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Recently, an extension to the parametrized post-Newtonian (PPN) formalism has been proposed. This
formalism, the parametrized post-Newtonian-Vainshteinian (PPNV) formalism, is well suited to theories
which exhibit Vainshtein screening of scalar fields. In this paper we apply the PPNV formalism to the
quartic and quintic Galileon theories for the first time. As simple generalizations of standard scalar-tensor
field theories they are important guides for the generalization of parametrized approaches to the effects of
gravity beyond general relativity. In the quartic case, we find new PPNV potentials for both screened and
unscreened regions of spacetime, showing that in principle these theories can be tested. In the quintic case
we show that Vainshtein screening does not occur to Newtonian order, meaning that the theory behaves as
Brans-Dicke to this order, and we discuss possible higher order effects.
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I. INTRODUCTION

Due to its dramatic success in explaining observations
ranging from tabletop tests of the gravitational force to
strong-gravity environments such as systems of merging
black holes, general relativity remains the preferred theory
of gravity. Its success on astrophysical and cosmological
scales is perhaps less clear however; here there is consid-
erable evidence for a dark sector in the Universe, comprised
of dark matter and dark energy. Though the dark matter
may represent new particle physics and the dark energy
may be a cosmological constant, it is conceivable that the
evidence for either or both arises from a modification to
gravity.

The question that arises then is how to discriminate
between modified theories of gravity and general relativity.
There are a great number of alternative gravitational
theories which could be tested, so many in fact that it
would be inefficient to test each one separately. A more
effective approach is to construct parametrized frameworks
which can be applied to certain gravitational systems. From
the theoretical side, one can deduce values of the frame-
work’s parameters that given theories predict; then, from
the experimental side, data from these gravitational systems
can be used to put constraints on these parameters. In this
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manner, whole sets of theories can be constrained and even
excluded.

Early examples of such parametrized frameworks
became eventually known as the parametrized post-
Newtonian (henceforth PPN) framework [1-3]. As the
name suggests, this formalism parametrizes the gravita-
tional field beyond the limit of Newtonian gravity.
Specifically, it is assumed that the gravitational field is
described—at least in part—by a metric tensor and that
throughout a system such as the Solar System, the metric
tensor can be described as a slightly perturbed Minkowski
spacetime. These perturbations are parametrized in terms of
a set of potentials (the PPN potentials), each of which are
expressible as spatial integrals over components of the
matter stress energy tensor. Crucially, it is then possible to
relate constant coefficients multiplying these potentials to
important observables in the Solar System. Data from lunar
laser ranging and the motion of bodies within the solar
system have significantly constrained many of these con-
stants and in doing so have severely constrained a number
of alternatives to general relativity [3]. Other parametrized
frameworks have been developed over the years [4-22],
adapted to various systems of interest from the strong-field
to cosmology.

If we take the stress energy of matter to be that due to
visible matter in the Solar System, it is clear that the PPN
formalism will be limited if the theory of gravity is such
that the spacetime metric cannot be expressed in terms of
the regular PPN potentials (see e.g., those listed in box 2
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of [3]). This can indeed occur and happens typically in
modified theories of gravity that introduce additional scales
into gravitational physics. A simple example is that of a
scalar field of mass m coupled to matter in a manner that
gives [23] a Yukawa-type ‘e™™"/r’ contribution to the
gravitational field that test particles feel; this contribution is
not covered by the regular PPN potentials, although for
small enough m a perturbative approach in terms of these
potentials can give sufficient accuracy [23,24].

A particularly interesting family of scalar-tensor gravi-
tational theories are the Galileon theories [25], which
introduce a scalar field y into the gravitational sector.
These theories are a special subset of Horndeski scalar-
tensor theories that possess field equations with no higher
than second-order time derivatives and an emergent Galilean
symmetry of the Lagrangian—up to total derivatives—
under the transformation 0,y — 0,y + v, in Minkowski
spacetime. These theories have attracted much attention as a
potential candidate for dynamical dark energy [26]. The
most general Galileon Lagrangian consists of five indepen-
dent terms: the first two are a term simply proportional to the
Galileon field y and a canonical kinetic term for y. The
remaining three terms are noncanonical kinetic terms for y,
respectively referred to as the cubic, quartic, and quintic
Galileon (named after the order at which y appears in their
Lagrangians e.g., the cubic Galileon is cubic in y).

For dimensional reasons, the noncanonical Galileon
kinetic terms involve dimensionful constants and hence
introduce a new scale into gravitation, an energy scale A.
For example, consider the case where the Galileon sector is
described by a canonical kinetic term alongside a cubic
Galileon piece. It is known that in static spherical symmetry
situations (and assuming conformal coupling to matter)
there is asymptotically a Brans-Dicke-type fifth force due
to the canonical kinetic term at very large distances from
the central gravitating matter source. Remarkably though,
as one moves to smaller radii, the nonlinear contribution of
the cubic Galileon term becomes more and more important.
At distances from the source much smaller than a certain
radius ry (a scale built from the mass M of the source, the
Planck mass, and the dimensionful coefficient of the cubic
Galileon term), the profile of the scalar field is dominated
by these nonlinear terms and leads to a dramatic suppres-
sion of the fifth-force relative to the Brans-Dicke form. The
scale ry is referred to as the Vainshtein radius, and the
suppression of the fifth-force is referred to as Vainshtein
screening. The existence of Vainshtein screening is impor-
tant for the phenomenological viability of these models: it
provides a simple way for the theory to have a relatively
dominant effect on late-time, large-scale cosmology whilst
having a sufficiently small effect on gravity in the Solar
System to have avoided exclusion by experiment.

Since the detection of the neutron star-neutron star
merger event GW170817 [27,28] and the resulting con-
straint on the gravitational wave speed the quartic and

quintic Galileon theories are no longer strong candidates
for explaining dark energy [29-32]. However, the scale A
may be made large enough so that such theories no longer
play the role of dark energy and the gravitational wave
constraints need not apply. As such, the results presented
here serve as an important guide in constraining theories
which deviate from general relativity (GR) in the infrared
(IR), using strong field data.

As in the case of Yukawa-type modifications to a scalar
field profile, the effect of Vainshtein screening is not
covered by the PPN potentials. It is necessary then to
modify the PPN formalism to introduce a parametrization of
fields that is sufficiently general to account for the presence
of Vainshtein screening. Such a proposal was put forth in
[33] and is termed the parameterized post-Newtonian
Vainshteinian formlism (henceforth PPNV). The authors
applied their formalism to the case where the Galileon sector
consisted of a scalar field with a canonical kinetic term
alongside a cubic Galileon term. There are important
benefits from the development of such a formalism:

(1) Gravitational physics in the Solar System, by and
large, lacks high symmetry in space and time, and
the field equations of general relativity are nonlinear.
The PPN formalism, as a perturbative formalism,
helps systematically break the full equations into
easier-to-solve sets of equations. This is similarly
true for the gravitational (including scalar field)
equations in the PPNV formalism.

(2) Asin the PPN formalism, the parametrized nature of
the PPNV formalism may point towards design of
experiments to most accurately probe the effects of
a field such as the Galileon; i.e., they should be
experiments that most directly constraint PPNV
coefficients.

