1) Gravitational physics in the Solar System, by and

large, lacks high symmetry in space and time, and
the field equations of general relativity are nonlinear.
The PPN formalism, as a perturbative formalism,
helps systematically break the full equations into
easier-to-solve sets of equations. This is similarly
true for the gravitational (including scalar field)
equations in the PPNV formalism.

(2) As in the PPN formalism, the parametrized nature of
the PPNV formalism may point towards design of
experiments to most accurately probe the effects of
a field such as the Galileon; i.e., they should be
experiments that most directly constraint PPNV
coefficients.

(3) The Vainshtein screening mechanism and behavior
in the nonlinear regime are currently largely under-
stood in examples of high symmetry. The apparent
accuracy of the perturbative approach in a given, less
symmetrical situation may yield insight into the
distribution of screened and nonscreened regions
through spacetime.

The layout of the paper is as follows: In Sec. II we provide a
brief technical overview to the structure of PPN and PPNV
formalisms. In Sec. III we discuss the earlier application of
the PPNV formalism to the case of the cubic Galileon
theory. In Secs. IV and V we proceed to apply the PPNV
formalism to both quartic and quintic Galileon theories.
Finally in Sec. VI we discuss our results and present our
conclusions. Throughout the article we use units such that
the speed of light is unity.

II. PPN AND PPNV REVIEW

We now present a brief overview of the PPN and PPNV
formalisms. In the PPN formalism it is assumed that one of
the constituents of the gravitational field is a metric tensor
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gμν and that this tensor is approximately the metric tensor
ημν of Minkowski space plus a small correction hμν,

gμν ¼ ημν þ hμν: ð1Þ

Throughout we will use units where c ¼ 1. This metric
ansatz is valid as long as the time dependence of the
background metric and scalar field are sufficiently small
and as long as we are concerned with situations away from
compact objects, such as black holes, or concerned with
systems which have reached a type of quasistatic equilib-
rium. Though this is clearly not an accurate description of
our entire Universe, this ansatz describes the geometry
of the Solar System to a good approximation [34].1 The
matter content is assumed to take the form of a fluid
(potentially with anisotropic stresses), and it is assumed
that the stress energy tensor of matter is covariantly con-
served with respect to the covariant derivative∇μ associated
with gμν. The velocity ofmatter vi is observed to be typically
of order ∼10−3–10−4 in units where the speed of light is
unity, and this is taken to be the leading order of smallness in
the PPN expansion [i.e., the vi are allocated PPN order
OPPNð1Þ]. By the allocation vi ∼OPPNð1Þ, then vi ∼
jd=dtj=jd=dxj and so time derivatives are taken to increase
the PPN order whilst spatial derivatives do not. Typical
Newtonian potentials are of order ∼v2 and so are allocated
PPN orderOPPNð2Þ, whilst typical matter densities—via the
assumed approximate validity of Poisson’s equation in the
Newtonian limit—are also of OPPNð2Þ.
The full equations of the system are taken to be the

gravitational field equations (describing the dynamics of
gμν as well as other gravitational fields that may exist such
as a scalar field ϕ≡ e−2χ=MP in the case of scalar-tensor
theory) and matter field equations (that may be recovered
from equations of energy-momentum conservation).
Using the above order allocations, one can proceed to
perturbatively expand the full equations to order OPPNð2Þ
(Newtonian limit) and OPPNð> 2Þ (post-Newtonian correc-
tions). The PPN formalism has been applied to a wide
variety of theories such as Brans-Dicke theory [3] and the
Einstein-Aether theory [36].
Now we turn to the case of the Galileon theory. In the

simplest example of a Galileon with noncanonical kinetic
terms, it is known in the Vainshtein screening region that
there is a correction δVU to the Newtonian gravitational
potential due to a spherically symmetric source which goes
approximately as δVU ∼U × ðr=rVÞ3=2 [37], where U is
the canonical Newtonian potential. It is clear by inspection
of the form of the PPN potentials [3] that this correction
cannot be constructed from linear combinations of these

potentials. It is necessary then to extend the PPN formalism
to include potentials of which the above correction is an
example.
The formalism proposed in [33] is an example of such an

extension. The idea is to add an additional order in the
expansion of fields that quantifies the effect on fields due to
proximity to the boundary between regionswith andwithout
Vainshtein screening. From the above example of the cubic
Galileon, one can imagine that in solving the full equations
that the contribution to the gravitational potential may go as
δVU ∼U × ððr=rVÞ3=2 þOððr=rVÞ3Þ þ…Þ. In this exam-
ple then it seems reasonable to assign a Vainshteinian order
V to terms which have a dependence ðr=rVÞ3V=2 and retain
the PPN order N for remaining dependencies. How do we
assign orders to the various quantities for a general theory?
Following [33], let us consider a general setting where

the theory in question contains an additional scalar field
with noncanonical kinetic terms in the action, leading to
Vainshtein-type effects. As in [33] we are also concerned
with theories leading to a single Vainshtein scale. Typically,
and assuming the scalar χ has dimensions of mass, outside
the Vainshtein radius the scalar field solution will be
dictated by the canonical term to be χ ∼ ðM=MPÞr−1 where
M is the mass of the source. Deep inside the Vainshtein
radius, the nonlinear interactions will switch on so that the
scalar equation schematically reads as

∂mχn−1

Λmþn−4 ∼
ρ

MP
; ð2Þ

where ρ is the matter density and Λ is the strong-coupling
scale. Here m is an integer specifying the number of
derivatives and n another integer specifying how many
occurrences of χ appear in the action for the term in
question. Thus this prescription leads to a Vainshtein scale
where classical perturbation theory breaks down given by
rVΛ ∼ ðM=MPÞs where s ¼ n−2

mþn−4. In spherically symmet-
ric situations, to lowest Newtonian order deep inside the
Vainshtein radius, χ will schematically take the form

χ

MP
∼
�
rS
r

��
r
rV

�
kV
; ð3Þ

where rS is the Schwarzschild radius of the source and

k ¼ mþ n − 4

n − 1
ð4Þ

is a fraction fixed by the action of the theory under
consideration. In the case of the cubic Galileon, m ¼ 4
and n ¼ 3 so that k ¼ 3=2.
As such—and using the notationOPPNVðN;VÞ to denote

a quantity of PPN order N and Vainshteinian order V—we
allocate the following PPNV orders to the contributions to
the Newtonian potential:

1Indeed, typically constraints have arisen on the Galileon
theories from cosmological data where time variation in the
“background” metric is important [35].

PARAMETRIZED POST-NEWTONIAN-VAINSHTEINIAN … PHYS. REV. D 99, 084009 (2019)

084009-3



U ∼OPPNVð2; 0Þ
U × ðr=rVÞk ∼OPPNVð2; 1Þ
U × ðr=rVÞ2k ∼OPPNVð2; 2Þ: ð5Þ

In general, we assign an PPN order N and Vainshteinian
order V to any operator in the theory under consideration
using the prescription,

OPPNVðN;VÞ ∼ rN=2
s r−kVV : ð6Þ

Figure 1 schematically illustrates in the case of the cubic
Galileon, how N and V orders of greater and greater
magnitude are expected to be necessary in describing, to
a set accuracy, the scalar field profile exterior to a black hole
type solution with Schwarzschild radius rS; it can be seen
that, as expected, greater and greater PPN orders N are
required to account for the fact thatmore andmore orders are
needed to account for increasingly post-Newtonian behavior
as one approaches the event horizon. Close to the Vainshtein
screening barrier it can be seen that more and more V orders
are necessary as r=rV → 1; the reason that the green steps are
not continuous on either side of the boundary is because
leading corrections outside the screened region go as
positive powers of ðrV=rÞ3=2. This is not to say that somehow
the “weak field limit” may no longer be applicable here but
that the presence of Vainshtein screening means that power-
law expansions in the orders ðN;VÞ cannot cover both
screened and unscreened regions together.
The question of how to allocate a V order to a quantity

seems quite clear in spherical symmetry—as proximity to

the Vainshtein screening boundary is measured by r=rV, but
how does one do this when the geometry of the Vainshtein
screening boundary may be more complicated due to less-
symmetric mass distributions? By comparison to the PPN
formalism, it can be noted that in spherical symmetry the
Newtonian potential goes as rS=r—where rS is the
Schwarzschild radius of the source and the post-
Newtonian correction to this potential goes as ðrS=rÞ2;
though the PPN expansion is not an expansion in rS, there
is a correspondence here between powers of rS appearing in
potentials and PPN order N. The approach of the PPNV
formalism is to preempt an extension of this in the
Vainshteinian case by assigning a PPNV order to the
dimensionful constant appearing in the noncanonical
kinetic term of the Galileon action. We will now attempt
to make this approach clearer by seeing its application in
the case of the cubic Galileon theory.

