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Gravitational wave detectors allow us to test general relativity and to study the internal structure and
orbital dynamics of neutron stars and black holes in inspiralling binary systems with a potentially unlimited
rigor. Currently, analytic calculations of a gravitational wave signal emitted by inspiralling compact
binaries are based on the numerical integration of the asymptotic post-Newtonian expansions of the
equations of motion in a pole-dipole approximation that includes masses and spins of the bodies composing
the binary. Further progress in the accurate construction of gravitational wave templates of the compact
binaries strictly depends on our ability to significantly improve the theoretical description of gravitational
dynamics of extended bodies by taking into account the higher-order (quadrupole, octupole, etc.)
multipoles in equations of motion of the bodies both in the radiative and conservative approximations of
general relativity and other viable alternative theories of gravity. This paper employs the post-Newtonian
approximations of a scalar-tensor theory of gravity along with the mathematical apparatus of the Cartesian
symmetric trace-free tensors and the Blanchet-Damour multipole formalism to derive translational and
rotational equations of motion of N-extended bodies having arbitrary distribution of mass and velocity of
matter. We assume that a spacetime manifold can be covered globally by a single coordinate chart which
asymptotically goes over to the Minkowskian coordinate chart at spatial infinity. We also introduce N local
coordinate charts adapted to each body and covering a finite domain of space around the body. The
gravitational field in the neighborhood of each body is parametrized by an infinite set of mass and spin
multipoles of the body as well as by the set of tidal gravitoelectric and gravitomagnetic multipoles of
external N — 1 bodies. The origin of the local coordinates is set moving along the accelerated worldline of
the center of mass of the corresponding body by an appropriate choice of the internal and external dipole
moments of the gravitational field. Translational equations of motion of the body’s center of mass and
rotational equations of motion for its spin are derived by integrating microscopic equations of motion of the
body’s matter and applying the method of the asymptotic matching technique to splice together the post-
Newtonian solutions of the field equations of the scalar-tensor theory of gravity for the metric tensor and
scalar field obtained in the global and local coordinate charts. The asymptotic matching is also used for
separating the post-Newtonian self-field effects from the external gravitational environment and
constructing the effective background spacetime manifold. It allows us to present the equations of
translational and rotational motion of each body in covariant form by making use of the Einstein principle
of equivalence. This relaxes the slow-motion approximation and makes the covariant post-Newtonian
equations of motion of extended bodies with weak self-gravity applicable for the case of relativistic speeds.
Though the covariant equations of the first post-Newtonian order are still missing terms from the second
post-Newtonian approximation, they may be instrumental in getting a glimpse of the last several orbital
revolutions of stars in an ultracompact binary system just before merging. Our approach significantly
generalizes the Mathisson-Papapetrou-Dixon covariant equations of motion with regard to the number of
the body’s multipoles and the post-Newtonian terms having been taken into account. The equations of
translational and rotational motion derived in the present paper include the entire infinite set of covariantly
defined mass and spin multipoles of the bodies. Thus, they can be used for a much more accurate prediction
of orbital dynamics of tidally deformed stars in inspiralling binary systems and construction of templates of
gravitational waves at the merger stage of a coalescing binary when the strong tidal distortions and
gravitational coupling of higher-order mass and spin multipoles of the stars play a dominant role in the last
few seconds of the binary life.
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I. INTRODUCTION

The mathematical problem of derivation of relativistic
equations of motion of extended bodies has been attracting
theorists since the discovery of general relativity. An
enormous progress in solving this problem has been
reached for the case of an isolated gravitating system
consisting of spinning massive bodies in the so-called pole-
dipole particle approximation [1-3] that was originally
discussed by Mathisson [4,5], Papapetrou [6], and Dixon
[7-11] (see also papers of the other researchers [12—15] and
references therein). These types of equations of motion are
used for a comprehensive study of the nature of gravity
through the monitoring orbital and rotational motion of
bodies in the Solar System [16,17], binary pulsars [18-21],
and inspiralling compact binary systems made of neutron
stars and/or black holes [22]. A new branch of relativistic
astrophysics, gravitational wave astronomy can test general
relativity in a strong field, fast-motion regime of coalescing
binaries to unprecedented accuracy and probe the internal
structure of neutron stars by measuring their Love numbers
[23-27] through the gravitational response of their internal
multipoles subject to the immense strength of the tidal
gravitational field of an inspiralling binary just before the
merger [28]. Therefore, a more advanced study of the
dynamics of a relativistic N-body system is required to take
into account gravitational perturbations generated by
higher-order multipoles of extended bodies (quadrupole,
octupole, etc.) that can significantly affect the orbital
motion of the pole-dipole massive particles [29-35]. The
study of these perturbations is also important for improving
the Solar System experimental tests of various gravity
theories [36,37] and for building more precise relativistic
models of astronomical data processing [38—41].

Over the last three decades most theoretical efforts in
derivation of equations of motion were focused on solving
the two-body problem in general relativity in order to work
out an exact analytic description of the higher-order post-
Newtonian corrections beyond the quadrupole radiative
approximation of Landau and Lifshitz [42] that would
allow one to construct sufficiently accurate waveforms of a
gravitational signal emitted by inspiralling the binary
systems. One of the main obstacles in solving this problem
is the self-interaction of a gravitational field that strongly
affects the orbital dynamics of inspiralling binaries through
nonlinearity of Einstein’s field equations [29,43,44]. The
nonlinearity of a gravitational field severely complicates
derivation of equations of motion and computation of the
waveform templates that are used for detecting a gravita-
tional wave signal by a matched filtering technique and for
estimating physical parameters of the binary system [45].
The nonlinearity of the field equations leads to the
appearance of formally divergent integrals in the post-
Newtonian approximations [46] that have to be regularized
to prescribe them a unique and unambiguous finite value
making physical sense. Major computational difficulty

arises from using the Dirac delta function as a source of
gravitational field of point particles in curved spacetime
[47]. Dirac’s delta function works well in a linear field
theory like electrodynamics but it is not directly applicable
for solving nonlinear field equations in general relativity to
account for the self-field effects of massive stars. This
difficulty had been recognized by Infled and Plebanski [48]
who pioneered the use of distributions in general relativity
to replace the field singularities used in the original
derivation of the Einstein-Infeld-Hoffmann (EIH) equa-
tions of motion [49]. In order to circumvent the math-
ematical difficulty arising from the usage of the delta
functions in the nonlinear approximations of general
relativity, the Lorentz-invariant Hadamard “partie finie”
method has been developed by French theorists [S0-53]. It
has been successfully used to regularize the divergent
integrals up to the 3D post-Newtonian approximation
but faces certain limitations beyond it due to the presence
of a specific pole in the quadrupole of the point-particle
binary being intimately associated with the dimension of
space and leading to ambiguities [44]. Therefore, the
Hadamard partie finie method was replaced with a more
powerful method of dimensional regularization [52] to
calculate equations of motion of pointlike massive bodies
in higher-order post-Newtonian approximations [3,44,54].
There are other methods to calculate equations of motion of
pointlike particles in general relativity based on the
matched asymptotic expansions [55-57] such as the appli-
cation of surface integral techniques like in the EIH
approach [49,58] and the strong-field point-particle limit
approach [30,43,59].

It is well understood that the pointlike particle approxi-
mation is not enough for a sufficiently accurate calculation
of gravitational waveforms emitted by inspiralling compact
binaries so that various types of mutual gravitational
coupling of higher multipoles of moving bodies (spin,
quadrupole, etc.) should be taken into account. Spin
effects have been consistently tackled in a large number
of papers [1-3,60-68] while only a few papers, e.g.,
[62,64], attempted to compute the orbital post-
Newtonian effects due to a body’s mass quadrupole
demonstrating a substantial complexity of calculations.
A new generation of gravitational wave detectors will
allow us to measure much more subtle effects of the
multipolar coupling present in gravitational waveforms
emitted by inspiralling compact binaries. Among them,
especially promising from the fundamental point of view,
are the effects associated with the elastic properties of
tidally induced multipoles of neutron stars and black holes
as they provide us with direct experimental access to
nuclear physics of condensed matter at ultrahigh density
of the neutron star’s core and exploration of the true nature
of astrophysical black holes. Therefore, one of the chal-
lenging tasks for theorists working in gravitational wave
astronomy is to derive equations of motion in the
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relativistic N-body problem while accounting for all effects
of multipolar harmonics of extended bodies. This task is
daunting and the progress in finding its solution is slow.
The theoretical approach to resolving the primary diffi-
culties in derivation of the equations of motion in isolated
astronomical systems consisting of N-extended bodies with
arbitrary multipoles has been introduced in a series of
papers by Brumberg and Kopeikin (BK) [69-73] and
further advanced by Damour, Soffel and Xu (DSX)
[74-77]. The two approaches are essentially similar but
the advantage of the DSX formalism is the employment of
the Blanchet-Damour (BD) multipoles of extended bodies
which take into account the post-Newtonian corrections in
the definition of the body’s multipoles. The BD mass
multipoles were introduced by Blanchet and Damour [78]
and the spin multipoles were devised by Damour and Iyer
[79]; see also [80,81]. The BD formulation of a multipolar
structure of a gravitational field significantly improves the
mathematical treatment of relativistic multipoles by Thorne
[82] which suffers from the appearance of divergent inte-
grals from the Landau-Lifshitz pseudotensor of a gravita-
tional field [42] entering the integral kernels. The BK-DSX
formalism was adopted by the International Astronomical
Union as a primary framework for dealing with the problems
of relativistic celestial mechanics of the Solar System
[17,83]. Racine and Flanagan [84] and Racine et al. [85]
implemented it for a comprehensive study of the post-
Newtonian dynamics of N-extended, arbitrarily structured
bodies and for derivation of their translational equations of
motion while accounting for all mass and spin BD multi-
poles. However, Racine and Flanagan [84] neither derived
the post-Newtonian rotational equations of motion of the
bodies nor did they provided a covariant generalization of
the equations of motion.

In this paper we also use the BK-DSX formalism to derive
translational and rotational equations of motion of N-
extended bodies in the post-Newtonian (PN) approximation
of a scalar-tensor theory of gravity with a full account of an
arbitrary internal structure of the bodies which is mapped to
the infinite set of the BD multipoles extended to the case of
the scalar-tensor theory. Our mathematical approach deals
explicitly with all integrals depending on the internal
structure of the extended bodies and in this respect is
different from the formalism applied by Racine-Vines-
Flanagan (RVF) [84,85]. Besides the metric tensor, a scalar
field is also a carrier of the long-range gravitational
interaction in the scalar-tensor theory of gravity that brings
about complications in computing the equations of motion.
In particular, instead of two sets of general-relativistic BD
multipoles we have to deal with an additional set of multi-
poles associated with the presence of the scalar field
[17,86,87]. We assume that the background value of the
scalar field changes slowly which allows us to parametrize
the scalar-tensor theory of gravity with two covariantly
defined parameters, f and y, which correspond to the

parameters of the parametrized post-Newtonian (PPN)
formalism [88]. The f-y parametrization of the equations
of motion in the N-body problem is a powerful tool to test
general relativity against the scalar-tensor theory of gravity
in the Solar System [36,88,89], in binary pulsars [18,20,90],
as well as with gravitational wave detectors [91-93] and
pulsar-timing arrays [93-95]. The present paper signifi-
cantly extends the result of papers [84,85] to the scalar-
metric sector of gravitational physics and checks its con-
sistency in Appendix B. Moreover, the present paper derives
the post-Newtonian rotational equations for spins of massive
bodies of the N-body system including all their multipoles.

Post-Newtonian dynamics of extended bodies on curved
spacetime manifold M is known in literature as relativistic
celestial mechanics—the term coined by Brumberg [96,97].
Mathematical properties of the manifold M are fully
determined in general relativity by the metric tensor gz
which is found by solving Einstein’s field equations.
General-relativistic celestial mechanics admits a minimal
number of fundamental constants characterizing geometry
of curved spacetime—the universal gravitational constant G
and the fundamental speed of gravity ¢ which is assumed to
be equal the speed of light in vacuum [98,99]. For exper-
imental purposes Will [88] denotes the fundamental speed in
a gravity sector as ¢, to distinguish it from the fundamental
speed c in a matter sector of theory, but he understands itin a
rather narrow sense as the speed of weak gravitational waves
propagating in a radiative zone of an isolated gravitating
system. On the other hand, Kopeikin [100] defines ¢, more
generally as the fundamental speed that determines the rate of
change of a gravity field in both near and radiative zones. In
the near zone ¢, defines the strength of a gravitomagnetic
field caused by rotational and/or translational motion of
matter [17,100,101]. Einstein postulated that in general
relativity ¢, = ¢ but this postulate along with general
relativity itself is a matter of experimental testing by radio
interferometry [102,103] or with gravitational wave detectors
[104]. The presence of additional (hypothetical) long-range
fields coupled to gravity brings about other fundamental
parameters of the scalar-tensor theory like f and y which are
well known in PPN formalism [88]. The basic principles of
the parametrized relativistic celestial mechanics of extended
bodies in scalar-tensor theory of gravity remain basically the
same as in general relativity [17,99].

Post-Newtonian celestial mechanics deals with an iso-
lated gravitating N-body system whose theoretical concept
cannot be fully understood without careful study of three
aspects: asymptotic structure of spacetime, approximation
methods, and equations of motion [105,106]." In what
follows, we adopt that spacetime is asymptotically flat at

'The initial value problem is tightly related to the questions
about origin and existence (stability) of an isolated gravitating
system as well [106—-110] but we do not elaborate on it in the
present paper.
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infinity [106,111,112] and the post-Newtonian approxima-
tions (PNA) can be applied for solving the field equations.
Strictly speaking, this assumption is not valid as our
physical Universe is described by the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric which is con-
formally flat at infinity. Relativistic dynamics of extended
bodies in a FLRW universe requires development of the
post-Friedmannian approximations for solving the field
equations in case of an isolated gravitating system placed
on the FLRW spacetime manifold.” The post-Friedmannian
approximation method is more general than the post-
Newtonian approximations and includes an additional
small parameter that is the ratio of the characteristic length
of the isolated gravitating system to the Hubble radius of
the Universe. A rigorous mathematical approach for doing
the post-Friedmannian approximations is based on the
field theory of the Lagrangian perturbations of pseudo-
Riemannian manifolds [119], and it has been worked out in
a series of our papers [120-122]. Relativistic celestial
mechanics of an isolated gravitating system in cosmology
leads to a number of interesting predictions [123,124].
More comprehensive studies are required to fully incorpo-
rate various cosmological effects to the Bondi-Sachs
formalism [125] that deals entirely with gravitational waves
in asymptotically flat space time.

Equations of motion of an N-body system describe the
time evolution of a set of independent variables in the
configuration space of the system. These variables are
integral characteristics of the continuous distribution of
mass and current density of matter inside the bodies, and
they are known as mass and spin (or current) multipoles of
a gravitational field [78,80,82]. Among them, mass monop-
ole, mass dipole, and spin dipole of each body play a
primary role in the description of translational and rota-
tional degrees of freedom (d.o.f.). Higher-order multipoles
of each body couples with the external gravitational field of
other bodies of the isolated system and perturbs the
evolution of the lower-order multipoles of the body in
the configuration space. Equations of motion are subdi-
vided into three main categories corresponding to various
d.o.f. of the system configuration variables [126]. They are
the following:

(D translational equations of motion of the linear

momentum and the center of mass of each body,

(IT) rotational equations of motion of the intrinsic

angular momentum (spin) of each body,
(IIT) evolutionary equations of the higher-order (quadru-
pole, etc.) multipoles of each body.
Translational and rotational equations of motion are suffi-
cient for describing the dynamics of pole-dipole massive
particles which are physically equivalent to spherically

*Notice that the term “post-Friedmannian” is used differently
by various authors in cosmology [113—-116]. We use this term in
the sense used by Milillo ef al. [117] and Rampf er al. [118].

symmetric and rigidly rotating bodies. A deeper under-
standing of celestial dynamics of arbitrarily structured
extended bodies requires derivation of the evolutionary
equations of the higher-order multipoles. Usually, a sim-
plifying assumption of the rigid intrinsic rotation about the
center of mass of each body is used for this purpose
[97,126—-129]. However, this assumption works only until
one can neglect the tidal deformation of the body caused by
the presence of other bodies in the system and, certainly,
cannot be applied at the latest stages of a compact binary’s
inspiral before merger. It is worth noticing that some
authors refer to the translational and rotational equations
of the linear momentum and spin of the bodies as to the
laws of motion and precession [58,105,130,131] relegating
the term equations of motion to the center of mass and
angular velocity of rotation of the bodies. We do not follow
this terminology in the present paper.

The most works on the equations of motion of massive
bodies have been done in some particular coordinate
charts from which the most popular are the ADM and
harmonic coordinates [31,66,132].3 However, the coordi-
nate description of relativistic dynamics of an N-body
system must have a universal physical meaning and predict
the same dynamical effects irrespective of the choice of
coordinates on spacetime manifold M. The best way to
eliminate the appearance of possible spurious coordinate-
dependent effects would be derivation of covariant equa-
tions of motion based entirely on the covariant definition of
the configuration variables. To this end Mathisson [4,5],
Papapetrou [6,134] and, especially, Dixon [7-11,135,136]
had published a series of programmatic papers suggesting
constructive steps toward the development of such fully
covariant algorithm for derivation of the set of equations of
motion® known as Mathisson’s variational dynamics
or the Mathisson-Papapetrou-Dixon (MPD) formalism
[135,136]. However, the ambitious goal to make the
MPD formalism independent of a specific theory of gravity
and applicable to an arbitrary pseudo-Riemannian manifold
created a number of hurdles that slowed down the advance-
ment in developing the covariant dynamics of extended
bodies. Nonetheless, continuing efforts to elaborate on the
MPD theory had never stopped [12,13,135,139-145].

In order to make the covariant MPD formalism con-
nected to the more common coordinate-based derivations
of the equations of motion of extended bodies the metric
tensor g, of the effective background spacetime manifold
M must be specified and Dixon’s multipoles of the stress-
energy skeleton [9,11] have to be linked to the covariant
definition of the BD multipoles of extended bodies. To find
out this connection we tackle the problem of the covariant

’The ADM and harmonic coordinate charts are in general
different structures but they can coincide under certain
circumstances [133].

*See also [137,138].
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formulation of the equations of motion in a particular gauge
associated with the class of conformal harmonic coordi-
nates introduced by Nutku [146,147]. Covariant formu-
lation of the equations of motion is achieved at the final
stage of our calculations by building the effective back-
ground manifold M and applying the Einstein equivalence
principle for mapping the locally defined BD multipoles to
the arbitrary coordinates. This procedure has been proposed
by Landau and Lifshitz [42] and consistently developed
and justified by Thorne and Hartle [58]. It works perfectly
on torsionless manifolds with the affine connection being
fully determined by the metric tensor. Its extension to the
pseudo-Riemannian manifolds with torsion and/or non-
minimal coupling of matter to gravity requires further
theoretical study which is not pursued in the present paper.
Some steps forward in this direction have been made, for
example, by Yasskin and Stoeger [148], Mao et al. [149],
March et al. [150], Flanagan and Rosenthal [151], Hehl
et al. [152], and Puetzfeld and Obukhov [143,153].
Dynamics of matter in an isolated gravitating system
consisting of N-extended bodies is naturally split in two
components: the orbital motion of the center of mass of
each body and the internal motion of matter with respect to
the body’s center of mass. Therefore, the coordinate-based
derivation of equations of motion of N-extended bodies in
the isolated gravitating system suggests a separation of the
problem of motion in two parts: external and internal
[126,154]. The external problem deals with the derivation
of translational equations of bodies relative to each other
while the internal problem provides the definition of
physical multipoles of each body and translational equa-
tions of motion of the center of mass of the body with
respect to the origin of the body-adapted local coordinates.
The internal problem also gives us the evolutionary
equations of the body’s physical multipoles including the
rotational equations of motion of the body’s spin. A
solution of the external problem is rendered in a single
global coordinate chart covering the entire manifold M. A
solution of the internal problem is executed separately for
each body in the body-adapted local coordinates. There are
N-local coordinate charts for N bodies making the atlas of
the spacetime manifold. Mathematical construction of the
global and local coordinates relies upon and is determined
by the solutions of the field equations of the scalar-
tensor theory of gravity. The coordinate-based approach
to solving the problem of motion provides the most
effective way for the unambiguous separation of the
internal and external d.o.f. of matter and for the definition
of the internal multipoles of each body. Matching of the
asymptotic expansions of the solutions of the field equa-
tions in the local and global coordinates allows us to find
out the structure of the coordinate transition functions on
the manifold and to build the effective background metric
Jap ON spacetime manifold M that is used for transforming
the coordinate-dependent form of the equations of motion

to the covariant one which can be compared with the MPD
covariant equations of motion.

The global coordinate chart is introduced for describing
the orbital dynamics of the body’s center of mass. It is not
unique and is defined up to the group of diffeomorphisms
which are consistent with the assumption that spacetime
is asymptotically flat at null infinity. This group is called
the Bondi-Metzner-Sachs (BMS) group [125,155] and it
includes the Poincare transformations as a subgroup. It
means that in case of an isolated astronomical system
embedded to the asymptotically flat spacetime we can
always introduce a nonrotating global coordinate chart with
the origin located at the center of mass of the system such
that at infinity (1) the metric tensor approaches the
Minkowski metric, 7,43, and (2) the global coordinates
smoothly match the inertial coordinates of the Minkowski
spacetime. The global coordinate chart is not sufficient for
solving the problem of motion of extended bodies as it is
not adequately adapted for the description of the internal
structure and motion of matter inside each body in the
isolated N-body system. This description is done more
naturally in a local coordinate chart attached to each
gravitating body as it allows us to exclude various spurious
effects appearing in the global coordinates (like Lorentz
contraction, geodetic precession, etc.) which have no
relation to the motion of matter inside the body
[69,156]. The body-adapted local coordinates replicate
the inertial Lorentzian coordinates only in a limited domain
of spacetime manifold M inside a world tube around the
body under consideration. Thus, a complete coordinate-
based solution of the external and internal problems of
celestial mechanics requires introduction of N+ 1 coor-
dinate charts—one global and N local ones [83,99]. It
agrees with the topological structure of manifold defined by
a set of overlapping coordinate charts making the atlas of
spacetime manifold [157,158]. The equations of motion of
the bodies are intimately connected to the differential
structure of the manifold characterized by the metric tensor
and its derivatives. It means that the mathematical pre-
sentations of the metric tensor in the local and global
coordinates must be diffeomorphically equivalent; that is,
the transition functions defining spacetime transformation
from the local to global coordinates must map the compo-
nents of the metric tensor of the internal problem of motion
to those of the external problem and vice verse. The
principle of covariance is naturally satisfied when the
law of transformation from the global to local coordinates
is derived by matching the global and local asymptotic
solutions of the field equations for the metric tensor.
The coordinate transformation establishes a mutual func-
tional relation between various geometric objects that
appear in the solutions of the field equations, and deter-
mines the equation of motion of the origin of the local
coordinates adapted to each body. The coordinate trans-
formations are also employed to map the equations of
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motion of the center of mass of each body to the coordinate-
free, covariant form.

The brief content of our study is as follows. Next, Sec. 11
summarizes the main concepts and notations used in the
present paper. In Sec. III we discuss a scalar-tensor theory
of gravity in application to the post-Newtonian celestial
mechanics of an N-body system including the -y para-
metrization of the field equations, the small parameters, the
post-Newtonian approximations, and gauges. Parametrized
post-Newtonian coordinate charts covering the entire
spacetime manifold M globally and in a local neighborhood
of each body are set up in Sec. I'V. They make up an atlas of
spacetime manifold. Geometrical properties of coordinates
in relativity are characterized by the functional form of the
metric tensor and its corresponding parameters—the inter-
nal and external multipoles of a gravitational field—which
are also introduced and explained in Sec. IV along with the
multipolar structure of the scalar field. The local differential
structure of spacetime manifold M presumes that the
functional forms of the metric tensor and scalar field given
in different coordinates must smoothly match each other in
the buffer regions where the coordinate charts overlap. The
procedure of matching of the asymptotic expansions of the
metric tensor and scalar field in the global and local
coordinates is described in Sec. V that establishes
(1) the functional structure of the body-frame external
multipoles of a gravitational field in terms of the volume
integrals taken from the distribution of mass density, matter
current, pressure, etc., (2) defines the worldline WV of the
origin of the body-adapted local coordinates and yields
the equation of its translational motion with respect to the
global coordinate chart, and (3) defines the effective
background metric, Gaps for each extended body that is
used later on for derivation of the covariant equations of
motion of the bodies.

Section VI provides details of how the local coordinate
chart adapted to each extended body is used for a detailed
description of the body’s own gravitational field inside and
outside of the body and for definition of its mass, center of
mass, linear and angular momentum (spin). This section
also derives the equations of motion of a body’s center of
mass moving along worldline Z, and its spin in the body-
adapted local coordinates. Translational equations of
motion of a body’s center of mass in the global coordinates
follow immediately after substituting the local equations of
motion to the parametric description of the worldline WV of
the origin of the local coordinates with respect to the global
coordinates. The parametric description of worldline W
follows through the multipolar expansion of the external
gravitational potentials in Sec. VII and that of the external
multipoles in Sec. VIII. Section IX derives the equations of
translational motion of the worldline Z of the center of
mass of each body in terms of the complete set of the
Blanchet-Damour internal multipoles of the bodies com-
prising the N-body system. Rotational equations of motion

for spin of each body with the torque expressed in terms of
the Blanchet-Damour multipoles are derived in Sec. X.
Finally, Sec. XI introduces the reader to the basic concepts
of the Mathisson-Papapetrou-Dixon variational dynamics
and establishes a covariant form of the post-Newtonian
translational and rotational equations of motion of extended
bodies derived previously in the conformal harmonic
coordinates in Secs. IX and X.

The paper has four Appendices. Appendix A sets out
auxiliary mathematical relationships for symmetric trace-
free (STF) tensors. Appendix B compares our equations
of translational motion from Sec. VII with similar equa-
tions derived by Racine and Flanagan [84] and Racine
et al. [85] and analyzes the reason for the seemingly
different appearance of the equations. Appendix C
explains the concept of Dixon’s multipole moments of
extended bodies and discusses their mathematical corre-
spondence with the Blanchet-Damour multipole moments.
Finally, Appendix D compares Dixon’s covariant equa-
tions of translational and rotational motion of extended
bodies with our covariant equations of motion from
Sec. XI.

II. PRIMARY CONCEPTS AND
MATHEMATICAL NOTATIONS

We consider an isolated gravitating system consisting of
N-extended bodies in the framework of a generic scalar-
tensor theory of gravity. The bodies are indexed by either of
three capital letters B, C, D from the Roman alphabet. Each
of these indices takes values from 1 to N. The bodies have
arbitrary but physically admissible distributions of mass,
internal energy, pressure, and velocity of matter which can
depend on time. We exclude processes of the matter
exchange between the bodies so that they interact between
themselves only through the coupling to the gravity and/or
scalar field force. We also exclude processes of nuclear
transmutation of matter particles.

It is now well understood [17,84,97,99,159] that the
solution of the problem of motion of N-body system
requires introduction of one global coordinate chart, x“,
covering the entire spacetime manifold and N-local coor-
dinate charts, w§, adapted to each body B of the system. If
there is no confusion with other bodies the subindex B in
the notation of the local coordinate chart of the body B is
omitted.

Equations of scalar-tensor theory of gravity admit a class
of conformal transformations of the metric tensor which
allows us to put the gravity field equations in two different
forms which are referred to as the Einstein and Jordan
frames respectively. The field equations in the Einstein
frame makes the field equations look exactly as Einstein’s
equations of general relativity with the scalar field entering
solely the right-hand side of the field equations in the form
of the stress-energy tensor. The metric tensor in the Einstein
frame is coupled with the scalar field explicitly while the
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Ricci tensor is uncoupled from the scalar field. In the
Jordan frame the situation is opposite—the Ricci tensor
couples with the scalar field explicitly while the metric
tensor is uncoupled from the scalar field. It was debated for
a while which frame—Einstein or Jordan—is physical
[160,161]. The answer is that all classical physical pre-
dictions are to be conformal-frame invariant [162].
Therefore, the choice of the frame is a matter of math-
ematical convenience. In the present paper we shall
primarily work in the Jordan frame in which matter is
minimally coupled to the gravitational field like in general
relativity.

Let us single out a body B in the N-body system and
consider the metric tensor in the local, body-adapted
coordinates. The metric outside the body is parametrized
by two infinite sets of configuration parameters which are
called the internal and external multipoles. The multipoles
are purely spatial, 3-dimensional, symmetric trace-free
Cartesian tensors [50,82,163] residing on the hypersurface
H,, of constant coordinate time up passing through the
origin of the local coordinate chart, wg. The internal
multipoles characterize the gravitational field and internal
structure of the body B itself and they are of two types—the
mass multipoles MX, and the spin multipoles S5 where the
multi-index L = iyi,...i; consists of a set of spatial indices
with [ denoting the rank of the STF tensor (I > 0). If
there is no confusion, the index B of the internal multipoles
is dropped off. There are also two types of external
multipoles—the gravitoelectric multipoles Q;, and the
gravitomagnetic multipoles C;. The external multipoles
with rank / > 2 characterize tidal gravitational field in the
neighborhood of body B produced by other (external)
bodies residing outside body B. Gravitoelectric dipole Q;
describes local acceleration of the origin of the local
coordinates adapted to body B. Gravitomagnetic dipole
C; is the angular velocity of rotation of the spatial axes of
the local coordinates. In what follows we set C; = 0. The
scalar field of the scalar-tensor theory of gravity has its own
multipolar decomposition with the internal and external
multipoles. The external multipoles of the scalar field are
denoted as P; . The above-mentioned multipoles are called
canonical as they are directly related to 2 d.o.f. of vacuum
gravitational field and one d.o.f. of the scalar field. The
overall theory also admits the appearance of noncanonical
STF multipoles in the process of derivation of the equations
of motion. These multipoles are related to the gauge d.o.f.
and can be eliminated from the equations of motion by the
appropriate choice in the definition of the canonical multi-
poles and the center of mass of body B.

Definitions of the canonical STF multipoles must be
consistent with the differential structure of spacetime
manifold M determined by the solutions of the gravity
field equations in the global and local coordinate charts.
The consistency is achieved by applying the method of
asymptotic matching of the external and internal solutions

of the field equations that allows us to express the external
multipoles, Q; and C;, in terms of the internal multipoles,
ME and S. The internal multipoles of an extended body B
are defined by the integrals taken over the body’s volume
from the correspondingly chosen internal distribution of
mass energy inside the body. This distribution includes not
only the internal characteristics of the body B (mass
density, pressure, compression energy, etc.) but also the
energy density of the tidal gravitational field produced by
the external bodies.

There are two important reference worldlines associated
with the translational motion of each body B: a worldline
W of the origin of the body adapted, local coordinates, w§,
and a worldline Z of the center of mass of the body.
Equations of motion of the origin of the local coordinates
are obtained by performing the asymptotic matching of the
internal and external solutions of the field equations for the
metric tensor. Equations of motion of the center of mass of
the body are derived by integrating the macroscopic post-
Newtonian equations of motion of matter which are the
consequence of the local law of conservation of the stress-
energy tensor. The center of mass of each body is defined
by the condition of vanishing of the internal mass dipole of
the body in the multipolar expansion of the metric tensor in
the Einstein frame, Z4 = 0. This definition imposes a
constraint on the local acceleration Q; that makes worldline
W coincide with Z. It also eliminates the other extraneous
(noncanonical) types of STF multipoles of the gravitational
field from the translational and rotational equations of
motion.

We use G to denote the observed value of the universal
gravitational constant and ¢ as a fundamental speed both in
gravity and matter sectors of the theory. Every time, when
there is no confusion about the system of units, we choose a
geometrical system of units such that G = ¢ = 1 so that G
and ¢ do not appear in equations explicitly. We put a hat
above any function that describes a contribution from the
internal distribution of mass, velocity, etc., of body B in the
local coordinates adapted to the body. A bar over any
function denotes functions produced by the distributions of
mass, velocity, etc., from the bodies being external with
respect to body B. The bar also denotes the gravitational
potentials entering the external multipoles as well as the
metric tensor, g,4, of the effective background manifold, M,
that is used to construct covariant equations of motion of
the bodies in Sec. XI.

Primary mathematical symbols and notations used in the
present paper are as follows:

(i) The capital Roman indices B,C,D label the ex-

tended bodies of the N-body system. Each of them
takes values from the set {1,2,...,N}.
(i) The small Greek letters a, f3, 7, ... denote spacetime
indices of tensors and run through values 0,1,2,3.
(iii) The small Roman indices i, j, k, ... denote spatial
tensor indices and take values 1,2,3.
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@iv)

)

The capital Roman letters L, K, N, S denote spatial
tensor multi-indices, for example, L = {i i,...i;},
N = {i1i2-'-in}’ K—-1= {iliz...ik_l}, etc.
The Einstein summation rule is applied for
repeated (dummy) indices and multi-indices, for
example’ PaQaEPOQO+P1 QI+P2Q2+P3Q3’
PiQi = 73191 + PZQ2 + 7)393, PLQL:
Pi‘iz"'i’Qiliz...i,, PK_IQK—lzpi‘iz'”i"“Qiliz...ik_la
etc.

J

(viii)

(ix)
x)

(x1)
(xii)
(xiii)

(xiv)

(xv)

(xvi)
(xvii)

(xviii)

(xix)

+1

gjp=4q —1

(vi)

(vii)

The Kronecker symbol §; =& =&} = 8 in
3-dimensional space is a unit matrix

5—{1
=10

The Levi-Civita fully antisymmetric symbol,
eijx = €%, in 3-dimensional space is defined as
€1p3 = +1, and

if i =j,
if i # j.

if the set {7, j, k} forms an even permutation,

if the set {4, j, k} forms an odd permutation,

0 if, atleast, two indices from the set {i, j, k} coincide.

E,p,5 is a 4-dimensional generalization of the fully
antisymmetric, 3-dimensional Levi-Civita symbol.
Jap 1s a full metric of spacetime manifold M.

Jap 1s the effective metric of the background
spacetime manifold M.
Nop=diag{—1,+1,+1,+1} is
metric.

hgp is the metric perturbation of the Minkowski
spacetime in the global coordinate chart.

izaﬁ is the metric perturbation of the Minkowski
spacetime in the local coordinate chart of body B.
wé = (W, wh) = (ug,wh) are the local coordi-
nates adapted to a body B with up being the local
coordinate time. Every time, when there is no
confusion, we drop the sub-index B from the
notations of the local coordinates. Thus, by default
w? = (W, w') = (u,w') are the local coordinates
adapted to body B with u being the local coor-
dinate time.

x* = {x% x'} = {t,x'} are the global coordinates
covering the entire spacetime manifold M or M.
Notation for the manifold should not be confused
with the mass internal monopole of body B which
is denoted with M.

0, = 0/0x* is a partial derivative with respect to
coordinate x“.

d, = 0/Ow* is a partial derivative with respect to
the local coordinate w”.

Shorthand notations for the multi-index partial
derivatives with respect to coordinates x“ are
5)L = 5,-1“.51 = 8,~18,~2 . ..851, aL_l Ea
Opi,if_,» ELC.

Shorthand notations for the multi-index partial
derivatives with respect to coordinates w® are
(?LEail...i,:ai,aiz'--ai,’ Op1 =0
0

the Minkowski

[TRTEE apL—lE

TN 8pL—IE

piy..i,» €LC.

[

(xx)

(xx1)

(xxii)
(xxiii)

(xxiv)

(xxv)

(xxvi)

V standing in front of a group of p tensor
indices denotes an operator of the covariant
derivative of the pth order with respect to the

background metric g,4, for example, Va]azu_ap =

Va, Vaz...Vap.

V standing in front of a group of p tensor indices
denotes a covariant derivative of the pth order with
respect to the full metric g, that is Valazu_ap =

AR

a Vay -
% = ﬁ“va denotes a covariant derivative along
vector u°.

% denotes a Fermi-Walker covariant derivative
along vector u* [ [164], Chapter 1, Sec. 4],
Tensor (Greek) indices of geometric objects on
spacetime manifold M are raised and lowered with
the full metric g,.

Tensor (Greek) indices of geometric objects on the
effective background manifold M are raised and
lowered with the background metric g,z.

Tensor (Greek) indices of the metric tensor pertur-
bation h,; are raised and lowered with the
Minkowski metric 7.

(xxvii) The spatial (Roman) indices of geometric objects

are raised and lowered with the Kronecker symbol
5. Effectively, it means that the position of the
spatial indices—either superscript or subscript—
does not matter.

(xxviii) A symbol of summation over all N bodies of an

(Xxix)

(xxx)
(xxxi)
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if liseven,

. { I(1=2)(1—4)..4-2
T if 7isodd.