(3) The Vainshtein screening mechanism and behavior
in the nonlinear regime are currently largely under-
stood in examples of high symmetry. The apparent
accuracy of the perturbative approach in a given, less
symmetrical situation may yield insight into the
distribution of screened and nonscreened regions
through spacetime.

The layout of the paper is as follows: In Sec. II we provide a
brief technical overview to the structure of PPN and PPNV
formalisms. In Sec. III we discuss the earlier application of
the PPNV formalism to the case of the cubic Galileon
theory. In Secs. IV and V we proceed to apply the PPNV
formalism to both quartic and quintic Galileon theories.
Finally in Sec. VI we discuss our results and present our
conclusions. Throughout the article we use units such that
the speed of light is unity.

II. PPN AND PPNV REVIEW

We now present a brief overview of the PPN and PPNV
formalisms. In the PPN formalism it is assumed that one of
the constituents of the gravitational field is a metric tensor
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g and that this tensor is approximately the metric tensor
N of Minkowski space plus a small correction A,,,

9w = N + h;w' (l)

Throughout we will use units where ¢ = 1. This metric
ansatz is valid as long as the time dependence of the
background metric and scalar field are sufficiently small
and as long as we are concerned with situations away from
compact objects, such as black holes, or concerned with
systems which have reached a type of quasistatic equilib-
rium. Though this is clearly not an accurate description of
our entire Universe, this ansatz describes the geometry
of the Solar System to a good approximation (34]." The
matter content is assumed to take the form of a fluid
(potentially with anisotropic stresses), and it is assumed
that the stress energy tensor of matter is covariantly con-
served with respect to the covariant derivative V , associated
with g,,. The velocity of matter v’ is observed to be typically

of order ~1073-107* in units where the speed of light is
unity, and this is taken to be the leading order of smallness in
the PPN expansion [i.e., the v’ are allocated PPN order
Oppn(1)]. By the allocation v’ ~ Oppy(1), then v’ ~
|d/dt|/|d/dx| and so time derivatives are taken to increase
the PPN order whilst spatial derivatives do not. Typical
Newtonian potentials are of order ~v? and so are allocated
PPN order Oppy (2), whilst typical matter densities—via the
assumed approximate validity of Poisson’s equation in the
Newtonian limit—are also of Oppx(2).

The full equations of the system are taken to be the
gravitational field equations (describing the dynamics of
9w as well as other gravitational fields that may exist such

as a scalar field ¢ = e=%/Mr in the case of scalar-tensor
theory) and matter field equations (that may be recovered
from equations of energy-momentum conservation).
Using the above order allocations, one can proceed to
perturbatively expand the full equations to order Oppy(2)
(Newtonian limit) and Oppn (> 2) (post-Newtonian correc-
tions). The PPN formalism has been applied to a wide
variety of theories such as Brans-Dicke theory [3] and the
Einstein-Aether theory [36].

Now we turn to the case of the Galileon theory. In the
simplest example of a Galileon with noncanonical kinetic
terms, it is known in the Vainshtein screening region that
there is a correction oy U to the Newtonian gravitational
potential due to a spherically symmetric source which goes
approximately as 6, U ~ U x (r/ry)*? [37], where U is
the canonical Newtonian potential. It is clear by inspection
of the form of the PPN potentials [3] that this correction
cannot be constructed from linear combinations of these

'Indeed, typically constraints have arisen on the Galileon
theories from cosmological data where time variation in the
“background” metric is important [35].

potentials. It is necessary then to extend the PPN formalism
to include potentials of which the above correction is an
example.

The formalism proposed in [33] is an example of such an
extension. The idea is to add an additional order in the
expansion of fields that quantifies the effect on fields due to
proximity to the boundary between regions with and without
Vainshtein screening. From the above example of the cubic
Galileon, one can imagine that in solving the full equations
that the contribution to the gravitational potential may go as
SyU ~U x ((r/ry)*? +O((r/ry)?) + ...). In this exam-
ple then it seems reasonable to assign a Vainshteinian order
V to terms which have a dependence (r/ry)?"/? and retain
the PPN order N for remaining dependencies. How do we
assign orders to the various quantities for a general theory?

Following [33], let us consider a general setting where
the theory in question contains an additional scalar field
with noncanonical kinetic terms in the action, leading to
Vainshtein-type effects. As in [33] we are also concerned
with theories leading to a single Vainshtein scale. Typically,
and assuming the scalar y has dimensions of mass, outside
the Vainshtein radius the scalar field solution will be
dictated by the canonical term to be y ~ (M /M p)r~! where
M is the mass of the source. Deep inside the Vainshtein
radius, the nonlinear interactions will switch on so that the
scalar equation schematically reads as

am)(n—l p
—L  _~— 2
Am+n—4 MP ( )

where p is the matter density and A is the strong-coupling
scale. Here m is an integer specifying the number of
derivatives and n another integer specifying how many
occurrences of y appear in the action for the term in
question. Thus this prescription leads to a Vainshtein scale
where classical perturbation theory breaks down given by
ryA~ (M/Mp)* where s = m’gf_ ;- In spherically symmet-
ric situations, to lowest Newtonian order deep inside the
Vainshtein radius, y will schematically take the form

GG

where rg is the Schwarzschild radius of the source and

_m+n—4

k= (4)

n—1
is a fraction fixed by the action of the theory under
consideration. In the case of the cubic Galileon, m = 4
and n = 3 so that k = 3/2.

As such—and using the notation Oppyy (N, V) to denote
a quantity of PPN order N and Vainshteinian order V—we
allocate the following PPNV orders to the contributions to
the Newtonian potential:
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FIG. 1. Schematic illustration for the cubic Galileon case of the
PPNV order in the scalar field ¢ that one should go to, to achieve
a certain standard of approximation to the results from solving the
full equations exterior to a black hole with Schwarzschild radius
rg and Vainshtein radius ry (see [38] for relevant cases). The
noncontinuity of the V Order curve either side of ry illustrates the
need for use of a dual formulation of the theory on the inside
regions.

U ~ Oppnv(2.0)
U x (r/rv)k ~ Oppry (2. 1)
U x (”/”V)Zk ~ Opprv (2.2). (5)

In general, we assign an PPN order N and Vainshteinian
order V to any operator in the theory under consideration
using the prescription,

Oppny (N, V) ~ rls\’/2r‘—/kv_ (6)

Figure 1 schematically illustrates in the case of the cubic
Galileon, how N and V orders of greater and greater
magnitude are expected to be necessary in describing, to
a set accuracy, the scalar field profile exterior to a black hole
type solution with Schwarzschild radius rg; it can be seen
that, as expected, greater and greater PPN orders N are
required to account for the fact that more and more orders are
needed to account for increasingly post-Newtonian behavior
as one approaches the event horizon. Close to the Vainshtein
screening barrier it can be seen that more and more V orders
arenecessary as r/ry — 1;the reason that the green steps are
not continuous on either side of the boundary is because
leading corrections outside the screened region go as
positive powers of (ry,/r)*/2. This is not to say that somehow
the “weak field limit” may no longer be applicable here but
that the presence of Vainshtein screening means that power-
law expansions in the orders (N,V) cannot cover both
screened and unscreened regions together.