III. CUBIC GALILEON REVIEW

In this section we briefly discuss the cubic Galileon and
the application of the PPNV formalism to it. This case is
discussed in more detail in [33], and we review the authors’
results here. The cubic Galileon theory has one additional
parameter beyond the standard scalar-tensor theory,
namely, the scale Λ. It has the following action:

S3½g̃; χ� ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g̃

p
R̃

þ
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
c0X̃ þ 1

Λ3
X̃ □̃ χ

�
þ SM½g�; ð7Þ

where for notational compactness the functional depend-
ence of the action on matter fields is not written and

X̃ ≡ −
1

2
g̃μν∇̃μχ∇̃νχ ð8Þ

gμν ¼ e2χ=MPg̃μν; ð9Þ

where MP ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
. Note that the action above is shift

symmetric in χ. As discussed in Sec. II, it is a convention in
the PPN formalisms and some extensions thereof to work
with the metric that is minimally coupled to matter, that is,
gμν. Therefore it is useful to write the action (7) entirely in
terms of gμν and a scalar field, and it is useful to work with
the scalar field ϕ≡ e−2χ=MP ; then, (7) can be written, up to
a boundary term, as

S½g;ϕ� ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕRþ 2ω

ϕ
Y −

α3
4

Y
ϕ3

□ϕ

�

þ SM½g�; ð10Þ

where

FIG. 1. Schematic illustration for the cubic Galileon case of the
PPNVorder in the scalar field ϕ that one should go to, to achieve
a certain standard of approximation to the results from solving the
full equations exterior to a black hole with Schwarzschild radius
rS and Vainshtein radius rV (see [38] for relevant cases). The
noncontinuity of the V Order curve either side of rV illustrates the
need for use of a dual formulation of the theory on the inside
regions.
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α3 ≡MP

Λ3
ð11Þ

ω≡ c0 − 6

4
ð12Þ

Y ≡ −
1

2
gμν∇μϕ∇νϕ: ð13Þ

It can be shown that in the static, spherically symmetric
weak field limit [37], in the exterior a mass M there exists
screening for r ≪ rV where α3 is related to rV and the
mass’s Schwarzschild radius rS as

α3 ¼
1

4π

r3V
rS

: ð14Þ

Given the discussion in Sec. II, this suggests that it can be
important to assign a PPNV order to the dimensionful
number α3. If (post-)Newtonian effects of orderOPPNðNÞ in
spherical symmetry appear in the combination rN=2

S and

Vainshteinian effects appear in the combination r3V=2V .
Under our convention, it is clear that α3 gets assigned
the PPNV orders,

OPPNVðα3Þ ¼ ð−2;−2Þ: ð15Þ

This is an important part of constructing frameworks
beyond PPN: whereas in PPN it was only necessary to
assign values to fields such as the metric—or the matter
density field—when there exist fixed, new scales in the
problem (as for the parameter α3), one can meaningfully
associate perturbative orders to these scales.
Given the action (10) one can then obtain the equations

of motion for matter and gravitational fields (here taken to
be gμν and ϕ) and these may be found in [33]. As is
suggested by Fig. 1, care must be taken when expanding
fields in V order depending on whether one is within a
screened region or not—specifically that an expansion in
“opposite” powers of V is necessary in each region. It is
argued in [33] that in an unscreened (henceforth outside)
region, the appropriate expansion for ϕ is

ϕðoutÞ ¼ ϕðoutÞ
0

�
1þ

X∞
N¼2

X−∞
V¼0

φðN;VÞðt; xiÞ
�
; ð16Þ

where ϕðoutÞ
0 corresponds to the value of the scalar field as

r → ∞ and is taken to have PPNV order (0, 0).
Performing the PPNV expansion in the inside region

necessitates the use of auxiliary fields which are dual to the
interaction terms determined by ∇μϕ. In the original PPNV
article [33], this was achieved via a Legendre transforma-
tion of the action using the dualization procedure of [39].
Dualizing the action leads to the absorption of powers
of the parameter α3 into the auxiliary fields, such that the
action becomes perturbative in inverse powers of α3.

The field equations for the auxiliary fields (denoted by
Aμ and Z in [33], dual to ∇μϕ and □ϕ respectively) were
obtained from the dual action, and those field equations
were subsequently expanded using the PPNV formalism.
The above procedure is fairly lengthy but fortunately it is

not necessary; one can obtain the desired field equations in
the inside region directly from the ones relevant to the
outside region without first dualizing the action. The trick is
to specify an auxiliary field B, related to ϕ by an
appropriate rescaling via a power of α3, a method essen-
tially identical to the one used in [40,41], although that
formalism also encompasses chameleon fields. To be more
precise, we define

∇μϕ ¼ αp3∇μB ð17Þ

for an unknown power p. This is then inserted into the
Galileon field equations, replacing all occurrences of ∇μϕ,
but leaving ϕ-dependent terms without derivatives intact.
Following that, one chooses the power p such that there is
at least one term without any α3 (this is the leading order
term) while all other terms have powers of α3 with strictly
negative exponent. In this way, one can safely take the limit
α3 → ∞ which is the deep Vainshtein limit.
In the case of the cubic Galileon, p ¼ −1=2, so that

∇μϕ ¼ α−1=23 ∇μB and the covariant dual field equations
which contain both ϕ and B can be found in [33]. From (17)
we may then relate the two fields so that

ϕðinÞ ¼ 1þ α−1=23 B; ð18Þ

which makes the choice of the normalization in (17) clear.
We have specifically normalized ϕðinÞ such that it tends to
unity when all Vainshteinian corrections subside (e.g., as
r → 0 in the case of spherical symmetry), and this has the
outcome that the bare gravitational parameter G can be
identified with Newton’s constant. Notice that the constant
α−1=23 is of orderOPPNVð1; 1Þmeaning that it increases both
the PPN order and the Vainshtein order of any terms
multiplying it by one.
The field B also has N and V orders; in the case of cubic

Galileon,

B ¼
X∞
N¼1

X∞
V¼0

BðN;VÞðt; xiÞ; ð19Þ

so that the leading order is Bð1;0Þ.
The reason that one looks at an expansion in positive

powers of V in an inside region and negative powers of V in
an outside region is a reflection of our convention for what
V is by choice, the quantity α3 has been allocated a negative
V order, and it is anticipated that α3 will appear in negative
powers in a perturbative expansion of ϕðinÞ; thus terms will
have a non-negative V order. The opposite is true in an
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outside region, where α3 will appear in positive powers in a
perturbative expansion of ϕðoutÞ, and hence these terms will
have a negative V order.
It is expected that both of these perturbative expansions

will cease to work close to any boundary between inside
and outside regions. Indeed, in the absence of knowing the
distribution of such boundaries in space—given a certain
matter content in space—the breakdown of such an
expansion may be a sign of approach to a boundary
[e.g., if at some point within an outside region, ϕð2;−2Þ

becomes as significant as ϕð2;0Þ etc.].
We now briefly summarize the results obtained for inside

and outside regions in the cubic Galileon case.