I(1-2)(1-4)..3-1

(xxxii) The round parentheses around a group of
tensor indices denote full symmetrization,

1
Tiaay...a) = ﬁZTG(m)G(az)mﬁ(m)’

=N

where ¢ is a permutation of the set S =
{a1, @, ..., o}

{ a ay o e }

" lo@) ol@) olw) .. olw))
forexample, T (45, =35 (Topy + T pya+ Tyap+ T poy+
Ta]/ﬁ+T]/ﬁa)’ etc.

(xxxiii) The curled parentheses around a group of tensor
indices denote un-normalized symmetrization
over the smallest set of the index permutations,
for example, T'(,64,, =T 405, +T 300y +T,04p, etc.

(xxxiv) The square parentheses around a pair of tensor

indices denote antisymmetrization, for example,

Tl — L(TePr — 1Per), ete.

The angular brackets around tensor indices

denote a symmetric trace-free projection of tensor

Ty =T, The STF projection 7', of tensor

T; is constructed from its symmetric part,

(XXXV)

Sy = T(L) = T(i]iz.“i,)v (1)

by subtracting all the permissible traces. This
makes T’ fully symmetric and trace free on all
pairs of indices. The general formula for the STF
projection is [50,82]

Sy @r-2n-1)1

Ty EZ o ' T
2ol (I=2n)! (20— 1)1
X B(iyiy... Oty ying Singr i) it (2)

where [//2] is the largest integer less than or equal
to 1/2.
(xxxvi) The STF spatial derivative is denoted by the
angular parentheses embracing the STF indices,
for example, 9, = 0, y Or Oigy = Dy i)
(xxxvil) The Christoffel symbols on a spacetime mani-
fold M are I, = 56°°(0p9y6 + 0,955 — Doy )-
(xxxviii) The Christoffel symbols of the effective back-
ground manifold M are T% =35 (9yg,,+
ayf_}ﬁo‘ - aﬁf_]ﬁy)'

iin...i

(xxxix) The sign of the Riemann tensor on spacetime
manifold M is defined by convention (it is the
same as in [165])

1
R(l/)’/w = 5 (a(wgﬂ/,t + a/i/,tgaz/ - aﬂbg(l/l - aaﬂgﬂv)

+ gpa<rgurgﬂ - Fgmr;,/)- (3)

(xxxx) The Riemann tensor of the effective background
manifold M is
R

1 _ _ _ _
apuy — 5 (a(ll/gﬂﬂ + a/i,ugay - a/)’vgaﬂ - aaﬂg/ﬁ/)

+ gpu(fgvl;;ﬂ - fﬁﬂfgy)- (4)

The sign conventions (3) and (4) for the Riemann
tensor are opposite to that from the Weinberg
textbook [ [166], Eq. 6.6.2].
Other notations will be introduced and explained in the
main text of the paper as they appear. Useful algebraic and
differential identities of STF tensors are given in
Appendix A of the present paper.

III. SCALAR-TENSOR THEORY AND
POST-NEWTONIAN APPROXIMATIONS

We consider an isolated N-body system comprised of
N-extended bodies with a nonsingular interior described by
the stress-energy tensor T% of baryonic matter. The bodies
have a localized matter support and are supposed to be
isolated one from another in space in the sense that
accretion, transfer, and other fluxes of baryonic matter
outside of the bodies are excluded.

Post-Newtonian celestial mechanics describes orbital
and rotational motions of the bodies on a curved spacetime
manifold M defined by the metric tensor g,; obtained as a
solution of the field equations of a metric-based theory of
gravitation in the slow-motion and weak-field approxima-
tion. The class of viable metric theories of gravity, which
can be employed for developing relativistic celestial
mechanics, ranges from general theory of relativity
[42,97] to a scalar-vector-tensor theory of gravity proposed
by Bekenstein [167] for describing orbital motion of
galaxies in clusters at cosmological scale. It is not the
goal of the present paper to review all these theories and
we refer the reader to reviews by Will [36] and Turyshev
[37] for further details.

We shall build the parametrized post-Newtonian celestial
mechanics in the framework of a scalar-tensor theory of
gravity introduced by Jordan [168,169] and Fierz [170],
and independently rediscovered later by Brans and Dicke
[171] and Dicke [172,173]. The Jordan-Fierz-Brans-Dicke
(JFBD) theory extends the Lagrangian of general relativity
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by introducing a long-range, nonlinear scalar field (or fields
[86]) being minimally coupled to gravity. The presence of
the scalar field causes deviation of the metric-based gravity
theory from a pure geometric phenomenon. The scalar field
effects are superimposed on gravitational effects of general
relativity, thus, highlighting the geometric role of the metric
tensor and making physical content of the theory richer.
Recent discovery of the scalar Higgs boson at LHC [174]
and its possible connection to the effects of a JFBD scalar
field in gravitation and cosmology [175] reinforce the
significance of application of the scalar-tensor theory in
relativistic astrophysics and celestial mechanics of isolated
gravitating systems.

A. Lagrangian and field equations

A gravitational field in the scalar-tensor theory of gravity
is described by the metric tensor g,; and a long-range
scalar field @ with nonlinear self-interaction described by
means of a coupling function w(®). Field equations in the
Jordan frame of scalar-tensor theory are derived from the
action [88]

1 4 1 @ 4
S = 6n DR,/ gdx—l—gﬂ/L V—gd*x
+/LM1/—gd4x, (5)

where g = det[g,;] < 0 is the determinant of the metric
tensor g4, R = "‘ﬂRaﬂ is the Ricci scalar, R, is the Ricci
tensor,

®
Lo = —“’2(@) 970,00, ® — V(®) (6)

is the Lagrangian of the scalar field with V(®) being the
potential of the scalar field, and LM = L(gap,y) is the
Lagrangian of matter of the N-body system with y denoting
the dynamic variables characterizing the matter of the
extended bodies comprising the system. We keep the
self-coupling function w(®) of the scalar field unspecified
for making covariant parametrization of possible deviations
of the scalar-tensor theory from general relativity.
Moreover, we assume the minimal coupling of the metric
tensor g,z with matter variables y without coupling to the
scalar field @. It explains why the Lagrangian LM does not
depend on the scalar field ®.

The action (5) is written in the Jordan frame in which the
metric tensor g,; has a standard physical meaning of
observable quantity used in the definitions of the proper
time, the proper length, and in the geodesic equation of
motion of test particles [88]. Taking variational derivatives
from the action (5) with respect to the metric tensor, we
obtain gravitational field equations for the metric tensor,

1 1 87z
Rm/ - E.g,uyR = 5 (vm/(b - g,uu[]yq) + T;?l/) + ET;IYIIJ’ (7)
where, here and everywhere else, the operator Vﬂ denotes a
covariant derivative on the spacetime manifold with the
metric g,s, the g-box symbol

Dg = g/wij = gm/a/w - gﬂ”[‘ﬁvaa (8)

denotes the differential Laplace-Beltrami operator
[165,176] on manifold with metric g,, and 5, and T4,
are stress-energy tensors of the scalar field and matter of the
N-body system respectively. In particular,

O 1
To = % (8,}1)(%@ —igw(?“(b@ad)> +9.,V(®), (9)

and
T})’,[, =p(1 +Mu,u, +8,,, (10)

where p and II are the density and the specific internal
energy of the baryonic matter, u® = dx*/cdr is the 4-
velocity of the matter with 7 being the proper time along the
worldline of the matter’s volume element, and 8% is an
arbitrary (but physically admissible) symmetric tensor of
spatial stresses being orthogonal to the 4-velocity of matter

U8,y = 0. (11)

Equation (11) means that the stress tensor has only spatial
components in the frame comoving with matter.

Equation for the scalar field @ is obtained by variation of
action (5) with respect to ®. After making use of a
contracted form of (7) it yields [88]

1
0®———
77 34 2w(D)

dw av
™ _Z_9°®9 O - 20— +4V(D 12
X |87 dq)a“ 0, dd)+ V@), (12)

where T™ = g”/T}); is the trace of the stress-energy tensor

of matter which serves as a source of the scalar field along
with its own kinetic (due to the self-coupling) and potential
energies.

A gravitational field and matter are tightly connected via
the Bianchi identities of the field equations for the metric
tensor [42,165] which read

v, (Rw —% WR) =0. (13)

The Bianchi identities make four out of ten components of
the metric tensor fully independent. This freedom is usually
fixed by picking up a specific gauge condition, which
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imposes four constraints on the components of the metric
tensor and/or its first derivatives. At the same time the
Bianchi identity (13) imposes four differential constraints
on the stress-energy tensor of matter and scalar field which
constitute microscopic equations of motion of matter [42].
Due to the Bianchi identities (13) the source of the
gravitational field standing in the right-hand side of (7)
is also conserved. The law of conservation of this tensor is
convenient to write down in the following form:

VHdD

After taking the covariant derivative from the stress-energy
tensor of the scalar field (9), and making use of the scalar
field equation (12) we can check by direct calculation that
the right-hand side of (14) vanishes. It yields the laws of

conservation of the stress-energy tensor of baryonic matter
of an N-body system,

v, T =0. (15)

The conservation of the stress-energy leads to the (exact)
equation of continuity

1
VA’
and to the thermodynamic law of conservation of energy

that is expressed as a differential relation between the
specific internal energy I1 and the stress tensor of matter

va(pua) = aa(p\/__gua) =0, (16)

pud,I1 4 8%V uz = 0. (17)

These equations will be employed later on for solving the
field equations and for derivation of equations of motion of
the extended bodies.

B. Post-Newtonian approximations

We shall assume that the potential V(®) of the scalar
field can be neglected in the following calculations.
Discarding the potential V(®) is justified from an obser-
vational point of view in a weak gravitational field (like in
the Solar System) as it does not reveal any measurable
effect in orbital and rotational motion of celestial bodies on
sufficiently long intervals of time [36,37]. On the other
hand, if the potential of the scalar field is not identically nil,
it may become important in astrophysical systems having a
strong gravitational field like compact binary neutron stars
or black holes, and its inclusion to the theory leads to
important physical consequences [86,177].

Neglecting the scalar field potential simplifies the field
equations (7) and (12) and reduces them to the following
form:

1 1 w(P) L
R/“/ _Egle :6 |:877,'T/u/ —|—T <8”CD8,}D—§gW3 (I)aa¢>
+V,, 0 g,,ymgob} : (18)
Oo—- (87 -9 gr00,0), (19)

T T3 20(@) 7T T ae? T )

where we suppressed index M at the stress-energy tensor of
the baryonic matter for simplicity: T+ = T, and T = T?,,.

Field equations (18) and (19) of the scalar-tensor theory
of gravity represent a system of eleventh nonlinear differ-
ential equations in partial derivatives. It is challenging to
find their solution in the case of an N-body system made of
extended bodies with a sufficiently strong gravitational
field whose backreaction on the geometry of a spacetime
manifold cannot be neglected. Like in general relativity, an
exact solution of this problem is not known and may not be
available in analytic form. Hence, one has to resort to
approximations to apply the analytic methods. Two basic
methods have been worked out in asymptotically flat
spacetime: the post-Minkowskian (PMA) and the post-
Newtonian (PNA) approximations [17,30,154]. Post-
Newtonian approximations are applicable in cases when
matter moves slowly and the gravitational field is weak
everywhere—the conditions, which are satisfied, e.g., within
the Solar System. Post-Minkowskian approximations relax
the requirement of the slow motion but the weak-field
limitation remains. A strong field regime requires more
involved techniques [43]. We use the method of the post-
Newtonian approximations in this paper which is remarkably
effective and consistent in describing the gravitational field of
isolated gravitating systems including binary pulsars con-
taining dense neutron stars and a binary black hole inspiral-
ling toward a final merger [178].

The post-Newtonian approximation scheme suggests
that the metric tensor can be expanded in the near zone
of an N-body system in powers with respect to the inverse
powers of the fundamental speed ¢.” This expansion may
be not analytic at higher post-Newtonian approximations in
a certain class of coordinate charts including the harmonic
coordinates [50,180]. The exact mathematical formulation
of the basic axioms underlying the post-Newtonian expan-
sion was given by Rendall [181]. Practically, it requires one
to have several small parameters characterizing the N-body
system and the interior structure of the bodies. They are
€ ~ vi/c, € ~v./c, and n; ~ U;/c?, . ~ U,/ c?, where v
is a characteristic internal velocity of motion of matter
inside an extended body, v, is a characteristic velocity of
the relative motion of the bodies with respect to each other,

>For historical reasons the speed ¢ in all sectors of fundamental
interactions is called “the speed of light” [179]. It is clear that in
the gravity sector its physical meaning is the speed of gravity
[98,100].
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U; is the internal Newtonian gravitational potential inside
each body, and U, is the external Newtonian gravitational
potential in the regions of space between the bodies. If we
denote a characteristic radius of an extended body as L and
a characteristic distance between the bodies as R, the
internal and external gravitational potentials will have
the following estimates: U; ~GM/L and U,~ GM/R,
where M is a characteristic mass of the body. Due to the
virial theorem of the Newtonian gravity [42] the small
parameters are not fully independent. Specifically, one has
€2 ~n, and € ~ n; if the internal motions of matter inside
the body are governed by the gravitational field of the
body through macroscopic equations of motion. The slow-
motion parameter €; is not related to the weak-field
parameter #; in all other cases like rotational motion of
the body, convection of matter, sound waves, etc.
Parameters ¢; and e, are the primary parameters in
calculating the post-Newtonian expansions of the solutions
of the field equations for the metric tensor and scalar field.
In what follows, we use a single notation € to quantify the
order of the parametric expansion in the post-Newtonian
series.

Besides the small parameters ¢ and 7, the post-
Newtonian approximation utilizes two more small param-
eters: 6 ~ L /R characterizing the dependence of the body’s
gravitational field on its finite size L, and the asphericity
parameter A ~ AL /L estimating how much the shape of the
body under consideration deviates from the sphere. These
parameters appear in vacuum multipolar expansion of the
metric tensor and scalar field. As the metric tensor has ten
algebraically independent components, we might expect
appearance of ten different types of tensor multipoles but
only two types of them (mass and spin multipoles) are
physically significant because eight types of the tensor
multipoles are gauge dependent and can be eliminated from
the multipolar expansion of the metric tensor by using the
gauge freedom of the theory [50,78,82]. Multipolar expan-
sion of the scalar field has naturally one type of the (scalar)
multipoles which is fully independent of the choice of the
metric gauge. The property of disappearance of eight types
of the tensor multipoles in the multipolar expansion of the
metric tensor is known as the effacing principle [154]
which tells us that the only information about the internal
structure of the body obtained from the measurement of its
vacuum gravitational field, can be extracted from the
canonical mass and spin multipoles of the body. It imposes
certain limitations on our ability to get unambiguous
information about the distribution of mass, velocity, pres-
sure, and other internal characteristics of the body, for
example, the gravitational field of an extended body having
spherically symmetric distribution of mass cannot be
distinguished from that of a massive pointlike particle
having the same mass due to the Birkhoff theorem that is
valid in the scalar-tensor theory of gravity as well as in
general relativity [182].

In principle, translational and/or rotational equations of
motion of extended bodies might depend on more than the
two (canonical) types of the multipoles of the bodies. This
is because derivation of the equations of motion is based on
integration of macroscopic equations of motion of matter
over finite volumes of the bodies and it is not evident that
the result of a such integration will not produce additional
noncanonical types of the multipoles entering the gravita-
tional force and/or torque exerted on each body. Had this
happened the parameter 6 = L/R would appear in the post-
Newtonian expansions even if the bodies comprising the N-
body system were spherically symmetric. Scrutiny into the
theoretical study of the problem of motion in general
relativity has shown that such noncanonical multipoles
do not appear in the equations of motion of an N-body
system and the internal structure of extended bodies is
completely effaced up to 2.5 PN approximation for spheri-
cally symmetric bodies [154,183-186] and up to 1 PN
approximation for arbitrarily structured bodies [75,84,87].
We demonstrate in the present paper that the effacing
principle is also valid in the scalar-tensor theory of gravity
in 1PN approximation. The effacing of the internal struc-
ture and disappearance of the noncanonical multipoles of
the bodies from equations of motion indicates that the
equations can be extrapolated to the case of structureless
bodies like black holes in compact binaries.

The multipoles of extended bodies have some bare
values in cases when the body is nonrotating and fully
isolated from an external gravitational environment. The
numerical value of the multipoles will deviate from the
bare value if the body rotates and interacts gravitationally
with other members of the N-body system as it brings
about intrinsic deformations in the distribution of matter
inside the body. The measured value of each multipole is
a sum of its bare value and the induced deformations. The
magnitude of the induced deformations depends on the
parameters of elasticity of each body which are intrinsi-
cally related to the equation of state of the body’s matter.
These parameters are known as Love’s numbers k,; where
subindex n = 1, 2, 3 indicates the physical type of the
Love number and [ is the multipole number [187-190].
Measurement of the Love numbers of neutron stars and
black holes in compact inspiralling binaries is one of the
main goals of gravitational wave astronomy [23-26].
Generally speaking, the Love numbers k,, depend on
the frequency of orbital harmonics and are different
for each multipole [27]. Therefore, a complete study of
the internal structure of neutron stars by means of the
gravitational wave astronomy requires including all multi-
poles of the bodies to the translational and rotational
equations of motion in order to get an exhaustive amount of
information about their internal physical characteristics—
equation of state, radius, distribution of mass density, etc.
The present paper accounts for all internal multipoles of the
bodies.
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C. Post-Newtonian expansions

Post-Newtonian series are expansions of the metric
tensor, scalar field, and matter variables around their
background values with respect to the small parameters
introduced above. We denote @ the background value of
the scalar field @ and assume that the dimensionless
perturbation of the field, ¢, is small compared with ®,.
In the cosmological case, @ is not constant and changes
subject to the Hubble expansion of the Universe [191]. The
inverse value of the background scalar field is proportional
to the universal gravitational constant G ~ 1/®,, as shown
below in (47). Therefore, the time variation of @, causes a
secular evolution of the universal gravitational constant
G = Gy + G(t — 1,) as well as other PPN parameters of the
scalar-tensor theory [124]. The rate of the hypothetical
secular variation of the universal gravitational constant has
been measured by lunar laser ranging and is negligibly
small—G /Gy = (7.1 £7.6) x 107 yr'  [192]. Other
techniques yield similar constraints [90,193,194]. In this
paper we consider the case of asymptotically flat space time
and treat @, as constant. We write exact decomposition

O]

o, " 1 + ¢, (20)
where ¢ is the dimensionless value of the scalar field ®
normalized to @.

According to theoretical expectations [191] and exper-
imental limitation on PPN parameters [36,37,192], the
post-Newtonian perturbation ¢ of the scalar field has a
very small magnitude, so that we can expand all quantities
depending on the scalar field in a Maclaurin series with
respect to ¢ using it as a small parameter in the expansion.
In particular, the post-Newtonian decomposition of the
coupling function @w(®) can be written as

(@) = wy + wyp + O(¢?), (21)

where @y = o(®y), @ = (dw/d¢)e_q,, and we impose
the boundary condition on the scalar field such that ¢
approaches zero as the distance from the N-body system
approaches infinity; see Eqs. (60) and (61). The post-
Newtonian expansion of the perturbation ¢ is given in the
form

¢ =e9® +0(e), (22)

where the post-Newtonian correction ¢ will be defined
below, and the symbol O(e?) indicates the expected
magnitude of the residual terms. Notice that the linear
term being proportional to € does not appear in (22) as it is
incompatible with the field equations (19).

The unperturbed value of the metric tensor g,z in
asymptotically flat spacetime is the Minkowski metric,
Nap- The metric tensor is expanded in the post-Newtonian
series with respect to parameter ¢ around the Minkowski
metric as follows:

Gop =g +€hly) + 05 + 00+ nly +Oe). (23)

The generic post-Newtonian expansion of the metric tensor
is not analytic with respect to parameter € [50,154,180].
However, the nonanalytic (logarithmic) terms emerge only
in higher post-Newtonian approximations and do not affect
the results of the present paper since we restrict ourselves
with the first post-Newtonian approximation. Notice also
that the linear, with respect to ¢, terms in the metric tensor
expansion (23) do not originate from the field equa-
tions (18) and are a pure coordinate-dependent effect.
Hence, they can be eliminated by making an appropriate
adjustment of the coordinate chart [58,87,195]. If we kept
them, they would make the coordinate grid nonorthogonal
and rotating at classic (Newtonian) level. Reference frames
with such properties are rarely used in astronomy and
astrophysics. Therefore, we shall postulate that the linear
term in expansion (23) is absent.

After eliminating the linear terms in the post-Newtonian
expansion of the metric tensor and substituting the expan-
sion to the field equations (18) we can check by inspection
that various components of the metric tensor and the scalar
field have in the first post-Newtonian approximation the
following form [195]:

goo = =1 + &Y + el + O(ed), (24)
Joi = €3h<()?) + O(e), (25)

2
gij = 6;j + €2h§j) + O(e*), (26)

where each term of the expansions will be defined and
explained below. In order to simplify notations, we shall
use the following abbreviations for the metric tensor
perturbations:

loo = héﬁ), hyi = hé?,

h=n?. (27)

h’OO = hg)%)),

2

Post-Newtonian expansion of the metric tensor (24)—(26)

introduces a corresponding expansion of the stress-energy
tensor of matter (10),

Too = Tho + €T + O(e*), (28)
Tor = €Ty + O(e), (29)
T, =T + O, (30)
where
TS =p", (31)

084008-13



SERGEI M. KOPEIKIN

PHYS. REV. D 99, 084008 (2019)

e — (32)
() _ winj ij
Ty = p o'v/ + 87, (33)
2
2 e h
TS =p <?+H—hoo—§>v (34)

v' = cu'/u® = dx'/dt is 3-dimensional velocity of matter,
and

2
pr=/=gu’p =p+ %PW +h)+0()  (35)

is the invariant density of matter that is a useful math-
ematical variable in relativistic hydrodynamics [126] due to
the exact law (16) of conservation of rest mass. This
conservation law can be recast, following (16), to the
equation of continuity [126]

dp* +0;(p™') = 0, (36)

which has the exact Newtonian form in arbitrary coordi-
nates. Since Eq. (36) is exact it makes calculation of the
total time derivative from a volume integral of arbitrary
differentiable function f(z,x) simple,

p*(t,x)f(t,x)d3x:/ p*(t,x)Md3x, (37)

E Vi Vi dt
where Vg denotes a volume of body B, and the operator of
the total time derivative is

d 0 -0

E:E‘Fvaxi. (38)

In derivation of (37) we have taken into account that the
boundary of the volume of body B can change as time
progresses [17] but there is no flux of baryonic matter
through the boundary of the body. We also notice that
Eq. (37) is exact.

In what follows, we shall give up on the post-Newtonian
expansion parameter ¢ in all subsequent equations because
we work only in the first post-Newtonian approximation,
and leaving out € should not cause confusion. We also use
the geometric system of units, G = ¢ = 1. Physical units
like ST or CGS can be easily put back to our equations by
making use of dimensional analysis [196].

D. Conformal harmonic gauge

The post-Newtonian field equations for the post-
Newtonian components of the metric tensor and scalar
field variables can be derived after substituting the post-
Newtonian series of the previous section to the covariant
equations (18) and (19), and arranging the terms in the

expansion in the order of smallness with respect to
parameter €. The post-Newtonian equations are covariant
like the original field equations that is their form is
independent of the choice of spacetime coordinates.
Hence, their solutions are determined up to four arbitrary
functions reflecting a freedom of coordinate transforma-
tions called the gauge freedom of the metric tensor. It is a
common practice to limit the coordinate arbitrariness
by imposing a gauge condition which limits the choice
of coordinates on spacetime manifold. The gauge condi-
tion does not fix the freedom in choosing coordinates
completely—a restricted class of coordinate transforma-
tions within the imposed gauge still remains. This class of
transformations is called a residual gauge freedom which
plays an important role in theoretical formulation of
relativistic dynamics of an N-body system.

One of the most convenient gauge conditions in a scalar-
tensor theory of gravity was proposed by Nutku [146,147]
as a generalization of the harmonic gauge of general
relativity

9,(®y/=gg") = 0. (39)

The Nutku gauge condition (39) is equivalent to the
following condition imposed on the Christoffel symbols:

¢eTY, = g9, In ®. (40)

Let us consider now the Laplace-Beltrami operator intro-
duced above in (8) and write it down in the Nutku gauge in
the case of an arbitrary scalar function F = F(x%). It yields

DgF = g"ﬁ(aaﬂF — aaFaﬁ In q)) (41)

Any function F that is subject to the homogeneous
Laplace-Beltrami equation, U, F = 0, is called harmonic.
The Laplace-Beltrami operator (41) applied to each par-
ticular coordinate being considered as a scalar function
F = x“, gives us

0% = =g 05 In® # 0, (42)

which means that the coordinates x* are not harmonic
functions on the spacetime manifold in the Jordan frame
and in the Nutku gauge. Nonetheless, such nonharmonic
coordinates are more convenient in the scalar-tensor theory
of gravity because they allow us to eliminate more
coordinate-dependent terms from the field equations as
compared with the harmonic gauge condition [ x* =0
which is not equivalent to the Nutku gauge (39). We call the
class of the coordinates satisfying the Nutku gauge (39) the
conformal harmonic coordinates [87]. As we have learned
above, these coordinates are not harmonic in the Jordan
frame but it can be shown that they are harmonic functions
of spacetime manifold in the conformal Einstein frame with

084008-14



COVARIANT EQUATIONS OF MOTION OF EXTENDED ...

PHYS. REV. D 99, 084008 (2019)

the metric g,; = ®g,4. Indeed, in the Einstein frame, the
Nutku gauge condition (40) reads d4(/=3§*) = 0, which
is exactly the harmonic gauge condition.

The conformal harmonic coordinates have many proper-
ties similar to the harmonic coordinates in general relativity.
Our preferences in choosing the conformal harmonic
coordinates for constructing a theory of motion of extended
celestial bodies are justified by three factors:

(1) the conformal harmonic coordinates become har-
monic coordinates in general relativity when the
scalar field is switched off, ® — 0,

(2) the conformal harmonic coordinates represent a
natural generalization of the IAU 2000 resolutions
[83] on relativistic reference frames from general
relativity to scalar-tensor theory of gravity, and

(3) the Nutku gauge condition (39) significantly sim-
plifies the field equations and facilitates finding their
solutions like in the case of the harmonic gauge in
general relativity.

Harmonic coordinates in the Jordan frame have been used by
Klioner and Soffel [197] for constructing post-Newtonian
reference frames in PPN formalism. The conformal har-
monic coordinates were employed in our publications
[17,87] for discussing relativistic celestial mechanics of
the Solar System. We shall also use the conformal harmonic
coordinates in the present paper.

The gauge condition (40) does not fix the conformal
harmonic coordinates uniquely. Let us change the coor-
dinates

xa [N wa — W{l(xa) (43)

but keep the Nutku gauge condition (40) intact in the new
coordinates. After applying the coordinate transformation
(43) to (40) it is straightforward to show that the new
conformal harmonic coordinates w* must satisfy a homo-
geneous wave equation

Pwe B
oxtoxr

which describes the residual gauge freedom in choosing
the conformal harmonic coordinates that remain after
imposing the Nutku gauge condition on the metric tensor.
Equation (44) has the infinite number of nontrivial solu-
tions defining the entire set of the conformal harmonic
coordinates on a spacetime manifold. The residual gauge
freedom in the scalar-tensor theory of gravity is similar to
that existing in the harmonic gauge of general relativity. We
shall specify the set of the conformal harmonic coordinates
used for derivation of equations of motion of celestial
bodies in N-body system in Sec. IV.

9" () (44)

E. Post-Newtonian field equations

Before writing down the field equations, it is worth
noticing that the post-Newtonian approximation of the

scalar-tensor theory of gravity with a variable coupling
function w(®) has two parameters, @, and w), character-
izing deviation from general relativity. It is more conven-
ient to bring these parameters to the standard form of PPN
parameters, y and f [88]

wy + 1
y:a)§+2’ (45)

w/
=1+ 0 (46)

(awy + 3) 2wy + 4)*°

General relativity is obtained as a limiting case of
the scalar-tensor theory when parameters y = f =1 or
@, — o0. Notice that in order to get this limit convergent,
the derivative of the coupling function, wf, must grow
slower than @ as w, approaches infinity. Currently, there
are no experimental data restricting the asymptotic behav-
ior of w{, ~ w3 which could help us to understand better
the nature of the coupling function w(®). This makes the
parameter  a primary target for experimental study in the
near-future gravitational experiments [198-200] including
the advanced lunar laser ranging [201-203] and gravita-
tional wave detectors [91]. The background scalar field @,
and the parameter of coupling @, determine the observed
numerical value of the universal gravitational constant

2 4
G =%t ;'
2a)o+3

(47)

Had the background value @, of the scalar field been driven
by cosmological evolution, the measured values of the
universal gravitational constant G and parameters £ and y
would depend on time [124]. Notice also that in the
geometric system of units G = 1, and Eq. (47) reads

2wy +4 2
O 2wy +3 y+1°

(48)

which allows us to express the background value @, of the
scalar field in terms of the PPN parameter y.

Let us now substitute the post-Newtonian expansions
given by Eqs. (24)—(30) to the field equations (18) and (19)
and make use of the conformal harmonic gauge condition
(39) in the first post-Newtonian approximation. It reads

0o (Mg + hoo) +2(1 = )0 = 20;hy;, (49)

Oi(hie = hoo) +2(1 =)0 = 20;h; (50)

jo

where, for the sake of simplifying the field equations, we
have introduced a new notation of the post-Newtonian
perturbation, gb(z), of the scalar field, namely,

PP = (1-7)p. (51)
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It is worth noting that in the first post-Newtonian approxi-
mation the metric tensor component hg(? = [y, does not
enter (49) and (50) and should be taken into account only at
the second post-Newtonian approximation which we do not
consider in the present paper.

After making use of the stress-energy tensor (31)—(34),
definitions of the PPN parameters (45)—(46) and (48),
one obtains the final form of the post-Newtonian field
equations:

0,0 = —4np*, (52)
U, hoo = —8myp”, (53)
O, hi; = —8xyp*o;), (54)
O, ho; = 8a(1 +7)p" . (55)
0, loo = —8mp* [(H%) v2+H+yi—If—%

- @p=y=1)o| =30, 4=, (50

where the 7-box symbol, [0, =#"0,0,, is the
D’ Alembert (wave) operator of the Minkowski spacetime.
Equations (52)—(56) are valid in the conformal harmonic
coordinate charts defined by the gauge condition (39)
imposed on the components of the metric tensor. Their
solution depends on the boundary conditions imposed on
the metric tensor and the scalar field perturbations. In their
own turn, the boundary conditions singled out a certain
type of coordinate chart. We discuss the coordinate charts
in next section.

IV. PARAMETRIZED POST-NEWTONIAN

COORDINATES
Standard textbooks on the post-Newtonian celestial
mechanics [16,17,48,96,101,126,159]  derives  post-

Newtonian equations of motion in a particular gauge to
suppress the gauge-dependent effects and to bring the
equations to a form which is suitable for finding analytic
solutions and for computational applications like numerical
orbital simulations, data processing, etc. The coordinate-
based approach is also used for solving the field equations
and deriving relativistic equations of motion of compact
inspiralling binaries for the purposes of gravitational wave
astronomy [29-31,204]. The post-Newtonian equations
admit a large freedom in making the gauge (coordinate)
transformations on spacetime manifold as well as in the
configuration space of the orbital parameters characterizing
motion of bodies [205,206]. Therefore, each single term
taken in such post-Newtonian equations separately from the
others makes no physical sense—it can be always changed or
even eliminated by making the post-Newtonian coordinate

transformations. Only after the equations are solved and their
solutions are substituted to observables can we unambigu-
ously discuss gravitational physics because the observables
are invariantly defined. Therefore, a primary goal of the
present paper is to derive the post-Newtonian equations of
translational and rotational motion of arbitrarily structured
bodies in the N-body problem in a fully covariant form.
Nonetheless, the coordinate-dependent form of equations of
motion is more convenient for practical use in various
applications. This is why we, first, derive the equations of
motion in the conformal harmonic coordinates and, then,
establish their correspondence to the covariant form of the
equations of motion.

Derivation of the covariant equations of motion of bodies
from the field equations can be achieved directly by the
methods of differential geometry like in the Mathisson-
Papapetrou-Dixon formalism. They can be compared with
the coordinate-dependent form of the equations of motion
by projecting the corresponding covariant quantities onto
the coordinate basis but we use an alternative approach in
the present paper. More specifically, we build a set of N
local coordinate charts adapted to each body, derive
equations of motion of each body in the local chart, and
then, prolongate the coordinate-dependent description to
the covariant form by making use of the Einstein principle
of equivalence (EEP) applied on the effective background
spacetime manifold M to the multipoles propagated along
the accelerated worldline of the origin of the local coor-
dinates. This procedure is equivalent to “comma-goes-to-
semicolon” rule [165][Chapter 16] applied on the worldline
of the origin of the local coordinates. EEP effectively
allows us to replace each spatial partial derivative & in the
local coordinates with a covariant derivative V, projected
on the hypersurface being orthogonal to the 4-velocity u®
of the origin of the local coordinates. It also replaces each
time derivative in the local coordinates with the Fermi-
Walker covariant derivative of the Fermi-Walker transport;
see Sec. XIE for more details.

Nonetheless, it is not guaranteed that taking the first
post-Newtonian equations of motion and “covariantizing”
them by making use of the comma-goes-to-semicolon rule
will automatically lead to results which are even formally
valid in the fast motion and thus, for binaries, strong-field
regime. Each term in the “generalized” covariant equations
of motion results from a corresponding term in the post-
Newtonian equations of motion, which have themselves
relied on the post-Newtonian field equations for their
derivation. It is certainly conceivable and perhaps even
likely, especially at sufficiently high orders in the multipole
expansions, that there could exist higher-order nonlinear-
ities and higher-order time-derivative terms in some appro-
priate formally valid covariant equations of motion which
would leave no imprint on the appropriately expanded
post-Newtonian equations of motion. Such terms would
then not be produced by the covariantization procedure as
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implemented in the present paper. The limits of application
of the EEP to the derivation of the covariant equations of
motion beyond the first post-Newtonian approximation
requires additional study.

Direct derivation of the covariant equations of motion of
extended bodies having an arbitrary set of multipoles has
been proposed in general relativity by Mathisson [4,5],
further developed by Tulczyjew [207], Tulczyjew and
Tulczyjew [208], Papapetrou [6,134,209], Taub [137],
Madore [138] and, especially, by Dixon [7—11] with some
improvements made by Ehlers and Rudolph [139],
Schattner [140] and Dixon [136]. Subsequent development
of the MPD covariant approach [143,144,210,211] brought
more progress to our understanding of the covariant nature
of motion but it has not yet been elaborated to the extent
that allows us to apply the formalism in astrophysical work.

The MPD approach operates on worldlines of the center-
of-mass of the extended bodies which are considered as
pointlike particles endowed with an infinite set of Dixon’s
multipoles [9]. Such treatment of the extended bodies
requires one to replace the continuous stress-energy tensor
of matter with a, so-called, stress-energy skeleton defined
in terms of distributions [212]. The skeleton must lead to
the same solution of the field equations and to the same
equations of motion as the continuous stress-energy
tensor. This identity has been checked in the linearized
approximation of general relativity but it is not yet clear
how to build the skeleton in the nonlinear gravity regime
that hampers extension of the MPD approach to astro-
physical objects with strong gravity like neutron stars and
black holes whose equations of motion are currently
derived by the matched asymptotic expansions technique
[55-57,213,214].

The MPD covariant approach to the problem of motion
of an N-body system of extended bodies has an ambiguity
concerning the most optimal definition of the center of
mass of an extended body. There are four competing
mathematical definitions based on the, so-called, spin
supplementary condition demanding the intrinsic angular
momentum (spin) of the body to be orthogonal to either
4-velocity of the center of mass (Mathisson-Pirani condi-
tion) or to the body’s linear momentum (Tulczyjew-Dixon
condition) or to some timelike vector (Newton-Wigner
condition) or to the unit vector being tangent to the
coordinate time axis (Corinaldesi-Papapetrou condition).
Depending on the choice of the spin supplementary con-
dition, the MPD equations of motion take different forms
leading to different solutions of the equations of motion
which are intensively discussed in literature—see, e.g.,
[15,211,215-217]—Dbut there is no general agreement which
solution corresponds to a real physical motion of the body.