The question of how to allocate a V order to a quantity
seems quite clear in spherical symmetry—as proximity to

the Vainshtein screening boundary is measured by r/ry, but
how does one do this when the geometry of the Vainshtein
screening boundary may be more complicated due to less-
symmetric mass distributions? By comparison to the PPN
formalism, it can be noted that in spherical symmetry the
Newtonian potential goes as rg/r—where rg is the
Schwarzschild radius of the source and the post-
Newtonian correction to this potential goes as (rg/r)?;
though the PPN expansion is not an expansion in rg, there
is a correspondence here between powers of rg appearing in
potentials and PPN order N. The approach of the PPNV
formalism is to preempt an extension of this in the
Vainshteinian case by assigning a PPNV order to the
dimensionful constant appearing in the noncanonical
kinetic term of the Galileon action. We will now attempt
to make this approach clearer by seeing its application in
the case of the cubic Galileon theory.

III. CUBIC GALILEON REVIEW

In this section we briefly discuss the cubic Galileon and
the application of the PPNV formalism to it. This case is
discussed in more detail in [33], and we review the authors’
results here. The cubic Galileon theory has one additional
parameter beyond the standard scalar-tensor theory,
namely, the scale A. It has the following action:

1

4o/ TGR
167G dx g

o f d4x\/—7§<c05(+%)~(ﬁ)(> + Suld, (7

S3[§,){] -

where for notational compactness the functional depend-
ence of the action on matter fields is not written and

- 1 ~ o~
X = —ng‘”vﬂ)(vb)( (8)

9w = ez)(/MPgﬂw (9)

where Mp = 1//8xG. Note that the action above is shift
symmetric in y. As discussed in Sec. II, it is a convention in
the PPN formalisms and some extensions thereof to work
with the metric that is minimally coupled to matter, that is,
g Therefore it is useful to write the action (7) entirely in
terms of g, and a scalar field, and it is useful to work with
the scalar field ¢p = e=%/Mr; then, (7) can be written, up to
a boundary term, as

1 2
Slo.¢) = 1= d4x¢:‘§[¢R +§Y —%%Dq&
+ Sulgl. (10)
where
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M
as EA_;’ (11)
® ECO4—_6 (12)

1
=—59"VupV.p. (13)

It can be shown that in the static, spherically symmetric
weak field limit [37], in the exterior a mass M there exists
screening for r < ry where oy is related to ry and the
mass’s Schwarzschild radius rg as

3
1y

a; (14)

477:7"5.

Given the discussion in Sec. I, this suggests that it can be
important to assign a PPNV order to the dimensionful
number aj. If (post-)Newtonian effects of order Oppy(N) in

spherical symmetry appear in the combination rg/ ? and

Vainshteinian effects appear in the combination r%,v/ 2,
Under our convention, it is clear that a3 gets assigned

the PPNV orders,

Oppny (@3) = (=2, -2). (15)

This is an important part of constructing frameworks
beyond PPN: whereas in PPN it was only necessary to
assign values to fields such as the metric—or the matter
density field—when there exist fixed, new scales in the
problem (as for the parameter a3), one can meaningfully
associate perturbative orders to these scales.

Given the action (10) one can then obtain the equations
of motion for matter and gravitational fields (here taken to
be g,, and ¢) and these may be found in [33]. As is
suggested by Fig. 1, care must be taken when expanding
fields in V order depending on whether one is within a
screened region or not—specifically that an expansion in
“opposite” powers of V is necessary in each region. It is
argued in [33] that in an unscreened (henceforth outside)
region, the appropriate expansion for ¢ is

oo —0o0

pow) = o {1 +) ) e, xi)] . (106)

N=2V=0

where gb(()om) corresponds to the value of the scalar field as
r — oo and is taken to have PPNV order (0, 0).
Performing the PPNV expansion in the inside region
necessitates the use of auxiliary fields which are dual to the
interaction terms determined by V ,¢. In the original PPNV
article [33], this was achieved via a Legendre transforma-
tion of the action using the dualization procedure of [39].
Dualizing the action leads to the absorption of powers
of the parameter a3 into the auxiliary fields, such that the
action becomes perturbative in inverse powers of ;.

The field equations for the auxiliary fields (denoted by
A, and Z in [33], dual to V,¢ and [Cl¢ respectively) were
obtained from the dual action, and those field equations
were subsequently expanded using the PPNV formalism.

The above procedure is fairly lengthy but fortunately it is
not necessary; one can obtain the desired field equations in
the inside region directly from the ones relevant to the
outside region without first dualizing the action. The trick is
to specify an auxiliary field B, related to ¢ by an
appropriate rescaling via a power of a3, a method essen-
tially identical to the one used in [40,41], although that
formalism also encompasses chameleon fields. To be more
precise, we define

Vb =alV,B (17)

for an unknown power p. This is then inserted into the
Galileon field equations, replacing all occurrences of V¢,
but leaving ¢-dependent terms without derivatives intact.
Following that, one chooses the power p such that there is
at least one term without any a3 (this is the leading order
term) while all other terms have powers of a3 with strictly
negative exponent. In this way, one can safely take the limit
a3z — oo which is the deep Vainshtein limit.

In the case of the cubic Galileon, p = —1/2, so that

V.= agl/ ZV”B and the covariant dual field equations
which contain both ¢ and B can be found in [33]. From (17)
we may then relate the two fields so that

¢ =1+a;'?B, (18)

which makes the choice of the normalization in (17) clear.
We have specifically normalized ¢™ such that it tends to
unity when all Vainshteinian corrections subside (e.g., as
r — 0 in the case of spherical symmetry), and this has the
outcome that the bare gravitational parameter G can be
identified with Newton’s constant. Notice that the constant

agl/ % is of order Oppny (1, 1) meaning that it increases both
the PPN order and the Vainshtein order of any terms
multiplying it by one.

The field B also has N and V orders; in the case of cubic
Galileon,

B= iZB<N~V)(t,xi), (19)

=1V=0

so that the leading order is B0,

The reason that one looks at an expansion in positive
powers of V in an inside region and negative powers of V in
an outside region is a reflection of our convention for what
V is by choice, the quantity a; has been allocated a negative
V order, and it is anticipated that a3 will appear in negative
powers in a perturbative expansion of ¢ ; thus terms will
have a non-negative V order. The opposite is true in an
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outside region, where a3 will appear in positive powers in a
perturbative expansion of ¢(°“Y and hence these terms will
have a negative V order.

It is expected that both of these perturbative expansions
will cease to work close to any boundary between inside
and outside regions. Indeed, in the absence of knowing the
distribution of such boundaries in space—given a certain
matter content in space—the breakdown of such an
expansion may be a sign of approach to a boundary
[e.g., if at some point within an outside region, ¢~
becomes as significant as ¢p20) etc.].

We now briefly summarize the results obtained for inside
and outside regions in the cubic Galileon case.