A. Outside region

It is found that up to N order 2 and V order −2 that
the scalar field perturbations φ and nonvanishing parts of
hμν are

φð2;≤j−2jÞ ¼ 2G

ð3þ 2ωÞϕðoutÞ
0

U

−
α3

8ð3þ 2ωÞϕðoutÞ
0

�
GC

2þ ω

�
2

Uðout;3Þ
V1

ð20Þ

hð2;≤j−2jÞ00 ¼ 2GCU þ 2gðout;3ÞV1

�
MP

H0

�
2

G3
CU

ðout;3Þ
V1

ð21Þ

hð2;≤j−2jÞij ¼
�
2γGCU þ 2γðout;3ÞV1

�
MP

H0

�
2

G3
CU

ðout;3Þ
V1

�
γij;

ð22Þ

where γij is the metric of flat three-dimensional Euclidean
space in arbitrary coordinates and where first and second
terms for each field/field component are of ðN;VÞ order
(2,0) and ð2;−2Þ respectively and where the potentials U

and Uðout;3Þ
V1

are

UðxÞ≡
Z

ρðx⃗0; tÞ
jx⃗ − x⃗0j d

3x0 ð23Þ

Uðout;3Þ
V1

ðxÞ≡
Z

d3x0d3x00ρðt; x⃗0Þρðt; x⃗00Þ
�ðx⃗ − x⃗0Þ · ðx⃗ − x⃗00Þ
jx⃗ − x⃗0j3jx⃗ − x⃗00j3

− 2
ðx⃗ − x⃗0Þ · ðx⃗0 − x⃗00Þ
jx⃗ − x⃗0j3jx⃗0 − x⃗00j3

�
: ð24Þ

The constant GC is the “cosmological value” of the
gravitational strength, i.e., the one that could be measured
by cosmological probes. This value is not necessarily the
same as the locally measured value (which for these
theories will typically be determined by the specific form
of the metric in the inside region). For this particular theory
GC is given by

GC ≡ ð4þ 2ωÞ
ð3þ 2ωÞ

G

ϕðoutÞ
0

; ð25Þ

which is identical to the case of Brans-Dicke theory. This
was expected as this cubic Galileon theory asymptotes to
Brans-Dicke far away from massive sources, as is relevant
to cosmological scales.
The constant parameter γ is one of the standard PPN

parameters and for this particular theory is given by

γ ≡ 1þ ω

2þ ω
; ð26Þ

which is identical, once again, to the case of Brans-Dicke
theory.
The constant parameters gðout;3ÞV1

and γðout;3ÞV1
are new

parameters beyond the standard PPN. They are PPNV
parameters which measure the strength of the contribution

of the Vainshteinian potential Uðout;3Þ
V1

to the metric. While
in general relativity and in Brans-Dicke theory they are
exactly zero, in this particular cubic Galileon theory we
have that

γðout;3ÞV1
≡ π

4

�
MP

ð2þ ωÞΛ
�
3
�
H0

MP

�
2

¼ πH2
0

4ð2þ ωÞ3 α3 ð27Þ

and gðout;3ÞV1
¼ −γðout;3ÞV1

. It is immediately observed that as
α3 → 0 the theory asymptotes to Brans-Dicke, which could
have been expected by inspection of the action (10).
The constant H0 is taken to be the value of the Hubble

parameter today. Note that the parameter γðout;3ÞV1
is not the

same as the parameter γV from [33]. The number H0 is

incorporated into the definitions of gðout;3ÞV1
and γðout;3ÞV1

so that
for values ofΛ associated with the Galileon playing the role
of dark energy [where it takes values OððMPH2

0Þ1=3Þ [33]],
that the value of gðout;3ÞV1

and γðout;3ÞV1
is of order ð2þ ωÞ−3.

What is a typical size for the parameter ω? If it is the case
that cosmologically the theory (10) is essentially that of
Brans-Dicke theory [42] (i.e., the influence of nonlinear
terms in the action have negligible effect) then we may use
cosmological constraints on that theory restrict ω≳ 1000

[43] and so fgðout;3ÞV1
; γðout;3ÞV1

g ≪ 1.
The potentials U and Uðout;3Þ

V1
involve spatial integrals.

The domain of integration for formal solutions to fields in
the outside regime is understood to encompass all space,
including inside and outside regions. Nonetheless, there
remains a technical challenge in determining the distribu-
tion of inside and outside regions: one could imagine that
the shape of these regions in general situations may be
rather complex. How to find where the boundaries are? A
possible strategy is to begin at a point in space where one
can be reasonably confident one is in an outside regime
(e.g., very far from matter sources). One can then compute
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physical effects of the scalar field to OPPNVð2;−2Þ and
OPPNVð2;−4Þ. If theOPPNVð2;−4Þ effects are subdominant
then one can have some confidence that one is in the
outside region and that the PPNVexpansion is appropriate.
Then one can try to move to nearby points in space,
mapping out boundaries demarcated by extensions where
OPPNVð2;−4Þ terms would give comparable effects to
OPPNVð2;−2Þ—this may indicate proximity to regions
where the perturbative expansion breaks down (and thus,
a transition to a screened region).
Finally, a word on notation is in order. The “ðout; 3Þ” in

Uðout;3Þ
V1

and also in gðout;3ÞV1
and γðout;3ÞV1

denotes that these
potentials and parameters are relevant to the outside
Vainshtein region and to the cubic Galileon theory. The
“1” denotes the fact that these are the first nonzero
correction coming from Vainshteinian effects. We use a
similar notation when we discuss the quartic Galileon.

B. Inside region

For the inside regions, it is the nonlinear contribution to
the scalar field kinetic term that dominates the scalar field
equation. Given the ansatz (18) and (19) the leading order

term of the scalar equation gives an equation for Uðin;3Þ
V1

¼
Bð1;0Þ=ð2 ffiffiffiffiffiffi

2G
p Þ as

∇⃗i∇⃗jUðin;3Þ
V1

∇⃗i∇⃗jU
ðin;3Þ
V1

− ð∇⃗2Uðin;3Þ
V1

Þ2 ¼ −4πρ: ð28Þ

Although it can be shown that higher orders in the
expansion (18) obey linear differential equations [33],
the equation for (28) is nonlinear, and there is no known
general solution. In spherical symmetry Eq. (28) can be
solved analytically, and it has been found in [33] that
solutions agree with those presented in [37].
Once the solution for Uðin;3Þ

V1
is found, the Einstein

equations determine the solutions to the insidemetric as [33]

hð2;≤2Þ00 ¼ 2GU þ 2gðin;3ÞV1
Uðin;3Þ

V1
ð29Þ

hð2;≤2Þij ¼ ½2GU þ 2γðin;3ÞV1
Uðin;3Þ

V1
�γij; ð30Þ

where for this particular theory

γðin;3ÞV1
¼ 8πG

α3
¼

�
Λ
MP

�
3=2

ð31Þ

and gðin;3ÞV1
¼ −γðin;3ÞV1

. Clearly, as α3 → ∞ the theory tends to
GR. The metric solution to Oð4; 1Þ has been determined
in [41].

IV. QUARTIC GALILEON

We now discuss the case of the quartic Galileon. The
action for this theory is [26]

S4½g̃; χ� ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

16πG
R̃þ c0X̃

þ 1

Λ6
X̃

�
ð□̃χÞ2 − ∇̃α∇̃βχ∇̃β∇̃αχ þ 1

2
R̃ X̃

��

þ SM½g�; ð32Þ

where X̃ is defined as in (8). Also as in the cubic Galileon
case, g̃μν ¼ e2χ=MPgμν, and for the purposes of the PPNV
analysis it is useful to write the action instead in terms of
gμν and a field ϕ≡ e−2χ=MP . Up to a boundary term, the
resulting action is found to be

S04½g;ϕ� ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ��
ϕRþ 2ω

ϕ
Y

�

þ α4
8

Y
ϕ5

�
ð□ϕÞ2 −∇α∇βϕ∇β∇αϕþ 1

2
RY

þ 5

2ϕ
Y□ϕþ 21

2ϕ2
Y2

��
þ SM½g�; ð33Þ

where Y and ω are defined as in (13) and (12) respectively
and α4 ≡M2

P=Λ6. Interestingly, the kinetic terms in (33)
are not just those of the quartic Galileon (with respect to ϕ
and Y) but also contain a cubic Galileon term and a
“K-essence” term proportional to Y2. The field equations
of motion following from (33) are shown in Appendix A.