The above-mentioned problems with the MPD formal-
ism convinced us to use a more practical, coordinate-based
route to the derivation of covariant equations of motion
used along with the method of asymptotic matching of the

solutions of the internal and external problems in the N-
body problem and the Blanchet-Damour (BD) multipole
formalism. The employment of a set of global and local
coordinates is a necessary intermediate step in building the
covariant theory of motion of extended bodies. Coordinates
are necessary to give a physically meaningful definition of
the BD multipoles of the bodies in the nonlinear gravity
regime, to unambiguously single out the center of mass of
each body and its worldline, and to separate the self-action
force of each body from the external gravitational force of
the other bodies of an N-body system. The coordinate
description is practically useful in astrophysics for com-
putation of orbital motion of inspiralling binaries and in the
relativistic celestial mechanics of the Solar System [17]. On
the other hand, the coordinate description of the equations
of motion can be easily converted to the covariant form as
soon as the theory is completed. As we have learned above,
discussion of the dynamics of the N-body problem requires
introduction of one global and N local coordinate charts
adapted to each body. Geometric properties of the coor-
dinate charts as well as their kinematic and dynamic
characteristics are defined by the boundary conditions
imposed on the metric tensor and scalar field.

A. Global coordinate chart

1. Boundary conditions

We consider an isolated system consisting of N-extended
bodies which are gravitationally bound, occupy a finite
volume of space, and there is no other matter outside it.
Since there is no matter outside the system, the spacetime
manifold with the metric tensor g,s can be considered at
infinity as asymptotically approaching to flat spacetime
with the Minkowski metric 7,5 = diag(—1,+1,+1,+1).
We further assume, in accordance with the post-Newtonian
approximations, that there are no physical singularities on
the manifold like black holes, wormholes, etc., among the
bodies of the system, and that the bodies move slowly and
the gravitational field is weak everywhere.

These founding assumptions allow us to cover the whole
spacetime manifold with a global coordinate chart denoted
as x* = (x%,x%), where x° = ¢ is the coordinate time and
x' = x are the spatial coordinates. The global coordinates
are used for describing orbital dynamics of the bodies, for
calculating generation and propagation of gravitational
waves emitted by the isolated system, and for formulating
the global laws of conservation and conserved quantities
[119]. The coordinate time, ¢, and spatial coordinates, x',
have no immediate physical meaning in the regions of
space where the gravitational field is not negligible.
However, when one approaches to infinity the global
coordinates approximate the Lorentz coordinates of the
inertial observer in the Minkowski space. For this reason,
one can interpret the coordinate time ¢ and the spatial
coordinates x’ respectively as the proper time and the
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proper distance measured by a set of the inertial observers
located at rest at spatial infinity [126]. The global coor-
dinates are not defined uniquely but up to a group of
transformation preserving the asymptotic flatness of space-
time. Contrary to the original expectations this group of
transformation is not a 10-parametric Poincaré group but
the infinite-dimensional BMS group which is isomorphic to
the semidirect product of the homogeneous Lorentz group
with the Abelian group of supertranslations [106]. The
Poincaré group is a subgroup of the BMS group.

A precise mathematical description of properties of the
global post-Newtonian coordinates can be given in terms of
the metric tensor that is the solution of the field equa-
tions (53)—(56) with the boundary conditions imposed at
infinity. To formulate the boundary conditions, we intro-
duce the metric perturbation

haﬁ(t’x)zgaﬁ(t’x)_”a/}v (57)

where h,; is the full post-Newtonian series defined in (23).
The global coordinates must match asymptotically with the
inertial coordinates of the Minkowski spacetime which
presumes that the products rh,s and r*h,;, where r = |x|,
are bounded at spatial infinity [126,184], while at the future
null infinity

lim hyy(t.x) = 0. (58)

t+r=const.

An additional boundary condition must be imposed on the
first derivatives of the metric tensor to exclude nonphysical
(advanced) radiative solutions associated with gravitational
waves incoming to the N-body system from infinity. This
condition is imposed because we have assumed that there
are no sources of gravitational waves outside of the isolated
N-body system. It is formulated as follows [126,184]:

],I_,rg [ar(rh(lﬂ) + at(rhu/})] =0, (59)

t+r=const.

where 0, and 0, denote the partial derivatives with respect to
radial coordinate r and time ¢, respectively. Though, the first
post-Newtonian approximation does not include gravita-
tional waves, the boundary condition (59) tells us to choose
the retarded solution of the field equations (53)—(56).

Similarly, we impose the ‘“no-incoming-radiation”
conditions on the perturbation ¢ of the scalar field defined
in (51),

lim @(t.x) =0, (60)

lim [0,(rp) + 0,(rg)] = 0. (61)

1+r=const.

These conditions eliminates the advanced radiative solution
for the scalar field.

2. Scalar field
The scalar field in the global coordinates is obtained as a
solution of the field equation (52) with the no-incoming
(scalar) radiation boundary conditions (60), (61). This
solution is a retarded potential

prt—|x—=x
o) = [ ]
[RS

lx — x|

,x')

By, (62)

where the integration is performed over the entire space R?.
The post-Newtonian expansion of the retarded potential is
obtained by expanding the integrand in (62) around the
instant of time 7, and integrating each term of the expan-
sion. In what follows, we need merely the first term of the
expansion. Moreover, since the density of matter p*
vanishes outside the bodies of the N-body system, the
integration is carried out over only the volumes of the
bodies, which yield

p(t,x) =U(t,x). (63)
Here,

U(t.x) => Uc(t.x) (64)
C

is a linear superposition of the Newtonian gravitational
potentials Uc(t,x) of the bodies (C =1,2,...,N), and

Uc(t,x) = /v PUEX) o (65)

¢ — x|

where V- denotes the spatial volume occupied by the
body C.

Subsequent derivation requires one to single out one of
the bodies, let say a body B, and split the scalar field in two
parts—internal and external,

U(t,x) = Ug(t.x) + U(1.x), (66)

where Upg denotes the internal gravitational potential
produced by the body B alone,

Ug(t,x) :/v ’T;(iz:i &>y, (67)
and
U(t.x) = Uc(t.x). (68)
C+#B

denotes the external gravitational potential of all other
bodies of the N-body system but the body B.
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3. Metric tensor

The metric tensor g,4(t,x) in the global coordinates is
obtained by solving the field equations (53)—(56) with the
boundary conditions (58)—(59). It yields [17,87]

hoo(t,x) = 2U(t,x), (69)
hii(t.x) = 2y6;;U(t.x), (70)
hoi(t,x) = =2(1 + y)U'(t,x), (71)

loo(t,x) = 2%(t,x) = 2pU>(t,x) — D1 (t,x), (72)

where the operator 0, = 0°/0t*, the post-Newtonian
potential

Y(r,x) = <y + %)‘Pl(t,x) + (1 =2p)¥,(1,x)

+ W3 (t.x) +y¥a(r.x), (73)
and parameters y and f have been defined in (45) and (46)
respectively.

Newtonian gravitational potential U has been defined
above in (64). Post-Newtonian potentials U’, y, ¥, (n = 1,
2, 3, 4) are linear combinations of the gravitational
potentials produced by the bodies of the N-body system,

Ui(t,x) = ZUé(t,x),
C

¥, (tx) =Y Weu(tx).  x(tx) =) xc(tx). (74)
C C

Here, the summation index C = 1,2, ..., N numerates the
bodies of the N-body system, and the gravitational poten-
tials of body C are defined as integrals performed over a
spatial volume V- occupied by the body’s matter,

. R
Uk(t,x) = — L dX, 75
) = [ P (75)

We, (1,x) = /V C’%dw, (76)
Weo(t,x) = /V C’%dw, (77)
Wes(1,x) = /v C’%dw, (78)

Wey(1,x) = /v C%dw, (79)

where v = v'(t,x) is velocity of the element of matter
located at time ¢ at a spatial point x' = x in the global
coordinates, and v* = §;;v'0/.

Superpotential yc is determined as a particular solution
of the inhomogeneous Poisson equation

Aye(t,x) = =2Uc(t,x) (30)

where A = §70,0; is the Laplace operator in the Euclidean
space. The source of the superpotential y is the Newtonian
gravitational potential U that presents everywhere in a
whole space. Nevertheless, because it falls off as 1/r at
infinity, the solution of the Poisson equation (80) has a
compact support, and is given by an integral taken over the
finite volume of body C [88,126]

eltx) = - / P X —x|dY. (81)
Ve

It is useful to emphasize that all of above-given volume
integrals defining the metric tensor in the global coordi-
nates are taken on the spacelike hypersurface H, of
constant coordinate time ¢. Changing the time coordinate
does not change the functional form of the integrals but
transforms the time hypersurface that makes the numerical
value of the integrals different. This remark is important for
understanding the post-Newtonian transformations and the
technique of matched asymptotic expansions of the metric
tensor and scalar field which we explain below in Sec. V.

In what follows we single out a body B, and split all post-
Newtonian potentials in two parts—internal and external—
like we did above in (66) for the Newtonian gravitational
potential

Ui(t,x) = Uk(t,x) + U'(t,x), (82)
W(t,x) = Wy (1,x) + (1, %), (83)
x(t.x) = yp(1.x) + 2(1.x). (84)

Here, functions with subindex B denote the internal
potentials produced by the body B alone,

* AV /
U{S(t’x>_/v Maﬁxl’ (85)

x —x/|

p(t.x)?(t.x")
x — x|

Wy, (1,x) = f} £, (86)

() = [ £V

i

&y, (87)

X —X

p (£, x")T(z,x")

V(1 x) = & 88
miex) = [ P pe ss)
§kk(t x/)

Wy4(t,x :/ LD 89

B4( ) Ve |x_x/| ( )
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tolt0) =~ [ p—vldv. 00
Vi

and functions covered with a bar denote the external
potentials,

Ui(t,x) = ZUiC(t,x), Y(1,x) = Z‘I’C(I,x),

C#B C#B

7(0%) = S re(t.x), 01)

C#B

where potentials U é, Y, yc are given by integrals (75)—(79)
respectively. It is worth emphasizing [218] that the integrand
of integrals (77), (87) depends on the fotal gravitational
potential U of all bodies of an N-body system as defined in
(64). It is also important to notice that the Newtonian
gravitational potential U(#,x) has a double camouflage in
the scalar-tensor theory of gravity. It appears in the solution
(63) of the field equation for scalar field ¢, and, also, in (69)
and (70) describing perturbations of the metric tensor
components hg, and h;;. It would be wrong, however, to
interpret the metric tensor component hy, = 2U, and the
trace h=5Yh;; = hy, = 6U like scalars; they can be
expressed in terms of the scalar field ¢ alone only in the
global coordinates. By definition, the metric tensor pertur-
bations, /g and h;;, are transformed as tensors not as scalars.

A mathematical description of orbital dynamics of
extended bodies in an N-body system would be significantly
simplified if we could keep the position of the center of mass
of an N-body system at the origin of the global coordinates
for any instant of time. This condition suggests that the
dipole, D, of the gravitational field of an N-body system in
the multipolar expansion of hgy(¢,x) component of the
metric tensor perturbation vanishes along with the dipole
(linear momentum), P/, in the multipolar expansion of the
ho; component [165]. This condition cannot be satisfied at
higher post-Newtonian approximations due to the gravita-
tional wave recoil which makes the system’s center of mass
moving with acceleration [219]. Nonetheless, in the first and
second post-Newtonian approximations the orbital dynam-
ics of an N-body system is fully determined by the
Lagrangian admitting ten conservation laws corresponding
to ten infinitesimal generators of the Poincaré group pre-
serving the invariance of the Lagrangian of the N-body
problem [48,126,220-222]. The post-Newtonian law of
conservation of the total linear momentum, P!, allows
one to hold the center of mass of an N-body system always
at the origin of the global coordinate chart [17].

B. Local coordinate chart

1. Boundary conditions

We label the local coordinates adapted to body B by
letters w% = (w3, wh) = (ug, wh) where ug stands for the

local coordinate time and wi denote the spatial coordinates
(B=1,2,...,N). There are N local coordinate charts—one
for each body. In a case when there is no confusion, we drop
off the subindex B in the notation of the local coordinates.
Hence, by default the local coordinates adapted to body B
will be denoted by w* = (u,w') = (ug, w). The origin of
the local coordinates adapted to body B moves along a
reference worldline »V which is chosen to be sufficiently
close to the worldline Z of the center of mass of body B.
Initially, the two worldlines are different but can be made
identical after careful study of the problem of definition of
the center of mass and its equations of motion relative to W.
This will be done in Sec. VL.

The local coordinates are used to describe the internal
motion of matter inside the body, to define its center of
mass, linear momentum, spin and the other, higher-order
internal multipoles of body’s gravitational field. The
importance of the local coordinates for adequate math-
ematical description of relativistic dynamics of extended,
self-gravitating massive bodies in an N-body system was
emphasized by Fock [126]. Concrete mathematical con-
struction of the body-adapted, local coordinates was
achieved in the post-Newtonian approximation by the
technique of asymptotic matching in papers [69,156]—
for extended bodies, and in papers [56,223]—for black
holes. Later on, a more rigorous mathematical BK-DSX
formalism of construction of the local coordinates has been
elaborated in a series of publications [72-76] which led to
the development and adoption of the IAU 2000 resolutions
on general-relativistic reference frames in the Solar System
[17,83,159]. Below we extend this formalism to the scalar-
tensor theory of gravity.

The scalar field and metric tensor in the local coordinates
adapted to body B are solutions of the field equations (52)—
(54) inside a bounded spatial domain enclosing worldline Z
of the center of mass of body B and having radius spreading
out to another nearest body from the N-body system. Thus,
the right side of the inhomogeneous equations (52)—(56)
includes only matter of body B. In order to distinguish
solutions of the field equations in the local coordinates from
the corresponding solutions of the field equations in the
global coordinates, we put a hat over functions of the local
coordinates. The solution of the field equation for metric
tensor or scalar field in the local coordinates is a linear
combination of a particular solution of the inhomogeneous
equation and a general solution of a homogeneous equation.
The particular solution yields the internal gravitational field
of body B alone while the general solution of the homo-
geneous equation pertains to the external field of other
bodies C # B. The nonlinear nature of the field equation (56)
brings in mixed terms [y, to the metric tensor perturbation
describing a coupling between the first-order perturbations.

The post-Newtonian solution of the scalar field equa-
tion (52) in the local coordinates adapted to body B is
written as a sum of two terms
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A

Pluw) = " (. w) + ™ (. w). (92)

describing contributions of the internal matter of body B
and external bodies C # B respectively. If we had no other
bodies but the body B, the internal solution had to vanish at
infinity. Hence, it obeys the boundary conditions similar to
(60) and (61). The external solution must be regular at the
origin of the local coordinates and diverges at infinity.

Perturbation of the metric tensor in the local coordinates
is denoted

A~

h;w(u’ W) - @/ﬂ/(”’ W) ~ N> (93)

where each component of fzw is expanded in the post-
Newtonian series similar to (24)—(26),

hoo (1. w) = 2h$) (. w) + €*hly) (u.w) + O(e°).  (94)
hoi(u, w) = €hG) (u,w) + O(e%), (95)
hij(u,w) = 8,5 + R (uw) + O(e*),  (96)

and each term of the post-Newtonian series will be denoted

~ ~ 5o r s 23
ho = hig . oo = hiy. hoi = B,
~ ~(2 ~_r(2
G=h =k (97)

The post-Newtonian solution of the field equations (53)—
(56) in the local coordinates is given as a sum of three
terms [58]

~

Py (u,w) = RS (u,w) + BES (u, w) + B (u,w),  (98)

where fz,‘j‘yt describes the gravitational field generated by the
internal matter of body B, fzz’;t describes the tidal gravita-
tional field produced by external bodies C # B, and the
term fzﬂ‘,}x is a contribution due to the nonlinear coupling of
the internal and external metric perturbations in the field
equation (56). In the first post-Newtonian approximation
the coupling term fl,r,“:x appears only in the loy(u, w)
component of the metric tensor perturbation. The body-
frame field fl}f,,‘(u, w) is the same as if the other bodies of
the N-body system were absent. Therefore, it is defined by
imposing the boundary conditions similar to (58) and (59).
Since the external metric perturbation izf,’,j‘(u,w) has a
physical meaning of the tidal field caused by external
bodies, it must be regular on the worldline W of the origin
of the local coordinates. The coupling field /" (u,w) is
obtained directly by finding a particular solution of the
nonlinear part of the field equation (56). Since the internal
and external part of the metric tensor perturbation have
been already specified, there is no need to impose a

separate boundary condition on the coupling component
of the metric tensor perturbation.

The origin of the local coordinates moves along some,
yet unspecified, worldline, V, which will be determined
later on by matching the solutions of the field equations
obtained in the local and global coordinates in the buffer
domain where the two coordinate charts overlap. Because
we are interested in derivation of equations of motion of the
center of mass of each body, we wish to make the origin of
the local coordinates coinciding with the center of mass of
the body under consideration at any instant of time. This
requires a precise post-Newtonian definition of the center
of mass. Any deficiency in the definition of a body’s center
of mass introduces to the equations of motion fictitious
forces and torques that have no direct physical meaning.
We prove in the present paper that the freedom in choosing
the position of the center of mass is large enough to
completely remove such fictitious forces and torques from
the equations of motion of extended bodies in the scalar-
tensor theory of gravity.

We should also impose a limitation on the rotation of spatial
axes of the local coordinates as they move along worldline W.
Spatial axes of the local coordinates are called kinematical
nonrotating if their spatial orientation does not change with
respect to the spatial axes of the global coordinates at infinity
as time goes on [224,225]. Dynamical nonrotating spatial
coordinates are defined by demanding that equations of
motion of test particles in the local coordinates do not have
the Coriolis and centrifugal forces [224]. Because an N-body
system is isolated the spatial axes of the global coordinate do
not rotate in any sense. On the other hand, the local
coordinates are adapted to a single body B that is not fully
isolated from external gravitational environment of other
bodies of an N-body system. Therefore, we have to postulate
whether the spatial axes of the local coordinates are non-
rotating in a kinematic or dynamic sense. For the sake of
mathematical simplifications in writing solutions of the field
equations it is more convenient to postulate that the spatial
axes of the local coordinates are not rotating dynamically.
Relativistic nature of gravitational interaction suggests that
the spatial axes of the dynamically nonrotating local coor-
dinates will be slowly rotating (precessing) in the kinematic
sense with respect to the spatial axes of the global coordinates.
Relativistic precession of the spatial axes of the local
coordinates has a pure geometric origin and includes three
physically different terms that are called respectively de-Sitter
(geodetic), Lense-Thirring (gravitomagnetic), and Thomas
precession [165]. The exact formula for the matrix of the
kinematic precession of spatial axes of the local coordinates is
given below in Eq. (151).

2. Scalar field: Internal and external solutions

In the local coordinates adapted to body B, the internal,
@™ (u,w), and external, *'(u,w), parts of scalar field
perturbation (92) have the following form:
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¢ (u.w) = Ug(u.w), (99)

©_ |
P (u,w) = ZZ—P wk. (100)

(=]

Here, the scalar field ¢™™(u,w) is a particular solution of
inhomogeneous equation (52) with the right-hand side
depending solely on the matter density p* of body B. It
is expressed in terms of the Newtonian gravitational
potential of body B, Ug(u,w), that is defined below in
Eq. (106). The scalar field, **'(u, w), is a general solution
of a homogeneous Laplace equation (52) without sources.
As @™ (u,w) must be regular at the origin of the local
coordinates, the solution is given in the form of a Maclaurin
series with respect to STF harmonic polynomials,
wh = w1 made out of the products of the spatial local
coordinates w' and the Kronecker symbols §'/; see definition
of STF tensor projection in (2). Coefficients of the expansion
are scalar external multipoles, P, = Py; _;,(u), which are
STF Cartesian tensors in 3-dimensional Euclidean space that
is tangent to hypersurface H, of constant coordinate time u
taken at the origin of the local coordinates adapted to body B.

3. Metric tensor: Internal solution

The boundary conditions imposed on the internal sol-
ution ﬁ;;‘,; for the metric tensor perturbation in the local
coordinates adapted to body B are identical with those
given in Egs. (58) and (59). For this reason the internal
solution has the same form as in the global coordinates but
all functions now refer solely to body B. We obtain

R (u,w) = 205 (u, w), (101)

ht (u,w) = =2(1 + 7) U (u, w), (102)

RSt (u,w) = 298,05 (u,w), (103)

188 (u,w) = 29 (u, w) = 2805 (u, w) = D, fp (u,w),  (104)

where the partial time derivative 9, = 8*/0u?,

A

Faliw) = (143 ) For0w) + (1 = 20)8as(0)

+ W3 (e, w) + 7 ¥pa (e, w), (105)
and index B indicates that the potential having this index is
generated by matter of body B only. All the potentials are
defined as integrals over volume Vg occupied by matter of
body B

* !/
UB(u,w) :/ P <u’w/)d3w’, (106)
Vv

s w =W

* JAY) /
Ug(u,w):/ P W)y <,”’w>d3w/, (107)
Vg
* N, 2 !
@Bl(u,w):/ prlu W)y (,”’w)aﬁw/, (108)
Vi |W—W|
R * , /["] , 1
‘PBz(u,w):/ P w) B/(uw)d3w’, (109)
Vg |W—W|
R P (u, ) (u,w')
‘I’B3(u,w):/VB A, (10
R gkk( /)
Poa(uw) = [ S0 pyy 111
wlww = [ (1)

)?B(u,w):—/ o (W) —wdw.  (112)
Vs

V' = dw'/du is the coordinate velocity of body’s matter
with respect to the origin of the local coordinates. Notice
that the integrals (106)—(112) are taken over hypersurface
‘H,, of coordinate time u that is different from the hyper-
surface H, of constant coordinate time ¢, which is used for
spatial integration in Egs. (65), (75)—(79) defining gravi-
tational potentials in the global coordinates x“. This is
important for the post-Newtonian transformation of gravi-
tational potentials as it requires one to use a Lie transport of
functions from hypersurface H, to hypersurface H,; for
more details, see [[17], Sec. 5.2.3].

The internal potentials of the metric tensor in the local
coordinates given by (101) and (107) are connected
through the exact equation

0, Ug(u,w) + 0,05 (u,w) =0, (113)

which is a direct consequence of the equation of continuity
(36) applied in the local coordinates.

4. Metric tensor: External solution

The solution of the homogeneous field equations (53)—
(55) for the linearized metric tensor perturbation in the local
coordinates adapted to body B yields the tidal gravitational
field of external bodies of an N-body system in terms of the
external STF multipoles [17,87]. The external solution is
convergent at the origin of the local coordinates and its
most general form is given by Kopeikin ef al. [17] and
Kopeikin and Vlasov [87]

RS (u, w) = 22” Q wh, (114)

) © ) !
B (ww) = > (I+ l)vequCpL—IWqL L+ ZFZiLWL
! [

(115)

084008-22



COVARIANT EQUATIONS OF MOTION OF EXTENDED ...

PHYS. REV. D 99, 084008 (2019)

RS (u, w) 25,jZI'ALw +Z 'BquL

[Se]

+Zﬁ i/t

JaL—1
Vg Epn/? Jsym(ij)

[se]

1
+ Zﬁ [Fijpw"™?

+ €P4(iG.f>FL—2qu_2]’

(116)

where A;, B;, etc., are STF Cartesian tensors defined on
worldline V of the origin of the local coordinate, and the
symbol sym(ij) denotes symmetrization.

Tensors A;, B, etc., are the external multipoles which
depend on the coordinate time u only, that is A; = A; (u),
B; = B;(u), etc. Four gauge conditions (49) and (50)
imposed on the components (114)—(116) of the metric
tensor perturbations reveal that only six out of ten external
multipoles are algebraically independent. This allows one
to eliminate four multipoles, B;, E;, S;, D;, from the local
metric perturbation [17,87]. The remaining six multipoles,
A, C, Fr,Gp, Qp, Z;, can be constrained by making use
of the residual gauge freedom allowed by the differential
equation (44) that excludes four other multipoles—A;, F,
Gy, Z; [17,87]. Finally, only two families of the external

magnetic multipoles C;—have real physical meaning
reflecting the existence of 2 d.o.f. (polarization states)
for the tidal gravitational field of the metric tensor.

After fixing the gauge freedom as indicated above, the
external metric tensor assumes in the local coordinates the
following form:

©_ |
B (e, w) =23 7 Quwt, (117)
=1 "
ex 1—}/ r i = l+1
A (. W)= Pw +Zm8imchWqL
= 2l+1 . .
(118)
A 1
i () = 26 3 51(Qu + (r = )Pt (119)
=1 "

where the scalar external multipoles appear in the metric
perturbations through the gauge conditions (49) and (50),
and a dot above the external multipoles denotes a total
derivative with respect to time u. The external dipole Q; is
acceleration of worldline }V of the origin of the local frame
adapted to body B with respect to a worldline of a freely
falling particle, and monopole P is the value of the scalar

field generated by external bodies C # B, taken at the
origin of the local coordinates [17]. It cannot be excluded
from the A4S component by gauge transformation. On the
other hand, the monopole Q in the metric perturbation is
gauge dependent and has been eliminated by rescaling of
the local coordinate time.

The nonlinear part ioo of the perturbation of the external
metric tensor is determined as a particular solution of the
field equation (56) that yields [87]

I (u,w) =2 <;ﬁQLWL) -2(B-1) (IZI:EPLWL>
© .o L 2
+l:1 4(21+3)Z!QLW w, (120)

where, here and everywhere else, a double dot above a
function denotes a second derivative with respect to time u.
We have excluded the scalar field components P? and PP,
from the second term in the right-hand side of (120)
because P? is removed by rescaling of the local coordinate
time while PP! is absorbed to, yet unknown, acceleration
Q;, in (117). We might also decompose the product of two
sums in (120) in algebraic sum of irreducible components
and absorb the STF part of the decomposition to multipoles
Q; (I >2). However, this way of writing solution (120)
complicates calculations and we do not implement it.

5. Metric tensor: The coupling component

The coupling of the internal and external solutions of the
linearized metric tensor perturbations is described by the
mixed term /3. It is found as a particular solution of
the inhomogeneous field equation (56) with the right side
taken as a product of the internal and external solutions
found on the previous step of the post-Newtonian iter-
ations. Solving (56) yields

- | N
B ) =2 { P+ 23 1101+ (5= VP | O (uw)
=1

~23 10, +2(5=1)P,]
I=1""

* AYI 5
x/ 'Mcpw’, (121)
ve (w—w|

where n =4 —y —3 is called the Nordtvedt parameter
[88], and Vg denotes the volume of body B. The best
experimental limitation on the numerical value of
Nordtvedt’s parameter, || <5 x 107, is known from
the lunar laser ranging experiment [226]. Gravitational
wave astronomy will improve its measurement by many
orders of magnitude. Equation (121) completes derivation
of the metric tensor in the local coordinates in the post-
Newtonian approximation.
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6. Body-frame internal multipoles

Multipolar decomposition of the metric tensor of an
isolated gravitating system residing in asymptotically flat
spacetime has been thoroughly studied by a number of
researchers [82,227-230]. The most useful technique for
the case of the post-Newtonian approximations has been
worked out by Blanchet and Damour [78] and Damour and
Iyer [79,80]. This technique has been extended to the case
of a self-gravitating system embedded to a curved, non-
asymptotically flat spacetime in general relativity [58,74]
and in scalar-tensor theory of gravity [87], and is used in the
present paper.

A single body B from an N-body system interacts
gravitationally with other bodies of the system and this
interaction cannot be ignored in multipolar decomposition
of the gravitational field of the body. The presence of the
external bodies brings about the interaction field (121) to
the metric tensor in the local coordinates whose energy
density gives rise to the contribution of the gravitational
field of the external fields to the definition of the internal
multipoles of body B. I, first, looked like an ambiguity as it
was unclear whether the contribution of the external fields
has to be included to the definition of the body multipoles
or not [58]. This issue was resolved in general relativity by
Damour et al. [74] and in scalar-tensor theory of gravity by
Kopeikin and Vlasov [87] who demonstrated that the
contribution of the interaction field is to be included in
the definition of the body’s internal multipoles in order to
eliminate the noncanonical multipoles, Nt and RF—see
(123) and (124)—originating from the nonlinear part of the
metric tensor perturbation (121), from the equations of
motion of extended bodies. This effectively erases any
dependence of the equations of motion on the internal
structure of extended bodies and promotes application of
the effacing principle [154,185] from spherically symmet-
ric bodies to all multipoles.

There are two families of the canonical internal multi-
poles in general relativity which are called mass and spin
multipoles [50,78,83]. In scalar-tensor theory of gravity the
mass multipoles are additionally split in two algebraically
independent families which are called active and conformal
multipoles [88]. The active mass multipoles of a body B
from an N-body system are defined by equation [17,87]

ML:/ a(u,w){l—(Zﬂ—y—l)P
Vi
- i% [Qk +2(8 = 1)Pxlw® }w<”d3w
k=1 "

11
T2t [EN

2041 .
<L>—2(1+y)ll+%7z<”} (122)

where the angular brackets around spatial indices denote
STF Cartesian tensor [50,82], and

NLZ/ o(u, w)w?wit dPw, (123)
VB

RE = / o' (u, w)wih Py (124)
Vi

are two additional noncanonical sets of STF multipoles,
and Vj is volume of body B over which the integration is
performed. Noncanonical multipoles N'Z generalize the
second-order rotational moment of inertia of body B,

N = [ pwdw, (125)

VB

with respect to the origin of the local coordinates, and R*
are noncanonical multipoles associated with matter currents
inside the body. The density o in (122) is called the active
mass density [87],

o(u,w) = p*(u,w) [1 + <7/ + %) v (u,w) + (u,w)

— (28— 1)Ug(u, w)] + 78 (u, w), (126)

and the vector

o' (u,w) = p*(u,w)v' (u,w) (127)
is the matter’s current density. All integrals in (122)—(125)
are performed over hypersurface H, of a constant coor-
dinate time u.

The conformal mass multipoles of the body B are
defined as follows [17,87]:

1
L — — L) 3
15 = LB Q(u,w) [1 (1 y)P kg 1 | QKW<K>:| wL) By

1 1 - 2141 -
N g T RW 128
+(21+3){2N [+1 } (128)
where, again, the integration is performed over a hyper-
surface H, of constant coordinate time u, and

0=p"(uw) [1 + %vz(u,w) + (u,w) — lA]B(u,w)}

+ 8% (u, w) (129)
is the conformal mass density of matter which does not
depend on the PPN parameters f and y as contrasted to the
definition (126) of the active mass density.

There is one more type of the multipoles called scalar
multipoles, I©. However, they are not independent and
relate to the active and conformal multipoles by a simple
formula [87]
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I =2ME — (1 +y)Ti0), (130)
In addition to the gravitational mass multipoles, M’ and

TL, there is a set of internal spin multipoles. In the Newtonian

approximation they are defined by expression [87]

SL_/ gPalinyii-1- 0PG4 (y w)dw, (131)
Vs

where the matter’s current density o7 has been defined in
(127). All multipoles of body B are functions of time u only.
They are the STF Cartesian tensors in the tangent Euclidean
space attached to the worldline V¥ of the origin of local
coordinates adapted to body B. Definition (131) is sufficient
for deriving the post-Newtonian translational equations of
motion of the extended bodies in an N-body system.
However, derivation of the post-Newtonian rotational equa-
tions of motion requires a post-Newtonian definition of the
body’s angular momentum (spin). We shall discuss it later in
Sec. VID.

V. MATCHED ASYMPTOTIC EXPANSIONS AND
COORDINATE TRANSFORMATIONS

A. Basic principles

Post-Newtonian transformations between the global and
local coordinate charts are derived by the method of
matched asymptotic expansions [231]. It involves finding
several different approximate solutions of the field equa-
tion, each of which is valid for a specific domain of space,
and then combining these different solutions together in a
buffer domain where all different solutions overlap, in order
to obtain a single approximate solution. The technique of
matched asymptotic expansions in general relativity was
first implemented by Demiafiski and Grishchuk [232] for
deriving equations of motion of black holes in the
Newtonian limit. D’Eath [56,223] significantly extended
this technique to the next approximations of general
relativity and it is now commonly used for derivation of
equations of motion of black holes [57,213,214]. Matching
asymptotic expansions are indispensable in case of the
singular perturbations of the field equations but the method
turned out to be very effective also for derivation of
equations of motion of extended bodies [69,73-75,156]
and for constructing a post-Newtonian theory of reference
frames in the Solar System [17,72,83,159].

In the present paper the independent dynamic field
variables are the scalar field and metric tensor which
describe the asymptotic solutions of the field equations
in the form of the post-Newtonian expansions which are
valid in the spatial domains covered by the global or local
coordinates. These solutions describe one and the same
value of the dynamic variables in any type of coordinates
which means that the solutions can be spliced in the spatial
region where the coordinate charts overlap. The splicing

relies upon the tensor transformation law applied to the
post-Newtonian expansions of the metric tensor and scalar
field. The post-Newtonian transition functions entering the
transformation establish the correspondence between the
global and local coordinates. Coordinate distance from
the origin of the local coordinates to the first singular points
of the Jacobian of the transformation determines the
domain of applicability of the local coordinates [17].

The matching procedure is organized as follows. We use
conformal harmonic coordinates defined by the Nutku
gauge condition (40). Transition functions of the post-
Newtonian coordinate transformation are constrained by
this condition and must obey differential equation (44)
describing the residual gauge freedom. Solutions of this
homogeneous equation are to be continuously differentia-
ble functions that are regular at the origin of the local
coordinates. These functions can be represented in the form
of a Taylor series of the harmonic polynomials of the spatial
local coordinates. Coefficients of the Taylor series are the
STF Cartesian tensors defined on the worldline W of the
origin of the local coordinates. The transition functions
are to be substituted to the matching equations describing
the splicing of the internal and external solutions of the
field equations in the global and local coordinates.
Matching the asymptotic post-Newtonian expansions of
the scalar field and the metric tensor allows us to fix all
degrees of the residual gauge freedom in the final form of
the post-Newtonian coordinate transformation and to
determine a functional form of all external multipoles
except for the external dipole Q; which is not constrained
by the matching conditions and must be found separately
from the equations of motion of the center of mass of body
B in the body-adapted local coordinates.

Physically, the post-Newtonian transformation between
coordinate times, ¢ and u, describes the Lorentz (velocity-
dependent) and Einstein (gravitational-field-dependent)
time dilation associated with the different simultaneity of
events in the two coordinate charts [69,156]. It also
includes an infinite series of the polynomial terms
[72,233]. The post-Newtonian transformation between
the spatial coordinates, x' and w', is a quadratic function
of spatial coordinates. The linear part of the transformation
includes the Lorentz and Einstein contractions of length as
well as a matrix of rotation describing the post-Newtonian
precession of the spatial axes of the local coordinates with
respect to the global coordinates due to the translational and
rotational motion of the bodies [154,183]. The Lorentz
length contraction takes into account the kinematic aspects
of the post-Newtonian transformation and depends on the
relative velocity of motion of the local coordinates with
respect to the global coordinates. The Einstein (gravita-
tional) length contraction accounts for static effects of the
scalar field and the metric tensor [17,87]. The quadratic part
of the spatial transformation depends on the orbital accel-
eration of the local coordinates and accounts for the effects
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of the affine connection (the Christoffel symbols) of the
spacetime manifold.

Let us now discuss the mathematical structure of the
post-Newtonian transformation between the local coordi-
nates, w* = (W%, w') = (u,w), and the global coordinates,
x* = (x%,x%) = (¢,x) in more detail. This coordinate trans-
formation must be compatible with the weak-field and
slow-motion approximation used in the post-Newtonian
expansions. Hence, the coordinate transformation is given
as a post-Newtonian expansion:

u=r1+E&x), (132)

w' = RL + £(1,x), (133)
where £° and & are the post-Newtonian corrections to the
Galilean transformation, u = 1, R = x' — x4 (1), and x§ (1)
is a spatial position of the origin of the local coordinates in
the global coordinates. We denote velocity and acceleration
of the origin of the local coordinates as v§ = X% and ah =
¥4 respectively, where a dot above a function denotes a
derivative with respect to time z. At this step, we do not
know yet equations for worldline W of the origin of the
local coordinates adapted to body B nor for worldline Z of
the body’s center of mass. Therefore, it is natural to assume
that originally the two worldlines, W and Z, are different.
Later on, we shall show that the two worldlines can be
made identical by demanding the conservation of the linear
momentum of body B. It can be always achieved by
choosing the external dipole Q; to compensate the non-
inertial acceleration of the body’s center of mass caused by
tidal forces [17,69,87]. The presence of nonvanishing
dipole Q; in the local metric (117) makes the local
coordinates adapted to body B to be noninertial.

It is instructive to notice that the local coordinates used
by Thorne and Hartle [58] are inertial that is the origin of
the Thorne-Hartle local coordinates moves along a geo-
desic worldline of the effective spacetime manifold M with
metric, go3 =1 + f_zaﬂ, which is obtained from the original
spacetime manifold M with metric, g3 =1+ hyp, by
deleting from 4 the internal part of the metric h‘;/} In

such local inertial coordinates the external dipole Q; =0
but the center of mass of body B does not move along the
geodesic in the most general case due to the tidal interaction
of the internal multipoles M, and S; of the body with an
external gravitational field of other bodies.