A. Outside region

It is found that up to N order 2 and V order —2 that
the scalar field perturbations ¢ and nonvanishing parts of

h,,, are

2G
(out) u
(34 2w)¢,

~ a3 ( Gc )2U§?“[’3> (20)
8(3 + 2w)p ™ \2+w/)

(p(Z,S\—ZI) =

— ou M 2 ou
hg=" = 26U + 295" <F§> GLUY™  (21)

2,<|-2 out,3 M out,3
h(J = 2}’GCU‘|’27§/ § ><H ) GLUY™ ):|}’ij,
0
(22)

where y;; is the metric of flat three-dimensional Euclidean
space in arbitrary coordinates and where first and second
terms for each field/field component are of (N, V) order
(2,0) and (2, —2) respectively and where the potentials U

and Ug?lmﬁ) are

p(x'.1)
U(x) = 77| d*x (23)

T_2N . (2_ ¥
Ui;)lut’g(x)E/d3x,d3xﬁﬂ(l‘,)—5/)p(1 X [()i x) - (% _jf|3)

|X = ¥P|x - *
,(X=X) - (¥ f”)]

2 23| 23
Ix NP -]

(24)

The constant G, is the “cosmological value” of the
gravitational strength, i.e., the one that could be measured
by cosmological probes. This value is not necessarily the
same as the locally measured value (which for these
theories will typically be determined by the specific form
of the metric in the inside region). For this particular theory
G is given by

(44+2w) G
(3 +20) o

Ge = (25)

which is identical to the case of Brans-Dicke theory. This
was expected as this cubic Galileon theory asymptotes to
Brans-Dicke far away from massive sources, as is relevant
to cosmological scales.

The constant parameter y is one of the standard PPN
parameters and for this particular theory is given by

14+ w
=—) 26
4 24w (26)

which is identical, once again, to the case of Brans-Dicke
theory.

The constant parameters gi/ and y‘f ") are new
parameters beyond the standard PPN They are PPNV
parameters which measure the strength of the contribution

of the Vainshteinian potential Uy, <°u %) to the metric. While
in general relativity and in Brans Dicke theory they are
exactly zero, in this particular cubic Galileon theory we
have that

(out3) _ 7 Mp H, ﬂHz 27
i =} {(Z—I—w)/\} (MP> 42 + w)? @ (27)

and g, ' = —yifm I Tt is immediately observed that as

a3 — 0 the theory asymptotes to Brans-Dicke, which could
have been expected by inspection of the action (10).
The constant H is taken to be the value of the Hubble

parameter today. Note that the parameter y&, ) is not the

same as the parameter yy from [33]. The number H,, is

incorporated into the definitions of g&fut #) and yifm #) 5o that

for values of A associated with the Galileon playing the role
of dark energy [where it takes values O((MpH3)'/3) [33]],

that the value of gifm}) and y&fut ) is of order 24 w)7.

What is a typical size for the parameter w? If it is the case
that cosmologically the theory (10) is essentially that of
Brans-Dicke theory [42] (i.e., the influence of nonlinear
terms in the action have negligible effect) then we may use
cosmological constraints on that theory restrict @ 2 1000

[43] and so {g (out.3), \2"{3 <1

The potentlals U and Ugf" ¥ involve spatial integrals.

The domain of integration for formal solutions to fields in
the outside regime is understood to encompass all space,
including inside and outside regions. Nonetheless, there
remains a technical challenge in determining the distribu-
tion of inside and outside regions: one could imagine that
the shape of these regions in general situations may be
rather complex. How to find where the boundaries are? A
possible strategy is to begin at a point in space where one
can be reasonably confident one is in an outside regime
(e.g., very far from matter sources). One can then compute
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physical effects of the scalar field to Oppny(2,—2) and
Oppnv (2, —4). If the Oppyy (2, —4) effects are subdominant
then one can have some confidence that one is in the
outside region and that the PPNV expansion is appropriate.
Then one can try to move to nearby points in space,
mapping out boundaries demarcated by extensions where
Oppnv(2,—4) terms would give comparable effects to
Oppny (2, —2)—this may indicate proximity to regions
where the perturbative expansion breaks down (and thus,
a transition to a screened region).

Finally, a word on notation is in order The “(out, 3)” in

Ui?luw) and also in 95/01 “%) and v, (out3) denotes that these

potentials and parameters are relevant to the outside
Vainshtein region and to the cubic Galileon theory. The
“1” denotes the fact that these are the first nonzero
correction coming from Vainshteinian effects. We use a
similar notation when we discuss the quartic Galileon.

ut

B. Inside region

For the inside regions, it is the nonlinear contribution to
the scalar field kinetic term that dominates the scalar field

equation. Given the ansatz (18) and (19) the leading order

term of the scalar equation gives an equation for Uy, (m 3 =

9/(2v/2G) as

VV UV UE - (VUSRI = —dap. (28)
Although it can be shown that higher orders in the
expansion (18) obey linear differential equations [33],
the equation for (28) is nonlinear, and there is no known
general solution. In spherical symmetry Eq. (28) can be
solved analytically, and it has been found in [33] that
solutions agree with those presented in [37].

Once the solution for Ug}?’3> is found, the Einstein

equations determine the solutions to the inside metric as [33]
hye= = 2GU +2¢y" U™ (29)

2,L2 in,3 in,3
hG= = 26U + 23 Uy, (30)

where for this particular theory

S _ 82G _ (A3 1)
" a; Mp
and gg}n 3 = y&}n 3) . Clearly, as a3 — oo the theory tends to

GR. The metric solution to O(4, 1) has been determined
in [41].
IV. QUARTIC GALILEON

We now discuss the case of the quartic Galileon. The
action for this theory is [26]

S4g){ /d4.X\/ {RR"‘C()X

1 - - . 1
+A6x{( y)? -V, v vﬂv;ﬁsz”

+ Sulgl, (32)

where X is defined as in (8). Also as in the cubic Galileon
case, g, = e/ Mp 9uv» and for the purposes of the PPNV
analysis it is useful to write the action instead in terms of
g and a field ¢ = e~%/Mr_Up to a boundary term, the
resulting action is found to be

1 2w
Sul0-01 = 1 [ e (om0
1
+% e [( A AA LS 3¢
5 21

where Y and w are defined as in (13) and (12) respectively
and ay = M%/AS. Interestingly, the kinetic terms in (33)
are not just those of the quartic Galileon (with respect to ¢
and Y) but also contain a cubic Galileon term and a
“K-essence” term proportional to Y2. The field equations
of motion following from (33) are shown in Appendix A.

A. PPNV formalism for quartic Galileon

We now detail the application of the PPNV formalism to
the case of the quartic Galileon. As in the PPN case, it is
assumed that—to a good approximation in regions of
interest—the metric g, takes the form g,, =n,, + h,,
as in (1), where all components of 7, have an N order of at
least 2. Also as in the PPN case, matter is taken to be
described by a fluid, and we may allocate matter density as
measured by an observer momentarily freely falling with
the matter, p, as being Oppyy(2,0); matter coordinate
velocity v' as being Oppny(1,0); and comoving matter
pressure P as being Oppyy(4,0) (i.e., being of post-
Newtonian order). Furthermore, time derivatives on a
quantity are taken to raise N orders by order unity whilst
not changing the V order.