A. PPNV formalism for quartic Galileon

We now detail the application of the PPNV formalism to
the case of the quartic Galileon. As in the PPN case, it is
assumed that—to a good approximation in regions of
interest—the metric gμν takes the form gμν ¼ ημν þ hμν,
as in (1), where all components of hμν have an N order of at
least 2. Also as in the PPN case, matter is taken to be
described by a fluid, and we may allocate matter density as
measured by an observer momentarily freely falling with
the matter, ρ, as being OPPNVð2; 0Þ; matter coordinate
velocity vi as being OPPNVð1; 0Þ; and comoving matter
pressure P as being OPPNVð4; 0Þ (i.e., being of post-
Newtonian order). Furthermore, time derivatives on a
quantity are taken to raise N orders by order unity whilst
not changing the V order.
As in the case of the cubic Galileon, the action for the

quartic Galileon (33) contains a dimensionful scale—
named α4—and a vital first step is to assign a PPNVorder
to it. To do so, we must establish that Vainshtein screening
occurs and then relate α4 to the Vainshtein radius and
Schwarzschild radius. Towards this, we note that the action
(32) for perturbations around Minkowski can be written
schematically as

PARAMETRIZED POST-NEWTONIAN-VAINSHTEINIAN … PHYS. REV. D 99, 084009 (2019)

084009-7



S ∼
Z

d4x

�
M2

P

ffiffiffiffiffiffi
−g̃

p
R − ð∂χÞ2 − ∂6χ4

Λ6

þMPh
∂6χ3

Λ6
þ hμνTμν þ χ

Mp
T

�
: ð34Þ

From the expression above, we see that for this theory
m ¼ 6 and n ¼ 4 so that s ¼ 1

3
(as in the cubic galileon) and

k ¼ 2. This automatically gives the Vainshtein radius as
rV ¼ 1

Λ ð M
MP

Þ13. Given that α4 ¼ M2
P=Λ6 then we have

α4 ¼
r6V

16π2r2S
∼OPPNVð−4;−3Þ ð35Þ

according to our order assigning prescription.
We then have the necessary ingredients to consider either

a screened (inside) or unscreened (outside) region and
expand the full equations according to PPNV order and
thus find perturbative solutions.

B. Outside region

Firstly we consider fields in an outside region. As in the
case of the cubic Galileon at large distances away from a
Vainshtein boundary the scalar field’s dynamics will be
dominated by the canonical kinetic term. Thus, in the limit
of spherical symmetry ϕ ∼ 1=r, with OPPNVð2; 0Þ, and we
expect that corrections will go as ðrV=rÞ to some positive
power. Hence, we expect corrections to the dominant term
to have PPNVorderOPPNVð2; V < 0Þ. As in the case of the
cubic Galileon, make the same ansatz (16) as in the cubic
Galileon case. For the metric perturbations we similarly
generalize the usual PPN order allocation to hμν to include a
V order,

h00 ¼
X∞
N¼2

X−∞
V¼0

hðN;VÞ
00 ðt; xiÞ ð36Þ

h0i ¼
X∞
N¼3

X−∞
V¼0

hðN;VÞ
0i ðt; xiÞ ð37Þ

hij ¼
X∞
N¼2

X−∞
V¼0

hðN;VÞ
ij ðt; xiÞ: ð38Þ

We now focus on the solution of fields to Newtonian order
(N ¼ 2). After a lengthy calculation, to this order the
Einstein equation (A1), leads to the following equations for
the 00 component:

−
1

2
∇⃗2h00 ¼

4πG

ϕðoutÞ
0

ρ −
1

2
∇⃗2

ϕ ð39Þ

and for the ij components,

∇⃗k∇⃗ðihkjÞ −
1

2
∇⃗2hij þ

1

2
∇⃗i∇⃗jðh00 − hÞ

¼ 4πG

ϕðoutÞ
0

ργij þ
1

2
∇⃗2

φγij þ ∇⃗i∇⃗jφ; ð40Þ

and for notational compactness it is understood that quan-
tities in h00, h and φ are to haveN order 2 with a sum overV
orders implicit. To further simplify the equations we can
impose the following gauge-fixing condition:

∇⃗khki ¼ ∇⃗i

�
1

2
h −

1

2
h00 þ φ

�
: ð41Þ

Therefore (40) turns into

−
1

2
∇⃗2hij ¼

4πG

ϕðoutÞ
0

ργij þ
1

2
∇⃗2

φγij: ð42Þ

We may formally solve (39) and (42) to get

h00 ¼
2G

ϕðoutÞ
0

U þ φ ð43Þ

hij ¼
�

2G

ϕðoutÞ
0

U − φ

�
γij; ð44Þ

where U is defined in Eq. (23) and so only φ remains to be
determined.
Determining φ is achieved by considering the scalar field

equation (A3) which to PPN order 2 takes the form,

∇⃗2
φ¼−

8πG

ð3þ2ωÞϕðoutÞ
0

ρ

−
α4

8ð3þ2ωÞðϕðoutÞ
0 Þ2

½ð∇⃗2
φÞ3−3φi

jφ
j
i∇⃗2

φþ2φi
jφ

j
kφ

k
i �;

ð45Þ

where φi ≡ ∇⃗iφ and φij ≡ ∇⃗i∇⃗jφ.
Up to this point, no considerations regarding the

Vainshtein order have been made. In order to proceed
further, we solve (45) by expanding φ fully as in (16) and
collecting Vainshtein orders.

1. N = 2, V = 0

To zeroth order in V the α4 term in the scalar field
equation (45) does not contribute, and we find that

∇⃗2
φð2;0Þ ¼ −

8πG

ð3þ 2ωÞϕðoutÞ
0

ρ ð46Þ

as in standard Brans-Dicke theory. This can be formally
integrated to give
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φð2;0Þ ¼ −
2G

ð3þ 2ωÞϕðoutÞ
0

U; ð47Þ

thus the metric solution to Oð2; 0Þ is

hð2;0Þ00 ¼ 2GCU ð48Þ

hð2;0Þij ¼ 2γGCUγij; ð49Þ

where GC and γ are just as in Brans-Dicke and the cubic
Galileon theories given by (25) and (26) respectively.
Recall that in the limit that nonlinear kinetic terms may
be ignored, the action (33) corresponds to that of Brans-
Dicke theory. Indeed the solution to this order is identical to
the Newtonian limit of that theory [42].

2. N = 2, V = − 3

The presence of α4 in the scalar equation (45) implies
that the first nontrivial order for V is V ¼ −3. The scalar
field equation takes the form,

∇⃗2
φð2;−3Þ ¼ −

α4

8ð3þ 2ωÞðϕðoutÞ
0 Þ2

½ð∇⃗2
φð2;0ÞÞ3

− 3ðφð2;0ÞÞijðφð2;0ÞÞji∇⃗2ðφð2;0ÞÞ
þ 2ðφð2;0ÞÞijðφð2;0ÞÞjkðφð2;0ÞÞki�: ð50Þ

Defining the potential Uðout;4Þ
V1

via

φð2;−3Þ ¼ α4G3
C

32πð3þ 2ωÞð2þ ωÞ3ðϕðoutÞ
0 Þ2

Uðout;4Þ
V1

; ð51Þ

we may formally solve (50) to obtain

Uðout;4Þ
V1

≡
Z

d3x⃗ 0

jx⃗−x⃗ 0jf4πρ½−ð4πρÞ
2þ3UijUij�þ2Ui

jUj
kUk

ig;

ð52Þ

where Uij ¼ ∇⃗i∇⃗jU.
Therefore, summing up the Oð2; 0Þ and Oð2;−3Þ con-

tributions in (43) and (44) we arrive at the metric solution,

h00 ¼ 2GCU þ 2gðout;4ÞV1

�
Mp

H0

�
6

G5
CU

ðout;4Þ
V1

ð53Þ

hij ¼
�
2GCU þ 2γðout;4ÞV1

�
Mp

H0

�
6

G5
CU

ðout;4Þ
V1

�
γij; ð54Þ

where

γðout;4ÞV1
≡−

π

4

2ωþ3

ð2þωÞ5
�
H0

Λ

�
6

¼−
π

4

2ωþ3

ð2þωÞ5
H6

0

M2
p
α4 ð55Þ

and gðout;4ÞV1
¼ −γðout;4ÞV1

. We see then that for the quartic
Galileon, there exists—to Newtonian order—a new PPNV
potential (52) with accompanying dimensionless PPNV

parameters gðout;4ÞV1
and γðout;4ÞV1

. As in the case of the cubic

Galileon PPNV parameter γðout;3ÞV1
, factors of H0 have been

included so that for values ofΛ such that the scalar field has
a role to play in late time cosmology, deviations of the value

γðout;4ÞV1
from unity are largely controlled by the value of ω.