The asymptotic matching equations for independent
dynamic variables—the scalar field ¢ and the metric tensor
gu—are given by the laws of coordinate transformations of
these geometric objects [157]

p(t,x) = p(u,w), (134)
R ow® Ow’
G (1.%) = G0, W) 5 o - (135)

Equations (134) and (135) are valid in the spacetime region
that is covered simultaneously by the local and global
coordinates. Functions on the left-hand side of these
equations are known and given in Sec. I[IVA 3 as integrals
from the body’s matter variables (density, pressure, etc.)
performed over volumes of all bodies of the N-body system
on hypersurface H, of constant time ¢. The right-hand side
of the matching equations contains, besides the known
integrals from the matter variables of body B taken on
hypersurface H, of constant time u, yet unknown external
multipoles, P;, Q;, C; of the external part of the metric
tensor in the local coordinates and the transition functions
& = (E0 &) from the coordinate transformations (132) and
(133). We prove below that both the external multipoles
and the transition functions can be determined by solving
matching Eqgs. (134) and (135) that also yield equations of
motion of the origin of the local coordinates, xj = xj (7).
Matching the post-Newtonian expansions of the metric
tensor and scalar field does not yield equations of motion
of the center of mass of body B. An additional procedure of
integration of the microscopic equations of motion of
matter of body B is required for this purpose to determine
the motion of the center of mass of body B with respect to
the origin of the local coordinates and to derive rotational
equations of motion of the body’s spin. It is explained
in Sec. VL

B. Transition functions

A comprehensive description of the matching procedure
establishing the correspondence between the global and
local coordinates in the N-body problem is given in
[17,87,159]. Here, we summarize the main results of the
matching.

Solving matching Eqgs. (134) and (135) begins from the
Joi component of the metric tensor perturbation in the local
coordinates adapted to body B. This component does not
contain 0.5 post-Newtonian term of the order of O(e)
because we have chosen the spatial axes of the local
coordinates dynamically nonrotating and orthogonal to
worldline W of its origin at any instant of time. It eliminates
the angular and linear velocity terms of the order of O(¢) in
Jo: and implies that function £°(¢,x) in (132) satisfies the
following constraint [74,87]:

0,81, x) = —vl + Ok(t,x), (136)
where k(t,x) is the post-Newtonian, yet unknown correc-
tion of the order of O(e?). Integration of the partial
differential equation (136) yields

O(t,x) = A(t) — v§RE + «(t,x), (137)
where A(¢) is a constant of integration depending on time.

At second step we use differential equation (44) in order
to find out the transition functions x from (137) and &
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from (133). We replace (137) to (132) and substitute it
along with w' from (133) in Eq. (44) which yields two
decoupled inhomogeneous Poisson equations for the post-
Newtonian components of the transition functions,

Ax(t,x) = 3vkal + A — aRE, (138)

A& (t,x) = —al, (139)
where A = §9,0; is the Laplace operator in the Euclidean
space. A general solution of these elliptic-type equations
must be regular at the origin of the local coordinates
adapted to body B and consists of two parts—a funda-
mental solution of the homogeneous Laplace equation
and a particular solution of the inhomogeneous Poisson
equation [74,87]

1 1. 1.
K= (z vkak — 8A> R} — Ea’éR’éRzB + E(t,x), (140)
i Lo | i
£ :—gaBRB+:(t,x). (141)

Here, functions Z and E are the fundamental solutions of the
homogeneous Laplace equation—the harmonic polyno-
mials with respect to the local spatial coordinates expressed
in terms of the global coordinates, w' = Ry + O(€?),

- =1 L
E(t,x) = ZﬁBLRg ), (142)
=0 "
. 1 . 2. g
Zi(t,x) = —'DILR<L>+ irq prR<‘1L>
(8,%) ;1! B ;(Hrl)! B
o) l ;
+y FgLRg”, (143)
=0 "

where the coefficients, BL, DF, FX and &L of the expa-
nsions are STF Cartesian tensors which should not be
confused with the external multipoles entering the local
metric tensor. These coefficients are defined on the world-
line W of the origin of the local coordinates and depend only
on time ¢ of the global coordinates. An explicit form of
coefficients BY, DL, FL is derived by substituting transitions
functions w* = (u, w') in the form of (132), (133), (137),
(140)—(143) to matching Egs. (134)—(135) and solving
them. This solution also determines the external multipoles
and the equations of motion for the origin of the local
coordinates—worldline WW. The overall procedure of solv-
ing the matching equations is rather long and technical and
we do not describe it here. The reader can find its
comprehensive description in papers [87,234] and in the
book [ [17], Chapter 5]. The matching solution is given in
Sec. V C below.

C. Matching solution

1. Post-Newtonian coordinate transformation

Parametrized post-Newtonian transformation between
the local coordinates w* adapted to body B and the global
coordinates x* is given by two equations [17,69],

1
M:lJr?(A—UgR]I;)

1 1 I - 1.
+? |:B+ <§’U1k3611é —BU(t,xB) _Ea{;RI]{B)RZB

> ]
+ ;ﬁBLRﬁ] +O(c™), (144)
j i 1 1, k ik, T ik k
W’zRi;—l—c—2 Evng—i—E’ yU(t.xp) + Fi | Ry
. 1
+ akRLRE — EagRé} +O(c™), (145)

where Ri = x' —xk is the coordinate distance on the
hypersurface H, of constant time ¢ between the point of
matching, x’, and the origin of the local coordinates,
xh = x§(#), and we have shown in these equations the
fundamental speed ¢ explicitly to attenuate the post-
Newtonian order of different terms.

Functions .A and B depend on the global coordinate time
t and define transformation between the local time « and
the global coordinate time ¢ at the origin of the local
coordinates. They obey the ordinary differential equations,

dA 1 _

E: _EU%_U(I’xB)’ (146)
aB 1 1 _ 1-
E = —gvg - (}""5) U%U(Z,xB) +§U2(t,xB)

_ - 1
+2(1 +7)og UK(1.x5) — ¥(1.x3) +§8,t;'((t,x3)
(147)

that describe the post-Newtonian transformation between
time u of the local coordinates and time ¢ of the global

coordinates. The other functions entering (144) and (145)
are defined by algebraic relations

. _. - 1 .
B =2(1+7)0(t.x5) - (1+27)t Ult.x5) 5 v

(148)

B = 2(1 4 )00 (1, xp)
—2(1+ )0l Ut xp) + 2alall,  (149)

B = 2(1 + 1)dL T (1, xp)
—2(1+ )il U(txg) (122),  (150)
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where the angular brackets denote STF projection of
indices, and the external (with respect to body B) potentials
U, U', P, y are defined in (68) and (91). Notations U (¢, xg),
Ui(t,xg), ¥(t.xp), and 7(¢, xp) mean that the potentials are
taken at the origin of the local coordinates adapted to body
B at instant of time . -

The skew-symmetric rotational matrix F}j is a solution of
the ordinary differential equation

dFY o
CB 21+ 10 01, xp)

+(1+2p) kol Tt xp) + 001, (151)
describing the rate of the kinematic rotation of the spatial
axes of the local coordinates adapted to body B with respect
to the global coordinates [69,87]. Equation (151) has been
derived here for arbitrarily structured bodies by the method
of matched asymptotic expansions. The same equation was
obtained independently for spinning test particle (gyro-
scope) through the Fermi-Walker transport of spin [ [165],
§ 40.7]. The first term on the right-hand side of (151)
describes the Lense-Thirring (gravitomagnetic) precession
which is also called the dragging of inertial frames [101,165].
The second term on the right-hand side of (151) describes the
de-Sitter (geodetic) precession, and the third term describes
the Thomas precession depending on the local (nongeodesic)
acceleration Q' = 8 Q; of the origin of the local coordinates
with respect to a geodesic worldline of a freely falling test
particle. In the scalar-tensor theory both the Lense-Thirring
and de-Sitter precession depend on the PPN parameter y
while the Thomas precession does not. The reason is that the
Thomas precession is generically a special relativistic effect
[235] that cannot depend on a particular version of an
alternative theory of gravity.

The Lense-Thirring and geodetic precession have been
recently measured in Gravity Probe B gyroscope experi-
ment [236] and by the satellite laser ranging technique
[237,238]. Relativistic precession is an attractive mecha-
nism for theoretical explanation of quasiperiodic oscilla-
tions (QPO) in the optical power density spectra of
accreting black holes [239]. It is also important to include
relativistic precession of spins of stars in merging compact
binaries for adequate prediction and analysis of gravita-
tional waveforms emitted by the binaries [240-243].

2. Body’s self-action force and bootstrap effect

Self-action force is a key concept in gravitational dynam-
ics of extended bodies both in the Newtonian and relativistic
gravity theories [141,142,244]. It is defined as the net action
of the gravitational field generated by a single body from an
N-body system on the body itself. The self-action force
includes a conservative part and dissipative terms which are
known as the gravitational radiation-reaction force [245—
247]. The self-action of the gravitational radiation appears

for the first time at 1.5 PN approximation in scalar-tensor
theory of gravity due to the emission of dipolar scalar field
radiation [88,248] and at 2.5 PN approximation in general
relativity [184,220,249-251] due to the emission of quadru-
pole gravitational waves by the moving bodies [42,165].
Calculation of the radiation-reaction force beyond 2.5 post-
Newtonian approximation is a challenging theoretical task
[47,245-247] whose solution is of paramount importance
for correct prediction of inspiral motion of compact binaries,
especially in the extreme mass ratio limit [252,253].

Chicone et al. [254] studied the origin of the self-action
force by means of the mathematical theory of delay
equations which include the field-retardation effects, and
predicted that all of them must have runaway modes. It was
shown that when retardation effects are small, the physically
significant solutions belong to the so-called slow manifold of
the dynamic system which is identified with the attractor in
the state space of the delay equation. It was also demon-
strated via an example that when retardation effects are no
longer small, the motion of the system exhibits bifurcation
phenomena that are not contained in the local equations of
motion. The bifurcation behavior of the solutions of the
delay equations pointed out by Chicone et al. [254] is absent
in the conservative post-Newtonian approximations but has
to be studied more attentively by analysts computing the
gravitational waveforms of inspiral binary systems.

Radiation-reaction force does not prevent a sufficiently
compact and nonspinning body from moving on a geodesic
in a particularly chosen, regular effective external metric if a
singular part of the full metric is properly removed by
regularization [255]. Thus, the regular part of radiation-
reaction force does not violate the Einstein principle of
equivalence [256]. The singular part of the metric corre-
sponds to the conservative part of the self-action force
which apparently must obey the third Newton’s law to get
a vanishing net internal force, thus, preventing self-
accelerated runaway motion of the body which we call a
bootstrap effect. Bootstrapping can happen only in some
nonconservative (nonviable) alternative theories of gravity
[88]. It does not occur in the first post-Newtonian approxi-
mation of scalar-tensor theory for arbitrarily structured
bodies as one can see from matching Eqgs. (134) and
(135) where all the terms depending on a body’s internal
gravitational potentials mutually cancel out. The bootstrap
effect is also absent in the second post-Newtonian approxi-
mation both in general relativity [183,186] and in scalar-
tensor theory of gravity [248].

3. Worldline of the origin of the local coordinates

The origin of the local coordinates adapted to body B
moves in spacetime along worldline V. Matching
Eq. (135) for the metric tensors in the local and global
coordinates yields equations of translational motion of the
origin of the local coordinates, xi = x4(#), with respect to
the global coordinates. It reads [ [17], Eq. 5.88]
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S o . |
ag:a’U(t,xB)—Q’+F]31Qj+6“{’(t,x3)—Eat,(?’)((t,xB)
(sz) 2(147)vhd Ui (1,xp)

— (1420l U(t.xg) + (2= 25 —7) U (1,x5)0 T (1,x3)

. 1
o'u (t xB) —vaBﬁfU(t xB)

+2(1+y)U

1
+(147y)vg 21){31){351{3

(2+7y)abU(t,xp), (152)

—viakh —
where a dot above a function denotes a total derivative with
respect to time ¢, vy = x and ap = X are velocity and
acceleration of the origin of the local coordinates relative to
the global coordinates, and Q' = §YQ; is a dipole term

(I =1) in the external solution for A5y component of the
metric tensor perturbation (114) which describes a local
acceleration of the worldline W.

The right-hand side of (152) is a gravitational force per unit
mass causing the coordinate acceleration a of the origin of
the local coordinates of body B with respect to the global
coordinates. The force is explicitly expressed in terms of the
external gravitational potentials, U, U’, P, 7, and their time
and/or spatial derivatives. It also depends on the external
dipole, Q" = 5 Q;, which represents a local acceleration of
worldline VW with respect to a timelike geodesic on the
effective spacetime manifold M which is explained in more
detail in Sec. XIB. Function Q' does not depend on the
choice of gauge condition and constitutes a part of the
definition of the state of motion of the origin of the local
coordinates [257]. Only after specification of Q' as a function
of time, formula (152) becomes an ordinary differential
equation whose solution yields worldline W of the origin of
the local coordinates as a known function of time xj (7).

A trivial choice of the local acceleration, Q' = 0, looks
attractive as it immediately converts (152) to a fully
determined differential equation. It is this choice that has
been made, for example, by Dixon [11] and Thorne and
Hartle [58] which means that worldline W of the origin of
the local coordinates is a geodesic of the effective back-
ground manifold M. However, this choice does not allow us
to keep the origin of the local coordinates always at the
center of mass of body B if the body has nonvanishing
internal multipoles M* and S* which interact with the tidal
field multipoles Q; and C; of the external bodies C # B
from the N-body system. The interaction exerts a force on
the body B and makes its center of mass moving along a
nongeodesic worldline having Q; # 0 [58,69]. Thus, world-
line Z of the center of mass of body B is not geodesic in the
most general case. If we want to retain the center of mass of
body B at the origin of the body-adapted local coordinates at
any instant of time, the acceleration Q' must obey the
equations of motion of the body’s center of mass with
respect to the local coordinates. Derivation of this equation
cannot be achieved by the method of matched asymptotic
expansions and requires either integration of microscopic

equations of matter over the volume of body B in the local
coordinates [74,75,87] or finding asymptotes of the surface
integrals in the buffer region of overlapping the local and
global coordinates [30,58]. We deal with a regular distri-
bution of matter inside the extended bodies and apply the
technique of integration of the microscopic equations of
motion to find the local acceleration Q; in Sec. VIE.

4. Body-frame external multipoles

Scalar-field multipoles.—Matching determines the external
(with respect to body B) tidal multipoles in terms of the
partial derivatives from the gravitational potentials of
external bodies [17,87]. The external scalar field multipoles
are obtained by solving (134) and read

P = 0Lp(t.xp),

where the external scalar field @ is expressed in terms of the
external Newtonian potential U

#(t.%) = U(1.x).

We remind the reader that the scalar field perturbation ¢ is
coupled either with the factor y — 1 or f— 1, so that all
physical effects of the scalar field are proportional to these
factors and can be easily identified in the equations that follow.
It should be noticed that the external scalar field monopole
P (I =0) and dipole P; (I = 1) cannot be removed from
observable gravitational effects by rendering a coordinate
transformation to a freely falling frame because the scalar field
is a true scalar. In other words, the gradient of scalar field is not
equivalent to the inertial force caused by acceleration as it
cannot be eliminated by changing the state of motion of
observer. It was the primary reason why Einstein abandoned a
pure scalar field theory of gravity in favor of general relativity
where the gravitational field is identified with the components
of the metric tensor, and, unlike a scalar field, can be removed
by transformation to the local inertial frame.

Rather remarkable, this difference in transformation prop-
erties between scalar field and metric tensor has no direct
consequence for equivalence between inertial and gravita-
tional masses of test bodies. It was discovered [258] that the
inertial and gravitational masses of massive test bodies
remain equal in a wide class of scalar-tensor theories of
gravity and the freely falling test bodies move in the same
way independently of their mass. This observation forces us
to carefully discriminate between various formulations of the
weak equivalence principle (WEP) in scalar-tensor theories.

(1> 0) (153)

(154)

Gravitoelectric multipoles.—External gravitoelectric multi-
poles Q; = Q;4,...i) (I > 2) are obtained by solving (135)
and given by the following equation [ [17], Eq. 5. 891°:

°Be mindful that the spatial indices are raised and lowered with
the Kronecker symbol 6" so that the position of the spatial indices
does not matter.
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QL =M U(t,xg) + 0LV P(1,xp) —%8,,8<L>)'((t,x3) F2(1+ 7)1 T (1,x05) = 2(1+7) vk U (1,xp)

[ . ) I __ _ _
+(1=2y=2) v oEV U (1,x) + (1 +7)0200 U (1,xp) —Evévé’(‘?“m U(t.xg)+(2=28-1y)U(t,xg)0" U (t,xg)

—(P=1+42+2)al oL T (1,x5) = IF OL0 T (1,x5) + XL, (122)

where X represents a contribution of the local inertial
forces to the gravitoelectric multipole,

XLE{3a]<;1a’BZ> if 1 =2; (156)
0 if 1 >3.

We point out that in spite of the fact that the term X*
appears in the expression (155) for the external multipoles,
QF, it is not a part of the curvature of spacetime manifold
[71,87] and is exclusively associated with the local accel-
eration of worldline W of the origin of the body-adapted
local coordinates. This is proved in Sec. XID 2.

Gravitomagnetic multipoles.—External gravitomagnetic
multipoles C; =Cy;;, ;) for [ > 2 are also obtained by
solving (135) and given by Xie and Kopeikin [[234],
Eq. 5.371

sikapL = 4(1 + J/) |:'l)][;ak]<L>U<t,xB) + 6<L>[il_]k](t,x3)

[ . :
__ " sliligklL-1) > 1 1
_gito U<r,x3>}, (I=1) (157)

where the dot denotes the time derivative with respect to time
t, the angular brackets denote STF symmetry with respect to
multi-index L = i, i,, ..., i;, and the square brackets denote
antisymmetrization: T/ = (T —T/')/2. The external
multipoles Q; and C; are analogs of Dixon’s multipoles
Ay o and By ., respectively; see (463) and (464)
below. We shall use the above-given expressions for the
external multipoles in derivation of the equations of motion
of extended bodies in the next section.

VI. POST-NEWTONIAN EQUATIONS OF MOTION
OF AN EXTENDED BODY IN THE LOCAL
COORDINATES

Coordinate acceleration aj of worldline W of the origin
of the local coordinates adapted to body B with respect to the
global coordinates is given by Eq. (152). It depends on the
local acceleration Q; of the origin of the local coordinates
with respect to a timelike geodesic of the effective back-
ground metric g,;. The acceleration Q; cannot be

"Formula (157) corrects a typo in [[17], Eq. 5.74] for the
external gravitomagnetic multipole C; .

(155)

I
determined by solving the matching Eqs. (134) and
(135), and remains an arbitrary function of time. The center
of mass of body B has not yet been defined but it certainly
moves along worldline Z which is formally different from
W in the most general case. However, we have enough
freedom in choosing worldline /) which we can use in order
to make the two worldlines coincide. Mathematically, it
means that the center of mass of body B remains at rest at the
origin of the local coordinates adapted to body B as the body
moves on a spacetime manifold. This condition imposes a
functional constraint on the local acceleration Q; which
converts the translational equations of motion (152) of the
origin of the local coordinates to those for the center of mass
of body B with respect to the global coordinates. In order to
put the center of mass of body B to the origin of the local
coordinates and to hold it in there, we have to know the
translational equations of motion of the body’s center of
mass in the local coordinates adapted to the body.

Derivation of translational equations of motion of the

center of mass of body B in the local coordinates can be
executed in three different ways, which are the following:

(1) the Fock-Papapetrou method of integration of micro-
scopic equations of motion of matter over the body’s
volume [6,126,134,209,259];

(2) the Mathisson-Dixon method of integration of skel-
eton of the stress-energy tensor of matter of body B
given in terms of distributions [4,5,11] and amended
with some regularization technique [47,48,184];

(3) the Einstein-Infeld-Hoffmann (EIH) method of
asymptotic surface integrals [30,49,58,84,85].

The Mathisson-Dixon and EIH methods consider the
extended bodies in an N-body system as singularities of a
gravitational field endowed with a set of the internal multi-
poles which represent the internal structure of the bodies.
The multipoles in these approaches are not given in terms of
volume integrals from a smooth distribution of matter inside
the bodies but are merely functions of time given on
worldline Z of each body’s center of mass. On the other
hand, the Fock-Papapetrou method operates with a con-
tinuous distribution of matter inside the bodies and defines
the internal multipoles of the bodies in terms of the volume
integrals like in Sec. IV B 6 of the present paper. It is
assumed that the Mathisson-Dixon and EIH methods should
give the same equations of motion for extended, arbitrarily
structured bodies as in the Fock-Papapetrou method. This is
indeed true in case of pole-dipole particle approximation
corresponding to rigidly rotating, spherically symmetric
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bodies. However, this correspondence has been never
checked for higher-order internal multipoles. We use the
Fock-Papapetrou method of derivation of translational
equations of motion of extended bodies having all mass
and spin internal multipoles, and compare them with
similar equations derived by Racine and Flanagan [84]
and Racine et al. [85] with the EIH technique [see
Appendix B and with the covariant equations derived by
Dixon [11] (see Appendix D)].

In this section we define a center of mass and a linear
momentum of body B, derive the post-Newtonian micro-
scopic equations of motion of matter of the body in the local
coordinates and, then, integrate them over the body’s
volume in order to get the post-Newtonian equations of
motion of the linear momentum and the center of mass of the
body. As soon as the equations of motion for these quantities
are established, the local acceleration Q; is determined from
the condition of vanishing of the linear momentum and the
integral of the center of mass of the body which warrants that
the center of mass of body B is always at the origin of the
local coordinates. At the end of this section we give a post-
Newtonian definition of the intrinsic angular momentum
(spin) of body B and derive the spin’s rotational equations of
motion in the local coordinates.

A. Microscopic equations of motion of matter

The microscopic post-Newtonian equations of motion of
matter of body B include the following:

(1) equation of continuity,

(2) thermodynamic equation relating the elastic energy,

IT = II(u,w), to the stress tensor, 8,5 = 8,5(u, W),

(3) equation of conservation of the stress-energy tensor.
The equation of continuity of matter of body B in the body-
adapted local coordinates w* = (u, w) has the most simple
form if we use the invariant density p* = p*(u, w), defined
in (35). It reads

dp*  Ap*v')
Ou + ow'

where v/ = v/(u,w) = dw'/du is a coordinate velocity of
matter in the local coordinates. Equation (158) is exact in
any order of the post-Newtonian approximations like (36).

The thermodynamic equation relating the internal elastic
energy, I, and the stress tensor, 8,4, of body B is required
only in a linearized approximation where the stress-energy
tensor is completely characterized by its spatial (stress)
components 8;;. After making this substitution to the
covariant Eq. (17) we get the following thermodynamic
equation in the local coordinates:

=0, (158)

dIl ot
g Yy 15
Pt 8 =0 (159)

where the operator of the total time derivative, d/du=
d/0u + '/ ow'.

The covariant equation of conservation of the stress-
energy tensor of matter of body B is (15). We need in the
post-Newtonian approximation only the spatial component
of this equation. Straightforward calculations with making
use of the post-Newtonian components (31)—(34) of the
stress-energy tensor of matter of body B yield the following
form of the law of conservation (15) in the local coordinates:

d 1 1. 14 RN
p*— |:<1 +—V2+H+—h00+§hkk>l/l+h0i:|

du 2 2
1 (hey+1) 0%y
2 o' o’

1 ~ Ohyy 1 ,0h oh
|- (A 4200+h 00 4 Zpphky 0k
TP {4(1/ 2+ hoo) ow' +6V aw Y ow

1 8 8@00 1 a]/:lkk 1 81:1]] a<§lﬂ/})
g, == — 84 S Y 7
6 " ow'

20w/ | Y\ owk 3 owk ou ’
(160)

where the metric tensor perturbations fzoo, 700, szi, fzi j» and

fz,-,- in the local coordinates have been defined above in
Secs. IVB 3-IVB5.

B. Post-Newtonian mass of a single body

There are two algebraically independent definitions of the
post-Newtonian mass in the scalar-tensor theory—the active
mass (Jordan’s frame) and the conformal mass (Einstein’s
frame) which are defined respectively by equations (122)
and (128) for multipolar index [ = 0. More specifically, the
active mass of body B is [17,87]

/\/l:MGR[1+(1+y—2ﬂ)7’]+é(y—l)N
1 N
_zn[)Bp*UBdf%w
=1
=Y 4+ DQ+2(p-1)PL M. (161)
I=1""

where P, , Q; are the scalar field and gravitoelectric external
multipoles given in (153) and (155) respectively,

1 1.
Mgr :/ Pt <1 +-12 +H——UB)d3w (162)
Vi 2 2
is a bare post-Newtonian mass of body B [88], M’ are

active multipoles of the body defined in (122), N is the

rotational moment of inertia defined in (125), and N =
d*N'/du?* denotes a second derivative of the moment of
inertia with respect to time u.

Mass Mg depends only on the internal distribution of
mass, kinetic, thermal, and gravitational energy densities of
body B. It coincides with the Tolman mass [260] of a single,
isolated body residing in an asymptotically flat spacetime
derived by volume integration of Tolman’s superpotential
[119], Eq. 1.4.32]. Had the body B been isolated, the mass
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Mgr would be conserved. However, in an N-body system
gravitational interaction of body B with external bodies
causes the body’s tidal deformations which change the
internal distribution of matter and shape of body B, thus,
making Mgr dependent on time. The temporal change of
Mgqr is governed by the ordinary differential equation [17,75]

. <1 .
Mgg = ;Tz Q, M*, (163)
where the overdot denotes a derivative with respect to
coordinate time u.

The conformal mass of body B, M =Z, is defined by
equation (128) taken for [ = 0, and is [17,87]

1+ 1
M =Mcg[l+ (y - 1)P| = 1

=1

o, ME (164)

The conformal mass M defines the inertial mass of a single
body B in an N-body system as we shall demonstrate in
Sec. IX B. In case of a single isolated body the last term
in the right-hand side of (164) is absent but it appears in the
N-body system (if the body under consideration is not
spherically symmetric) and can be interpreted in the spirit
of Mach’s principle stating that the body’s inertial mass
originates from its gravitational interaction with an external
Universe. Mach’s idea is not completely right because the
inertial mass of the body is primarily originating from the
bare mass Mgr but it has a partial support as we cannot
completely ignore the gravitational interaction of a single
body with its external gravitational environment in the
definition of the inertial mass of the body. This effect is
important to take into account in inspiralling compact
binaries as they are tidally distorted and, hence, the part
of the inertial mass of each star associated with the very last
term in (164) rapidly changes as the distance between them
is decreasing. The overall time variation of the conformal
mass M is given by equation,

. | . .
M=(y—1) (PZﬁQLML + PMGR>
=1 "

ad 1 . [+1.
—;m <QLML +TQLML>, (165)

where we have made use of (163).
Relation between the active and conformal masses is
obtained by comparing (161) with (164)
1 . 1 .
M=M +i7/ pUgdPw ——(y = 1N
27 Jy, 6

L2 1) (MP + i%mw)
=1
=Y oy QM

=1

(166)

where 7 =4 —y —3 is called the Nordtvedt parameter
[88]. We can see that the conformal mass M of body B
differs from its active mass M. This fact was noticed by
Dicke [173,261], Will [88], and Nordtvedt [262] who found
the integral term being proportional to the Nordtvedt
parameter #n in the right-hand side of (166). The actual
difference between the masses turns out to be more
complicated and includes a term with the second time
derivative of the rotational moment of inertia of the body as
well as the tidal contributions originating from gravitational
interaction of the body’s internal multipoles with the
external multipoles. Had body B been completely isolated
from the external gravitational field, the difference between
the active and conformal masses would be caused only by
the Dicke-Nordtvedt self-gravity term depending on param-
eter n, and the second time derivative of the body’s
rotational moment of inertia due to, e.g., radial oscillations
of the body. In case of an N-body system the gravitational
field of N —1 external bodies cannot be ignored in the
definition of the post-Newtonian mass of a single body due
to the gravitational coupling of the external and internal
multipoles of the body.

C. Post-Newtonian center of mass and linear
momentum of a single body

The functional form of equations of motion of extended
bodies in an N-body system depends crucially on the choice
of the reference point inside body B that defines its
center of mass. There is a large freedom in choosing the
definition of the center of mass beyond the Newtonian
limit. Physically, any definition is allowed and makes a
certain sense. However, the most optimal definition of the
center of mass makes the equations of motion look simple
and eliminates a number of spurious terms which would
contaminate the equations of motion, like the noncanonical
multipole moments N2 and R* mentioned above, if the
center of mass is not chosen properly. Damour et al. [74,75]
have shown that in general relativity the position of the
center of mass of body B, which is a member of the N-body
system, is the most optimally determined by picking up the
zero value of the Blanchet-Damour mass dipole in the
internal solution for the metric tensor perturbation. In
scalar-tensor theory of gravity there are two possible
definitions of the internal mass dipole depending on
whether the Jordan or the Einstein frame is chosen for
the multipole expansion of the metric tensor. The Jordan
frame gives the active dipole moment M, and the Einstein
frame defines the conformal dipole Z'. Before performing
computations it is difficult to foresee which choice of the
dipole is the best for positioning the center of mass of the
body. Only after completing the derivation of the equations
of motion does it become clear that it is the conformal mass
dipole that yields the most optimal choice of the post-
Newtonian center of mass of each body [17,87]. The
physical reason for this is that the conformal dipole
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moment obeys the law of conservation of linear momen-
tum, p, of each body in its own local coordinate chart while
the post-Newtonian active dipole does not have such a
property.

Thus, we define the post-Newtonian center of mass of
each body B by making use of the conformal definition
(128) of the internal multipoles of body B for a multipolar
index [ = 1. It yields

T =Ti + T, (167)

where

. > 1 .

7= [ etew)| 1= P30ty
Vi =1

2/ 1,
—§<3R—ZN>

is the bare conformal dipole of body B, and Z! is a
complementary post-Newtonian translation that is intro-
duced in order to have freedom in a residual adjustment of
worldline Z of the center of mass of the body in the process
of derivation of equations of motion. At this stage the
translation Z_. is left undetermined. It will be specified later
on; see Egs. (289) and (539).

The last two terms in the right-hand side of (168) can be
written down more explicitly if we use a vector virial
theorem,

2 i 1"l' * 1 7 i
5<3R —4N> :/VB (p 1/2+§kk—§p UB>wd3w

c 1 iL
+Z(l ) QM

(168)

_—

(169)

[\.)

_Z 21+3 QuN*.

1=

Replacing (169) to (168) brings the bare conformal dipole
to the following form:

. 1 1. .
I}l)_/ p*(u,w) |:1+§I/2+H—§UB+(}/—1)P Wld3W
Vi

_ ﬂ w IS~ L 5o
Z QUM ZWH)ZQ,LN,

where the STF noncanonical multipole, N'*, has been
defined in (123).

We will also need the definition of the active dipole, M,
for it will appear in the equations of motion explicitly. The
definition of the active mass dipole follows directly from
the generic post-Newtonian formula for mass multipoles
(122) taken for [ = 1. After applying the virial theorem
(169), we find out that the active dipole, M, of body B
relates to its bare conformal dipole, I,’; as follows:

(170)

. . 3.1 -,
Ml_zg+(y—1)<§7z _EN>

(171)

The volume integrals entering definitions (170) and (171)
of the conformal and active dipoles of body B are
performed over hypersurface H, of constant time u. All
other terms entering these definitions are taken on world-
line W of the origin of the local coordinates adapted to the
body, at the point of intersection of ¥V with hypersurface
‘H,. Therefore, the dipole is a function of time u only.

The dipole defines a vector of displacement of the center
of mass of body B from the origin of the local coordinates
adapted to the body. If the origin of the local coordinates
coincides with the center of mass of the body, the dipole
vanishes. We draw to the attention of the reader that the
post-Newtonian definition of the center of mass of body B
depends (like in the case of the post-Newtonian definition
of a body’s mass) not only on the distribution of matter
density, velocity, and stresses inside the body but also on
the terms describing the coupling of the internal and
external multipoles. Thorne and Hartle [58] were the first
to notice the presence of such terms in the post-Newtonian
definition of the center of mass (and other mass multi-
poles), but they did not provide their exact form that was
found later by Damour et al. [74,75] in general relativity
and by Kopeikin and Vlasov [87] in the scalar-tensor theory
of gravity. We notice that dipole’s definitions (170) and
(171) contain noncanonical multipoles, R* and N'*, which
do not appear in the canonical multipole decomposition of
the metric tensor perturbation in vacuum [50,78,82].
Comprehensive calculations of equations of motion of
extended bodies by the Fock-Papapetrou method have
revealed [74,75,87] that if the noncanonical multipoles
RE and ML are removed from the definition of the dipole,
they appear explicitly in the equations of motion, thus,
making them incompatible with the equations of motion in
the Mathisson-Dixon or EIH approaches which cannot
have the noncanonical multipoles, R* and N*, at all.
Therefore, it is natural to hold the noncanonical multipoles
RE and N'* in the definitions of the post-Newtonian mass,
center of mass, and mass multipoles M’ of body B.

Definition (167) of the conformal dipole of body B is
used to define the position of its center of mass with respect
to the origin of the local coordinates adapted to body B. The
center of mass, wi,, of the body is defined in its local
coordinates by the overall value of its dipole,
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Mwi, =1T', (172)
where M is the post-Newtonian conformal mass of body B
defined above in (164). The post-Newtonian linear momen-
tum p’ of body B is defined as the first derivative of the
dipole (167) with respect to the local time u,
P =1'(u) =y} + L. (173)
where p; = Z’;, and the overdot denotes the time derivative
with respect to u. After taking the time derivative from the
bare dipole (170) and using the local equations of motion of
matter (160) to transform the integrand, we obtain [87]

. . 1 1.
p]g:/ p*v’<1+—v2+H——UB)d3w
Ve 2 2

1 ..
+ / <§ik1/k——p*W§>d3w
Ve 2

d i i ~l+1 i
—[Ic—(l—V)PM —ZTQLML

=1

IS 1 .
_Ez(zz+3)1! Q"LN]

=1 I 20+1
_QL/ p*yzWLd3w:|’ (174)
VB
where
* ING Tk (k1 tk il
Wﬁz/ P W (w fvs)(w Y pw  (173)
Vg w—w|

is a new internal potential of gravitational field of body B;
cf. [[88], Eq. 4.32].

We remind the reader now that the point x} represents
the position of the origin of the local coordinates adapted to
body B in the global coordinates taken at instant of time ¢. It
moves along worldline ¥ which we want to make identical
to worldline Z of the center of mass of body B. It can be
achieved if we can retain the center of mass of body B at the
origin of the local coordinates adapted to the body, that is to
have for any instant of time, wi,;, = 0. This condition means
that both functions of time—the conformal dipole Z' of the
body and its linear momentum p'—have to vanish,

Il =0,

p' = 0. (176)

These constraints imposed on the conformal dipole and
linear momentum of body B can be satisfied if, and only if,
the local equation of motion of the center of mass of the
body can be reduced to equation

pi(u) =pi +Zi =0. (177)

It is remarkable that Eq. (177) can be, indeed, fulfilled after
making an appropriate choice of the external dipole Q; that
characterizes the acceleration of the origin of the local
coordinates of body B with respect to a geodesic worldline
of the effective external manifold M. We prove this state-
ment below in Sec. VIE.

D. Post-Newtonian spin of a single body

In the post-Newtonian approximation the spin multipoles
of an extended body B appear in the multipolar decom-
position of the metric tensor in the Newtonian form (131)
where the body’s spin corresponds to [ = 1. The Newtonian
definition of spin is insufficient for derivation of the post-
Newtonian equations of rotational motion and must be
extended to include the post-Newtonian terms. The post-
Newtonian definition of spin of a single body residing in
asymptotically flat spacetime can be extracted from the
multipolar expansion of the metric tensor component
Joi(u,w) by taking into account terms of the post-post-
Newtonian order [79]. The problem we face in the present
paper is that we have to define the post-Newtonian spin of
body B which is not residing in asymptotically flat spacetime
but is a member of the N-body system. We have also take into
account the contribution of the scalar field as we work in
scalar-tensor theory of gravity.