As in the case of the cubic Galileon, the action for the
quartic Galileon (33) contains a dimensionful scale—
named ay—and a vital first step is to assign a PPNV order
to it. To do so, we must establish that Vainshtein screening
occurs and then relate a, to the Vainshtein radius and
Schwarzschild radius. Towards this, we note that the action
(32) for perturbations around Minkowski can be written
schematically as
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8yt
S~/d4x[M%,\/—§R—(8)()2—A6
6 3
+Mpha 4 Ry, T+ AT (34)
MP

From the expression above, we see that for this theory
m==6andn =4sothats = % (as in the cubic galileon) and
k = 2. This automatically gives the Vainshtein radius as

ry =14 - ). Given that ay = M3 /A% then we have

6
Ty

ay =—>5—
167:2;12g

~ Oppxy(—4.-3) (35)

according to our order assigning prescription.

We then have the necessary ingredients to consider either
a screened (inside) or unscreened (outside) region and
expand the full equations according to PPNV order and
thus find perturbative solutions.

B. Outside region

Firstly we consider fields in an outside region. As in the
case of the cubic Galileon at large distances away from a
Vainshtein boundary the scalar field’s dynamics will be
dominated by the canonical kinetic term. Thus, in the limit
of spherical symmetry ¢ ~ 1/r, with Oppyy(2,0), and we
expect that corrections will go as (ry/r) to some positive
power. Hence, we expect corrections to the dominant term
to have PPNV order Oppny (2, V < 0). As in the case of the
cubic Galileon, make the same ansatz (16) as in the cubic
Galileon case. For the metric perturbations we similarly
generalize the usual PPN order allocation to 4, to include a
V order,

o0 -0

hoo = Z Z hig ™ (1.x7) (36)

N=2 V=0

hi; = i i RV (2,x0). (38)

We now focus on the solution of fields to Newtonian order
(N =2). After a lengthy calculation, to this order the
Einstein equation (A1), leads to the following equations for
the 00 component:

| = 4G 1=
D) vzhoo o~ ) V2¢ (39)
¢

and for the ij components,

- 1=)
ka(lhkl) —EV h”

4G 125 - o
= owPVii T EV vvij + ViV, (40)
0

| = =
+§Vzvj(hoo— h)

and for notational compactness it is understood that quan-
tities in A, h and @ are to have N order 2 with a sum over V
orders implicit. To further simplify the equations we can
impose the following gauge-fixing condition:

- - (1 1
Vit =V, (—h——hoo +fﬂ>- (41)
2 2
Therefore (40) turns into
1 i) 4-77:G 1 o)
—EV hij :Wﬂyu+§v PYij- (42)

We may formally solve (39) and (42) to get

2G
hoo = ~ow) U+o (43)
0
2G
hij = (WU - f/’) Vijs (44)
bo

where U is defined in Eq. (23) and so only ¢ remains to be
determined.

Determining ¢ is achieved by considering the scalar field
equation (A3) which to PPN order 2 takes the form,

62 87G

B (3+zw>¢g°m>”
oy =2
_ v
s+ 20) g

~3¢i0!IV 9+ 200l ¢k,
(45)

where ¢; = ﬁi(p and ¢;; = ﬁlﬁj(p.

Up to this point, no considerations regarding the
Vainshtein order have been made. In order to proceed
further, we solve (45) by expanding ¢ fully as in (16) and
collecting Vainshtein orders.

1.N=2, V=0

To zeroth order in V the a, term in the scalar field
equation (45) does not contribute, and we find that

87G

62(’0(2'0) frng ——p
(3 +2 )¢(0ut)

(46)

as in standard Brans-Dicke theory. This can be formally
integrated to give
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2G
20 __y, (47)
(34 2w)¢,
thus the metric solution to O(2,0) is
W0 =2G .U (48)
hz(';’O) =2yGcUyy, (49)

where G and y are just as in Brans-Dicke and the cubic
Galileon theories given by (25) and (26) respectively.
Recall that in the limit that nonlinear kinetic terms may
be ignored, the action (33) corresponds to that of Brans-
Dicke theory. Indeed the solution to this order is identical to
the Newtonian limit of that theory [42].

22.N=2,V=-3

The presence of a, in the scalar equation (45) implies
that the first nontrivial order for V is V = —3. The scalar
field equation takes the form,

Vgl = S (V0
8(3+ 20) (™)
200\ (r(2:0)\j N2 ( (2.0
= 3(@0) (>0 ),V (p20))
+2(p0)(90) (9O ). (50)
Defining the potential U, (Out Y via
G3 ou!
p>) = - p(s1)

327(3 4 20) (2 + @)} (p™)?

we may formally solve (50) to obtain

&Bx , o

4

U = [ dmpl=(dmp)+ UL 42U U, U,
(52)

Where Ulj = ﬁlﬁjU

Therefore, summing up the O(2,0) and O(2,-3) con-
tributions in (43) and (44) we arrive at the metric solution,

M,
hOO—ZGCU+29$ut‘4)< ) GLUY™  (53)
1 HO
M
hy {2GCU+2(V°IM4)<HO> G%U$’1”t4>]yij, (54)
where
(ous) _ ™ 2w+3 (Hy 6_ 7 20+3 H§ (55)
i TT40tep\A) T 4(2+w)5M2 “

and ¢ (OLM) = y$lut’4). We see then that for the quartic

Gahleon there exists—to Newtonian order—a new PPNV

potential (52) with accompanying dimensionless PPNV

(out,4) (out,4)

parameters gy, and yy . As in the case of the cubic

Galileon PPNV parameter y&?m ) factors of H, o have been

included so that for values of A such that the scalar field has

arole to play in late time cosmology, deviations of the value

7/(out 4 from unity are largely controlled by the value of w.

C. Inside region

Now we consider the behavior of fields in the inside
region to Newtonian N = 2 order. Applying the dualization
strategy as described above in Sec. III leads to

-1/3
V0 =a, / V,B. (56)
For reference recall that we have that azl/ ? is of PPNV
order
- 4
0‘41/3 ~ Oppny <3» 1>, (57)

while B has PPN order 2/3.

The dualized field equations are displayed in the
Appendix A 2, and under (56), the N =2 order Einstein
equations (A4) turn into

=2

1=» 1
——V h00:4ﬂGp—TVB (58)
2 2a4/
and
- 1= 1= -
VkV( —=Vih+ = ,Vj(hoo h)
2 2
1
= 4xGpy;; + 1/3 < V B —|— V By,]> (59)
ay
Imposing the gauge-fixing condition,
Vi =V, ( h—EhOO + ‘”*B), (60)
brings (59) into
1=o 1 =% .
thus the formal metric solution is
hoo = 2GU +a;'°B (62)
hi; = (2GU — ;' " B)y;;. (63)
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Note that although the gauge-fixing condition (60) is the
same as (41), matching the inside to the outside solutions is
impossible as any solution is inherently nonperturbative at
the Vainshtein radius ry. In order to determine B we use the
scalar equation (A9) which to this order is

(V’B)3—3Bi;B/,V°B+2B B/, B +8a;"*(3+20)V'B
— —647Gp. (64)

Now we make the following ansatz for our fields:

B(2/3) — B(2/3.Y) (65)
V=0
and determine the solutions order-by-order in V.

1. N=2,V=0

The leading order contribution from B is B(*/3*) so that
owing to the azl/ 3 term in (62) and (63) it drops out, and
the metric solution to this order is exactly as in GR. That is,
to order (2,0) the metric components are /gy, = 2GU and
h;; =2GUy;;. This is an explicit realization of the
Vainshtein mechanism which is found to be active in this
theory, just as in the case of the cubic Galileon.