C. Inside region

Now we consider the behavior of fields in the inside
region to Newtonian N ¼ 2 order. Applying the dualization
strategy as described above in Sec. III leads to

∇μφ ¼ α−1=34 ∇μB: ð56Þ

For reference recall that we have that α−1=34 is of PPNV
order

α−1=34 ∼OPPNV

�
4

3
; 1

�
; ð57Þ

while B has PPN order 2=3.
The dualized field equations are displayed in the

Appendix A 2, and under (56), the N ¼ 2 order Einstein
equations (A4) turn into

−
1

2
∇⃗2h00 ¼ 4πGρ −

1

2α1=34

∇⃗2B ð58Þ

and

∇⃗k∇⃗ðihkjÞ −
1

2
∇⃗2hij þ

1

2
∇⃗i∇⃗jðh00 − hÞ

¼ 4πGργij þ
1

α1=34

�
∇⃗i∇⃗jBþ 1

2
∇⃗2Bγij

�
: ð59Þ

Imposing the gauge-fixing condition,

∇⃗khki ¼ ∇⃗i

�
1

2
h −

1

2
h00 þ α−1=34 B

�
; ð60Þ

brings (59) into

−
1

2
∇⃗2hij ¼

�
4πGρþ 1

2α1=34

∇⃗2B

�
γij; ð61Þ

thus the formal metric solution is

h00 ¼ 2GU þ α−1=34 B ð62Þ

hij ¼ ð2GU − α−1=34 BÞγij: ð63Þ
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Note that although the gauge-fixing condition (60) is the
same as (41), matching the inside to the outside solutions is
impossible as any solution is inherently nonperturbative at
the Vainshtein radius rV . In order to determine Bwe use the
scalar equation (A9) which to this order is

ð∇⃗2BÞ3−3Bi
jBj

i∇⃗2Bþ2Bi
jBj

kBk
iþ8α−1=34 ð3þ2ωÞ∇⃗2B

¼−64πGρ: ð64Þ

Now we make the following ansatz for our fields:

Bð2=3Þ ¼
X∞
V¼0

Bð2=3;VÞ ð65Þ

and determine the solutions order-by-order in V.

1. N = 2, V = 0

The leading order contribution from B is Bð2=3;0Þ so that
owing to the α−1=34 term in (62) and (63) it drops out, and
the metric solution to this order is exactly as in GR. That is,
to order (2,0) the metric components are h00 ¼ 2GU and
hij ¼ 2GUγij. This is an explicit realization of the
Vainshtein mechanism which is found to be active in this
theory, just as in the case of the cubic Galileon.

2. N = 2, V = 1

To determine the next order contribution to (62) and (63)
it suffices to determine Bð2=3;0Þ using the scalar field
equation (64) to this order. We let, for notational compact-

ness, Bð2=3;0Þ ≡ −2ð2GÞ1=3Uðin;4Þ
V1

so that introducing the

matrix notation B ↔ ∇⃗i∇⃗jU
ðin;4Þ
V1

the scalar field equation
takes the form

ðTrBÞ3 − 3TrðB2ÞðTrBÞ þ 2TrðB3Þ ¼ 4πρ: ð66Þ

We see then that as in the case of the cubic Galileon, the
leading contribution to the scalar field equation is a
nonlinear partial differential equation.
To the best of our knowledge, just like in the case of the

cubic Galileon, it is impossible to write Uðin;4Þ
V1

in integral
form, except in the case of spherical symmetry which we
present further below. However, (66) may in principle be
solved numerically, or using perturbation techniques
around spherical symmetry. Assuming that we do have

Uðin;4Þ
V1

at hand from such procedures, the metric solution to
this order is

hð2;≤4=3Þ00 ¼ 2GU þ 2gðin;4ÞV1
G−1=3Uðin;4Þ

V1
ð67Þ

hð2;≤4=3Þij ¼ ð2GU þ 2γðin;4ÞV1
G−1=3Uðin;4Þ

V1
Þγij; ð68Þ

where

γðin;4ÞV1
¼ ð32π2Þ−1=3

�
Λ
Mp

�
2

ð69Þ

and gðin;4ÞV1
¼ −γðin;4ÞV1

are two PPNV parameters. Note that

since the potential Uðin;4Þ
V1

is different to Uðin;3Þ
V1

, these
parameters are distinct from the case of the cubic Galileon.

3. N = 2, V = 2

We may continue our iteration to determine the next
correction to h00, i.e., to Vainshteinian order V ¼ 2. This is
achieved by expanding the scalar equation (64) to order

V ¼ 1 using (65) and collecting terms. Setting Bð2=3;1Þ ≡
− 4ð3þ2ωÞ

3α2=3ð2GÞ1=3 U
ðin;4Þ
V2

and introducing the matrix notation

C ↔ ∇⃗i∇⃗jU
ðin;4Þ
V2

this leads to the linear equation,

½ðTrBÞ2 − ðTrB2Þ�TrC − 2ðTrBÞTrðBCÞ
þ 2TrðB2CÞ þ TrB ¼ 0; ð70Þ

where at this stage the solution for Uðin;4Þ
V1

is assumed as
determined by the previous step.
One may continue the iteration to higher Vainshteinian

orders as necessary, each time resulting to a linear equation
for the next order where the previous orders are used as
sources.

D. Spherical symmetry

The solutions found for contributions to the scalar field
and metric tensor in the outside region are rather compli-
cated whilst in the inside region we are faced with
equations that have no known general solution. To aid
intuition, we can restrict ourselves to spherical symmetry;
this will enable us to obtain some simple solutions for
quantities of interest. To this end, we will assume that the
matter source mass is a spherically symmetric mass M and
uniform density between r ¼ 0 and r ¼ r� (and zero for
r > r�). Firstly we consider the outside (unscreened)
region. Let us also note that exterior spherically symmetric
solutions inside the Vainshtein radius have been found
earlier in [44] while both interior and exterior solutions
inside and outside the Vainshtein radius have been deter-
mined in [45]. The purpose of this subsection is to firstly
serve as a consistency check with these known results and
also to extend them, as we discuss below, to include the
next Vainshteinian corrections not included in [45].

1. The outside region

We assume a spherically symmetric source of mass M
and radius r� so that

ρðrÞ ¼ 3M
4πr3�

Θðr� − rÞ; ð71Þ
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where ΘðxÞ is the Heaviside step function (ΘðxÞ ¼ 1 for
x ≥ 0, and ΘðxÞ ¼ 0 for x < 0).
We then abbreviate the matrix Ui

j in (52) as U ¼
½Urr − 1

r Ur�r̂ ⊗ r̂þ 1
r UrI where Ur ≡ dU=dr, the vector

r̂ ↔ ∇⃗ir is unit, and I ↔ δij is the unit matrix. Meanwhile,
the Newtonian potential is given by

U ¼ Mð3r2� − r2Þ
2r3�

Θðr� − rÞ þM
r
Θðr − r�Þ ð72Þ

so that (52) evaluates to

Uðout;4Þ
V1

≡4πM3

7

�
7r2−9r2�

r9�
Θðr�−rÞ− 2

r7
Θðr�−rÞ

�
: ð73Þ

From this point onwards let us consider only the
exterior solution to the source, i.e., r > r� as is appropriate
for most physical systems of interest. In that case, the
metric solution is

h00¼
2GCM

r

�
1−

1

14ð8πÞ2ð2þωÞð3þ2ωÞ3ϕ4
0

r6V
r6

�
ð74Þ

hij ¼
2GCM

r

�
1þ 1

14ð8πÞ2ð2þ ωÞð3þ 2ωÞ3ϕ4
0

r6V
r6

�
γij:

ð75Þ

It is instructive to compare the size of the leading
Vainshteinian contribution to the metric potentials
above, at the Vainshtein radius rV ; their comparative effect
will only decrease at larger radii. It is found that at rV , the
ratio of first and second terms in (74) is of the order

1=ððϕðoutÞ
0 Þ4ð3þ 2ωÞ3ð1þ ωÞÞ [where we have assumed

that Λ2 ¼ OððMpH2
0Þ2=3Þ�. If it is the case that cosmologi-

cally the theory (33) is essentially that of Brans-Dicke
theory (i.e., the influence of nonlinear terms in the action
have negligible effect) then we may use cosmological
constraints on that theory restrict ω≳ 1000 [43] and so
the force at rV due to first and second terms (74) is of order
ω−4 ∼ 10−12, with this ratio only decreasing for r > rV.
Therefore the modification to Newtonian gravity in the
outside region is small.