A post-Newtonian definition of the spin can be extracted
from the local law of conservation of the stress-energy
complex ®*

(178)

which is used for building definitions of conserved quan-
tities in metric theories of gravity [119]. The stress-energy
complex is not unique and is defined up to a term whose
divergence vanishes identically. One of the most convenient
definitions of the symmetric stress-energy tensor in the
scalar-tensor theory of gravity was found by Nutku [147]. It
generalizes the Landau-Lifshitz stress-energy complex [42]
and reads

O = —g(1 + ¢)(TH + 1), (179)

where g = det[g,, |, ¢ is the perturbation of the scalar field
(20), T is the stress energy-tensor of matter, and #* is an
analog of the Landau-Lifshitz pseudotensor #; of the
gravitational field [42]. The pseudotensor has been deter-
mined by Nutku [147] and reads

u_i 3\ MV
= 1 |0 O

2w(p) +3
I+¢
Let us now introduce the post-Newtonian definition of a

bare spin of body B in the local coordinates adapted to the
body, as follows:

(aﬂqsa”qﬁ - %gﬂ”a%aaqs)] - (180)
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Si— / g [=9(u w1+ (7 = 1), w)]

x [TO%(u, w) + 1% (u, w))dPw, (181)
where ¢;;; is 3-dimensional symbol of Levi-Civita and the
integration is performed over the entire 3-dimensional
space R3. Special attention should be paid to the variables
entering definition (181). Namely, the scalar field pertur-
bation ¢ is given by (92) and includes both external and
internal parts; the stress-energy tensor 7** depends solely
on matter variables of body B as defined in Egs. (31)—(34)
but it includes the overall—external and internal—post-
Newtonian perturbations of the metric tensor (98) and

|

. . 1 N
Sé:/p*eijkwfuk [I—Q—EUZ—FH—Q—(Z;H— 1)Ug
Vi

where v/ = dw'/du is velocity of matter of body
B in the local coordinates, the integration is over
volume of body B, and vector potential W’é is
defined in (175). The reader can notice that the spin
of body B which is a member of the N-body system
depends not only on the internal structure of the body
but also on the gravitational field of external bodies like
in the case of the internal mass multipoles. We shall use
definition (182) to derive the rotational equations of
motion of the body’s spin below in this section and in
Sec. X.

+(1—y)77} d3w+/VB

2.1 . 1 A N
+Zﬁ[3QL +2(}’_1)PL]/V ,0*€ijijl/kWLd3W—§/V p e Wi+ (3+4y) Ugld*w
= 5 s

scalar field (92), while the Nutku pseudotensor #* intro-
duced in (180) depends only on the internal part of the post-
Newtonian perturbations of the metric tensor (101)-(103)
and scalar field (99). These limitations introduced to the
definition of spin of body B prevents appearance of
divergent terms that could emerge from the integration
of a pseudotensor which is formally defined in the entire
space R3.

Integrating by parts allows us to reduce (181) to the
integral over the volume Vg of body B only. Expanding it in
the post-Newtonian series yields explicit expression for
the bare post-Newtonian spin of body B in the following
form [87]:

W 8P Ul dPw

(182)

E. Translational equation of motion of the
center of mass of a single body

Translational equations of motion of the center of mass of
body B with respect to the local coordinates w” adapted to the
body are derived by the Fock-Papapetrou method from the law
of conservation (177) of the total linear momentum p’ of the
body. In order to implement this law we have to find out the
time derivative of the bare linear momentum, p; of the body.
To this end, we differentiate both sides of Eq. (174) one time
with respect to the local coordinate time u, make use of the
microscopic equations of motion (158)—(160), and integrate
by parts to rearrange a number of terms. One obtains [17,234]

Dl — i . l . L . # . L > ") _ L
P e +;“Q’LM +;(Z+1)!C’LS ;(an[(l +1+4)Q, +2(y = 1)PIM
© 2041 . .
e [(P420+5)Q, +2(y—1)P M’
;(l+l)(l+l)! L L
e e e R e I ey | e e
= 1+1 o I+1 .
+2;(l+2)! ipq [(2QPL+(}’—1)PPL)S‘I +H_—2(2QPL+(y_1)ppL)SqL}
(79 B”/V OB dw—ly —1>N+2<ﬂ—1><MP+Zz‘7>LML>

(183)
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where the spatial indices are raised and lowered with the
Kronecker symbol, the active mass multipoles M’ are
defined in (122) and include the post-Newtonian correc-
tions, and the spin multipoles S* are sufficient in the
Newtonian limit (131). We have not shown in (183) a
number of terms which are directly proportional to the
internal conformal dipole, 7 i and the linear momentum, pi s
of body B because these terms vanish if the origin of the
local coordinates coincides with the center of mass of body
B under condition (176) which we employ in the rest of the
paper. The omitted dipole-dependent terms in (183) can be
found in [[17], Eq. 6.19].

Equation (183) is the post-Newtonian generalization of
the second Newton’s law applied to body B and written
down in the body-adapted local coordinates. Therefore, the
right-hand side of (183) is the net force exerted on body B.
This force does not include the self-action force as the
scalar-tensor theory of gravity belongs to the class of
conservative theories [88]. Formally, the self-action force
terms appeared at different stages of the computation of the
time derivative of the linear momentum but they all have
mutually canceled out at the final expression (183). The
external force standing in the right-hand side of (183)
consists of three parts:

(1) the tidal gravitational force caused by the coupling

of the internal active multipoles, M¥%, St of body B
with the external multipoles Q;, P;, C; for [ > 2,

(2) the force of inertia consisting of M Q; and all other
post-Newtonian terms being proportional to Q,,
caused by the nongeodesic motion of the origin
of the local coordinates adapted to body B;

(3) the Dicke-Nordtvedt force that is proportional to the
difference P’ — Q' as shown by the very last term in
the right-hand side of (183), caused by the violation
of the strong principle of equivalence (SEP) in
scalar-tensor theory of gravity.

[Se] (o]

MQ?N:ZU;U![(IZJFIJFQQL+2(7,_1)7>L]M5L+Z

- 20+1
+Z 2l+3) (I+1)!

=1

Z l+1)‘ lL

=1

~

(o]

where M and M are the conformal and active gravitational
masses of body B. The two masses, M and M, are not
equal according to (166). The difference between them
plays a role of a scalar charge, q = M — M, of the scalar
field ¢ which couples with the external dipole of the
scalar field P' = U; and causes the Dicke-Nordtvedt
anomalous acceleration, qP', in (185) [88,173,261].

zpq |: 2QpL + (J/ 1),P[JL)‘S‘qL

In order to ensure vanishing of the total linear momentum
of body B, i)i = 0, we shall choose the local acceleration
Q; to compensate all terms in the right-hand side of (183)
along with the complementary term Z". that is used for small
residual adjustment of the acceleration. This choice elimi-
nates the relative acceleration of the worldline Z of the
center of mass of body B with respect to worldline WV of the
origin of the body-adapted local coordinates. In this locally
accelerated frame we can still have the center of mass of
body B moving with respect to the origin of the local
coordinates with constant velocity, but we impose further
constraint (176) to eliminate this rectilinear motion and to
put the center of mass of body B at the origin of its own
local coordinates. It makes worldlines Z and )V identical.

The solution of the law of conservation of the linear
momentum (177), where p{, is given by (183), with respect
to Q,; yields

1
Q= Q¥ QN te. (184)
M
where the first term is the Newtonian part of acceleration,
the second term is the post-Newtonian correction, and the
third term is the complementary acceleration which allows
us to make residual adjustments in the position of the center
of mass of the body, if necessary. The residual freedom in
choosing the position of the center of mass of body B is
fixed at the last steps of derivation of translational equations

of motion; see (289) and (535).

The Newtonian and post-Newtonian counterparts of the
local acceleration of body B are defined by the following
equations:

1 .
(P +31+6)Q, +2(r - 1)PLM’L+Z 0l ,pq[C,,LM"L+—C,,LM4L]

MON = (M — M)P; — sz Qu ML, (185)
20+1 > : 5 1AL
4 m[(l +214+5)9; +2(y—1)P M
[+1
[+2
[+1 "
0, +-nPst|. (s

[
In general relativity, q =0, and the Dicke-Nordtvedt
acceleration in the right-hand side of (184) vanishes.
Equation (184) is a condition for the fulfillment of
the law of conservation of linear momentum (177) in
local coordinates. It ensures that the worldline WV of the
origin of local coordinates does not accelerate with respect
to the worldline Z of the center of mass of body B
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Equation (184) does not guarantee, however, that VV and Z
coincide. The origin of the local coordinates still can move
uniformly with respect to the center of mass of the body. To
eliminate this uniform motion we impose condition,
p’ = 0. The freedom which remains is a constant relative
displacement of the origin of the local coordinates with
respect to the center of mass of the body. This constant
displacement is removed by an additional constraint
imposed on the internal conformal dipole of the body,
T = 0. This procedure results in the constraint (176) and
ensures that the worldlines VW and Z coincide.
Acceleration Q; given in (184) must be substituted to the
equations of motion of the origin of the local coordinates
(152) to convert them to the translational equations of
motion of the center of mass of body B in the global
coordinates. These equations still contain the external
gravitational potentials U, ¥, U’, and 7 defined in (68)
and (91), which are given in the form of integrals expressed
in the global coordinates. These integrals should be
explicitly expanded with respect to the internal multipoles
of the bodies of the N-body system in order to complete the
theory. We shall conduct this computation in Sec. VII and
derive translational equations of motion of extended bodies
in an N-body system in terms of their internal multipoles as
well as coordinates and velocities of their centers of mass.

F. Rotational equations of motion
of spin of a single body

Rotational equations of motion of spin of an extended
body are derived in the local coordinates by differentiating
the bare spin of body B given by Eq. (182) with respect to
the local coordinate time u. After taking the time derivative
and making use of the microscopic equations of motion in
the local coordinates given in Sec. VIA, we perform
several transformations in the integrand to reduce similar
terms, integrate the contributions from partial derivatives
by parts, and simplify the final result. After long and
tedious calculation we obtain the following expression for
the first time derivative of the bare spin of body B in the
local coordinates adapted to the body [87]

dsi

=Ti+7T.-8.,
du b e

(187)

where 77 is the bare torque exerted on the body B due to
the coupling of its internal multipoles with the external tidal
multipoles, and 7 is a post-Newtonian correction to the
bare torque caused by the difference (171) between the

active and conformal dipoles of body B, while S’C =
dSi/du and S! is a linear combination of terms which
can be treated as a complementary contribution to the bare
spin of the body.

Gravitational bare torque, 7, and the other terms in the
right-hand side of (187) read as follows [87]:

. ] .
Ty=01+@2p-r-1P Zl_eiijkLM]L
=0
0 l—|— )
e JL
+;(1+2)”8,1kckLS , (188)
. 3. 1 -
Tlc = l]kaB |:(1 - )(ng _I_ONk>
n * 7T 1 k3 c 1 L
+2(/VBP Udew+Z(2l+3) QkLN)
©(y — 1)1+ 2(
iy ; B=1) o, ppie
=1
1
+2(B—1)ah <Mkﬂ +35kﬂ/\fﬂ, (189)
R 1
i iL _— C. L
Se= ;(1 )CLM +Z 21+3)1!C’LN
- in 1+2(2y+3) -
JjL _tT e\ o) jL
+; 21+5 I ”"{ QuN" =5 ey QuN
20+3 .
- zyﬁz )Q"LRJL]
1- . . .
+?ye,-jk(37zfag+/\/fa;3)+(y—1)795’, (190)

where the noncanonical multipoles, N2 and R* have been
defined earlier in (123) and (124) respectively, and in all
post-Newtonian terms the global acceleration, afg, 1s
interpreted as the difference between the dipole of the
scalar field and the local acceleration, afg =P;—Q,.

The bare torque, 7, is caused by gravitational coupling
of the internal and external multipoles of body B, and is
rooted in general relativity. The complementary torque, 7 -,
is caused by the difference between the conformal and
active dipoles of the body (171) and exists only in the
scalar-tensor theory. Indeed, by comparison of (189) with
(171) we can see that
Ti=e¢ap(Zf— M) =g (PI = Q) (IE-MFK), (191)
where Z| is the bare conformal dipole (170), and M’ is the
active dipole of body B respectively. Equation (191) can be
further transformed to yet another form by taking into
account that the total conformal dipole (167) vanishes,
Z' = 0, due to our choice of the center of mass (176). After
making use of this choice and implementing (167), the
complementary torque takes on the following form:

T = —€ijk(Pj - )M

k —eijka']él'/c‘, (192)
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where the complementary vector function Z¥ is still
arbitrary. It will be fixed later by condition (289).

The complementary term S, in (187) is a total time
derivative which is naturally combined with the bare spin,
thus, forming the total spin of body B,

§'=8+ S (193)

Defining the total torque in the local coordinates of
body B by

Tl Tl+Tl

. <1 . .
=&ijk |:73ij + Zﬁ QML+ af T}

L
+ (=7 IPZZ,QMMJ 2 e

(194)

I+ jL]

brings about the rotational equation of motion of spin of
body B to its final form,

dSi .
=7 1
du ’ (195)

which includes all Newtonian and post-Newtonian correc-
tions. Derivation of the rotational equations of motion
given in this section follows the approach proposed by
Damour et al. [76] in general relativity and by Kopeikin and
Vlasov [87] in scalar-tensor theory of gravity.

VII. MULTIPOLAR EXPANSION OF EXTERNAL
POTENTIALS IN THE GLOBAL COORDINATES

Equations of translational motion of each body B in the
global coordinates are given in (152) where the local
acceleration Q; should be taken from (184)—(186).
However, the external gravitational potentials of the body—
U, ®, U', y—defined in (68) and (91) are represented in
the form of volume integrals which have not yet been
explicitly performed in terms of the configuration variables
defining each body of the N-body system—the internal
multipoles, coordinates of the centers of mass, and their
velocities. Computation of the integrals is rather straight-
forward and rendered by expanding an integrand in each
integral defining the external potential, in a Taylor series
around the point of the center of mass of body B with
subsequent integration of the coefficients of the expansion
over volume of body B. The resulting expansion of the
external potentials is given in terms of the internal multi-
pole moments of the bodies which are the integrals
performed in the global coordinates, x*. Additional trans-
formation of the internal multipoles from the global to the
body-adapted local coordinates is required. This section
describes the details of the overall procedure of the

multipolar expansion of the external potentials which are
used, then, in the translational equations of motion.

We have built the local coordinates, w®=(u,w')=
(ug,w), adapted tobody B € {1,2, ..., N} by the matched
asymptotic expansion technique. We have suppressed the
subindex B in previous sections for all functions of the local
coordinates adapted to body B to simplify notations.
However, computations in this section involves the bodies
of the N-body system which are external with respect to
body B, and we need to distinguish the local coordinates
built around each body C from those adapted to body B
Therefore, we shall use a subindex C € {1,2,...,N} to
explicitly label the local coordinates adapted to body C
along with all configuration variables associated with it.

A. Multipolar expansion of potential U

The local coordinates adapted to body C are denoted
w& = (uc, wk) and the subindex C will appear explicitly in
all computations associated with the body C. Post-
Newtonian coordinate transformation between w¢ and
the global coordinates x* is identical to Egs. (144) and
(145) describing the transformation from the local coor-
dinates adapted to body B to the global coordinates except
that now we have to pin the label C to all quantities related
to the local coordinates adapted to body C to distinguish
them from the local coordinates adapted to body B. More
specifically, the transformation reads

t+1
u = —_
C C2

(Ac - Uch )

1 1 1 - 1
+?{[§Uéaé—ch(t,xc) IOGCRC:|R2

o 1 L pL

(196)

S e L .
we=Re+ 5 [(5 veve + DE + Fck) RE + D’Cﬂ‘RJCR’é} ,
(197)

where Rl = x' — xk, xL = x5(¢) marks the global spatial
coordinates of the origin of the local coordinates adapted to
body C, 1}6 = dxl./dt is velocity of the origin of the local
coordinates of body C, a- = dvi/dt is acceleration of the
origin of the local coordinates, and we have made use of
abbreviations,

D¢ =%y Uc(1,xc), (198)

DI* =~ (als™ + ksl — al.67), (199)

| —

that allows us to shorten formula (197) and is also useful in
the computations which follow. Equations for functions
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like Ac = Ac(1), BE = BE(1), ete., in (196) and (197)
repeat the corresponding equations for A, BE, etc., in
Sec. V C 1, after attaching the subindex C to all funct1ons in
(146)—(151). Notice that the potential Uc(z,xc) in (198)
denotes the Newtonian gravitational potential of all massive
bodies being external to body C,

x) =Y Ug(t.x).

B#C

(200)

We emphasize that the instant of time # that appears in (196)
and which is also a time argument of all functions and
functionals of body C in the global coordinate chart is the
same as the instant of time ¢ for functions and functionals of
body B. This is because we consider dynamics of the entire
N-body system as a continuous past-to-future diffeomor-
phism of spatial coordinates of the bodies taken on a
hypersurface of simultaneity H, which points have the
same value of a single parameter—time 7.

The multipolar expansions of the external gravitational
potentials U, U’, ¥, 7 of body B defined in (68) and (91)
are represented in the form of the multipolar expansions
from a linear superposition of potentials Uc(t,x), UL(t,x),
Wc(t,x), and yc (¢, x) correspondingly. Therefore, we focus
on the multipolar expansions of the individual potentials.

Potentials Uc(t,x), Us(t,x), Wc(,x) are given in the
global coordinates as integrals (65), (75)—(79) with a kernel,
lx —x'|7!, which is a Green function of the Laplace
equation. This kernel is expanded into a multipolar series

as follows:
1
<—> , (201)
! Rc

where R{. = x'' — xL is the coordinate distance from the
origin of the local coordinates x.- adapted to body C, Rl =
x — xt. is the coordinate distance from x. to the field point,
Rc = (5inéRé)1/2, Jp = 0;, _;, denotes a partial derivative
of /th order with respect to spatial global coordinates where
each 9; = 9/0x', the angular parentheses around indices
indicate the STF projection, and the point x" lies inside
volume with radius Rj. < R¢ so that the series (201) is
convergent. Equation (201) yields the multipolar expansion
of the Newtonian potential of body C in the global
coordinates as follows:

1 (o]
|x—x| |RC—R _IZ:

where

L =14(7) = / p(t,X)RERE...REPK  (203)
Ve

are the Newtonian mass moments computed in the global
coordinates. We preserve the prime in the notation of the
spatial coordinates R{. = x'" — x. that appear in the inte-
grand of (203) to prevent confusion of the point of
integration x” with the field point x’. Symmetric multipoles
I& have to be transformed from the global to local coor-
dinates adapted to body C in order to express them in terms
of the internal STF mass and spin multipoles defined in
Sec. IVB 6. The transformation procedure is somehow
subtle and should be done with care as it involves not only
a pointwise transformation of coordinates but a Lie transport
of the integration points along worldlines of matter of body
C [73,87]; see Fig. 1.

It starts from the post-Newtonian transformation of
radius-vector Rl = x' — x’ from the global to local coor-
dinates wi adapted to body C. This is achieved by applying
the inverse coordinate transformation of (197):

R A L .
R =we == [(5 vevk + D + Fg) wh + Dg"uﬂcw’é] .
(204)

However, we actually need a post-Newtonian transforma-
tion not R} but a radius-vector R = x" — xL from the
global to the local coordinates because it is R{ which
appears in the definition of I& in (203) as a consequence of
the Taylor expansion (202). This transformation is slightly
different from (204) because in all integrals performed in
the global coordinates the points x' and x” are lying on
hypersurface H, of constant global coordinate time ¢, while
the points wf and w¢. are lying on hypersurfaces H,. of
constant local coordinate time uc in all integrals defining
the internal part of the metric tensor perturbation of body C.
Hypersurface ‘H, differs from that H, . Therefore, trans-
(L)

formation of I.” from the global to local coordinates must
include not only the transformations between the coordi-
nate points but also a Lie transport of the integration point
with coordinates x” from hypersurface , to hypersurface
H,. performed along the timelike worldlines of matter of
body C. The magnitude of the Lie transport of each point of
integration depends on the size of spatial separation of the
integration point x”* from the origin of the local coordinates
adapted to body C, and is determined from the equation of
time transformation (196), and a condition that all points on
the hypersurface H,_. have the same value of the local
coordinate time uc as the field point P in Fig. 1. The Lie
transport of the corresponding element of matter with
coordinates x" is accompanied by the point-wise post-
Newtonian transformation (196) applied to x* and the
resulting transform was worked out by Brumberg and
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World line of the origin Y
- .
of the local coordinates 0\&\‘(\
adapted to body C {)X@o

h,
N“
= =
EA
A
%,

At

Hypersurface J, of time t

=

World tube of body C

FIG. 1. World tube of matter of body C intersected by hypersurfaces of simultaneity in the global and local coordinates adapted to
body C. Integration in the global coordinates goes over the hypersurface H, of constant time ¢ passing through points P and Q.
Integration in the local coordinates goes over the hypersurface H, . of constant time uc passing through points P and R. The two
hypersurfaces intersect at the field point P having global coordinates x¢ = {7,x} and local coordinates w$ = {uc,wc}. The points Q
and R are lying on the worldline W of the origin of the local coordinates adapted to body C. Lie transport of the elements of integration
from H, to H,_ is shown by dotted lines and carried out along worldlines of matter particles forming the element of integration.
Hypersurface H,, 5, of constant time 7 + A7 is passing through point R. Points Q and R have global coordinates x{, = {t,x¢c(1)} and
x% = {t + At,xc(t + Ar)}, respectively. Local coordinates of point R are w§ = {uc,0}. Time shift Az between hypersurfaces H, and
'H,. a; 1s determined by the time transformation (196) applied to coordinates of two points, P and R which have the same value of the

local time uc. It is given by At = vfRE.

Kopejkin [73] and Kopejkin [263] and its comprehensive
explanation is given in full detail in our textbook [ [17],
Secs. 5.2.3.1 and 6.3.2]. It yields for the post -Newtonian
Lie transform of the spatial coordinate w¢ the following
result [ [17], Eq. 6.56]:

1 1 ik ik
2 2UC1)C+D + Fe

+ D wwl + vk (wh - wé‘:)} (205)

o /i
R¢ = we

where vl = v'" — vk is the relative velocity of matter of
body C located at point x with respect to the origin of the
local coordinates of the body, v = dx'!/dt, vi. = dxi./dt.
The difference between transformations (204) and (205) is
in the presence of the very last term in (205) which is due to
the Lie transport of an element of integration from the
hypersurface H, of constant time 7 to that H,, . of uc along
worldlines of matter some of which are shown by dotted
lines in Fig. 1. This term brings about a seemingly different
appearance of our translational equations of motion for the
center of mass of each body as compared with translational
equations of motion derived by Racine and Flanagan [84]
with corrections outlined in [85]. This is a matter of choice
of the hypersurface of integration H,. in the local

coordinates adapted to the body under consideration. We
reconcile this issue in Appendix B; see discussion follow-
ing Eq. (B17).

Equation (205) allows us to transform ]I< ) = ]Ig“> (1) from
the global to local coordinates as follows [ [17], Eq. 6.60]:

i .
]I<C> 8(CL> Evévglsé lF z,ch 1)k lD l]cyL 1)k
—IGHE DIk pk GHE) ok RS
+ Ué/ pz‘j’ug‘wé >d3w’c, (206)
Ve

where a shorthand notation, p = p¢(uc, wr), stands for

the invariant density of matter at the integration point w(. in
the local coordinates, the moments

St =Seluc) = [ ptwlnlt.wldn, (207

Ve

are symmetric moments of body C depending on the local
time uc, and we have made use of the fact that the product
of the mass density p* with 3-dimensional coordinate
volume is Lie invariant when transported from hypersur-
face H, to hypersurface H, . along worldlines of matter,

that is p&(t,x))d>x = p&(uc, we)dwi [17]. Notice that
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formula (206) is not a pointwise transformation of the  poticing that the term vERE $<CL> is not present in the

moments performed at the origin of the local coordinates  (3nsformation equations for multipole moments derived by
adapted to body C because of the presence of the last but

Racine and Flanagan [84] as they have computed the
one term, vCRé\sé ), which depends on the coordinate  multipoles of each body C at the value of the local time
distance Rk from the origin of the local coordinates to the uc taken at the center of mass of body C which is different
field point (point P in Fig. 1). At first glance, the  from our convention. This leads to the translational
appearance of this term may look strange as by definition ~ equations of motion which look different from ours by

(203) the moments ]Iéw are solely functions of time  alone. seyeral terms. This apparent c}ifference ig not an indicator of
mistake but, as we show in Appendix B, a matter of

The reader should keep in mind that the moments Sé are - .
(L) computational approach and conventions.
It should be emphasized that the moments S are not the

functions of the local time uc and, though both I and J&
are functions pinned down to the origin of the local STF Cartesian tensors. Their STF projection is denoted as
(L)

coordinates adapted to body C, they are taken at different . .

: : . . R and, in general, L # 8< ). Tt means that after
points on the worldline WV of the origin because the field c o g > ¥Cc 7T Nc
point (7, x') is considered as being fixed in the derivation of ‘fkrltter‘QCtlon of any two indices in (207) we get the trace
the transformation (206). Therefore, the transformation of ~ ~C ?é 0, and it must be taken into accountin subsequent
the time arguments of the moments involves the time shift ~ calculations. The STF part of the Newtonian-like moments
At = vERk of the moments along the worldline W, which ~ (207) is related to the STF post-Newtonian internal mass

: L = AL .
explains the origin of term UcRé‘j Vin (206). It is worth multipoles, M = Mc(uc), of body C as follows [234];

/kk

S = ME[1 + (25 -y — 1)Pc] - [( )2+

1 . 21 1 = HKY 1
)[Né”—4<1+y> LRG|+ S ek v 20 0P [ g (208)
k=1 Ve

(- 1>0e] w8
C

T 2(20+3

|
where a prime standing after function (like IT¢,, etc.) in the  referred to body C, and the noncanonical multipoles A& and
integrand means that the function is taken at the point wC, an Ré are defined by equations similar to (123) and (124) where
overdot denotes a total time derivative with respect to the the integrals must be taken over a volume of body C,
coordinate time i of the local coordinates adapted to body C,

= Z@KUB(t,xC) (k>0) (209) ¢ = / pé(uc,wc)w(%wg“>d3wc, (211)
B#C Ve
are monopole and higher-order external multipoles of the
lar field ted by all bodies bei ternal to body C, .
scalar field generated by odies being external to body RL = Pc(uc,wc)VéWgL>d3Wc- (212)
QK = "0xUg(t.xc) (k>2) (210) Ve

B#C Now, we replace expression (206) for H<CL> to multipolar

are higher-order gravitoelectric external multipoles of body C,  expansion (202) of the Newtonian potential of body C and
and the local acceleration Qé is defined in (184) and must be use (208). It results in
|

0 _1] 1 oo
et =S ko, (o + @s—r-1pd -3 50 (1)
=0 C 1=0 !
y 1 8k AN 1 L) 2041
X{/chc|:<y+2) +II-+y pé —-(2p-1)U¢ we dWC—f—m NC —4(1+y)—— I+ R

= 1 l 13 1 L
Z—[QC +2(p— 1)771(]/]/ pé’w’c wC dgwc—ﬁ—ivcv(clﬁé 1>k—lFf:<"”L Dk —|—lD l"L Dk —|—l"jk<L IDC>k
C

+”’é$é<L>_”]éRc‘5<c>_”]é/v pgv@‘wg >d3w’c}. (213)
C
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Neither the multipoles & nor the very last integral in (206)
are the STF Cartesian tensors. Therefore, Eq. (213) must be
further transformed to bring it to the form depending on the
STF internal mass and spin multipoles, M¢& and S. This is
achieved by making use of the following equations:

i i - -1 i i -
vcvé’Sé l>k:1}’é1j<c’./\/llc‘ 1>k+—2l_lv<c'vé/\/é 2, (214)
DHIGEY =y U (1. xc) ML, (215)
K(L—1 i iL 1 i n L1
S DI = al M 7(2l+1)a§;/\/c ' (216)
. . I
k(L kL L—1
Z’](C:S(:H:Ué/\/lc —2l+1 <c C > (217)
/pé’ ! dwe
Ve
1 A 20-1_,
= el ST TSR (218
z+1MC e Se Ui Re (218)
|
© (—]
Oc(t,x) = (2 —y—1)Pc (Z') ( C)ML
il

>
2l+1

i [+1

s [V

[ i - i -
+§vév<c’/\/lé bk _ lF?’Mé Lk

S la e L

- 2[—1) ok -1
+Z (ZH— akL—1<RC>RC

1S (-1 p o)
EZ (21 +3)1! PL( ) N +Zz

1=

The reader can notice that (221) includes explicitly a
number of integrals depending on the intrinsic physical
quantities of body C such as the internal velocity of matter
V&, potential energy I1¢, the stress tensor 8, and self-gravity
potential Uc, as well as the noncanonical multipoles, N L
and RE. The appearance of such terms is not expected in the
final equations of motion if the principle of effacing of the
internal structure is valid. Indeed, subsequent calculations
demonstrate that the multipolar expansions of other gravi-
tational potentials also contain similar terms depending
on the internal structure of body C which are mutually

o el e

o | 5 Py + + e +7—

11 "\Rc) \Lh© 2 ¢ pC'
=1

} Z’T [ON +2(p —I)Pg]/cpé’wlémwg”cpw&

+ lyU(t.xc) ME + laE MEE + ok ME —

where the overdot denotes a total time derivative with
respect to coordinate time uc of the local coordinates
adapted to body C, and we have used everywhere in the

post-Newtonian terms «SC = ME which is valid in the
approximation under con81derat10n Substituting (214)—
(218) to Eq. (213) yields a multipolar post-Newtonian
expansion of the Newtonian potential of body C given in
terms of the internal active mass and spin multipoles of the
body,

Uc(t,x) = We(t,x) + Pc(t,x), (219)

where

-(2p- 1)04 wél‘)d3wé:

véRéML}

(221)

canceled out in the final form of the post-Newtonian
equations of motion.

Multipolar expansion of the Newtonian potential was
rather cumbersome because we had to take into account the
post-Newtonian corrections to the definitions of the internal
multipoles M’ and to implement the post-Newtonian
transformation from the global to local coordinates.
Multipolar expansions of other external potentials are less
laborious as they show up only in the post-Newtonian terms
in definition of the external gravitoelectric multipoles Q; .
Thus, their multipolar expansions can be performed by
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operating merely with the Newtonian part of the coordinate
transformations and taking the leading (Newtonian-order)
terms in the definition of the active internal multipoles ME.

B. Multipolar expansion of potential U

The external vector potential UL is defined in the global
coordinates by Eq. (75) and depends on the velocity of matter
v’ of the body C taken with respect to the origin of the global
coordinates. This velocity is a linear sum of two pieces,

v = vl + U, (222)
where vl = dxi/dt is velocity of the origin of local
coordinates adapted to body C with respect to the global
coordinates, and z/iC is velocity of matter of body C with
respect to the origin of the local coordinates. After account-
ing for the linear decomposition of the velocity, the vector
potential U is expanded in terms of the internal multipoles
as follows:

where ME and S are the canonical internal mass and spin
multipoles of body C defined in (122) and (131) respectively,
and RF are the noncanonical multipoles of body C defined
in (124).

C. Multipolar expansion of potential ¥

Multipolar expansion of the external potential ¥ entering
the definition of the external tidal potential Q; for body B
is a sum of gravitational potentials of the bodies being
external with respect to body B

P(tx) = W(t.x) (224)
C#B
where
We(r.x) = <y T l)wcm %)+ (1= 26 W (1.%)
+ Wes(t.x) + y¥Pea(t.x) (225)

is a linear superposition of potentials W, Yo, Y3, Yeu
defined in (76)—(79) respectively.

Potential W, is a quadratic functional of matter’s
velocity with respect to the global coordinates. The square
of the velocity is split in three pieces in accordance with
decomposition (222),

2

v? = 02 + 20505 + L. (226)

Replacing v with the right-hand side of (226) in (76), and
performing multipolar decomposition of each integral with
the help of (201), we obtain

* I .12
_ / AULILEW
ve [x—x]
2 (-1)! 1
:Z( |) oL <—) <Mévé+/ pevw" >d3W’c>
Al Rc Ve
= (1) (),
+2Z(1+1)16L Re vE MPE
(_])ll k 1 pL—1
+22<l+1)!vcekpq8qL_1 R_C SC
(

© (—1)/20—1 1Ny
+22 l' 2l+1UC8kL 1<R—C>RC s

where a prime after a function means that the function is
taken at the integration point with coordinates w¢. in the
local coordinates adapted to body C.

Potential W, depends on the total Newtonian potential
U of all bodies in an N-body system. It is split in two
pieces,

(227)

U(t,x) = Uc(t,x) + Uc(t,x),

where Uc(t,x) is the Newtonian potential of body C, and
Uc(t.x) = > p.cUg(t.x) is the Newtonian potential of all
other bodies of the N-body system. Transformation of the
Newtonian potential from the global to local coordinates of
body C is sufficient in the Newtonian approximation:
Uc(t,x) = Uc(uc,we). The external Newtonian potential
is decomposed in a Taylor series around the origin xi. of the
local coordinates of body C, which is also transformed
from the global to local coordinates,

(228)

_ © 1 _
Uc(t.x) = Uc(t,xc) + ZEaKUC(LxC)Wg7 (229)

k=1

where we have used notations

ZUB t xC

B#C
0 U 1, X = lim 8i
K C( C) xl’chZ (i)

th

wUs(tx). (230)
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Taking the above considerations into account, and perform-
ing calculations of integrals, we get a multipolar decom-
position of potential W, in the following form:

+ g 0xlcltxe) [ i .
(231)

Multipolar decompositions of potentials W3, Wy are
straightforward, and result in

*(t, NI ‘. /
Wes(t,x) = / PtXULY) 5
Ve

(-1 (1
-, (R—> L PETIewc dPw, (232)
: c

— S (_l)l 1 / /<
_Z 0 oL Re /vc.e,kk dPwp. (233)

D. Multipolar expansion of potential j

Multipolar expansion of external potential yc(t,x)
defined by Eq. (81), is based on the multipolar expansion
of coordinate distance |x — x’| = |Rc — R(| that is a kernel
of the integral in (81), near the origin of the local coordinates
that is the point with coordinates xc. Taylor’s expansion of
the kernel |x — x’| with respect to x’ is given in terms of the

Gegenbauer polynomials, C (x) [ [264], Sec. 8.93], and
its STF expansion near the origin of the local coordinates of
body B reads

(D g (1
+Z(21+3>Z!RCRC O\gs) (234

Therefore, the multipolar expansion of external potential
xc(t,x) has the following form:

pr(t,x)|x =x'|d*x

Y
(=1) 6LRCMé
=0

D ¢ (235)
> e (%

which is a direct consequence of integration of (234).

In what follows, we will need the multipolar expansion
of the second partial derivative of the potential y- with
respect to the global coordinate time, 8,2)(C(t,x), because it
is this quantity that enters definition of the external
gravitoelectric multipoles, Q;. The partial time derivative
of yc with respect to the global coordinate time, ¢, should
be transformed to the time derivative taken with respect to
the local coordinate time uc of body C which allow us to
separate the internal, time-dependent physical processes
inside body C from the temporal changes caused by motion
of body C with respect to the global coordinates. The law of
transformation of the first time derivative is derived directly
from the coordinate transformation (196), (197) and is
given by

9 0 duc

at 8MC 81‘

0w _ 0
5wi (3t _8MC

9
CORL’

(236)

where we have neglected all terms of the post-Newtonian
order because they contribute only to the post-post-
Newtonian approximation which we do not consider.
Applying (236) one more time, we get for the second partial
derivative

PP o o . 0

< —2 £op - .
o7~ o~ 2 oRkue T 'O pREaRE ~ € ORE
(237)

Now, we employ (237) to calculate the second time
derivative from expansion (235). In doing this, we remind
the reader that the internal potentials, M% and NE, are
functions of the local coordinate time u only, and the partial
derivative 9/ORL = 0/0x' = 0. Therefore, taking the sec-
ond time derivative from yc results in

W:_Z

+ML’UC1}CakaRC Mcac(?kLRC]

~1)! o 1\ -
Xt (e V-2t ()

=0

1 1
1t (o )VE=atou (o) NE]. @39
C C

RC - 2MCUC8kLRC
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where we have discarded all post-Newtonian terms
as they contribute only to the second post- -Newtonian
approxunatlon which we do not consider; vi = dxi/dt
and aC = dvc /dt are, respectively, velocity and accelera-
tion of the origin of the local coordinates of body C with
respect to the global coordinates.

It is worth noticing that the partial derivatives from
function 1/Rc like 9, (1/Rc), Oy (1/Rc), etc., are STF
derivatives with respect to all indices. At the same time
the partial derivatives from R, like O, Rc, Oy Rc, etc.,
are not STF derivatives with respect to their indices;
only that part of indices in the derivatives which is
contracted with STF multipoles becomes symmetric and
trace free. Transformation of the partial derivatives from
Rc to their STF counterpart will be required in deriva-
tion of the equations of motion and is given below
in (268).

VIII. MULTIPOLAR EXPANSION
OF EXTERNAL MULTIPOLES
IN THE GLOBAL COORDINATES

The external tidal multipoles P;, Q;, and C; of body
B have been introduced in Sec. VC4 in the form of the
STF partial derivatives from the external potentials. We
need explicit expressions of the external multipoles in
terms of the multipolar series with respect to the internal
multipoles of the extended bodies for calculating equa-
tions of motion of an N-body system in the global

|

txl

x)= ZWC(t,x),

ZVCtxl

C#B C#B

coordinates. The present section provides this multipolar
decomposition.