2.N=2,V=1

To determine the next order contribution to (62) and (63)
it suffices to determine B39 using the scalar field
equation (64) to this order. We let, for notational compact-
ness, B?/30) = -2(2G)'/? UE}?A) so that introducing the

matrix notation B < ViVjUE,iTA) the scalar field equation

takes the form
(TrB)? — 3Tr(B?)(TrB) + 2Tr(B?) = 4zp.  (66)

We see then that as in the case of the cubic Galileon, the
leading contribution to the scalar field equation is a
nonlinear partial differential equation.

To the best of our knowledge, just like in the case of the
cubic Galileon, it is impossible to write U 5}?’4) in integral
form, except in the case of spherical symmetry which we
present further below. However, (66) may in principle be
solved numerically, or using perturbation techniques

around spherical symmetry. Assuming that we do have

U 8?’4) at hand from such procedures, the metric solution to

this order is
2,<4/3 ind4) ~_ in,4
=" = 26U + 29" G BUPY  (67)
hy = = QGU + 211G Uy )y (68)

where

(in4) _ -1 AN
A = (32a%) (M) (69)
(ind) _(ind)
and g, " = —yy,~~ are two PPNV parameters. Note that

since the potential UsTA) is different to 087‘3), these

parameters are distinct from the case of the cubic Galileon.

3.N=2,V=2

We may continue our iteration to determine the next
correction to kg, i.e., to Vainshteinian order V = 2. This is
achieved by expanding the scalar equation (64) to order

V =1 using (65) and collecting terms. Setting B(%/3-)

4(3+2w) U(in,4)
~semag U,

C < V'V jU$2’4) this leads to the linear equation,

and introducing the matrix notation

[(TrB)? — (TrB?)]TrC — 2(TrB)Tr(BC)
+ 2Te(B2C) + TrB = 0, (70)

where at this stage the solution for U 3?’4)

determined by the previous step.

One may continue the iteration to higher Vainshteinian
orders as necessary, each time resulting to a linear equation
for the next order where the previous orders are used as
sources.

1s assumed as

D. Spherical symmetry

The solutions found for contributions to the scalar field
and metric tensor in the outside region are rather compli-
cated whilst in the inside region we are faced with
equations that have no known general solution. To aid
intuition, we can restrict ourselves to spherical symmetry;
this will enable us to obtain some simple solutions for
quantities of interest. To this end, we will assume that the
matter source mass is a spherically symmetric mass M and
uniform density between r = 0 and » = r, (and zero for
r > r,). Firstly we consider the outside (unscreened)
region. Let us also note that exterior spherically symmetric
solutions inside the Vainshtein radius have been found
earlier in [44] while both interior and exterior solutions
inside and outside the Vainshtein radius have been deter-
mined in [45]. The purpose of this subsection is to firstly
serve as a consistency check with these known results and
also to extend them, as we discuss below, to include the
next Vainshteinian corrections not included in [45].

1. The outside region

We assume a spherically symmetric source of mass M
and radius r, so that

O(r, —r), (71)
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where ©(x) is the Heaviside step function (®(x) =1 for
x >0, and ©(x) = 0 for x < 0).

We then abbreviate the matrix U'; in (52) as U=
U, —1U,]} @ #+1U,I where U, = dU/dr, the vector
7 < ﬁir is unit, and I < &' ; 1s the unit matrix. Meanwhile,
the Newtonian potential is given by

M@3r2 —r?)

U=
2r2

M
O(r,.—r)+—06(r—r,) (72)
r
so that (52) evaluates to

(out,4)
Uy, =

. 4xM3 [7r2 —9r§
= 5

2
O(r,—r) —7®(r* - r)} . (73)
*
From this point onwards let us consider only the
exterior solution to the source, i.e., r > r, as is appropriate
for most physical systems of interest. In that case, the
metric solution is

2G:M 1 5
hoo = - 74
00 [ 14(87)*(2+ @) (3+2w)* P r6] (74)
. _2GcM 1 %
A 14(87)2(2 + @) (3 + 20) g8 1°) 77"

(75)

It is instructive to compare the size of the leading
Vainshteinian contribution to the metric potentials
above, at the Vainshtein radius ry; their comparative effect
will only decrease at larger radii. It is found that at ry, the
ratio of first and second terms in (74) is of the order

1/((#)*(3 4 20)3(1 + w)) [where we have assumed
that A> = O((M ,H3})*/*)]. If it is the case that cosmologi-
cally the theory (33) is essentially that of Brans-Dicke
theory (i.e., the influence of nonlinear terms in the action
have negligible effect) then we may use cosmological
constraints on that theory restrict @ 2 1000 [43] and so
the force at ry due to first and second terms (74) is of order
o™ ~ 10712, with this ratio only decreasing for r > ry.
Therefore the modification to Newtonian gravity in the
outside region is small.

2. The inside region

In spherical symmetry, the Eq. (66) simplifies signifi-
cantly, taking the nonlinear ODE form,

6 (d ina)\2(d  (ina)
ﬁ <E UV| > PUVI = 47rp(r) (76)

We assume a spherically symmetric source of mass M
and radius r, so that

_3M

- 3
drr)

p(r) O(r, —r), (77)

where ©(x) is the Heaviside step function (@(x) = 1 for
x > 0,and ©(x) = 0 for x < 0). Hence we can write (76) as

d d in4 3 3M}”2
EKd—rUE,]' )) ] =2—0(r,-r. (78)

2r;

Integrating twice leads to

. 1/3 2
(m,4) - M 3 r
Uy W = ST (—5 .+ 2r*>®(r* -r)
M3 7
+W <V—E>®(V— r*), (79)

where the meaning of the chosen integration constant is
clarified further below.

Interestingly, for interior solutions, i.e., r < r, we find

that U 8?‘4) (372 — r?) which is of the same r dependence

as the interior solution for U(r). More specifically, the
solution inside the source is

h&.s4/3) . _ 2GU£/ir[1ter,4) (80)
2,<4/3 inter,4 inter,
hl(] = r<r = 27§/1t )GU§/1t 4)7/1']’ (81)

where the interior potential

U(inter,4) _ 3]‘4eff _ Meff
Vi 2r, 2r

r (82)

is identical to the one in GR but with the mass renormalized
to My = M[1 + 47%3(r,/ry)?]. The arbitrary integration
constant in (79) was chosen so that this identification was
possible. However, even more interestingly, the PPN y
parameter for this solution is not unity as it should have
been for GR, but rather it is

1 — 47237

(inter,4) ry
Y Y| (83)

! 1 + 47%/3 :—22

so that the presence of the Galileon inside the source breaks
the Vainshtein mechanism and introduces an effective y
parameter. This is of academic interest only, of course, as
for usual cases of interest ry > r, so that these corrections
are tiny and the spacetime inside the source can be taken to
be identical to the one in GR.

Turning now to exterior solutions, i.e., r > r, we find
that the metric solution is
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1 1
hg=|.., =26M { +4n*l —(2r, - r)} (84)
* r ry
(2,<4/3) 1 2/3 1
he=) L, =2GM |~ — 47> = (2r, = 1) |7y, (85)
* r rv X

Thus we see that in the inside Vainshtein region in spherical
symmetry at Newtonian order there is a correction to the
Newtonian potential that is proportional to the coordinate r.
As such, the theory produces an additional, constant force
exterior to a spherically symmetric body.