2. The inside region

In spherical symmetry, the Eq. (66) simplifies signifi-
cantly, taking the nonlinear ODE form,

6

r2

�
d
dr

Uðin;4Þ
V1

�
2
�
d2

dr2
Uðin;4Þ

V1

�
¼ 4πρðrÞ: ð76Þ

We assume a spherically symmetric source of mass M
and radius r� so that

ρðrÞ ¼ 3M
4πr3�

Θðr� − rÞ; ð77Þ

where ΘðxÞ is the Heaviside step function (ΘðxÞ ¼ 1 for
x ≥ 0, andΘðxÞ ¼ 0 for x < 0). Hence we can write (76) as

d
dr

��
d
dr

Uðin;4Þ
V1

�
3
�
¼ 3Mr2

2r3�
Θðr� − rÞ: ð78Þ

Integrating twice leads to

Uðin;4Þ
V1

¼ M1=3

21=3

�
−
3

2
r� þ

r2

2r�

�
Θðr� − rÞ

þM1=3

21=3

�
r −

r�
2

�
Θðr − r�Þ; ð79Þ

where the meaning of the chosen integration constant is
clarified further below.
Interestingly, for interior solutions, i.e., r < r� we find

that Uðin;4Þ
V1

∝ ð3r2� − r2Þ which is of the same r dependence
as the interior solution for UðrÞ. More specifically, the
solution inside the source is

hð2;≤4=3Þ00

			
r<r�

¼ 2GUðinter;4Þ
V1

ð80Þ

hð2;≤4=3Þij

			
r<r�

¼ 2γðinter;4ÞV1
GUðinter;4Þ

V1
γij; ð81Þ

where the interior potential

Uðinter;4Þ
V1

¼ 3Meff

2r�
−
Meff

2r3�
r2 ð82Þ

is identical to the one in GR but with the mass renormalized
to Meff ¼ M½1þ 4π2=3ðr�=rVÞ2�. The arbitrary integration
constant in (79) was chosen so that this identification was
possible. However, even more interestingly, the PPN γ
parameter for this solution is not unity as it should have
been for GR, but rather it is

γðinter;4ÞV1
¼

1 − 4π2=3 r2�
r2V

1þ 4π2=3 r2�
r2V

ð83Þ

so that the presence of the Galileon inside the source breaks
the Vainshtein mechanism and introduces an effective γ
parameter. This is of academic interest only, of course, as
for usual cases of interest rV ≫ r� so that these corrections
are tiny and the spacetime inside the source can be taken to
be identical to the one in GR.
Turning now to exterior solutions, i.e., r > r� we find

that the metric solution is
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hð2;≤4=3Þ00 jr>r� ¼ 2GM

�
1

r
þ 4π2=3

1

r2V
ð2r� − rÞ

�
ð84Þ

hð2;≤4=3Þij jr>r� ¼ 2GM

�
1

r
− 4π2=3

1

r2V
ð2r� − rÞ

�
γij: ð85Þ

Thus we see that in the inside Vainshtein region in spherical
symmetry at Newtonian order there is a correction to the
Newtonian potential that is proportional to the coordinate r.
As such, the theory produces an additional, constant force
exterior to a spherically symmetric body.
The presence of the constant part in the above solutions

is an artifact of having chosen the arbitrary integration
constant in (79) in order to obtain the specific form for the
interior solution (80) and (81). Had we chosen it such that

Uðin;4Þ
V1

→ 0 as r → 0 then the constant in the above solution
would not be there. Naturally, such a constant does not have
any physical significance.
Although the extra force produced by the correction to

the Newtonian potential in the inside region is very small,
by looking at systems like binary pulsars with observations
integrated over a long period of time, this effect may still be
observable [46–49].
For the sake of completeness, let us calculate the next

Vainshteinian correction to the above solutions in the case
of spherical symmetry. Adapting (70) to spherical sym-
metry gives

Uðin;4Þ
V2

¼ −
1

2

Z
r2

dUðin;4Þ
V1

=dr
dr: ð86Þ

Plugging in the determined solutions for Uðin;4Þ
V1

and
integrating gives

Uðin;4Þ
V2

∝ r2 for r ≤ r� ð87Þ
Uðin;4Þ

V2
∝ r3 for r ≥ r�: ð88Þ

Interestingly, the interior solutions do not acquire any
further powers of r but retain their form (80) with the
constants appearing in the solution appropriately renor-
malized while the next correction to the exterior solution
goes as r3 rather as r2.

V. QUINTIC GALILEON

Finally we discuss the case of the quintic Galileon. The
action for this theory is

S̃5½g̃; χ� ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

16πG
R̃þ c0X̃

−
1

Λ9
X̃½ð□̃χÞ3 − 3□̃χ∇̃μ∇̃νχ∇̃μ∇̃νχ

þ 2∇̃μ∇̃νχ∇̃ν∇̃αχ∇̃α∇̃μχ − 3X̃G̃μν∇̃μ∇̃νχ�
�

þ SM½g�: ð89Þ

As in the case of the cubic Galileon and quartic Galileon
theories, it is useful to write the theory in terms of fields gμν
and ϕ. This can be done, yielding, up to boundary terms,
the following action:

S5½g;ϕ� ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕRþ 2ω

ϕ
Y þ α5

16ϕ7
Y½ð□ϕÞ3 − 3□ϕϕμνϕ

μν þ 2ϕμνϕ
ναϕμ

α − 3YGμνϕμν�

þ 9α5
16ϕ8

Y2

�
ð□ϕÞ2 − ϕμνϕ

μν þ 1

3
YR

�
þ 63

16

α5
ϕ9

Y3
□ϕþ 39

4

α5
ϕ10

Y4

�
þ SM½g�; ð90Þ

where Y and ω are defined as in (13) and (12) respectively
and α5 ≡M3

P=Λ9. Interestingly, the kinetic terms in (90) are
not just those of the quintic Galileon (with respect to ϕ and
Y) but also contain a cubic and a quartic Galileon term and a
“K-essence” term proportional to Y4. The field equations of
motion following from (33) are shown in Appendix B.

A. PPNV formalism for quintic Galileon

In this part we detail the application of the PPNV
formalism to the case of the quintic Galileon. As in the
case ofα3 andα4 for the cubicGalileon and quartic Galileon,
it is important to assign a PPNVorder to the dimensionful
constant α5 that appears in the quintic Galileon action (90).
The schematic form of the action for the quintic Galileon for
perturbations around a Minkowski space background, is as
follows:

S ∼
Z

d4x

�
M2

P

ffiffiffiffiffiffi
−g̃

p
R − ð∂χÞ2 þ ∂8χ5

Λ9

þMPh
∂8χ3

Λ6
þ hμνTμν þ χ

Mp
T

�
ð91Þ

so that for this theory m ¼ 8 and n ¼ 5 giving k ¼ 9=4
and s ¼ 1=3. Thus, once again the Vainshtein radius is
rV ¼ 1

Λ ð M
MP

Þ13. Given that α5 ¼ M3
P=Λ9 then we have

α5 ¼
r9V

64π3r3S
∼OPPNVð−6;−4Þ ð92Þ

according to our order assigning prescription.
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B. Nonexistence of Vainshtein mechanism to
order N = 2

Firstly we consider fields in an outside region. We
proceed in a similar way to as in the quartic Galileon case
and so assign the same PPNV orders to matter quantities
and make the same ansatz for scalar field ϕ and metric
tensor perturbation hμν as (16), (36), (37) and (38). To
Newtonian order the scalar field equation (B9) takes the
form

−ð2ωþ 3Þ∇⃗2
φ ¼ 8πG

ϕ0

ρþ α5
16

1

ϕ3
0

½ðTrMÞ4 þ 3ðTrM2Þ2

− 6ðTrMÞ2TrðM2Þ þ 8ðTrMÞTrðM3Þ
− 6TrðM4Þ�; ð93Þ

where we introduced the matrix M ↔ ϕi
j.