A. Scalar-field multipoles P;,

Multipolar decomposition of the external scalar-field
multipoles P; of body B is obtained from (153) where the
scalar field @(z,xg) = W(t,xg) of external bodies and
W(t.xg) = > czWe(t.xg) is the external Newtonian
potential. Multipolar decomposition of the potential
We(xp) of body C is given in (220). Making use of it,
we get the external scalar-field multipoles

where the STF index N should not be confused with the
number N of the extended bodies in the N-body system.
Expression (239) will be used later for calculating the post-
Newtonian part of the gravitational force depending on the
external scalar-field multipoles.

B. Gravitoelectric multipoles Q;

Gravitoelectric multipoles Q; are defined by Eq. (155).
It is instructive to introduce potentials W, V, and V! as
linear combinations of potentials W, V¢, Vi of individual
bodies from the N-body system,

Vtxl

ZVCtxl

C#B

(240)

where the scalar potential W has been defined earlier in (220), the scalar potential

1
Ve(tx,l)=D¢(t.x) +Pe(t.x) —58,,;(C(t,x) -

and the vector potential

Vi(t,x, 1) =2(1+ }/)Uf;(t,x) +

—(P=142+2)abUc(t,x) —

2(147) v UE(t.x) 4+ (1 +7) v Uc(1.x) +

(1=2=27)0pUc(r.x)

(2=2p~1y)U(t,xg)Uc(1.x),
(241)

[ .
—Evgv]’gﬁkUC(t,x)

IFNOUc(t,x). (242)

Notice that potentials V(¢,x, ) and Vé(t,x, 1) depend explicitly on the multipolar index /. In terms of the new potentials
the gravitoelectric multipole Q; takes on a simpler expression,

QL =9y W(t,xg) + 0y,

V(xg.l)+ a(L—l‘_/i,>(va D)+ Xy

(1>2). (243)

Multipolar expansion of potential W is given in (220). Multipolar expansion of two other gravitational potentials are

obtained form the results of Sec. VIII
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o~ (=1)" <1 [ b A PN-1
_ a _ _,Up,UnMp
©_(—1)" [1
>l [EMgaNRC

n=0 .

2. (=1)"n 1 -
+2(l —|—}/) |:Z ((n +)1)!€kpqap1\’—1 <R_C>S(q:N IU]ISJ,C

H"2n—1 1 _
2n + lapN—l (R_C>Rg 1U§C

_2(_71!

n=

© (~1)"2n—1
> n! 2n+laN1 RC RE|.

where

Voo = vl — vk (245)
is the relative coordinate velocity between the bodies B and
C, and the external potentials U and U have been defined
in (68) and (230).

Expression (242) for Vé contains the total time deriv-
atives from the potentials taken on the worldline, xj (), of
the origin of the local coordinates adapted to body B. It is
expressed in terms of the partial time and spatial derivatives
as follows:

Veltr.) =201+ S o () + 35

F’”"M”N "4 (n+ 1)a@M@N + UéMéN - v@RgMg]

. 1 1
— D R+ 5 MY, Re ~ EMgagapNRC}

<, (-1y
P ey

n=0

1\ .
Oy (R_c> MgN Ugc

(244)

where v = dxi/dt is velocity of the origin of the local
coordinates adapted to body B with respect to the global
coordinates. The partial time derivative in (246) is taken
with respect to the variables associated with each body C
that is external to the body B. It is related to the partial time
derivative taken with respect to the local coordinate time u¢
of body C by Eq. (236). Hence, the total time derivative
from the external potentials associated with body C taken
on the worldline of body B reads

d 0 + oy 0

dt Ouc  BCoxt
where again vh = v — vl is the relative velocity between
two bodies, B and C. After employing (247) for taking the

total time derivatives in (242) and the multipolar expansions
of other potentials entering the definition of V., we get

(247)

8N< )(MCvC+MN ¢)

> (_])nn 1 SgN-1 © (_ )nn 1 Nl
_ ; (n T 1)! gzpqapN—l R_C SC - ;meimakw_l R_C SC vk

0 <_l)” 1 N © (_l)n 1 v
+;(n+1)yapN RC MC Bc‘l‘; Y apN R_C MC”BCUC

c (_l)n 2n—1 1 Nl © (—1)" m—1 1 o
’ ; n! 2n+1 Oin-1 R)TE T ; n! 2n+1 Dipn-1 7. )R vre

— IFNO,0(t.x).  (248)
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Multipolar expansion of the external gravitoelectric
multipole Q; is obtained by substituting (244) and (248)
to definition (243). It is remarkable that each potential,
V(t,x,1) and V,(t,x, 1), entering (243) depends separately
on the noncanonical multipoles RY and A/C but they
are mutually canceled out in the linear combination
Oy V(t.x,1) + 01 Vy(2.x.1) so that the gravitoelectric
multipoles Q; depend exclusively on the canonical internal
active mass, MZXL, and spin, SE, multipoles. We do not
provide here the explicit expression for the multipolar
decomposition of Q; . It will be given below in Sec. IX A 1.

C. Gravitomagnetic multipoles C;,
Gravitomagnetic external multipoles, C; , have been de-
fined in (157). They represent a linear combination of the
gravitomagnetic multipoles, H*L, generated by all bodies

of the N-body system which are external with respect to
body C. More specifically, we reformulate (157) as follows:

€ikapL = HikL’ (249)

where

(250)

Hiy, = ZH’kL (t.xp),

C#B
|

) 1
i kLN [ _—
[ c? (Rc

)n

n!

Hé‘L(tx)—21+7)Z

n=

and H*! is a skew-symmetric tensor with respect to the first
two indices and STF tensor with respect to the multi-index
L, thatis H* = H gk]@. The same property naturally holds
for I:I ikL-

For each body C Eq. (157) yields

HEL(1,x) = 4(1+ 1) {ogd" Uc(1,%) + O U (1,%)}

l . .
— 2(1 + }’) l—f——l {51<I]8L_1>kUc(f,X)

— LD (1, %)} (251)

According to definition (249) we have &;,,Cpi -1 =0
due to the antisymmetry of the Levi-Civita symbol and
the STF symmetry of C; . Tt follows, then, that HX**~" =0
as well. This property can be confirmed by inspection
after contracting the corresponding indices in the right-
hand side of (251), and remembering that according to
equation of continuity (36), we have in the global coor-
dinates, 9, U~ + 0,Uc = 0.

Multipolar expansion of H* is obtained after making
use of multipolar decomposition of potentials U and UL
given above in Secs. VII A and VII B,

)=t ;)

1

. . 1
kLN _ kN aiLN [~
A v [ ¢? <RC> Mc <RC>:|
+ 2(1 + y) i & gpqiaquN i £qu8’qLN SpN
pr (n + 2)}’1‘ Rc RC
2<1 + 7) i (_l)nl [5! z,aL 1)Npk 1 5k t,aL 1)Npi MN
n=0 (l + 1) ! BC RC RC
2(1+7) iﬁ slagr-ive (L) _giagr-nwi( L] g (252)
= (14 1)n! Rc Rc c

It is worth noticing that the noncanonical multipoles R
which are present in the multipolar expansion (223) of the
external gravitomagnetic potential I_JE are canceled out in
(252) after taking the skew-symmetric partial derivative,
UK, Therefore, the external gravitomagnetic multipoles,
Cy, do not depend on the noncanonical multipoles R .

IX. TRANSLATIONAL EQUATIONS OF MOTION
OF BODIES IN THE GLOBAL COORDINATES

The aim of this section is to derive the post-Newtonian
equations of translational motion of extended bodies in the

084008

global coordinates while taking into account all possible
gravitational interactions taking place between mass and
spin internal multipoles of the bodies in an N-body system.
Our derivation is based on the Fock-Papapetrou method
along with the matched asymptotic expansions technique
and significantly extends the post-Newtonian equations of
motion of extended bodies in gravitationally bound systems
beyond the pole-dipole approximation. A similar task was
set forth and solved in the post-Newtonian approximation
of general relativity by Racine and Flanagan [84] and
Racine et al. [85] who used the EIH technique of surface
integration along with the post-Newtonian transformations
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of asymptotic expansions of the metric tensors and
Blanchet-Damour multipole formalism. We shall compare
our translational equations with those derived previously
by Racine and Flanagan [84] and Racine et al. [85] in
Appendix B.

A. Computation of gravitational force

1. Reduction of similar terms

Translational equations of motion of the center of
mass of body B in the global coordinates follow directly
from the equations of motion (152) of the origin of the
local coordinates adapted to body B after making use of
the specific value of the local acceleration Q; defined in
(184)—(186) and the multipolar decomposition of the
external multipoles P;, Q;, C; provided in Sec. VIIL
This makes the worldline WV of the origin of the local
coordinates of body B identical with the worldline Z of the
body’s center of mass.

It is instrumental to rewrite the right-hand side of (152)
in terms of the gravitational potentials V(z,x,[) and
V,(t,x,1) introduced above in (241) and (242). We have

leg = aW(l xB) - QN + aiV(Z,xB, 1) + Vi(l,xB, 1)

2

i1
pN k ik
-9 + _*UB”BaB FBaB - ”BaB

My 2
+yapU(1,xp),

where accelerations QN and QFN are determined by (185)
and (186), the external gravitational potentials

o0

. 1 -
F' = ZﬁaﬁL)W(tva)Mﬁ

=0 "

{ }’U t xB)}3<,-L>(_J(t xB)M +

J':MS
Nl,_.

V(t.xg., [+ 1)ME + 0,V

> 1
27
[=0

is a relativistic force exerted on body B by external
bodies of the N-body system. It depends explicitly on
the active internal multipoles, M. of body B, and we
identify, here and everywhere else, the active mass Mg
of body B with a monopole value (/ = 0) of the active
mass multipole of body B, that is M= Mg. It is
instructive to emphasize that the Newtonian part of the
force, given by the first term in the right-hand side of
(258), depends on the active dipole, M, of body B
which does not vanish in scalar-tensor theory of gravity
because the position of the center of mass of body B is

Vit,x,1)= ZVC(t,x, 1), Vitx1)= ZVé(t,x, 1),

C#B C#B
(254)

and gravitational potentials of body C are given respec-
tively by (241) and (242) for the value of multipole index
=1,

Vel(t,x, 1) = —%an)(c(f»x)
=2(1 + 7)ok UL(t,x) + (1 + y)vEUc(t,x)
+(2=28-7)U(1,x5)Uc(t,x), (255)

Vi(t,x,1) =2(1 +y)Uk(t,x) —

D (t,x) + P (1,x)

(1+ Zy)vngc(t,x)

1 . )
—EvgvﬁakUc(t,x) = 2(1 +y)agUc(t.x)

—FﬁiakUc(t,x). (256)

Local acceleration Q?I of the center of mass of body B is
given by (185) where the external gravitoelectric multipoles
Q; are defined in (243) in terms of the derivatives from the
potentials W(z,x), V(t,x,1), and V,(t,x,1). Taking into
account in the definition (185) of Q?] that, according to
(239), the external scalar-field dipole P; = 8,-V_V(t,xB), we
can reduce relativistic equation of motion (253) to the form
of the second Newton’s law,

(253)
Mgay = F', (257)
where My is the conformal mass of body B, and
Lk L
ZUBUBa ey U (1, x5) M
i (. %p, 1+ DM — Mg QP + ZL — Fif0y) U(1,x5) M} (258)

|
defined by the condition (176) of vanishing of the
conformal dipole moment, Z5 of body B

Before proceeding to the explicit calculation of the
gravitational force, we notice that there are some cancella-
tions of similar terms in (258). More specifically, we note
the following:

The very last term in the third line of (244) can be

transformed to

8We remind the reader that in general case, ./\/lf3 #* Ig. The
difference has a post-Newtonian order of magnitude.

084008-48



COVARIANT EQUATIONS OF MOTION OF EXTENDED ... PHYS. REV. D 99, 084008 (2019)

: 1 - 2n—1 L
N a,...a,
MC v@R@@N <R—C> = MCI Ug |:6<pal.4.a,,>RC —-n on 4 1 5P<alaa2--~an> (RC>:|

S qay...a, 2 1 2n—1 1
= Mg {%al.‘.ach - 2,1—“5{%3@..,54"} <R_c> - ”2,1—“5p<a16a2,..a,1> <R—C>}

. 1
= M]g'[]gapNRC - nUCMpN laN 1 <R ) (259)
C

The first and second terms in the very last line of (259) cancel out, respectively, the second term in the forth line of (244)
and the forth term in the third line of (244) which all depend on the time derivative /\/lc

The very last term in (248) enters Eq. (258) in STF form (I + 1)Fy KoLk (t,xg) which can be decomposed with the help
of peeling formula (A1) separating the STF index i from that L, so that we get

2 [+ 1

!
—

|
FRIOLA T (1, x5) M => :l— F& 0, U(t, xg) Mk +§ :Z'F Our U(1,x5) MBE. (260)
=0

The first term in the right-hand side of (260) cancels the very last (precessional) term in (258).

Each potential V(z,x,[+ 1) and V;(¢,x, [+ 1) entering (258) “depends on the noncanonical multipoles R and N'E
but they are mutually canceled out in the linear combination ;) V(t,x,l+1)+ o Vi> (t,x,1+ 1) so that the right side
of the translational equations of motion (258) depends only on the active internal mass and spin multipoles M& and S&
of the bodies.

Finally, we notice that the post-Newtonian term, X;, which is a part of Q;, does not appear in (258). The term X
would appear in (258) only in the form of the quadrupole-dipole coupling, X;,MF, as a consequence of its definition
(156). However, with sufficient accuracy the active mass dipole M§ = Z5 = 0 in the post-Newtonian approximation
due to the choice of the center of mass (176).

The above-mentioned cancellations simplify (258) and recast it to

o, |
Fi— ;ﬁaﬁL)W(t’xB)Mé - <v35’k += UBUB> ZO:Z_ wry U (1, x5) M

[Se]

1
k
- Fy ;ﬁawm U(t,x5) MK —i—Zl' (i) Q. x5, ) ME

® 1 N
+;ﬁ8<LQ,~>(t,xB,l)M§—MBQ$ + ML, (261)

where the external potentials
W(t,x)= ZWCtx Q(t,x,1) = ZQCtxl Qi(t,x, 1) = ZQ’txl (262)
C#B C#B C#B

represent the linear superposition of gravitational potentials W¢, Qc, and QF generated by body C # B. Multipolar
expansion of potential W(z,x) is given in (220). The new potentials Qc¢(z,x,1) and Qi (7,x,[) are modifications of
Vel(t,x, 1+ 1) and Vé(t,x, [ + 1) respectively after taking into account the above-mentioned cancellations of similar terms
in (258). They read

Qc(t,x,1) = i (_nll)n Oy (Rlc> [(y + 1)v} (y + %) ué] MY
3 C 0 ()12 26 - 190(080) = 0+ DOclrxlI M

2 (=1)" 1 1 - (n —|— 1) 1
+ Z ( }’l'> apN (R—c> <2 DCUCMkN kaMkN> Z (R—C) agMgN

n=

- 1
Z ( ) [MCaNRC + MNUC 8 - Mlgaéap@])Rc]
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S

Notice that both potentials Qc(z,x,/) and Qic(t,x, D)
depend on the multipolar index [ explicitly which should
be taken into account when rendering summation in (258).

2. STF derivatives from the scalar potentials W and U

The force contains the STF derivatives from the scalar
potentials W and U that appear in the first line of (261). The
derivatives are computed with the help of expansions (220)
and observation that we can equate U to W in the post-
Newtonian terms. Accounting for the fact that the partial
derivative of any order from the inverse distance, R(‘:l, is
automatically STF Cartesian tensor because this function is
a fundamental solution of the Laplace equation, we get

[se] 1 B [se] [so] _1
Zl—!3<iL>W(t,x)M§ = ZZ(HH)! 81LN< >MLMN,

(265)

1 _ © (_l)n 1
Z”3<kL>U(t,x)MIé:ZZM8kLN<RC)M1L3MN,

1=0 1=0 n=0
(266)
[Se] 1 _ o0 o0 (_l)n 1
Zﬁ8<tpL>U(t’x>MkL = ZZ 1! DipLn (R )
1=0 =0 n=0
x MEEME, (267)

where we have dropped the angular (STF) brackets around
spatial indices of the partial derivatives from Rc' as they are

o (- W )
+ 2 amenn(5 )S +3 v

+i%3m< )MC BC+; n! ”N< )MNUBCUC]

I+ 1N (=1)" 1 =
Tz(n' 8PN(RC>MNUBUB (12+l+2+2y)20( )8N< )MNaB

(263)
+Z Vo () (et + Mat)
1 aN,
zpqakpN SC BC
n=0 C
) 1)"
. ) 1 N
Mevk + ] Re M vpevy
(264)

I
redundant because the partial and STF derivatives of R¢!
are identical, 9;; yRz' = 0wy Re', etc.

3. STF derivatives from the scalar potential Q

Computation of the STF partial derivative from Q in the
second line of Eq. (261) for the force F' involves taking the
partial derivatives from the coordinate distance R-. We
already know that all the partial derivatives taken from the
inverse distance, REl, are automatically STF derivatives in
the sense that 9;Rg' = 9 Rc' for any number [ of
indices. On the other hand, the partial derivatives from
R are not the STF derivatives, that is 9; Rc # 0(yRc. The
partial derivatives from R enter the forth line of for-
mula (263) for Q¢ (7, x, [), and additional partial derivatives
from R are taken in (261) in the form of 0, Q(z,x.1).
The derivatives from Rc have to be converted to the STF
partial derivatives in order to represent all terms in the
equations of motion as expansions with respect to the STF
Cartesian tensors. This is achieved by making use of the
following complementary relation allowing us to transform
a partial derivative of order p from Rc to its STF
counterpart [ [50], Eq. (A21b)]:

aa,az...aI,RC = a<u]a2..4aF>RC

2
2p

1
6{“102833 .a,} <R_C) ’ (268)

where the curly brackets around tensor indices denote a full
symmetrization with respect to the smallest set of permu-
tations (1,2, ..., p) of the indices.
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Let us consider a transformation of the partial derivatives
from R to the STF derivatives more explicitly. The first
term in ;) Q with the partial derivatives from R( is
proportional to MK /\/lc OirynRe- Itis converted to the STF
derivative by applying (268) in two steps. First, we use
(268) in reverse order,

MEMEO i1y nRe
. 2 1
= MéMg az'LNRC - mé{ialaa;..a,}blmb” <R_C>:| s
(269)
with the purpose of getting the symmetric partial derivative

dirnRc from the partial derivative d,;;yyRc which contains
|

a mixture of the STF and symmetric derivatives. Second,
we apply (268) in direct order for converting the symmetric
derivative 0;; yRc to its STF counterpart,

MEMYO; yRe = MEMY |0 uLvyRe

+ 2 Ofiq. O !
20+ 2n+1 {ia;Ya,...a;b;...b,} RC .

(270)

Expanding the symmetric permutation symbol in the
second term of (270) to a corresponding number of terms
and remembering that the Laplacian from Rg' vanishes,
ARG! = 0, we eventually get

; : 2 2 !
M]Lg/\/lgaUL)NRC = MéMg@OLMRC =+ |:2l o1 2[ - 1:| M iL— ]MNa (VL1 <RC>
2n L iN—-1 1 2Iln pL—1 pN—1 1
o MEAA aml)( )+21+2 MBI Dy () @)

Proceeding in a similar way, we get for two other partial derivatives from R,

MEMEVEvED iy pgnRe = MEMEVEDED ipgrn Re +

4
+2l—|—2n+5

21
+

) 1
MéMgUICUéa<pLN> <—>

2

1
L
2[—|—2n+5MBM v azLN( )

Rc

Rc

21

2n
+2l—|—2n+5
41
ot onts
4n
21+2 +5
2In
Jr2l+2n+5

Mé/\/lé’ag@iL)pNRc = MéMé’aé@WLMRC +

21 21

1

MqL IMNUCUCa<leL 1>< >
1

M MEN Ué”ga(ipqL—lN—l) <> ,

2 .
i L Na
204+ 2n+3 acMgMcd) (RC>

| I
_ iL—1 AN P,
20+2m+5 2+ 1} My ™ MevereDipai-n (RC>

. 1
MEMY 52080 s (—)

Rc

Rc

1
ME T MEDEVLD iy (R_>
C

R (272)

1

1
_ iL—1 N P -
T3y 1} M= Mcacdpvi- (RC>

2n 1 21 1
L iN-1, 8 pL—-1 b
21 T " T 3 M M (pLN-1) ( > 2] T o T 3 CM MC (iNL—1) (RC>
2n N-1 1 2In L1, «qN-1 1
m CMP MLa (iLN—1 < > +WM]% M% aga<i1,L_1N_1> R—C .

(273)
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Employing these relations to present all terms in J;; L>Q in the STF form, we compute its contribution to the force (261) as
follows:

=1 o (- 1) 1 121 +2n+3 ,
Zﬁa(iL)QC(ttx’ Mg = ZZ diLn <—> {(1 +7)vic — 2m ]MLMN

i(__l)"&m&)[(z 25 = 1)U, x5) = y(n + )t x0) | MM

—1)" 1 1
(l!n)! 8iPLN (R—C> (5 Uév’(‘: - F’g’)/\/lﬁ/\/lléN

1
(n + 1)81'LN <R—C> agMéMéN
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) n 1 Nk
Z: l n n+ zgkpqaipLN (R_c) MESE vge

(s

Z [!nv n+1 lLN< )MLMgN”{;c’ (274)

n=

Ms gMe

T
=)

where, in the fifth line of this long formula, we keep the angular brackets around indices of the spatial derivatives from R to
make clear that these are the STF partial derivatives from Rc.

4. STF derivatives from the vector potential Q'

Our next step is the computation of the STF derivative 8<L£_2,-> (t,x,1) that appears in the third line of equation (261) for
force Fi. Calculation of this term is based on application of the index peeling-off formula (A1) which yields

<1 ~ - 1 _
E:F@LQ,-)(t,x, HME :§:(l+ 1)‘3 Q.(t.x, )Mk +§ : i@ (tx, HMEE!
=0 "° 1=0 :

d 1 21 i1

Z:EO (l )'21—“8 (L-1) (t X, Z)M (275)

that helps to disentangle one index from the remaining STF indices and simplifies computation of the partial derivative.
Vector potential Q; is given by the last term in (262) as a linear superposition of vector-potentials Q- of bodies with index
C # B that are external with respect to body B. Applying (275) to the individual Q. defined in (264), we obtain the first
term in the right-hand side of (275),

PBrn

l:O

[se] 0 1 n 1 1 N
8LQ L DM 1+7) Z St — 0L ( C)MlﬁMlCN
=
co  ©o ( 1)” 1 CN v ,
+2(1+7) ZZWGLN Re (ML + MY al) M
:() n!
+2(1”)iiﬁia oy () g
=L (I41)nln+2 "1 pLN
S 1 e
’ =0 (l+1)!n!n+2€wq kpLN Nk
)
)
)
)

© & (-]
+2(1+J’)szn—+lapuv< )MLMC UBc
— 'n!

=0 n=0 o
—1200:?:(_1)"6 MEMEvE v
24y int PEY RC B7B
[e] 00 1 n
ZZT))H(ZQ—l—I—l—Z—i—Zy)aLN( >MLMNaB (276)
=0 n=

In order to compute the second and third terms in the right-hand side of (275) it is useful to reformulate them by
changing the index of summation, / — [ 4 1, which also replaces STF index L — 1 — L. This procedure is convenient for
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reduction of similar terms in the final equation for the force which consists of the contributions of many separate pieces.

We have

>

1:0

'21—1—1

e

and the STF derivatives are

;l!(lJrZ)a

1

+2) 8,LQ (f X, l+ )MpL

91 Q, (t,x, HMBEE! sz z (277)

— 1

2(1+1
s (1+1)

£ (1+2)! 21 +3

8,0.Q,(t,x, 1+ 1) ML, (278)
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pL PN
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© X 21— 2p)(=1)" [+ 1 I\ ey
2D (T2)in 2043000 R_C Mi Mevg

=0 n=0
= &2(1 = 2p)(=1)" [+ 1 y
+;ZO (1+2)n! 21+36”f“V My Miverf
_;Zo I'n! 21+38P1LN MMl
=S (—1)"(212+6l+8+4y) [+1 1 LN
- M o)
;; (I +2)n! a1+ 30 g ) M Meas (280)

5. Post-Newtonian local acceleration Qf N
We also need to express the post-Newtonian part QFN of the local acceleration (186) of body B explicitly as a function of
the STF mass and spin internal multipoles of all bodies in the N-body system. For completing this task we, first of all,

transform the terms in the first three lines of expression (186) for Q?N by making use of the fact that the external
gravitoelectric multipoles Q; = P; for [ > 2 in all post-Newtonian terms. After accounting for this equality, Eq. (186) can
be reshuffled to the following form:

My Q™ = 3(QME + 20, M + QM) + (1) (Pk/\/lig" + —Pk/\/ligk + gpkmg)

X P4 I4242 U1 +20+3+2
Z+++y + +++yPLM

PLMy —~ 1+1 (14 1)!

20 1P 31 +4 42y 0 o
i C. SL
—~20+3  (I+1)! PLMj ZI:(Z+1)! iLeB

[Se]

[+1.
ql) L 0T 7 (qL)
+1§1 T 1) ,,,,,{,,L./\/l +H_2C,,L./\/l ]

> I+ SR ol R
Z (1+2)! "’q{ S +l+2PPLS%]
1=

- ge,-kqmgk 20 - )POSE+ (204 + (r — NPISH, (281)

=2

At the second step of the computation, we take advantage of equation of motion (152) in the global coordinates to replace
the local acceleration Q; everywhere in (281) with its global counterpart ai. The Newtonian approximation is sufficient,
Q; = 0,U(t,xg) — aly = P' — al;, where we employed 0;U(t,xg) = P; in accordance with the definition of the external
scalar-field multipoles provided in Sec. V C4. Proceeding in this way, we obtain

le+l—|—2+2yp it 220+ 112 +2043+2y
[+1)! OB T (14 1)

+1[2—|—3l+4—|—2y N
——C,; Sk
_|_ 7)ln/\/l Zo(l iL“B

MyQ™N = PLMy

=0

2.5

(
21
20+3 + 1! +1)!

~

0

© [+1;
+y €ing | Co MEE + ——Cp MG
£ (1+1)!

= ] L
1+7) ZZO: 1+2)! "’q[ S +1+2PPL‘5%}

+ g (245 Sh + afSE) = 3(ab M + 245 My + b M), (282)

084008-55



SERGEI M. KOPEIKIN

PHYS. REV. D 99, 084008 (2019)

where we have formally extended summation to value
[ = 0 in all sums by taking into account that in terms of the
post-Newtonian order of magnitude the active dipole of
each body vanishes, M§ = 0.

The external multipoles, P; and C; are expressed in
terms of the external gravitational potentials, U and U’ of
the body B with the help of (153), (154), and (157)
respectively. Particular attention should be paid to the
term C;; S5. After a few algebraic transformations it
becomes

1

L qL—1 __ qL—1
CiLSg = 5pqcipL—1SB = —8jpk8jchpiL—1SB

CuSE=2(1+ Y)quk[”{aaikL-l U(t,xp)
- aikL—lUj(t’xB)]SgL_l

2(14—)/)é3
[+1 “ia

0,1 U(t,x5)SEE". (284)

After implementing this and other replacements of the
external multipoles in (282) with the corresponding exter-
nal global potentials, and reducing similar terms, the post-
Newtonian local acceleration takes on the following form:

My Q?N =EL(t.x5) + 8qu(2aB'5B + agSE)

2
| — 3(ak M 4+ 2k M + Gk MiF),  (285)
= =&; k[:I'k iL— SqL—l’ (283)
2 HARTKIL where the first term
where, at the last step, we have used (249). After sub- =i L
stituting H ;) from (250) and (251) to the above =c(tx) = £ #B“C(t’x) (286)
expression and noticing that contraction of any two indices
in STF multipole S5 vanishes, we get is a linear superposition of vectors
P +1+2+2y 2P 4314342y - . o7
; l+1 aLUC t X)M Z (l—|—1 8LUc(I,X)MB
°°213+912+121+8+4y .
0, Uc(1, i
+; 21+3)z' LUclt.x) Mg
14y Z [vgaﬂLUc@,x) + aL[iU’g(z,x)} MEE
= (
o0 1 li [i . 7ok
A(1 (b uc(r, MU (1) + OO (1,x)| M
= [+ ; i JL
+2(1+7) Z ] 1€jkg | VO Uc(.x) — O Ug (1. x) | S
— (1+2)!
> [+ 1 : oL Lt Gl
_2(1 +y)Z(l+2)'8ikqakLUC(t’x)SB - 1 +}’ Z ,-kqakLUc(t,x)SB . (287)
1=0 : 1:0

Finally, after making use of multipolar decompositions of potentials Uc = W and UL given in (220) and (223)

. ,_.ll
respectively, vector Z becomes
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6. Complementary vector function T:.
Adjustment of the center of mass

We notice that the last three terms in (285) represent a
second time derivative from the product, a§Mi¥. These
terms can be eliminating from the net force (261) by
choosing the complementary vector function Z' in defi-
nition (167) of the center of mass of body B, as follows:

Zi = -3ak M. (289)
This choice slightly simplifies equations of translational
motion and makes a small adjustment of the worldline Z of
the center of mass of body B as compared with the choice
i = 0 which was used, for example, in [84,85].

The terms which are proportional to spin S§ of body B in
the right-hand side of (285) do not represent a second time
derivative and will be left in the equations of motion. In
principle, we can always group some terms in the net force
(261) to form a second time derivative that can be
eliminated from the force. This procedure can make sense
for simplifying the translational equations of motion of

[Se] 1 [Se]

i —
Fin = I
=0

body B. However, it brings additional terms to the rota-
tional equations of motion for the body’s spin and, overall,
may be not so effective. Therefore, we do not implement it
beyond applying Eq. (289).

B. Explicit formula for gravitational force

After making adjustment (289) of the worldline of the
center of mass of body B, translational equations of motion
(257) take on the following form:

Mgydly = Fi + Fiy, (290)

where My is the inertial (conformal) mass of the body, and
the net gravitational force F' is split in two components: Fy
is the Newtonian gravitational force, and F' ;N is the post-
Newtonian gravitational force. The force components read

> 1
v=2p?

1=0

(iL) W t xB)ML, (291)

_Ei(th)

. 1 . 1 _ | _
- (”2135”{ +§U%U§> Zﬁa(kmU(t’xB)M]% - ngZﬁa(ipL} U(t,xp) My

%] 1 B i
— M3'e ,kq( sz ) ;xB)MLsuZ” - (t,xB)/\/l’];S]qg+Zﬁ8<kL>U(t,xB)M{§S§>, (292)
=0 "

where the very last two terms with spin multipoles
originate from the middle group of the spin-dependent
terms in (285) after replacing acceleration ah with the
Newtonian equations of motion of body B.

Computation of the explicit form of the force is
now achieved by substituting to (291) and (292) the
STF derivatives of gravitational potentials obtained in
Secs. IXA2-IXAS5, and employing relations (A7)
and (A8) for computations of partial derivatives from
Re = |x —xcl,

(L)
Oy Rye = lim 9, duyRe" = (=1)'(21-1!! R;?fl . (293)
BC
RIL
d(1yRec = lim 91\ Re = (- 1)l+1(21—3)!!R2§3, (294)
X—Xp BC

which are taken at point xg—the center of mass of body B.
It is worth noticing that ;) R5¢ = 9 Rg( due to the fact
that function R¢! is a fundamental solution of the Laplace
equation, AR:! = 0, everywhere but the point x' = xL.

1. Newtonian force

The total Newtonian gravitational force, FY§, is given by
a linear superposition of gravitational forces exerted on the
body B by all other bodies of the N-body system. Using
(240) and (265) and taking the partial derivative in (291)
with the help of (293), we get

F&:ZZZ [vnl MBMCalLNRBC

C#B [=0 n=

0
) —Zi (=D)L 20+ DUMEMR i)
! R2+2n+3 7BC
C#B 1=0 n=0 BC

(295)

where M§ = Mg {a1--41) are active STF multipoles of body
B, M} = /\/l<cb‘ 1) are active STF multipoles of the
external body C, Rpc = |Rpc| = (5;;RpcRpc)"?,

Riyc = xp = x¢ = xp(1) — xc (1) (296)
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is the coordinate distance between the centers of mass of

the bodies, RYLN) = RY“-“1--2) and the repeated indi-

ces mean the Einstein summation rule.

We draw to the attention of the reader that the coor-
dinates of the centers of mass of all bodies are computed at
the same instant of global time 7 that is xh = xh(7),
xk = x5(7), and so on. On the other hand, each body
STF multipole is a function of the coordinate time of the
corresponding local coordinates adapted to the body.
According to the procedure of derivation of the equa-
tions of motion adopted in the present paper, the nume-
rical values of all local coordinate times are computed

enters the left-hand side of (290). In other words, we have
ME = ME(up) and ME = ME(ug) (and similar con-

vention is applied to the spin multipoles) where the local
times

1 1
ME = MB|x=xB = t+?AB(t) + 0(6'4), (297)

1 1
1 = eleme, = 1 5 1AC() = bS] + O ).
(298)

where time dilation functions Ap and A are defined by
solutions of the ordinary differential equations

dA 1 )
TIB:—EU%(I)—UB(IJB) (299)
|
Fio— ]
) I'n!

B —0
+ (™ + BEN + )iy + (™"

SO a4 )0,

f;LN + P

Ac _ Lo (1)~ Oeltxo), (300)

dt 2

which constitute a part of the coordinate transformation
between the local and global coordinates of the correspond-
ing massive body. The mass My in the left-hand side of
Eq. (290) is computed at the time u}, defined above in (297).

We emphasize that the Newtonian gravitational force
(295) in scalar-tensor theory of gravity depends on the active
multipoles which include the post-Newtonian corrections as
shown in (122). The force also has a post-Newtonian
contribution from the active mass dipole M’ of the bodies
(terms with [ = 1 and n = 1) which do not vanish because
the center of mass of the body is defined by the condition of
vanishing conformal mass dipole, Z' = 0 of each body. The
active dipole M' # Z' according to (171).

Additional notice is that the inertial mass, My, in the left
side of (290) is the conformal mass (164) of body B while
the gravitational force in the right side of (290) depends on
the active mass Mp—see (161)—of body B and the active
masses of other bodies, which corresponds, for example, to
the terms with / = 0 in the right-hand side of (295). The
active and conformal masses do not coincide as follows
from (166). It violates the strong principle of equivalence in
scalar-tensor theory of gravity [88,172,262].