The presence of the constant part in the above solutions
is an artifact of having chosen the arbitrary integration
constant in (79) in order to obtain the specific form for the

interior solution (80) and (81). Had we chosen it such that

Uy

would not be there. Naturally, such a constant does not have
any physical significance.

Although the extra force produced by the correction to
the Newtonian potential in the inside region is very small,
by looking at systems like binary pulsars with observations
integrated over a long period of time, this effect may still be
observable [46—49].

For the sake of completeness, let us calculate the next
Vainshteinian correction to the above solutions in the case
of spherical symmetry. Adapting (70) to spherical sym-
metry gives

— 0 as r — 0 then the constant in the above solution

dr. (86)

2

(n4) 1 / r
U - S
Vs 2 dU(ln 4)/d

2w
0.0 = [ vl am YT
9(15 v 1
+T¢8Y2 [(Dqﬁ)z = P +3 YR} +

where Y and w are defined as in (13) and (12) respectively
and as = M3 /A°. Interestingly, the kinetic terms in (90) are
not just those of the quintic Galileon (with respect to ¢ and
Y) but also contain a cubic and a quartic Galileon term and a
“K-essence” term proportional to Y*. The field equations of
motion following from (33) are shown in Appendix B.

A. PPNV formalism for quintic Galileon

In this part we detail the application of the PPNV
formalism to the case of the quintic Galileon. As in the
case of a3 and a4 for the cubic Galileon and quartic Galileon,
it is important to assign a PPNV order to the dimensionful
constant a5 that appears in the quintic Galileon action (90).
The schematic form of the action for the quintic Galileon for
perturbations around a Minkowski space background, is as
follows:

(m 4)

Plugging in the determined solutions for Uy, and
integrating gives
ngl"‘) xr? forr<r, (87)
US:A) «r® forr>r,. (88)

Interestingly, the interior solutions do not acquire any
further powers of r but retain their form (80) with the
constants appearing in the solution appropriately renor-
malized while the next correction to the exterior solution

goes as 7> rather as 2.

V. QUINTIC GALILEON

Finally we discuss the case of the quintic Galileon. The
action for this theory is

Ssg)( /d“x\/ {16 GR+c0X

1 = = NT O viAvi4
- PX () =30V, Vo Vi Vey

B A A A 3xauvv,,m}

+ Sulgl- (89)

As in the case of the cubic Galileon and quartic Galileon
theories, it is useful to write the theory in terms of fields g,
and ¢. This can be done, yielding, up to boundary terms,
the following action:

Y[(Op) = 30¢du ¢ + 2¢¢" a = 3YG* ¢, ]
%%Wﬂqﬁ—k%%w} + Sulgl. (90)
8,5
S~/d4x {M%\/ng— a
+ Mph 88)23 4R, T+ A)/I(,, T (91)

so that for this theory m =8 and n =5 giving k = 9/4
and s = 1/3. Thus, once again the Vainshtein radius is
ry =+ (—) Given that a5 = M3/A° then we have

9
'y
as = —6471'3 rg ~ OPPNV(_6» —4) (92)

according to our order assigning prescription.
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B. Nonexistence of Vainshtein mechanism to
order N=2

Firstly we consider fields in an outside region. We
proceed in a similar way to as in the quartic Galileon case
and so assign the same PPNV orders to matter quantities
and make the same ansatz for scalar field ¢ and metric
tensor perturbation h,, as (16), (36), (37) and (38). To
Newtonian order the scalar field equation (B9) takes the
form

8nG 1
;7/) + 5 [(TrM)* + 3(TrM2)?
0

— 6(TrM)?Tr(M?) + 8(TrM)Tr(M?)
- 6Tr(M*)], (93)

—2w + 3)6240

where we introduced the matrix M < ¢’ i

Equation (93) looks rather similar in structure to (50) in
the case of the quartic Galileon wherein there (>~ in the
outside region was sourced by nonlinear terms in (9.
However, there is an important difference: the term in
square brackets in (93) is identically zero. This may be
understood as follows: the matrix M is a pullback to spatial
components of the 4 x4 matrix ¢,,, and the term is
proportional to det(¢,, ); to this PPNV order, only ij terms
contribute and so ¢, has vanishing determinant. Thus, the
scalar field equation (93) is as in Brans-Dicke theory, and a
straight forward inspection of the Einstein equations (93)
shows that to Newtonian order they are also as in
Brans-Dicke.

Thus to Newtonian order there is no Vainshtein mecha-
nism; the canonical kinetic term will entirely determine the
behavior of ¢ to order N = 2. We note that this result has
already been noted in [45] which shows consistency with
our method. In going beyond [45], we discuss below what
happens when we consider post-Newtonian corrections to
higher orders in N.

C. Effects to post-Newtonian order

It is natural to then wonder whether going to post-
Newtonian order N =4 reveals nonlinear behavior for
"N = *V) that was simply not there at Newtonian order.
This may happen if to N =4, the scalar field equation
possesses solutions describing an “inside” region where the
dominant term is nonlinear in ¢"". Indeed, to order N = 4,
the quartic Galileon term present in the scalar equation does
contribute. In that case, there will be new Vainshteinian
potentials appearing to order N =4, and these will be
different on each side of the Vainshtein radius. However,
the effects of these potentials, being of higher order, will be
to introduce PN corrections to Brans-Dicke theory, rather
than to GR, and the Vainshtein mechanism is inadequate for
restoring GR around massive sources.

VI. DISCUSSION AND CONCLUSIONS

In this paper we extended the work done in [33] by
applying the parametrized post-Newtonian-Vainshteinian
formalism to the quartic and quintic Galileon theories. The
PPNV formalism is an extension to the PPN formalism
adapted to theories with an extra scale, within which
nonlinearities become important. In the case of the
Galileon theories in question this scale is the Vainshtein
radius. The Vainshtein radius acts as the boundary between
the inside and outside regions, each of which needs to be
expanded independently in PPNV orders. The inside
region, is generally characterized by Vainshtein screening
where nonlinear kinetic terms predominantly determine the
behavior of the scalar field. The outside region, on the other
hand, has dynamics for the scalar field dominated by the
linear kinetic terms and the behavior of the theory is
approximately that of Brans-Dicke theory.

The PPNV formalism was constructed as a tool to
facilitate constraining modified gravity theories (with extra
scales) with Solar System and other strong field data. In
particular such constraints would be especially significant
as they would be independent from cosmological con-
straints. Each theory to which one applies the PPNV
formalism will produce a different set of potentials with
corresponding coefficients. Identifying the form of these
potentials and their coefficients, for a given theory, will
therefore be the key to constrain it with available data and
possibly may help direct the design of new experiments.

In this work we focused on applying the PPNV formal-
ism to the quartic and quintic Galileon. In both cases we
expanded both the inside and outside regions in PPNV
orders. For the quartic Galileon we also explicitly found the
solution, up to PPNV order (2,-3) outside and (2, 2)
inside, in spherical symmetry. We confirmed previous
works [44,45] that in the inside region there is a correction
to the Newtonian potential proportional to r while we found
that the next correction comes to order 3. This correction
would produce an approximately constant force outside a
massive body, that may be observed. The extra force
produced by this extra correction is very small; however,
by looking at systems like binary pulsars with observations
integrated over a long period of time, this effect may still be
within the reach of observation. Furthermore, it has been
argued that certain Galileon models might produce observ-
able effects in other “strong-gravity” systems [44,50].