Equation (93) looks rather similar in structure to (50) in
the case of the quartic Galileon wherein there φð2;−4Þ in the
outside region was sourced by nonlinear terms in φð2;0Þ.
However, there is an important difference: the term in
square brackets in (93) is identically zero. This may be
understood as follows: the matrixM is a pullback to spatial
components of the 4 × 4 matrix ϕμν, and the term is
proportional to detðϕμνÞ; to this PPNVorder, only ij terms
contribute and so ϕμν has vanishing determinant. Thus, the
scalar field equation (93) is as in Brans-Dicke theory, and a
straight forward inspection of the Einstein equations (93)
shows that to Newtonian order they are also as in
Brans-Dicke.
Thus to Newtonian order there is no Vainshtein mecha-

nism; the canonical kinetic term will entirely determine the
behavior of ϕ to order N ¼ 2. We note that this result has
already been noted in [45] which shows consistency with
our method. In going beyond [45], we discuss below what
happens when we consider post-Newtonian corrections to
higher orders in N.

C. Effects to post-Newtonian order

It is natural to then wonder whether going to post-
Newtonian order N ¼ 4 reveals nonlinear behavior for
φPN ≡ φð4;VÞ that was simply not there at Newtonian order.
This may happen if to N ¼ 4, the scalar field equation
possesses solutions describing an “inside” region where the
dominant term is nonlinear in φPN . Indeed, to order N ¼ 4,
the quartic Galileon term present in the scalar equation does
contribute. In that case, there will be new Vainshteinian
potentials appearing to order N ¼ 4, and these will be
different on each side of the Vainshtein radius. However,
the effects of these potentials, being of higher order, will be
to introduce PN corrections to Brans-Dicke theory, rather
than to GR, and the Vainshtein mechanism is inadequate for
restoring GR around massive sources.

VI. DISCUSSION AND CONCLUSIONS

In this paper we extended the work done in [33] by
applying the parametrized post-Newtonian-Vainshteinian
formalism to the quartic and quintic Galileon theories. The
PPNV formalism is an extension to the PPN formalism
adapted to theories with an extra scale, within which
nonlinearities become important. In the case of the
Galileon theories in question this scale is the Vainshtein
radius. The Vainshtein radius acts as the boundary between
the inside and outside regions, each of which needs to be
expanded independently in PPNV orders. The inside
region, is generally characterized by Vainshtein screening
where nonlinear kinetic terms predominantly determine the
behavior of the scalar field. The outside region, on the other
hand, has dynamics for the scalar field dominated by the
linear kinetic terms and the behavior of the theory is
approximately that of Brans-Dicke theory.
The PPNV formalism was constructed as a tool to

facilitate constraining modified gravity theories (with extra
scales) with Solar System and other strong field data. In
particular such constraints would be especially significant
as they would be independent from cosmological con-
straints. Each theory to which one applies the PPNV
formalism will produce a different set of potentials with
corresponding coefficients. Identifying the form of these
potentials and their coefficients, for a given theory, will
therefore be the key to constrain it with available data and
possibly may help direct the design of new experiments.
In this work we focused on applying the PPNV formal-

ism to the quartic and quintic Galileon. In both cases we
expanded both the inside and outside regions in PPNV
orders. For the quartic Galileon we also explicitly found the
solution, up to PPNV order ð2;−3Þ outside and (2, 2)
inside, in spherical symmetry. We confirmed previous
works [44,45] that in the inside region there is a correction
to the Newtonian potential proportional to rwhile we found
that the next correction comes to order r3. This correction
would produce an approximately constant force outside a
massive body, that may be observed. The extra force
produced by this extra correction is very small; however,
by looking at systems like binary pulsars with observations
integrated over a long period of time, this effect may still be
within the reach of observation. Furthermore, it has been
argued that certain Galileon models might produce observ-
able effects in other “strong-gravity” systems [44,50].
The quintic Galileon case, however displayed an inter-

esting feature. To Newtonian order we found that there is no
Vainshtein mechanism, and therefore the fifth force pro-
duced by the kinetic term of ϕ will not be screened. This
implies that to this order the constraints on the quintic
Galileon theory (90) on scales such as those of the Solar
System will be on the Brans-Dicke limit of the theory.
One issue that may arise, is whether the inside and

outside solutions can be matched, producing an approxi-
mate solution across the Vainshtein radius. Unfortunately,
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this is not possible. If one tries to impose the matching
conditions for the metric and its extrinsic curvature at
r ¼ rV , one finds that no consistent matching can be found.
This is to be expected as the Vainshtein radius is a place of
inherently nonperturbative behavior. Fortunately, this does
not impose an obstacle. One can use the solutions on either
side to impose bounds on the parameters of the theory, and
this may be achievable by considering specific physical
systems which reside on each side.
The formalism developed here can be used in the case of

other theories which exhibit kinetic screening, for instance,
theories related to modified Newtonian dynamics [51,52]
and their relativistic counterparts [53–56] by appropriately
extending the formalism in [57]. It can also serve as a guide
on how to design experimental efforts for probing gravity in
the Solar System or in the regime of binary pulsars; see
[58]. All such “strong-field” systems will tend to push the
Vainshtein radius rV to larger values. On the cosmological
side, cosmological constraints may place upper bounds on
scales such as rV [59], thus, pushing rV to smaller values. If
the two types of constraints become incompatible, then the
theory is ruled out completely, unless rV is so small, that
even the Solar System lies in the outside Vainshtein region,
in which case constraints on Brans-Dicke theories apply.
Indeed, if the quartic Galileon is not to play a role of
dark energy, although this has less immediate motivation,

pushing rV to smaller values could evade gravitational
wave constraints [29–32], and in such case, “strong-field”
systems will have an important role to play. Therefore, by
combining both types of constraints there is the potential to
create a zone of observational exclusion for such models.
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APPENDIX A: FIELD EQUATIONS FOR THE
QUARTIC GALILEON

We introduce the short hand notation ϕμ ≡∇μϕ, ϕμν ¼∇μ∇νϕ and similarly for Y. We display the ordinary field
equations in the usual sense as well as the dual field
equations for which the dual field B such that ∇μB ¼
α1=34 ∇μϕ is introduced (and Bμ ¼ ∇μB is to be understood).

1. Ordinary field equations

The Einstein equations take the form

ϕð1þ σQY2ÞRμ
ν ¼ 8πG

�
Tμ

ν −
1

2
Tδμν

�
þ ω

ϕ
ϕμϕν þ

1

2
□ϕδμν þ ϕμ

ν þ σQ½Ã1ϕ
μϕν þ Ã2δ

μ
ν þ Ã3Wμ

ν

þ Ã4ϕ
μ
ν þ 2ϕðYμYν − Lμ

νÞ − 2ϕYðFμ
ν þ Nμ

ν þQμ
νÞ�; ðA1Þ

where

σQ ¼ M2
p

16Λ6ϕ6
¼ α4

16ϕ6
ðA2Þ

and where for the ease of avoiding long expressions we have defined the following:

Iϕ ¼ Yαϕ
α IY ¼ YαYα

Zϕ ¼ IY þ□ϕIϕ Vϕ ¼ Y□ϕ − Iϕ

Lμ ¼ Yρϕ
ρ
μ Lμ

ν ¼ Lμϕν þ ϕμLν

Qμν ¼ Rμανβϕ
αϕβ Qα ¼ Rαβϕ

β

Q ¼ Qαϕ
α Wμ

ν ¼ Yμϕν þ ϕμYν

Nμ
ν ¼ Qμϕν þ ϕμQν Fμν ¼ ϕρ

μϕρν

F ¼ Fμ
μ Jϕ ¼ ð□ϕÞ2 − F

Uϕ ¼ ð□ϕÞ3 − 3ϕα
βϕ

β
α□ϕþ 2ϕα

βϕ
β
γϕ

γ
α ¼ □ϕ½ð□ϕÞ2 − 3F� þ 2Fμ

νϕ
ν
μ

Ã1 ¼ RϕY þ ϕJϕ − 15Y□ϕþ 63

2

1

ϕ
Y2 Ã2 ¼ RϕY2 þ ϕYðJϕ þQÞ − 9

ϕ
Y3 −

15

2
Y2

□ϕ − ϕ□ϕIϕ − ϕIY

Ã3 ¼ −15Y þ 2ϕ□ϕ Ã4 ¼ 2ϕY□ϕþ 2ϕIϕ þ 15Y2:
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The scalar field equation for this theory takes the form