2. Post-Newtonian force

The post-Newtonian gravitational force can be repre-
sented in the form of a linear superposition of STF partial
derivatives taken from functions Rzl and Rpc,

©_ (1) )
Z( ) MEIMED(in) = MEaLDyiprwy + MEVEVED ipgrn) I Rec

ipLN ipLN ipgLN
) + (aF] +ﬂFp )8<pLN> + anq 8<pqLN)

pLN

)DiipLny + RN D ipgLi IREE (301)

where all partial derivatives are understood in the sense of Eqgs. (293) and (294) and the coefficients of the differential

operator are

. ) , . 2(1 +7) 1
iLN _ [, _ i L AN _ L A fiN
ag " = [vg = 2(1 +7)vpc] MgMe +[ P 2l+2n+3]MBMC
| IR : . 2P +314+3+2y ¢ i .
+2(1+7) [—n - IM{gMCN -~ M{gM@vgc} - T S AN
1 2n o PHIl+24+2y ..
-+l + )+ | MIEMY ———— = T MIEMY, 302
2l—|—3{(+ )20+ )+2l+2n+3}MBMC I+1 My M (302)
. 1 4 .
iLN _ 2 2y — i _ 2 2 i L N
5 K + 2y 21+2n+3>ac (I+2+ y)aB}MBM , (303)
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1pLN 2

. . 2
Qg mﬂcvc 2(1 + }/)Uﬁcﬂgc - Ufg’l}g MB lpqu:| MLMN
2(1+47y) (I+2)(21+1) iL AN
n+1 MLMC BC+2 T é—<l+1)7)§ MBLMC
2 +314+3+2y 1 . .
- Mg MEvE — ——£ipg(MEMESE + MMESY])
[+1 My
2(1+ . . 2(1 + . .
UE7) e (MESD + ity + 200 (S0t + SV AL, (304)
n+2 [+2
1 1
ipLN __ I+1— -1 iL N L zN’ 305
F KJF 2l—|—2n—|—5> “B]M ME+ 5o, s MM (305)
i 1 ;
(ZquLN = m (M MN MLM )UCUC ( )M LMNUBCUBC
2(1 2(1 1 .
l+ 2 +2 MB
1214+2n+3 . 2(1+y)
a]L;N = |:(1 + ]/)'UZBC - Em ’U% — U%:| MﬁMé’ + M]%LMI(\:]'UIE - "t 1 MLMC BC
L 22D (g M), (307)
21 +2n+5 I+1 c¥Bc
1
= =+ DM Meag — (n+ DMMetag - 50— —— - (MEMY = MEME ) a¢ (308)
v =12 =28 ~1ly)U(t,x) = y(n + 1)U (t,xc) MM, (309)
pE = 2211 2n +7M1§M’é’vvgvé + epkgMESE Ve
k, 0 _ =, k,P kL A AN Sq
+ <UB1)BC ZUBUB+21+2 +7UC1JC>M Mg (l+1)(n+2) pkq/\/l
2(1 + }/) 1 © gN
RS Epkg S <Mg%‘§c i Me ) (310)
1
PLN — kL kN P 311
%= g g MeMcac (311)
PPN = —F& MEMEY — FEF MEEMY, (312)
1 2(1+7y)
PGLN _ kL A fkN ,.P 4 _ SPLSqN_ 313
GF 2[+2n+9MB MC UCUC (n+2)(l+2) B C ( )

The coefficients (302)—(313) depend on the active mass
and spin multipoles of the bodies of the N-body system
and their time derivatives. They also depend on velocities
of the centers of mass and their accelerations with respect
to the origin of the global coordinates. Coefficient (312)
describes dependence of the force on the matrix of
relativistic precession for each body which is a solution

|
of the equation of relativistic precession (151). Post-
Newtonian force for arbitrarily structured extended bodies
with accounting for all mass and spin multipoles of the
bodies has been derived in general relativity by Racine
and Flanagan [84] and Racine et al. [85]. We compare
their result with our expression (301) for the force in
Appendix B.
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C. Reduced post-Newtonian force

The post-Newtonian force (301) depends explicitly on
the coordinate accelerations ah and al. of the centers of
mass of extended bodies. In case, when velocities of bodies
are significantly smaller than the fundamental speed ¢, we
can use the Newtonian equations of motion of bodies,
Mgal; = FL, in order to replace the accelerations, aj, with
the explicit form of the Newtonian force, F’ f\,, taken from
(295). It gives us the reduced post-Newtonian force which
depends on three types of interaction between multipoles of
the extended bodies in the N-body system which are due to
mass-mass, spin-mass, and spin-spin gravitational cou-
plings. In order to set in order the different types of the
multipole-multipole interactions, which enter different
coefficients (302)-(313), we split the post-Newtonian
gravitational force in three main constituents,

F;N:F{v[—l-Fé%—F{;, (314)
where Fi; is the force caused by the gravitational inter-
action between the mass multipoles of extended bodies, F&
is the force caused by the spin-mass and spin-spin multi-
pole interactions, and the force F} is due to the relativistic
precession of the body-adapted local coordinates with
respect to the spatial axes of the global coordinates. We

|

describe the structure of each of the three components of
(314) below.

1. Mass multipole coupling force

The mass multipole coupling force Fi; consists of a
number of terms describing mutual gravitational interaction
between the mass multipoles of two, three, and four bodies
comprising the N-body system. Besides, the force includes
terms depending on the first and second time-derivatives of
the mass multipoles as well. The force can be represented
as a sum of vectorial components,

Fy=Fyy+F,

y +Fl/\/l/\?l+F3\'/tM

+ Flunm + Fupm (315)
where each particular term in the right hand-side of (315) is
labeled in correspondence with the number of the mass
multipoles and/or their time derivatives participating in the
multipole-to-multipole coupling. Specific expressions for
different terms in (315) are given in the form of products of
the coupling coefficients A%ZY, . ALY " etc., with the
explicit expressions of STF derivatives (293) and (294).

The components of the mass-mass multipole coupling
force, Fy;, are as follows:

© o0 R}(;éN) N R(/LN) N R<ULN>
i LN ij J
Flym = ; IZ Zo [AMM R21+2n+3 + AMM W + AMM W
B [=0 n=
oy RUZEN) oy RUIPEY) Ly RPN
AlP BiP Jjp
+ A R21+2n+5 + Biim R2L2073 +Chim R21+2n+7:|’ (316)
BC BC
<LN> gém - gém
AILN LN ij
i = 2 2D e ALY e A
. <iéLN> . R<l]LN>
J B 2
+ BMM R]231(~:F2n+3 MM R2Blc+2n+5:| ’ (317)
oo o0 R<LN> <1LN> R(iLN)
i _ iLN BC LN LN BC
FMM - ; ; Zo[ MM RélC+2n+l MM R21+2n+l + BMM R21+2n+’5:|’ (318)
=0 n=
© (LN) R}(_;éN)
i _ iLN LN
FMM - C;EB;ZJ 3\4/\4 R21+2n+1 +AMM R21+2n+3:|’ (319)
=0 n=
S e RERE
i _ LNK
Pl =Y. X3S aik,, e Ko
C#B D#C =0 n=0 k=0 BC CD
c© 0 0o R(iLN)R(K>
LNK BC “BD
+ Z Z Z B vm R2A2n+3 Rk (320)
C#B D#B 1=0 n—0 k=0 BC BD
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i NN\ LNSK Rl<3LCN>Rg§S>
Puasssin = 222355 A s

ijLN) p{jKS) (ijLN) p(jKS)
+ BLNSK RBC RCD + LNSK RBC RCD
MMMM R21+2n+3R2k+2s+3 MMMM R21+2n+5R2k+2s+3
BC CD BC CD

R(iLN>R<jKS>

JLNSK JLNSK BC CD
+ (AVirmnm + Buviavin) R 213 2k i 2513
BC CD

R(JLN>R<JKS>
+ (CiLNSK + DiLNSK ) BC CD
MMMM MMMM R21+2n+3R2k+2s+3
BC CD

© © ®© ™ R(LN>R<1'KS>
DR RN S

(iLN) p(jKS) ULN) p(jKS)
4 pILNSK Rpc 'Rgp + HILNSK Rgc 'Rpp
MMMM p2I+2n+3 p2k+25+3 MMMM p2I42n+3 R2k+25+3 | °
BC BD BC BD

where the coupling coefficients Af\flv Mo A%f\v/t, etc., are given by
1
IN _(—1) (21 4 2n 4+ 1) c & 5 1 1 ) LN
A = ™ 2(y + Dvgvé —yvg — y—|—2+—21+2n+5 ve | MM,

MM I'n! n+1 C T Irl I+2

-D(21+2 nHi 1 . 1 . 2 1 .
v (CV@ 420+ 1) [zvgc(&MwN vt M{;LMQ)+<” v’é—v’g)MﬁLMg},

(-DI21+2n+ 1)1

ALN:2 1 cc A kL \ kN
di = 20 ) iy MM
[
O Y UGy P D TR
A = 20n! MgMe.
i (=)'l +2n+3)1 120+ 20+ 3 N
Al = Iin! 221+ 2n +7”C”5M{§M‘I;

L i 2 i L
+ <§ UBUII; - UCUII; + mﬂcvé> Mg Mg:| s

(=1)'2l +2n - 1)!!

A}\L,g\/l = Y {[vh = 2(r + Do MEME = 2(y + MM},
1 2
av DI+ =D 20+ 1) ey 2243142743 -y
ANt~ Tl W MEME MM,
ALY (-D'@I+2n -1 (2(r+1) 1 L
Mz I'n! n+1 204+2n+3]" BC
1 (I+2)QI+1)], ey PHI+2r+2 0 o
+{21+2n+3 (21 +3) My Mc I+1 My Me ¢

1
gy (=D'QRUA2n+ 1)U, 3 i
Apim = In! UBYC T o on 4 50ctc

+2(r + l)vgcvéc} MEMY,
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) 1 . .
{z{(m l)v{3C+v’C}MgLMg

MM I'n! 2043
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pvsk (= 1)M5(21 +2n + 1)!11(2k + 25 + 1)!!(“r )M’LMSMNMD (347)
MMMM Inlk!s! Mg '
HiLNSK (=) (@214 2n 4 )12k + 25 + D! MILMSMNMK (348)
MMMM = (I=1)'n'k!s! Mg
2. Spin multipole coupling force o B (pLN> B ggLM
. . . . zp P
The spin multlpole? post-NewFoman force enter%ng M Z Z [ St Rzl +2n =T ASK s |
the translational equations of motion has the following C#B =0 n=0 BC
structure: (3 51 )
Fy=Fsy+Fy +Fgo +Fss+Fiuu
+F 4 FL (349) o ® RY pLN>
SMM SMM ipLN
) . C#B ; Z; Asm Rz”z”+3 ' (352)
where each component of the force is expressed in terms of o=
the corresponding coupling coefficients AgéN, A;”IL N ete.,
and the STF Cartesian tensors made out of the tensor o o <WLN>
products of the relative coordinate distances (296) between Fi . — AMLN 353
the bodies. Forces Fig, F% . and F\ . describe gravi- 58 ;};; HZ:; 58 Rz”z"”’ (353)
tational interaction between the spin and mass multipoles of
the bodies. The force F ¢ describes the spin-spin multipole
interaction between the bodies. It generalizes to higher v R pqLN)
multipoles the known spin-spin gravitational force of Foym = Z Z ZA?/’& M RZI +2n =, (354
interaction between spins of rigidly rotating, spherically C#B 1=0 n=
symmetric bodies given by Brumberg [96][page 275,
Eq. (19)], and Barker and O’Connell [ [265], Eq. (54)].
The last three terms in the right-hand side of (349) labeled ) N R<pLN )
with a small Roman letter s take their origin from the last Fo i Z Z Z ;’/’M " R21 e (355)
three terms in (292). They describe gravitational interaction C#B 1=0 n=0
of spin of body B and its first time derivative with the mass
multipoles of other bodies.
The spin coupling force components are © P R<pLN>
" N Pl = L3S Al e (50
l_ IR R(lﬁ ) ipalN R(M ) C#B =0 n=0
Fsm = Z Z Z Asm R21+2n+5 T Asm R21+2n+5 ’
C#B =0 n= BC

(350)
|

where the coupling coefficients entering the various mem-
bers of the spin coupling force are

PIN (=121 +2n + 3)! g [SEMN SN ME
Asm =2(1+7) I'n! SratBC| TG T T (357)
ipgLN (=D)! (21 +2n +3)! g [SEMY  SENME
Asi =2(1+7) In! kBT T Tt (358)
—1)/(21 4 2n +3)!! SKEMEN SN MR-
AT = (1 4 ) Lot € P | 35
(1+7) In! |02+ 1) I+ 1)(n+2) (359)
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AT = ) SR DR, [‘?liﬂjf Mfﬂ (360)
Ag’ALAN =-2(1+7y) o ;!rn!zn Dy g [Sﬁ/\;é A:]Lfgv} (361)
4%%_A—W@Z;?+3wawiiﬂ%wgﬁo (363)
Al = (_UI(ZZ;!;,ZH bl Eipg fi (MEME + MEMY), (364)
A%% _5 (—1)1(211—;'211 + 1)!!8% /\ig MEMY. (365)

In! 5

3. Precession multipole coupling force

Finally, the force caused by the relativistic precession of
spatial axes of the local coordinates adapted to each body is

. SN (D21 + 20+ 3)N
F{’:ZZZ( = I'n! :

C#B [=0 n=0
) . RUKLN)
x [FRMEEMY + FEMEME) 2. (366)
BC

This completes derivation of the translational equations of
motion of extended bodies in the global coordinates.

D. Comments

The post-Newtonian force in translational equations of
motion has been calculated in this paper for the system of
the N-extended bodies with an arbitrary internal structure,
shape and density distribution. It includes the Newtonian
and post-Newtonian forces due to the gravitational cou-
pling between all internal mass and spin multipoles of
extended bodies in an N-body system. The force (316),
denoted as F ’M > converges in monopole approximation
to FEinstein-Infeld-Hoffman (EIH) equations of motion
[49,126,259] of pointlike particles. The force (350),
denoted as F,,, yields the correct analytic expression
for the Lense-Thirring (gravitomagnetic) force due to the
gravitational coupling of a body’s intrinsic spin to orbital
angular momentum of the body [96,101]. The force (353),
denoted as F fss’ is reduced to the known spin-spin coupling
force [96,265-267] when higher-order multipoles (/ > 1)
are neglected.

Calculation of the post-Newtonian force in quadrupole
approximation (/ = 2) were completed by Xu ef al. [62] in

|

general relativity. Their result disagrees by a sufficiently
large number of terms with our expression for the post-
Newtonian force (314) in the quadrupole approximation.
We could not identify the mathematical reason of this
disagreement which origin has yet to be clarified. On the
other hand, the complete post-Newtonian force for the
quadrupole and all other higher-order multipoles taken into
account, derived in general relativity by Racine, Vine, and
Flanagan (RVF) [84,85] by means of a different math-
ematical technique [30,58,59,268] nicely coincides (in case
of the PPN parameters y = f# = 1) with our expression
(314) in spite of different appearance of a few extra terms.
Mathematical origin of this discrepancy is due to the
different convention in the definition of time moments at
which the numerical value of the body multipoles are to be
computed on their worldlines. This is explained in more
detail in Appendix B.

In particular, the term that had been missed in [[84],
Eq. (6.12¢)] and recovered in [ [85], Eq. (1.1)] is given by
our coupling coefficient BEY3K,,\, in Eq. (340) which
enters our expression (321) for the post-Newtonian force
component F',, .\, Notice also that we give our
coupling coefficients for the expansion of force while
Racine and Flanagan [84] provide their coupling coeffi-
cients for acceleration of body B. Therefore, our tensor
coupling coefficients must be divided by the inertial mass
M of body B in order to get the RVF coefficients. It is also
worth noticing that, contrary to our choice of dynamically
nonrotating local coordinates, Racine and Flanagan [84]
had chosen the body-adapted local coordinates as being
kinematically nonrotating with respect to the global coor-
dinates. For this reason the force (366) caused by the
relativistic precession of the local frame is absent in the
RVF equations of motion. The present paper generalizes
translational equations of motion derived by Racine and
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Flanagan [84] and Racine et al. [85] to the realm of scalar-
tensor theory of gravity parametrized with two covariantly
defined parameters, f and y. This generalization is impor-
tant for testing scalar-tensor theories of gravity with
gravitational wave detectors and for developing more
comprehensive experiments within the Solar System.

It is instructive to better understand the correspondence
between the post-Newtonian force (314) for spherically
symmetric bodies and the EIH force [49]. The EIH equations
of motion are traditionally viewed as equations of motion of
pointlike test particles which are modeled as nonrotating
solid spheres having spherically symmetric distribution of
mass. The post-Newtonian force (314) depends on the STF
internal multipoles and it is reduced to the EIH force if we
neglect all STF multipoles except of monopole (/ = 0) that
corresponds to the relativistic (Tolman) mass of the body
[42,165,269] if the body is fully isolated from the external
gravitational environment preventing its tidal deformations.
However, the spherically symmetric distribution of matter
does not ensure vanishing internal multipoles of the body.
Indeed, the post-Newtonian definition of the mass multipoles
(122) includes the terms depending on volume integral,
Qx fVB ow K wL) By, which does not vanish after integra-
tion over the unit sphere making the post-Newtonian force
depending on the rotational moments of inertia of the
spherically symmetric bodies. Thus, the post-Newtonian
force of interaction between rigid, spherically symmetric
bodies in an N-body system is not completely reduced to the
EIH force but includes additional terms depending on the
size of extended bodies. It makes clear that spherical bodies
of finite size do not move like massive point particles and the
effacing principle is violated [185].

Finite-size post-Newtonian effects in general-relativistic
equations of motion of spherically symmetric bodies
were discussed previously by Brumberg [96], Spyrou
[127,270-272], Caporali [273,274], Dallas [275],
Vincent [276], and, more recently, by Arminjon [128].
The post-Newtonian correction to the EIH force obtained
by these authors depends on the second-order rotational
moments of inertia A defined in (125). We have shown in [
[17], Sec. 6.3.4] that this correction is not physical and
represents a spurious, coordinate-dependent effect which
can be removed by adjusting position of the center of mass
and transforming the body’s quadrupole moment from the
global to the body-adapted local coordinates. This fact was
also noticed by Nordtvedt [277]. Nonetheless, the post-
Newtonian force of interaction between spherically sym-
metric bodies can depend on the rotational moments of
inertia of the second order in scalar-tensor theory of
gravity; see [ [17], Eq. (6.85)].

X. ROTATIONAL EQUATIONS OF MOTION OF
SPIN IN THE GLOBAL COORDINATES

Translational equations of motion of the centers of mass
of extended, arbitrarily structured bodies are not sufficient

to describe gravitational dynamics of an N-body system.
This is because the translational equations depend on the
mass and spin multipoles of all bodies which are compli-
cated functions of time. Therefore, they must be comple-
mented with equations describing temporal evolution of the
multipoles in order to close the system of differential
equations for the configuration variables characterizing
dynamics of an N-body system. Derivation of the complete
system of the evolution equations for configuration vari-
ables is a daunting task as it includes among other issues,
solution of the post-Newtonian problem of the elastic
response of an extended body to the tidal perturbations
caused by the presence of external bodies and calculation of
rotational deformations of the body due to its rotation.
Calculation of the tidal and rotational responses requires a
corresponding development of the post-Newtonian theory
of elastic deformations of extended, self-gravitating bodies
[278-280] with its further dissemination to treat more
subtle effects of viscosity and multi-layer structure of stars
in astrophysical systems emitting gravitational waves. The
overall task seems to be very complicated and will be
discussed somewhere else. The present paper centers on the
developing of equation of temporal evolution of the most
important configuration variable in gravitational dynamics
of an N-body system—the intrinsic angular momentum or
spin of the bodies. Spin is closely related to three rotational
d.o.f. of a rigidly rotating extended body characterized
by the vector of angular velocity. Therefore, we call the
equation of temporal evolution for spin as rotational
equations of motion.

Rotational equations of motion of spin of body B in the
body-adapted local coordinates, w* = (u,w), have been
already derived in Sec. VIF. The rotational equations of
motion are parametrized with the local coordinate time ug
of the body-adpated coordinates and describe the force
precession of body’s spin, Si, caused by gravitational
coupling of the internal mass and spin multipoles of body B
with the external multipoles. In its own turn, the body-
adapated local frame is subject to the Fermi-Walker trans-
port [165] describing the relativistic precession of the
spatial axes of the local coordinates with respect to the
global coordinates in accordance with Eq. (151). It is
convenient from a computational point of view to transform
the rotational equations of motion of each body from the
local to global coordinates to parametrize them with a
single parameter—the global coordinate time 7 and to
include the Fermi-Walker transport to the evolution equa-
tion of spin. Moreover, we want to express all external
multipoles in the rotational equations in the form of explicit
functions of the global coordinates and multipole moments
of the bodies. This procedure will formulate the rotational
equations of motion in terms of the same set of configu-
ration variables as that in the translational equations of
motion of bodies.

Let us define the spin components of body B measured
with respect to the global coordinates as S'. They are related
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to the spin components, S, measured with respect to
the body-adapted local coordinates by means of a post-
Newtonian rotational transformation,

St = SI(81 - FY), (367)
where F' g is the matrix of the Fermi-Walker precession of
the local coordinates of body B. Then, rotational equations
of motion of spin S in the global coordinates are

s’
dr

dS’ du dF”

_ __Bgi_

;48!
 du dt ’

(368)

where all derivatives are taken along the worldline Z of the
center of mass of body B. Using Egs. (146), (151), (195) for
computing the time derivatives in (368), we get the rota-
tional equations of spin of body B in the form

gravitational interaction of the internal multipoles of body
B with the external multipoles, and a torque Tk, stemming
from the Fermi-Walker precession,

) 1 _ . L
Ty = {1 +3 8 - U(r,xB>}T '~ FiTI,  (370)

Thy = {vBaB 2(1 4 )0l TN (1, x5)
~2(1+7)0h@ U (tx5)}Sh. (371)

Torque 7' in (370) was introduced earlier in (194). The
next step in derivation of the rotational equations of motion
is to compute the torque in the right hand-side of (369) in an
explicit analytic form as a function of common configu-
ration variables—the global coordinates of the center of
mass of the bodies and their internal mass and spin

_ multipole moments.
das'

=T
7 (369)

A. Computation of torque
where the spin S’ is considered now as a function of
time ¢ that is S* = S(u)|,_,. The total torque 7" = T% +
TLy is a linear combination of a torque T’ caused by the
|

Torque T% in (370) is proportional to torque 7 given by
Eq. (194) that is computed by accounting for (176), (191)
and (243). It yields

. > 1 1 _ _ .
Tﬁ = gijk Zﬁ |:1 +§U123 + (Zﬂ—)/ —2)U(f xB) W(t xB)MéL
[+1

iL
st

+€”’“Zz'[ wy V(txg L+ MY + 0 Vi (txg. 1+ MY +

JPkFB Zp (L)

where we have taken into account that the active dipole moment M} can be neglected in the post-Newtonian terms.
Gravitational potentials \7(!, Xg. !+ 1) and Vi(t,xB, [+ 1) are defined in (240) as sums taken over all bodies of an N-body
system from potentials V- and Vé given in (241) and (242) along with (244) and (248). The linear sum of the STF
derivatives from potentials V(z,xg,/+ 1) and Vi(t,xg,[+ 1) that appear in (372) does not contain the noncanonical
potentials R* and A/ which are mutually canceled out. We also notice that the acceleration-dependent terms in the third
line of (372) actually vanish because of the adjustment of the position of the center of mass of body B given by the
complementary dipole function 7. defined in (289). After summing up all terms in (372) and accounting for the index
peeling-off formula (275), we reduce the torque to a simpler form

W(t,xp) ME" + &l Bap MY + T1), (372)

. <1 1 _ - :
Th=ew g 184 208 = = D0 (1x0)| O W) M

1
+8UkZl' (kL) th’l)MB +8Uk2 ) aLQk(t XB, )MJL

- l pjL—1 = l+ 1 I] jL
l]k;(l"i_ 1) 8kL IQ (t XB, )M +Z +2)l' JiL
2.1 2.1
€]kag l' —0 (kL) t xB Zl— Fpka (pL) t xB)./\/l]L quﬁ (kqL) (t xB)M”]L} (373)
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where the potentials W, Q, Q, are given in (262)-(264) and tensor I:IﬁL is explained in (249)—(252). The STF derivatives
from W, Q, and Q, have been computed in (265), (274), and (275)—(280) respectively.

The torque depends on the contraction of the STF derivatives of the potentials with the Levi-Civita symbol ¢;;. For
computational convenience of the reader we provide their exact form below in order to facilitate tracking down the process of
the computation. Because each of the barred potential is a linear superposition of the corresponding potentials of each body
labeled with a letter C, we write down the corresponding formulas of contraction of the Levi-Civita symbol with the STF
derivatives for the single-body potentials. Contraction of the derivatives from potentials W and Q¢ with the Levi-Civita
symbol are

€ijk Z T (kL) WC(t X M ijk Z Z I 8kLN ( )MJLMN, (374)

I=0 n=0

e,-jklZ:ﬁ@kL)QC(t,x,l)M{SL
& & () 1 o 12042043 5]
=€) D O o) |0 1) =555, 5 ¢ | My Me

+8ijkii<__l).nakLN<Rlc>[(2 26—1p)U(t.xp) —y(n+ 1)U (t.x0) | My M

® ® (1) 1 1 ) i 1 ;
ey (l'n)‘ NepLn <R_c> <§v€vé—F3”>M{3LM%N+8ukZZ TR (RC> aeMy M
=0 n=0 " I=0n

Z( i [Mca vy Re + MEUEVED pgrny Re — MEagd oy RC}M]L

> (-1)" 1 L > S (-1 1 1\ vt ooy
Orn 1 - o —\ MIPE AgP
Z it 25 2n 5300 () M ME e — l'n‘ 220t 50N\ g )M Me
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n=0

= (_1)11 jmL e JjL N
; In! 2z+2n+9 Oupae| i ) Ms™ MEveve = g’f"zz l'n' 2l+2n+381‘N My Mea
> M
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=0 n=
(=" 1 1 L
a o J kN P
It 214201507\ je ) Me Mc ac

0 0 _1 n 1 .
-eijkzz( ) akLN< )(M”’LMN MIEEMEN NP
=0 n=0

‘ I'n! 214+2n+5
te. ii(_l)n 1 o i quL_/\/quap— (1+ )8-- ii(_l)n 1 9 L M/LMPNWP
WLt 2l 2n+7 VR )T TE e PO £y 2Tt 1 N R )8 e e
2 = (—1)" 1 1 L gN m
_2(1+}/)81ij2 I'n +2EmpqakaN RC MB SC UBC' (375)
=0 n=0

The very last term in the right-hand side of (375) contains a product of two Levi-Civita symbols which can be expressed as a
linear combination of the Kronecker delta symbols [ [165], Exercise 3.13],
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5im 5ip 5iq
13}

Eijkempg=|| Ojm  Ojp  Bjq || = 8imjpOrg + 6ipSigOum + 0ig8jmOkp = OjmGipOrg = O;pOigOkm — OjgOimOrp-  (376)
5km 5k

It allows us to recast the term with two Levi-Civita symbols to a more transparent form

1 1 1 i
EiitEmpaOkpLy <R_c> MIESE pi . =20, x (Rc> MEESNE — 20,1 x (R_c> MEESNE P (377)

The two terms in (373) depending on the contraction of the Levi-Civita symbol with the STF derivatives of the vector
potential QF are

ukZ 1+ i (e Z)MJL_z(”V)SikaZ(l(%Km'nila ( )MJLM
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) 8kpqapLN R_C MB SC
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(379)

Again, we use (376) in order to simplify those terms in (378) and (379) which contain the product of two Levi-Civita

symbols. More specifically, the two terms in Eq. (378) are simplified to

1 iL: 1 . 1 .
E'ijkgkpqapLN <R_C> MéLSgN = zaiLN (R—C> MELSgN - 281)LN (R—C> M][;LSCN,

1 ; 1 1
gijkgkpqampLN <R_) M{BLSgN U}],?tnC = 28ipLN (R_) MqLS?ZN UBc 28pqLN (R_> MPLSEZN Upc»
C C C
and the two other terms in (379) are
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Multipolar expansion of the term in (373) containing the product of the STF derivative of HgL with the spin multipoles,

reads

[+1

o~ Il i N (D" U agen (1) aqw oit
;(H—Z)I!HC Sy =4147)2 > (1o e (go JMeSn

_ o (=D I+ (N il LN L JL
4(1”)Zz(n+1)!(z+2)uMC AV

[+1

N~ (D" paligiain [ 1) gpN git
+4(1+7>Zz(n+2)n!(1+2)1!8 I ke )¢ Sn

+2(147)> Y G 1 [vgcapﬂvL (RLC) MY 4 §iNE (Ric> M@} Syt (384)

B. Explicit formula for torque

The total torque 7" governing precession of spin of body
B in the global coordinates is given in the right-hand side of
the rotational equations of motion (369) as a sum of two
terms, T + Tky, where the pure gravitational torque, T,
has been defined in (370) and (373) and the Fermi-Walker
torque, T{;W, is given in (371). After substituting
Eqgs. (374)-(384) into (373) and reducing similar terms
the gravitational torque can be represented as a sum of the
Newtonian and post-Newtonian terms, Th = TL + T{,N.
Hence, the total torque T" is given by

T' =T + Tin + Tiw (385)

where Ty is the Newtonian part of the torque, T}y is its

post-Newtonian counterpart, and Ty, is the Fermi-Walker
torque. We provide explicit multipolar expressions for the
gravitational torque in Secs. XB1 and XB2 below.
Explicit multipolar expansion of the Fermi-Walker torque
is given in Sec. X B 3.

1. Newtonian torque

The Newtonian torque, T4, is defined by the very first
term in Eq. (373),

. © 1 _ :
T%\I = &jjk ZF@,{L)W(Z,xB)M{gL
=0 "

= €ijkz Z ﬁ(a(kL)Wc(h xp) My (386)

C#B 1=0

where 0y We(t,xg) = limy_,, 9y We(2,x), and multi-
polar expansion of gravitational potential W(¢,x) has been
defined in (220). After taking the partial STF derivatives
from the potential W, the Newtonian torque takes on the
following explicit form:

n! (1+3)!

i © (_l)n - ~
TN = gijk Z Z I M{3 Mga<kLN>RB1C'
C#B I=0 n=0 """

(387)

Applying (293) yields the Newtonian torque in its final
form,

. & (=)0 42n + 1)
Th=—en) DD I
C#B =0 n=0 e
' R(kLN)
x M MY —EBC

214+2n+3
RBC

(388)

where, here and everywhere else, all multipoles of body B
are taken at the time ug given by (297), and all multipoles
of body C # B are taken at time ug. given by (298). Formula
of the multipolar expansion for the Newtonian torque has
been also derived by Racine [129] in general relativity.
Torque (388) depends on the active mass multipoles in the
right-hand side of this equation and generalizes the results
of [129] to scalar-tensor theory of gravity. Equation (388)
reduces to the expression derived by Racine [129] in case of
the PPN parameters ff =y = 1.

We draw to the attention of the reader the fact that the
active multipoles in (388) are defined with taking into
account all post-Newtonian contributions from the stress-
energy tensor of the extended bodies in accordance with
their definition (122). It is also worth noticing that the
active dipole M of each body is explicitly included in the
right-hand side of the Newtonian torque (388) as it does not
vanish because the center of mass of each body B is defined
by the condition of vanishing conformal dipole, Zi = 0, in
accordance with (176). It means that in contrast to general
theory of relativity (cf. [[129], Eq. (91)]), the dipole-
monopole gravitational torque that is the term with [ = 0,
n =0 in (388) is present in the scalar-tensor theory of
gravity even if the origin of the local coordinates is
fixed exactly at the center of mass of the body. The
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dipole-monopole torque in the rotational equation of
motion of spin causes an anomalous precession of the
body’s spin as compared with general relativity. The
anomalous precession of the spin is caused by the differ-
ence between the active, Mfg, and conformal, Ifa’ dipole
moments of the body B in scalar-tensor theory of gravity.
This resembles the Dicke-Nordtvedt effect of violation of
strong principle of equivalence in translational motion of
the bodies, which is caused by the difference between
active, My, and conformal, My, masses of the body, to the
case of rotational motion of the bodies. Measurement of the
anomalous pole-dipole torque can help to set a direct
experimental limitation on the PPN parameter f which is

ipgLN | ,ipgLN ikpgLN
+ (af ™+ PPN gy + a0

+( ipLN +ﬂ1pLN

currently measured only indirectly through the measure-
ment of the Nordtvedt parameter = 4 — y — 3, primarily
by the lunar laser ranging technique [192,281,282], after
subtracting the best numerical estimate of the parameter y
obtained, for example, from the measurement of gravita-
tional bending of light [283-285].

2. Post-Newtonian torque
Multipolar expansion of the post-Newtonian gravita-
tional torque, TPN, can be represented in the form of a linear

operator from the STF partial derivatives with respect to
spatial coordinates similarly to the presentation of the post-
Newtonian force in the translational equations of motion,

tpLN)a<pLN>

(kpgLN) ] REI

- (=) LN LN
+ZZZ I [a%Na<iLN>+”¥ a<iPLN>+5¥q

L
S ME IMED )

a(l‘PqLN)]REl

- Mé’aé@mm + Mgvévg@kpqmﬂRc, (389)

where the STF derivatives from Rgé and Rpc are understood in the sense of Eqgs. (293) and (294). The coefficients of

operator (389) are

2(1+7y)

N =g [(l i(ll)?;zz)— R 21n n 3} MEEME + €, {vg T v’éc] MEEMY, (390)
N e Kzz - 21n -2 ; ;_L ”) ak + (1 + 2%) al | MEEMY, (391)
ot = Eitp B vh + (1 +y)vde — %73 1 iz 1 2 vé} MEEMY — ejkagM’];LMé’
e sheh =y oo 2D o 2t - R g
+ewy K i(;)(*n?— TR 21,1 - 5} MEEJay 2(1:—r1]’) L _t:ql W — lkpvgc} MEEAEY
T e, :vg B 2(ll++27) %C] MEE AN 21 + )51; [SPLMC Vi — lsgLMgv]
+ (1 :3” SPE Y — %Mﬁﬂé@v : (392)
P = ey, [n 14555 5} MEME ag + 55— Zln 5 Eng M ME @
e [2(11:;) o TE 21n L . 3ll : ; = a%] M e, (393)
y = —yeu,l(1+2)U(t xg) + (n+ 1)U (t.x0)IME MY, (394)
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T (l+2)(l’l+2)M vBC ( )

3. Fermi-Walker torque

The Fermi-Walker torque (371) can be easily calculated by making use of Egs. (213) and (223) and replacing acceleration
of the center of mass aj; = FL /Mg, where the Newtonian force FJ is shown in (295). Taking the STF derivatives from the
corresponding expressions we get

. 2 (=1)" P ; 1 o
Thy =21+7)>_Y l,) Sh <Mé VB + M” o~ zsgLeM[laﬂL>Rglc
C#B =0 °°
1 ©® 1)"
a3 S O sk (o1

Mg C#B =0 n=0

Taking the STF derivatives from Rzl defined in (293) we obtain the multipolar expansion of the Fermi-Walker torque,

; 2l+ Mgl RUD RO _ L oo gt Sh
Trw =-2(1+vy ;; < cVpcRpc” + l+ 1 Mc - H—ZSC erdl Rgc R]Z_a,lc+3
1 © & (=) 2L+ 2n 4+ V) WERYEY
_M_ZZZ I'n! R21+2n+3 MM Sg. (402)
B C#B =0 n=0 e

C. Reduced post-Newtonian torque

It is instructive to represent the post-Newtonian torque T;N in yet another form by splitting up coefficients (390)—(400)
into various terms describing different types of gravitational coupling between the internal multipoles of extended bodies
like mass-mass, mass-spin, spin-spin multipole interaction as well as the geometric coupling due to the Fermi-Walker
precession. This requires one to reduce the coefficients depending on the acceleration ak of the center of mass of body B by
making use of the Newtonian equations of translational motion, Mgal = Fi, with the explicit form of the Newtonian force
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F% given in (295). We perform this procedure and split the
post-Newtonian torque in three main constituents,

Ty =Ty+Ts+Th, (403)
where T}, is caused by the gravitational coupling between
the mass multipoles of extended bodies, T% describes
gravitational interaction between the spin and mass multi-
poles, and T} originates from the Fermi-Walker precession
of the spatial axes of the body-adapted local coordinates.
Specific expressions for each terms in the right-hand side of
(403) are given below.

1. Mass multipole coupling torque

The mass-mass multipole coupling torque T, consists of
various terms describing two-, three-, and four-body
gravitational interactions between the internal mass

|
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multipoles of the bodies comprisin an N-body system.
The torque depends on the interaction between the first and
second time derivatives of the mass multipoles as well. It
has the following schematic structure:

T =Thm + Tt T T T T T

(404)

where each particular term denotes the number of the
gravitationally coupled multipoles. Specific expressions for
different terms in (404) are given below in terms of the
coordinate distances (296) between the bodies and the
corresponding coupling coefficients KLY ,IC’LN CEY,
etc., which are shown explicitly in Egs. (410) (428).
The torque components read
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The coupling coefficients of the mass-mass multipole interaction that appear in (405)—(409) are
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2. Spin multipole coupling torque

The post-Newtonian torque describing the spin-mass and spin-spin coupling between the internal multipoles of the
extended bodies consists of four terms,

T =Tspy + T, +Top + TS (429)

where each component of the torque is expressed in terms of the corresponding coupling coeffcients Ksz, K, etc. The
components of the spin multipole coupling torque are
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The coupling coefficients that appear in (430)—(433) are
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3. Precession-multipole coupling torque

The Fermi-Walker precession causes a spatial rotation of each body-adapted local coordinates with respect to the distant
observers at spatial infinity which is interpreted in the global coordinates as torque T caused by the geometric coupling of
the matrix of relativistic precession to the internal mass multipoles of extended bodies. Picking up the precessional terms in

. . ipLN ipgLN
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[es]
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™
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0
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Racine [129] analyzed spin evolution equations for a
wide class of extended bodies and gave a surface integral
derivation of the leading-order evolution equations for the
spin of a relativistic body interacting with other bodies. He
expanded the spin evolution equations in the multipolar
series but was unable to obtain the torque beyond the
Newtonian formula (388). The present section significantly
extends the result of paper [129] and provides the multi-
polar expansion of the torque in the post-Newtonian
approximation which has been never published before.