The quintic Galileon case, however displayed an inter-
esting feature. To Newtonian order we found that there is no
Vainshtein mechanism, and therefore the fifth force pro-
duced by the kinetic term of ¢ will not be screened. This
implies that to this order the constraints on the quintic
Galileon theory (90) on scales such as those of the Solar
System will be on the Brans-Dicke limit of the theory.

One issue that may arise, is whether the inside and
outside solutions can be matched, producing an approxi-
mate solution across the Vainshtein radius. Unfortunately,
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this is not possible. If one tries to impose the matching
conditions for the metric and its extrinsic curvature at
r = ry, one finds that no consistent matching can be found.
This is to be expected as the Vainshtein radius is a place of
inherently nonperturbative behavior. Fortunately, this does
not impose an obstacle. One can use the solutions on either
side to impose bounds on the parameters of the theory, and
this may be achievable by considering specific physical
systems which reside on each side.

The formalism developed here can be used in the case of
other theories which exhibit kinetic screening, for instance,
theories related to modified Newtonian dynamics [51,52]
and their relativistic counterparts [53—56] by appropriately
extending the formalism in [57]. It can also serve as a guide
on how to design experimental efforts for probing gravity in
the Solar System or in the regime of binary pulsars; see
[58]. All such “strong-field” systems will tend to push the
Vainshtein radius ry to larger values. On the cosmological
side, cosmological constraints may place upper bounds on
scales such as ry [59], thus, pushing ry to smaller values. If
the two types of constraints become incompatible, then the
theory is ruled out completely, unless ry is so small, that
even the Solar System lies in the outside Vainshtein region,
in which case constraints on Brans-Dicke theories apply.
Indeed, if the quartic Galileon is not to play a role of
dark energy, although this has less immediate motivation,

|

(0]

1
¢(1 4+ 0oY*)R+, = 872G <Tﬂy - zT5ﬂ,,> + 7

+A4¢ﬂv + 2¢(YﬂYu - Lﬂl/) - 2¢Y(Fﬂu + Nﬂv =+ Qﬂl)]’

where

_ My
70 T T6A5¢° ~ 164°

pushing ry to smaller values could evade gravitational
wave constraints [29-32], and in such case, “strong-field”
systems will have an important role to play. Therefore, by
combining both types of constraints there is the potential to
create a zone of observational exclusion for such models.
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APPENDIX A: FIELD EQUATIONS FOR THE
QUARTIC GALILEON

We introduce the short hand notation ¢, =V,¢, ¢, =
V,V,¢ and similarly for Y. We display the ordinary field
equations in the usual sense as well as the dual field

equations for which the dual field B such that V,B =
ai/ 3 V,¢ is introduced (and B, = VB is to be understood).

1. Ordinary field equations

The Einstein equations take the form

1 ~ ~ -
¢”¢u + E D¢5ﬂu + ¢ﬂv + GQ [A]¢”¢y + A25”u + ABWMI/

(A1)

Oy

(A2)

and where for the ease of avoiding long expressions we have defined the following:

Iy=Yu* Iy =YY"
Zy=Iy+0¢l, V,=YTp—1,
L, =Y, L', =L, +¢'L,
O = Ry’ Qo = Ropd’
Q=0 W, =Y, + 9",
Nty = Q'+ "0, Fu ="y,
F=F, J,=(0¢>-F

U¢ = (D¢)3 - 3¢a[i¢ﬁa|:|¢ + 2¢aﬂ¢ﬁy¢ya = D¢[(D¢)2 - 3F] + 2Fﬂy¢pﬂ

} 63 1
Ay = RoY + ¢J,—15Y0¢ + 7$Y2

Ay = —15Y +2¢0¢

15

Ay =RpY*+¢pY(Jy+ Q) — % Y} ——Y0¢ — pOgl, — Py

2

Ay =2¢YOg + 2¢1, + 15Y2.
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The scalar field equation for this theory takes the form

3
20 (D¢ + g) + ¢R + GQ{315% +126Y1, — 1170 + 30(YQ — Z,)

+ 15Y2¢gR + 2¢*[U, — 4Y*Q, + R, — 20090 + 20, ¢* — 2G* ¢, Y]} = 0.

2. Dual field equations
Defining = B, B* and

I,=Y,B=d’1, I,=Y,"=d"l,

Zy=1y+0BI, =a®?Z V,=-LpoB-1,=av

p =1y +UBl, = a’"Z, p=—5PUB=1,=a’V,
L,=YB,=daL, L, =2L,B,=a"L,
Q,ub = R/mvﬁB Bf = o*3 Q/w Qﬂ = R/wBu = ?/3 Qﬂ

0=0,B"=a"?Q W, =2Y,B,=dW,

NG — N . — 43 R — 43
Ny =2By,0Q,) = / Ny Fyu = By,B’,) =a"/ Fu

F=F,=da’F J,=(0B?-F=a"%), Y,=-BB,=d"Y,

U, = (OB)* - 30BB"B,, +2B"B,,B’, = a’Uy,

vp

the dualized Finstein equations are

1 B ! o 1 1 1 1
¢(1 +WE>RP’” _ 8n.G<TMD_§T5ﬂy> 4/3(1)B B, +—+= peyE <BMV+EDB5ﬂIJ> 164)6 {A B"B,

+ Ay, + AW, + ABr, + W(/)[zmy = 2L4, + p(F, + Ne, + O1)) }

where

A

1T 15 63 p ]
Alzﬁ[dﬂr/)_iﬂ‘/m‘f‘ 2/3ﬂDB+ _} = a’l*A,

3
A2_1[9ﬁ N

77 3 §

~

1 15 -
A=—p [2¢DB +5m ﬂ] -

A

1 .15 5
Av=—p [—ﬂ(/)DB +201y+ 3 ﬂ2] — o*34,,

and the dual scalar field equation is
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APPENDIX B: FIELD EQUATIONS FOR THE QUINTIC GALILEON

The Einstein equations are

Y 1 1
d(1-3605 = \Re, = 82G( T, =T, | + 2 pp, + ¢, + = Dps",
¢ 2 ¢ 2
_ _ _ _ Y
+ 66){816”1/ + BZ¢”¢U + B3¢Mv + B4WM1/ + 6Y<4$ - D¢> (Nﬂu + Qﬂv)

+ 6([!4) —g) (Y*Y,—L*,)) +6(Ct¢, + ¢"C,) — 6(Y*L, + L'Y )

YZ
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+ I(/)Rﬂu - Qﬂ Yy - Y”Ql/ + Qﬂpd)ﬂy + ¢'upQﬂu + Qp¢ﬂﬂ¢y + Qp(ppyd)”]}’

where

(5% 1
3297
and where for the ease of avoiding long expressions we have defined the following:
S” _ ¢aﬂ ¢p Rpaﬁy S/ly — S”¢y + ¢l‘ Su

C,=Lypf, 1, =Y,

and
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The scalar field equation takes the form,

2 2 2

Y4
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