2ω

�
□ϕþ Y

ϕ

�
þ ϕRþ σQ

�
315

Y3

ϕ
þ 126YIϕ − 117Y2

□ϕþ 30ϕðYQ − ZϕÞ

þ 15Y2ϕRþ 2ϕ2½Uϕ − 4YμQμ þ RIϕ − 2□ϕQþ 2Qμνϕ
μν − 2GμνϕμνY�g ¼ 0: ðA3Þ

2. Dual field equations

Defining β ¼ BμBμ and

Ĩϕ ¼ ỸμBμ ¼ α2Iϕ ĨY ¼ ỸμỸμ ¼ α8=3IY

Z̃ϕ ¼ ĨY þ□BĨϕ ¼ α8=3Zϕ Ṽϕ ¼ −
1

2
β□B − Ĩϕ ¼ α2Vϕ

L̃μ ¼ ỸρBρ
μ ¼ α2Lμ L̃μν ¼ 2L̃ðμBνÞ ¼ α8=3Lμν

Q̃μν ¼ RμανβBαBβ ¼ α4=3Qμν Q̃μ ¼ RμνBν ¼ α2=3Qμ

Q̃ ¼ Q̃μBν ¼ α4=3Q W̃μν ¼ 2ỸðμBνÞ ¼ α2Wμν

Ñμν ¼ 2BðμQ̃νÞ ¼ α4=3Nμν F̃μν ¼ BρðμBρ
νÞ ¼ α4=3Fμν

F̃ ¼ F̃μ
μ ¼ α4=3F J̃ϕ ¼ ð□BÞ2 − F̃ ¼ α4=3Jϕ Ỹμ ¼ −BνBμν ¼ α4=3Yμ

Ũϕ ¼ ð□BÞ3 − 3□BBμνBμν þ 2BμνBνρBρ
μ ¼ α2Uϕ;

the dualized Einstein equations are

ϕ

�
1þ 1

64α2=3
β2

ϕ6

�
Rμ

ν ¼ 8πG

�
Tμ

ν −
1

2
Tδμν

�
þ ω

α4=3
1

ϕ
BμBν þ

1

α2=3

�
Bμ

ν þ
1

2
□Bδμν

�
þ 1

16ϕ6

�
Â1BμBν

þ Â2δ
μ
ν þ Â3W̃μ

ν þ Â4Bμ
ν þ

1

α2=3
ϕ½2ỸμỸν − 2L̃μ

ν þ βðF̃μ
ν þ Ñμ

ν þ Q̃μ
νÞ�

�
; ðA4Þ

where

Â1 ¼
1

α2=3

�
ϕJ̃ϕ −

1

2
βϕRþ 15

2α2=3
β□Bþ 63

8α4=3
β2

ϕ

�
¼ α2=3Ã1 ðA5Þ

Â2 ¼
1

α2=3

�
9

8α4=3
β3

ϕ
− ϕĨY −

15

8α2=3
β2□B − ϕĨϕ□B −

1

2
ϕβðJ̃ϕ þ Q̃Þ þ 1

4
β2ϕR

�
¼ α2Ã2 ðA6Þ

Â3 ¼
1

α2=3

�
2ϕ□Bþ 15

2α2=3
β

�
¼ Ã3 ðA7Þ

Â4 ¼
1

α2=3

�
−βϕ□Bþ 2ϕĨϕ þ

15

4α2=3
β2
�
¼ α4=3Ã4; ðA8Þ

and the dual scalar field equation is

ϕRþ 1

8ϕ4
½Ũϕ − 4ỸμQ̃μ þ RĨϕ − 2Q̃□Bþ 2Q̃μνBμν þ βGμνBμν� þ

2ω

α2=3

�
□B −

1

2α2=3
β

ϕ

�

þ 1

16α2=3
1

ϕ6

�
15

4
β2ϕR − 15ϕðβQ̃þ 2Z̃ϕÞ −

63

α2=3
βĨϕ −

117

4α2=3
β2□B −

315

8α4=3
β3

ϕ

�
¼ 0: ðA9Þ
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APPENDIX B: FIELD EQUATIONS FOR THE QUINTIC GALILEON

The Einstein equations are

ϕ

�
1− 36σð5Þ

Y3

ϕ2

�
Rμ

ν ¼ 8πG

�
Tμ

ν −
1

2
Tδμν

�
þω

ϕ
ϕμϕν þ ϕμ

ν þ
1

2
□ϕδμν

þ σð5Þ
�
B̃1δ

μ
ν þ B̃2ϕ

μϕν þ B̃3ϕ
μ
ν þ B̃4Wμ

ν þ 6Y

�
4
Y
ϕ
−□ϕ

�
ðNμ

ν þQμ
νÞ

þ 6

�
□ϕ−

Y
ϕ

�
ðYμYν − Lμ

νÞ þ 6ðCμϕν þ ϕμCνÞ − 6ðYμLν þ LμYνÞ

− 6

�
10

Y2

ϕ
þ 2Y□ϕþ Iϕ

�
Fμ

ν þ 6Y½Fμ
αϕ

α
ν þ ϕμ

αFα
ν − Sμν − Rμ

ανβWαβ − YρRμ
ρϕν − YρϕμRρν

þ IϕRμ
ν −QμYν − YμQν þQμ

ρϕ
ρ
ν þ ϕμ

ρQρ
ν þQρϕ

ρμϕν þQρϕ
ρ
νϕ

μ�
�
; ðB1Þ

where

σð5Þ ¼ α5
32

1

ϕ7
; ðB2Þ

and where for the ease of avoiding long expressions we have defined the following:

Sμ ¼ ϕαβϕρRρ
αβμ Sμν ¼ Sμϕν þ ϕμSν ðB3Þ

Cμ ¼ Lβϕ
β
μ IL ¼ YμLμ ðB4Þ

and

B̃1 ¼ −12
Y3

ϕ
R − 3YIϕR − 6Y2Gα

βϕ
β
α − 24

Y2

ϕ
Jϕ þ 24

Y
ϕ
□ϕIϕ þ 36

Y4

ϕ3
þ 21

Y3

ϕ2
□ϕ − 39

Y
ϕ
IY − 12

Y2

ϕ
Q

− 6IY□ϕþ 6Yð2YαQα þ□ϕQÞ þ 6YSμϕμ − 3IϕJϕ þ 6IL ðB5Þ

B̃2 ¼ 69
Y2

ϕ2
□ϕ − 78

Y3

ϕ3
− 24

Y
ϕ
Jϕ − 12

Y2

ϕ
R − 6YGα

βϕ
β
α þUϕ ðB6Þ

B̃3 ¼ 6

�
10

Y2

ϕ
□ϕ − 8

Y
ϕ
Iϕ − 16

Y3

ϕ2
þ YJϕ − YQþ Zϕ

�
ðB7Þ

B̃4 ¼ 3

�
23

Y2

ϕ2
þ YR − 16

Y
ϕ
□ϕþ Jϕ

�
: ðB8Þ

The scalar field equation takes the form,

ð2ωþ 3Þ□ϕ ¼ 8πGT þ σð5Þ
�
540

Y4

ϕ3
− 450

Y3

ϕ2
□ϕþ 330

Y2

ϕ2
Iϕ þ 114

Y2

ϕ
Q − 102

Y
ϕ
IY þ 138

Y2

ϕ
Jϕ − 228

Y
ϕ
□ϕIϕ

þ 96IY□ϕþ 48IϕJϕ − 96IL þ 6Y

�
ϕJϕ þ 8Iϕ þ 14

Y2

ϕ

�
R − 12YUϕ þ 6ϕJϕQ

− 96Yð2QμYμ −Qμνϕ
μν þ□ϕQÞ − 12ϕQμð2Lμ − 2□ϕYμ þ YQμÞ

− 12Gμν½ϕð2YFμν þ YQμν − 2Y□ϕϕμν − YμYν − IϕϕμνÞ − 11Y2ϕμν�
− 6ϕ½4Rαμβνϕ

μνϕαYβ þ 2YRαμβνϕ
μνϕαβ − YRμραβRνραβϕμϕν þ 2Qμνð□ϕϕμν − FμνÞ�

− 2ϕ½ð□ϕÞ4 − 6ð□ϕÞ2F þ 3F2 þ 8□ϕFμνϕμν − 6FμνFμν�g: ðB9Þ
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