XI. COVARIANT EQUATIONS OF MOTION OF
EXTENDED BODIES WITH ALL MULTIPOLES

This section formulates the translational and rotational
equations of motion derived in the previous sections, in the
covariant form in the spirit of the ‘“covariantization”
approach worked out by Thorne and Hartle [58] who
followed earlier developments outlined in [42,165]. The
covariantization procedure allows us to relax the slow-
motion limitation of the first post-Newtonian approxima-
tion as the covariant equations of motion are apparently
Lorentz invariant and are applicable at both slow- and
ultrarelativistic speeds. However, it should be understood
that such covariant equations are still missing gravity-field
potentials from the second- and higher-order post-
Newtonian approximations and their application is limited
by the weak-field, first post-Newtonian approximation.
Nonetheless, the covariant equations of motion derived
in this section may be instrumental in order to get a glimpse
of the relativistic dynamics of the very last several orbits of
an inspiralling binary system emitting gravitational waves
before the bodies in the binary merge.

Before discussing our own formalism we introduce the
reader to the theory of Mathisson-Papapetrou-Dixon
(MPD) equations of motion of extended bodies with
higher-order multipoles that is considered as one of the
most comprehensive and rigorous approaches for solving
the fundamental problem of derivation of equations
of motion of extended bodies in general relativity

in (392) and (395), we get for the torque

R<PLN>
2[4+2n+3
RBC

R(MLN )

R (448)

[11,135,136] and in the affine-metric theories of gravity
[143,145]. The original MPD theory has been developed
mainly in the test-body approximation and had a number of
other issues which made the domain of its astrophysical
application fairly limited [58,247]. In order to circumvent
this issue, Harte [141,142,244,286,287] has developed a
solid theoretical platform for stretching out the domain of
applicability of the MPD theory to extended bodies with a
strong self-gravity field. The concrete results obtained in
this section are fully consistent with the basic principles of
Harte’s general formalism and confirm validity of its
predictions in the framework of the post-Newtonian
dynamics of extended self-gravitating bodies possessing
the entire collection of mass and spin multipoles.

A. The Mathisson variational dynamics

The goal to build a covariant post-Newtonian theory of
motion of extended bodies and to find out the relativistic
corrections to the equations of motion of a pointlike particle
which account for all multipoles characterizing the interior
structure of the extended bodies was put forward by
Mathisson [4,5] and further explored by Taub [137],
Tulczyjew [207], Tulczyjew and Tulczyjew [208], and
Madore [138]. However, the most significant advance in
tackling this problem was achieved by Dixon [7-11] who
elaborated on mathematically rigorous derivation of multi-
polar covariant equations of motion of extended bodies
from the microscopic law of conservation of matter,

vV, T% =0, (449)
where V, denotes a covariant derivative on spacetime
manifold M with metric g4, and T is the stress-energy
tensor of matter composing the extended bodies. Mathisson
has dubbed this approach to the derivation of covariant
equations of motion as variational dynamics [4].
Comprehensive reviews of the historical development
and current status of the variational dynamics can be
found in papers by Dixon [135,136] and Sauer and
Trautman [288].
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Dixon has significantly improved the Mathisson varia-
tional dynamics by employing a novel method of integra-
tion of the linear connection in general relativity as well as
other innovations which allowed him to advance the
original Mathisson’s theory of variational dynamics. The
generic mathematical technique used by Dixon to achieve
this goal was the formalism of two-point world function,
o(z,x), and its partial derivatives (called sometimes bi-
tensors) introduced by Synge [164], the distributional
theory of multipoles stemmed from the theory of general-
ized functions [212,289], and the horizontal and vertical (or
Ehresmann’s [290]) covariant derivatives of two-point
tensors defined on a vector bundle formed by the direct
product of the reference timelike worldline Z and a
spacelike hypersurface consisting of geodesics emitted at
each instant of time from point z on Z in all directions
being orthogonal to Z.

An extended body in Dixon’s approach is idealized as a
timelike world tube filled with continuous matter whose
stress-energy tensor 7% vanishes outside the tube. By
making use of the bi-tensor propagators, K, = K*,(z, x)
and H?, = H"”(z, x), composed out of the inverse matrices
of the first-order partial derivatives of the world function
o(z,x) with respect to z and x, Dixon defined the total
linear momentum, p* = p*(z), and the total angular
momentum, S% = S%(z), of the extended body by inte-
grals over a spacelike hypersurface X, [ [11], Egs. (66-67)]

pe = / K*, T /=gds, (450)
>

8% = -2 L Xl P T /=gd%,, (451)

where z = z%(z) is a reference worldline Z of a represen-
tative point that is associated with the center of mass of the
body with 7 being the proper time on this worldline, and
vector

X¢ = —g(2) aUé.;X)

(452)

is tangent to a geodesic emitted from the point z and
passing through point x. The oriented element of integra-
tion on the hypersurface,

1
A%, = ~ EpyodX* A dXY A dX°,

3 (453)

where E,,,, is 4-dimensional, fully ant-symmetric symbol
of Levi-Chivita, and the symbol A denotes the wedge
product [[165], §3.5] of the 1-forms dX“. Notice that
Dixon’s definition (451) of S% yields (after a duality
transformation) spin of the body that has an opposite sign
as compared to our definition (182) of spin.

It is further assumed in Dixon’s formalism that the linear
momentum, p%, is proportional to the dynamic velocity, n®,
of the body [[11], Eq. (83)]

p? = Mn“, (454)
where M = M(z) is the total mass of the body which, in
general, can depend on time. The dynamic velocity is a unit
vector, n,n* = —1. The kinematic 4-velocity of the body
moving along worldline Z is tangent to this worldline,
u® =dz%/dr. It relates to the dynamic 4-velocity by
condition, n,u* = —1, while the normalization condition
of the kinematic 4-velocity is u,u* = —1. Notice that in the
most general case the dynamic and kinematic velocities are
not equal due to the gravitational interaction between the
bodies of the N-body system; see [ [11], Eq. (88)] and [139]
for more detail.

Dixon defines the mass dipole, m* = m*(z,%), of the
body [[11], Eq. (78)],

m* = S%ng, (455)
and chooses the worldline z = z%(z) of the center of mass
of the body by condition, m* =0 This condition is
equivalent due to (454) and (455), to

ppS*? =0, (456)
which is known as Dixon’s supplementary condition
([11], Eq. 8D)].

Dixon builds the body-adapted, local coordinates at each
point z on worldline Z as a set of the Riemann normal
coordinates [ [291], Chapter III, Sec. 7] denoted by X* with
the time coordinate X° along a timelike geodesic in the
direction of the dynamic velocity n“ and the spatial
coordinates X' = {X', X?, X3} lying on the hypersurface
¥ = ¥(z) consisting of all spacelike geodesics passing
through z orthogonal to the unit vector n* so that,

n,X*=0. (457)
It is important to understand that the Fermi normal
coordinates (FNC) of an observer moving along a timelike
geodesic do not coincide with the Riemann normal coor-
dinates (RNC) used by Dixon [11,135]. The FNC are
constructed under the condition that the Christoffel sym-
bols vanish at every point along the geodesic [[291],
Chapter III, Sec. 8] while the Christoffel symbols of the
RNC vanish only at a single event on a spacetime manifold.
The correspondence between the RNC and the FNC is
discussed, for example, in [[292], Chapter 5], [293] and
generalization of the FNC for the case of accelerated
and locally rotating observers is given in [[165], Sec. 13.6]
and [257]. The present paper uses the conformal-harmonic
gauge (39) to build the body-adapted local coordinates which
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coincide with the FNC of accelerated observer only in the
linearized approximation of the Taylor expansion of the
metric tensor with respect to the spatial coordinates around
the worldline of the observer.

Further development of the variational dynamics
requires a clear separation of the matter and field variables
in the solution of the full Einstein’s field equations. This
problem has not been solved in the MPD approach
explicitly.9 It was replaced with the solution of a simpler
problem of the separation of the matter and field variables
in the equations of motion (449) by introducing a sym-
metric tensor distribution 7% known as the stress-energy
skeleton of the body [4,5,11]. Effectively, it means that
the variational dynamics of each body is described on the
effective background manifold M that is equivalent to
the full manifold M from which the self-field effects of the
body have been removed. We denote the geometric
quantities and fields defined on the effective background
manifold with a bar above the corresponding object.
Mathematical construction of the effective background
manifold in our formalism is given below in Sec. XIB.

Dixon [ [11], Eq. (140)] defined high-order multipoles of
an extended body in the normal Riemann coordinates, X%,
by means of a tensor integral

Ial.,.amv(z> _ /Xal ...Xa’T”D(Z,X)’ /—Q(Z)DX (l > 2)
(458)

where X* = X“%(z,x) is the same vector as in (452),
T is the stress-energy skeleton of the body, and
the integration is performed over the tangent space of
the point z with the volume element of integration
DX = dX° A dX' A dX* A dX3. Definition (458) implies
the following symmetries:

Ja-apy — I(al...a,)(/w)’ (459)
where the round parentheses around the tensor indices

denote a full symmetrization. Microscopic equation of
motion (449) also tells us that

Jlaapy — 0, (460)

and a similar relation holds after exchanging indices y and v
due to symmetry (459). Dixon’s multipoles have a number
of interesting symmetries which are discussed in [10,136]
and summarized in Appendix C of the present paper.
Appendix D1 compares the Dixon multipoles (458)
with the Blanchet-Damour multipoles (122) and (131)
and establishes a relationship between them in the

°In the present paper the separation of the matter and field
variables in the metric tensor is achieved by means of the matched
asymptotic expansion technique.

post-Newtonian approximation of general relativity when
the effects of the hypothetical scalar field are ignored.

Dixon [11] presented a number of theoretical arguments
suggesting that the covariant equations of motion of the
extended body have the following covariant form [[9],
Eqgs. (4.9-4.10)]:

Dy, 1 _5eus | )
De ~2" S Rusat3 0 g Vgl (461

DS 2.1
= 2pleas 4 Z_B}’l...}',ayl/gg[alﬁ]yl ST (462)

Ds 1)

where D/Dr = i?V, is the covariant derivative taken
along the reference line z = z(r), the moments [%--%H
are defined in (458), Ag 4, and B, ., are the
symmetric tensors computed at point z, and the bar above
any tensor indicates that it belongs to the background
spacetime manifold M.

Thorne and Hartle [58] call the body’s multipoles
[7--@kv the internal multipoles. Tensors Ag 4, and
B, e are called the external multipoles of the back-
ground spacetime. The external multipoles are the normal
tensors in the sense of Veblen and Thomas [294]. They are
reduced to the repeated partial derivatives of the metric
tensor, g,,, and the Christoffel symbols, l_"g,w, in the
Riemann normal coordinates taken at the origin of the
coordinate X = 0 (corresponding to the point z in coor-
dinates x*) [11,291],

Aﬂl...ﬁ,/w = }l(iir(l)a/flmﬁtgﬂl/(X)’ (463)
Bﬂl...ﬁlo‘ﬂb = 2)1}_%aﬂ1...ﬂlrauv<x)
= )l(i_r)r(l)[aﬂlmﬁzﬂgﬂl/(x) + 8/51~-ﬂ1ﬂgl/0(x>
- aﬁ].“ﬂ,ugow (X)} (464)

In arbitrary coordinates x%, the normal tensors are
expressed in terms of the Riemann tensor, 1_?"”,;,,, and its
covariant derivatives [ [291], Chapter III, Sec. 7]. More
specifically, if the terms being quadratic with respect to the
Riemann tensor are neglected, the external Dixon multi-
poles read

[—1- -
A/j1 LBy = 2 m v(ﬁl ~~/f1—2R\I4|/f/—1ﬁ/)”’ (465)
2l - -
Bﬁlu.ﬁ,ayv :H—z[v(ﬂ1~~~ﬁ1—1R‘ﬂ‘Uﬁ1)”
+ Vs Riolusye =V, g Riohpyul - (466)

where the vertical bars around an index means that it is
excluded from the symmetrization denoted by the round
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parentheses. Notice that each term with the Riemann tensor
in (465) and (466) is symmetric with respect to the first
and forth indices of the Riemann tensor. This tells us that
Apypi = A(ﬁlnﬂl)(l”/) and By, _you = Biy,..p)(oup 1
accordance with the symmetries of (463) and (464).
Substituting these expressions to (461) and (462) yields
the Dixon equations of motion in the following form:

Dy, 1,
Dr 20 Rupe
= -1 ] ,
" lzz; (I+ 1) va(ﬂl~--ﬂ172R\ﬂ\ﬂ171ﬂ/)V‘]ﬂlmﬂHMﬂ’ ’
(467)
DS
= 2plaghl
Dr P
. l(l + 1) Vv > —ola v
i ; (17 2)1 Ve Ry @701
(468)
where
Jo-aphuor —= Ial...a,,[/l[a/t]u] (469)

denotes the internal multipoles with a skew symmetry with
respect to two pairs of indices, [Ax] and [ov]. The Dixon /
and J multipoles are compared in Appendix C of the
present paper. Comparison of Dixon’s equations of motion
(467), (468) with our covariant equations is given in
Appendix D.

Mathematical elegance and apparently covariant nature
of the variational dynamics has been attracting researchers
to work on improving various aspects of derivation of the
MPD equations of motion [13,105,139,140,144,145,247,
295,296]. From an astrophysical point of view Dixon’s
formalism is viewed as being of considerable importance
for the modeling of the gravitational waves emitted by the
extreme mass-ratio inspirals (EMRIs) which are binary
black holes consisting of a supermassive black hole and a
stellar mass black hole. EMRIs form a key science goal for
the planned space based gravitational wave observatory
LISA and the equations of motion of the black holes in
those systems must be known with unprecedented accuracy
[28,252]. Nonetheless, in spite of the power of Dixon’s
mathematical apparatus, there are several issues which
make the MPD theory of the variational dynamics yet
unsuitable for relativistic celestial mechanics, astrophysics,
and gravitational wave astronomy which have been pointed
out by Dixon himself [11] and by Thorne and Hartle [58].

The main problem is that the variational dynamics is too
generic and does not engage any particular theory of
gravity. It tacitly assumes that some valid theory of gravity
is chosen, gravitational field equations are solved, and the

metric tensor is known. However, the field equations and
the equations of motion of matter are closely tied up—
matter generates gravity while gravity governs motion of
matter. Due to this coupling the definition of the center of
mass, linear momentum, spin, and other body’s internal
multipoles depend on the metric tensor which, in its own
turn, depends on the multipoles through the nonlinearity of
the field equations. It complicates the problem of inter-
pretation of the gravitational stress-energy skeleton in the
nonlinear regime of a gravitational field and makes the
MPD equations (461), (462) valid solely in the linearized
approximation of general relativity. For the same reason it
is difficult to evaluate the residual terms in the existing
derivations of the MPD equations and their multipolar
extensions. One more serious difficulty relates to the lack of
prescription for separation of self-gravity effects of a
moving body from the external gravitational environment.
The MPD equations of motion are valid on the background
effective manifold M but its exact mathematical formu-
lation remains unclear in the framework of the variational
dynamics alone [247]. Because of these shortcomings the
MPD variational dynamics has not been commonly used in
real astrophysical applications in spite of the fact that it is
sometime claimed as a “standard theory” of the equations
of motion of massive bodies in relativistic gravity [210].

In order to complete the MPD approach to variational
dynamics and make it applicable in astrophysics several
critical ingredients have to be added. More specifically,
what we need includes the following:

(1) the procedure of unambiguous characterization and
determination of the gravitational self-force and self-
torque exerted by the body on itself, and the proof
that they are actually vanishing;

(2) the procedure of building the effective background
spacetime manifold M with the background metric
Jap used to describe the motion of the body which is
a member of the N-body system;

(3) the precise algorithm for calculating the body’s
internal multipoles (458) and their connection to
the gravitational field of the bodys;

(4) the relationship between the Blanchet-Damour mass
and spin body’s multipoles, M“ % and S*-%, the
Dixon internal multipoles (458), and the gravita-
tional stress-energy skeleton.

In this section we implement the formalism of derivation
of covariant equations of motion of massive bodies
proposed by Thorne and Hartle [58] which yields a
complete set of the covariant equations of translational
and rotational motion. It relies upon the construction of the
effective background manifold M by solving the field
equations of scalar-tensor theory of gravity and applying
the asymptotic matching technique which separates the
self-field effects from the external gravitational environ-
ment, defines all external multipoles, and establishes the
local equations of motion of the body in the body-adapted

084008-81



SERGEI M. KOPEIKIN

PHYS. REV. D 99, 084008 (2019)

local coordinates. The body’s internal multipoles are
defined in the conformal harmonic gauge by solving the
field equations in the body-adapted local coordinates as
proposed by Blanchet and Damour [78]. The covariant
equations of motion follow immediately from the local
equations of motion by applying the Einstein equivalence
principle [58]. We compare our covariant equations of
motion, derived in this section, with the MPD equations in
Appendix D.

B. The effective background manifold

Equations of translational motion (290) of an extended
body B in the global coordinate chart depend on an infinite
set of configuration variables—the internal mass and spin
multipoles of the body, Mk and S%, and the external
gravitoelectric and gravitomagnetic multipoles—@Q; and
C;—all are pinned down to the worldline Z of the center of
mass of the body. The same equations in the local
coordinate chart adapted to the body B are given by
(183) after applying the law of conservation of the linear
momentum of the body (177). These equations in two
different coordinate charts are interconnected by the space-
time coordinate transformation (144), (145)—the proof is
given below in Sec. XI C. It points out that the equations of
motion derived in the local coordinates can be lifted to the
generic covariant form by making use of the Einstein
equivalence principle applied to body B that can be treated
as a massive particle endowed with the internal multipoles
ME and S, and moving along the worldline Z on the
effective background spacetime manifold M whose proper-
ties are characterized by the external multipoles Q; and C;
that presumably depend on the curvature tensor on M and
its covariant derivatives. The covariant form of the equa-
tions is independent of a particular realization of the
conformal-harmonic coordinates but we hold on the
gauge conditions (39) to prevent the appearance of
gauge-dependent, nonphysical multipoles of gravitational
field in the equations of motion.

The power of our approach to the covariant equations of
motion is that the effective background manifold M for
each body B is not postulated or introduced ad hoc. It is
constructed by solving the field equations in the local and
global charts and separating the field variables—scalar field
and metric tensor perturbations—in the internal and exter-
nal parts. The separation is fairly straightforward in the
local chart. The internal part of the metric tensor, fzg‘ﬁt and
scalar field @', are determined by matter of body B and is
expanded in the multipolar series outside the body which

are singular at the origin of the body-adapted local

coordinates. The external part of the metric tensor AZ’;}

and scalar field X' are solutions of vacuum field equations
and, hence, are regular at the origin of the local chart. There
is also an internal-external coupling component /g of the

metric tensor perturbation but it is a nonlinear functional of

the internal solution and its multipolar series is also singular
at the origin of the local chart of body B.

The effective background manifold is regular at the
origin of the local coordinates and its geometry is entirely
determined by the external part of the metric tensor,
Gap = Nap + hg’g. This is fully consistent with the result
of matching of the asymptotic expansions of the metric
tensor and scalar field in the global and local coordinates
described in Sec. V. All terms whose multipolar expan-
sions are singular at the origin of the local chart are
canceled out identically in the matching Eqgs. (134) and
(135). This establishes a one-to-one correspondence
between the external metric perturbation hg’/‘} in the local

chart and its counterpart in the global coordinate chart
which is uniquely defined by the external gravitational
potentials U, U, ¥, 7 given in (91). In the rest of this
section we demonstrate that translational equations of
motion of body B are equations of a perturbed timelike
geodesic of a massive particle on the effective background
manifold with the metric g,4. The particle has mass M =
Mg and internal multipoles ML = M% and St = SE.
The perturbation of the geodesic is the local acceleration
Q; caused by the interaction of the particle’s multipoles
with the external gravitoelectric and gravitomagnetic
multipoles, Q; and C;, which are fully expressed in
terms of the covariant derivatives of the Riemann tensor,
Raﬂw and scalar field ¢ of the background manifold.
Covariant equations of rotational motion of the body spin
are described by the Fermi-Walker transport with the
external torques caused by the coupling of the internal and
external multipoles of the body.

The effective background metric g,s is given in the
global coordinates by the following equations (cf. [58]):

goo(t,X) =-1 + ZU(I,X)

2| W(1.x) ~ PO (1.x) 0,1, x) | (470)

goi(t.x) = =2(1 +)U' (1. %), (471)

glj(l,x) :5,]+2)/5,]U(t,x), (472)
where the potentials in the right-hand side of (470)-(472)
are defined in (68) and (91) as functions of the global
coordinates x* = (t,x). The background metric in arbitrary
coordinates can be obtained from (470)—(472) by perform-
ing a corresponding coordinate transformation. It is worth
emphasizing that the effective metric g, is constructed for
each body of the N-body system separately and is a
function of the external gravitational potentials which
depend on which body is chosen. It means that we have
a collection of N-effective manifolds M—one for each
extended body. Another prominent point to draw to the
attention of the reader is the fact that the effective metric of
the extended-body B depends on the gravitational field of
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the body itself through the nonlinear interaction term ¥, in
the potential ¥: see (77) and its multipolar expansion (231).
This dependence of the background metric tensor on the
gravitational field of the body itself is known as the back-
action effect of a gravitational field [58,156]. It was first
noticed by Fichtenholtz [218] who pointed out that deriva-
tion of the post-Newtonian equations of motion of bodies of
comparable masses, given in the first edition of the
“Classical Theory of Fields” by Landau and Lifshitz, is
erroneous as they missed the backaction term in the effective
metric. This error was corrected and did not appear in the
subsequent editions of the Landau-Lifshitz textbook [42].

The background metric, g, is a starting point of the
covariant development of the equations of motion. It has
the Christoffel symbols

FZI/ = %g(l/}(augﬁu + aug[iv - aﬁg/w)9 (473)
which can be directly calculated in the global coordinates,
x%, by taking partial derivatives from the metric compo-
nents (470)—(472). In what follows, we shall make use of a
covariant derivative defined on the background manifold M
with the help of the Christoffel symbols fZ,,. The covariant

derivative on the background manifold, M, is denoted V,, in
order to distinguish it from the covariant derivative defined
on the original spacetime manifold, M, denoted V,. For
example, the covariant derivative of vector field V* is
defined on the background manifold by the following
equation:

ViV = 95V 4+ To,VvH, (474)
which is naturally extended to tensor fields of arbitrary type
and rank in a standard way [17]. It is straightforward to
define other geometric objects on the background manifold
like the Riemann tensor (4),

R%,p, = 0pl%, — 0,10, +- T2, — T3, (475)
and its contractions—the Ricci tensor R, = R*,,,, and the

Ricci scalar R = g*R,,. Tensor indices on the background
manifold are raised and lowered with the help of the
MEtric Gop.

The background metric tensor g,;(u,w) in the local
coordinates w* = (u, w') adapted to body B is given by

exi

gaﬁ(“? W) = 7]0:/3 + ilaﬂt(u’ W), (476)

where the perturbation, fzfx’[‘}, is given by the polynomial
expansions (117)—-(119) of the external gravitational field
with respect to the local spatial coordinates. Notice that at
the origin of the local coordinates, where wi =0, the
background metric g, is reduced to the Minkowski metric
Nap- 1t means that on the effective background manifold M
the coordinate time u is identical to the proper time 7

measured on the worldline WV of the origin of the local
coordinates adapted to body B,

T=1U.

(477)

Post-Newtonian transformation from the global to local
coordinates, w* = w®(x”), has been provided in Sec. V C.
It smoothly matches the two forms of the background
metric G,4(t,x) and g,4(u, w) on the background manifold
M in the sense that

) _ ow® onw?
g;w(tvx) = gaﬁ(u’w)ﬁ oxv

(478)

This should be compared with the law of transformation
(135) applied to the full metric g,s on spacetime manifold
M which includes besides the external part also the internal
and internal-external coupling components of the metric
tensor perturbations but they are mutually canceled out in
(135) leaving only the external terms, thus, converting
(135) to (478) without making any additional assumptions
about the structure of the effective background manifold.
The cancellation of the internal and internal-external
components of the metric tensor perturbations in (135) is
a manifestation of the effacing principle [185] that excludes
the internal structure of body B from the definition of the
effective background manifold M used for the description
of motion of the body [99]. Compatibility of Egs. (135) and
(478) confirms that the internal and external problems of
the relativistic celestial mechanics in an N-body system are
completely decoupled regardless of the structure of the
extended bodies and can be extrapolated to compact
astrophysical objects like neutron stars and black holes.
In what follows, we will need a matrix of transformation
taken on the worldline of the origin of the local coordinates,
a
(1/} = A”ﬂ(l’) = lim al

X—xp ax/j :

(479)

The components of this matrix can be easily computed
from equations of coordinate transformation (144) and
(145) and its complete post-Newtonian form is shown in
[[17], Sec. 5.1.3]. With an accuracy being sufficient for
derivation of the covariant post-Newtonian equations of
motion in the present paper, it reads

1 _
A% =1 +§”‘23 - U(t,xp), (480)
) 1 .

A, — _y;3<1 +§y23) +2(14 1) 0 (1.xp)
— (14 2y)05U(t,xp), (481)

) ) 1 - ij j
Ay = —vp {1 +§U% + VU(t»xB)} — Fgug, (482)

A g _ . ij

Ny = 81 +yO(txp)] + S vpvp + Fi. - (483)
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where F fsj is the skew-symmetric matrix of the Fermi-
Walker precession of the spatial axes of the local frame
adapted to body B, with respect to the global coordinates;
see (151).

We will also need the inverse matrix of transformation
between the local and global coordinates taken on the
worldline W of the origin of the local coordinates. We shall
denote this matrix as

a 04
@)= Qy(r) = lim -

lim =5 (484)

In accordance with the definition of the inverse matrix we
have

Aaﬁgﬁy =0y, Q"/,Aﬁ}, = 0y. (485)
Solving (485) with respect to the components of €%,
we get

1 _

QOO = 1 +§U2B + U(t,xB), (486)

. 1 o _

Q0 = vi <1 +§1ﬂB) + Fgvg = 2(1 +y)U'(t,xp)
+ 2 +47)v5U(t,xp), (487)
i i 1 2 7

Q 0= Up 1 +§UB + U(tva) 5 (488)
Q= SU[1 —yU(t,xp)] —|—§1;i31;{3 —Fy. (489)

As we shall see below, the matrices A”/,w and Q”ﬂ are
instrumental in lifting the geometric objects pinned down to
the worldline W and residing on 3-dimensional hypersur-
face 'H, of constant time u of the tangent space to the
background manifold, from A, up to 4-dimensional
spacetime manifold M.

In order to arrive to the covariant formulation of the
translational and rotational equations of motion, we take
the equations of motion derived in the local coordinates of
body B, and prolongate them to the 4-dimensional, covar-
iant form with the help of the transformation matrices and
replacing the partial derivatives with the covariant ones.
This is in accordance with the Einstein principle of
equivalence which establishes a correspondence between
spacetime manifold and its tangent space [165]. It turns out
that, eventually, all direct and inverse transformation
matrices cancel out due to (485) and the equations acquire
a final, covariant 4-dimensional form without any reference
to the original coordinate charts that were used in the
intermediate transformations. In what follows, we carry out
this type of calculations.

C. Geodesic worldline and 4-force
on the background manifold

Our algorithm of derivation of equations of motion
defines the center of mass of body B by equating the
conformal dipole of the body to zero, Z' = 0. The linear
momentum, p’ also vanishes p' =dZ'/du =0, as
explained in Sec. VIC. We have shown that these two
conditions can be always satisfied by choosing the appro-
priate value (184)—(186) of the local acceleration, Q;, of the
origin of the local coordinates adapted to body B in such a
way that the worldline VW of the origin of the local
coordinates coincides with the worldline Z of the center
of mass of the body. This specific choice of Q; converts the
equations of motion of the origin of the local coordinates of
body B (152) to the equations of motion of its center of
mass in the global coordinates. Below we prove that this
equation can be interpreted on the background manifold M
as the equation of timelike geodesic of a massive particle
with the conformal mass, M = My, of body B that is
perturbed by the force of inertia produced by the local
acceleration Q; of the origin of the local coordinates. This
is in concordance with the effacing principle [99,154,185]
which determines dynamics in general relativity and scalar-
tensor theory of gravity and suggests that the laws
governing the motion of self-interacting masses are struc-
turally identical to the laws governing the motion of test
bodies [142].

Let us introduce a 4-velocity #” of the center of mass of
body B. In the global coordinates, x*, the worldline Z of the
body’s center of mass is described parametrically by
x% =1, and xi(f). The 4-velocity is defined by

_ dxy
dr’

ila

(490)

where 7 is the proper time along the worldline Z. The
increment dz of the proper time is related to the increments
dx* of the global coordinates by equation,

dt* = —Jpdx*dx’, (491)
which tells us that the 4-velocity (490) is normalized to
unity, #,i* = gaﬂﬁ“ﬁﬂ = —1. In the local coordinates the
worldline Z is given by equations, w* = (z,w’ = 0), and
the 4-velocity has components @* = (1,0,0,0). In the
global coordinates the components of the 4-velocity are
u® = (dt/dr, dxly/dr), which yields 3-dimensional velo-
city of the body’s center of mass, v = it'/i® = dxk /dt.
Components of the 4-velocity are transformed from the
local to global coordinates in accordance to the trans-
formation equation, #* = Q"/,ﬁﬁ , which points out that in
the global coordinates #* = Q%,. On the other hand, a
covector of 4-velocity obeys the transformation equation,
i, = Aﬂaﬁﬁ, where @, = (—1,0,0,0) are components of
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the covector of 4-velocity in the local coordinates. Thus, in
the global coordinates iz, = —A’,. The above presentation
of the components of 4-velocity in terms of the matrices of
transformation along with Eq. (485) makes it evident that
the 4-velocity is subject to two reciprocal conditions of
orthogonality,

Al =0, Q% = 0. (492)
Equations (492) will be used later on in the procedure of
lifting the spatial components of the internal and external
multipoles to the covariant form.

In the covariant description of the equations of motion,
an extended body B from the N-body system is treated as a
particle having a conformal mass, M = My, the active
mass M = Mg, the active mass multipoles M = M,
and the active spin multipoles St = S% attached to the
particle, in other words, to the center of mass of the body.
This set of the internal multipoles fully characterizes the
internal structure of the body. The multipoles, in general,
depend on time including the mass of the body which is not
constant due to the temporal change of the multipoles (163)
caused by tidal interaction. The mass and spin multipoles
are fully determined by their spatial components in the
body-adapted local coordinates in terms of integrals from
the stress-energy distribution of matter through the solution
of the field equations; see Sec. IV B 6. Covariant gener-
alization of the multipoles from the spatial to spacetime
components is provided by the condition of orthogonality
of the multipoles to the 4-velocity #* of the center of mass
of the body as explained below in Sec. XID.

We postulate that the covariant definition of the linear
momentum of the body is

p* = Mu*, (493)
where p* is a covariant generalization of 3-dimensional
linear momentum p’ of body B introduced in (173) where,
for the time being, we do not specify the complementary

part I’C We are looking for the covariant translational
equations of motion of body B in the following form:

dp®

Dy* = .
Euﬂvﬁp - dr

Dt

PRt = F,  (494)
where F* is a 4-force that causes the worldline Z of the
center of mass of the body to deviate from the geodesic
worldline of the background manifold M. We introduce this
force to Eq. (494) because the body’s center of mass
experiences a local acceleration Q; given by (184) which
means that it is not in a state of a free fall and does not move
on the geodesic of the background manifold. In order to
establish the mathematical form of the force F“ it is more
convenient to rewrite (494) in terms of a 4-acceleration
a* = Di®/Dr = iV i

dii® .
M( + Tt > = F — M, (495)

dr

where M is given in (165).

In what follows, it is more convenient to operate with a 4-
force per unit mass defined by f* = F*/M. Equation of
motion (495) is reduced to

7

o D —fa——u

(496)

The force f* is orthogonal to 4-velocity, u,f* =0 as a
consequence of (494) and the 4-velocity normalization
condition. Hence, in the global coordinates the time
component of the force is related to its spatial components
as fo = —vif;. The condition of the orthogonality also
yields the contravariant time component of the force in
terms of its spatial components,

10 = =G (497)
Yoo

Our task is to prove that the covariant equation of motion
(496) is exactly the same as the equation of motion (152) of
the center of mass of body B derived in the global
coordinates that was obtained by asymptotic matching of
the external and internal solutions of the field equations. To
this end we reparametrize Eq. (496) by coordinate time ¢
instead of the proper time z, which yields

[ i
ag = _Foo - ZFOPHB F vaB

+ (T + 209 UB + quvaB)vB

wr- o) ()

where vh = dxi/dt and aly = dviy/dt are the coordinate
velocity and acceleration of the body’s center of mass with
respect to the global coordinates.

We calculate the Christoffel symbols, I' uv» the derivative
dt/dt, substitute them to (498) along with (497), and
retain only the Newtonian and post-Newtonian terms.
Equation (498) takes on the following form:

(498)

5= 0'U(t.xg) + 0"¥(t.xp)
- %anai)_((t,x]g) +2(y + 1)U (t.xp)
—2(y + Db o T (1. x5) — (27 + )i, U(t.xp)
—=2(f+7)U(1,x5)0'U(t, xp)
+ yoRd'0(t.xp) — vvh & U(1, xp)
+ f1 = vpopf* = [20(t. x) + vg]f".

This equation exactly matches the translational equation of
motion (152) if we make the following identification of the

(499)
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spatial components f' of the force per unit mass with the
local acceleration Q':

f1==Q =S kb + FYQ, 4 Ut s)Q . (500
By simple inspection we reveal that the right-hand side of
the post-Newtonian force (500) can be written down in a
covariant form

fO==gPNpQ; = g7 Qp = -Q%, (501)

where Al 4 1s given above in (480)—(483), and Q, is a vector
of 4-acceleration in the local coordinates. The quantity
Q, = A, Q, defines the covariant form of the local accel-
eration in the global coordinates with Q, being orthogonal
to 4-velocity, u*Q, = 0, which is a direct consequence of
the condition (492). Explicit form of Q; in the local
coordinates is given in (184) and should be used in
(501) along with the covariant form of the external
—Q,, C;, P, and internal—M?’, S& multipoles in order
to get f* = —g* Q. The covariant form of the multipoles
is a matter of discussion in the next subsection.

D. Four-dimensional form of multipoles

1. Internal multipoles

The mathematical procedure that was used in construc-
tion of the local coordinates adapted to an extended body B
in an N-body system indicates that all type of multipoles are
defined at the origin of the local coordinates as the STF
Cartesian tensors having only spatial components with their
time components being identically nil. It means that the
multipoles are projections of 4-dimensional tensors on a
hyperplane passing through the origin of the local coor-
dinates orthogonally to 4-velocity #* of the worldline Z of
the center of mass of the body. The 4-dimensional form of
the internal multipoles can be established by making use of
the law of transformation from the local to global coor-
dinates,

ay...0 — 104
Mer-a = Qm
Ay ...0] — (04
Som = Qe

a ipin...0
Qe Mzt

Qo St (502)
where the matrix of transformation Q% is given in (486)—
(489). Transforming 3-dimensional STF Cartesian tensors
to 4-dimensional form does not change the property of the
tensors to be symmetric and trace-free in the sense that we
have for any pair of spacetime (Greek) indices

B MO = 0, G, U@ =0, (503)
The 4-dimensional form (502) of the multipoles along with
Eq. (492) confirms that the multipoles are orthogonal to
4-velocity, that is

oy MO =0, @, ST =0,  (504)

and due to the symmetry of the internal multipoles,
Eq. (504) is valid to each index.

Notice that the matrix of transformation (484) has been
used in making up the contravariant components of the
multipoles (502) which are tensors of type [/]. Tensor
components of the multipoles, M, , and S, which
are of the type [J] are obtained by lowering each index of
M*-@ and SM--% respectively with the help of the
background metric tensor g,. It is worth emphasizing that
we have introduced 4-dimensional definitions of the
internal multipoles as tensors of type [(l)} on the ground
of transformation equations (502) because we defined the
spatial components of M1+ and S't+i! as integrals (122)
and (131) taken from the STF products of the components
of 3-dimensional coordinate w' which behaves as a vector
under the linear coordinate transformations. Another reason
to use the contravariant components M1 and S’t-t as a
starting point for their 4-dimensional prolongation is that
the internal multipoles are the coefficients of the Cartesian
tensors of type [!] in the Taylor expansions (220), (221),
and (223) of the gravitational potentials Ug(z,x) and
Uk (t,x) with respect to the components of the partial
derivatives 0; ;13 ' which are considered as the STF
Cartesian tensors of type [].

2. External multipoles

The external multipoles, P; ;. Q; . ; and C; _;, have
been defined at the origin of the local coordinates of body B
by external solutions of the field equations for the metric
tensor and scalar field in such a way that they are purely
spatial STF Cartesian tensors of type []; see Sec. IV B 4. It
means that 4-dimensional tensor extensions of the external
multipoles must be orthogonal to 4-velocity of the origin of
the local coordinates which is, by construction, identical to
4-velocity u#* of the worldline Z of the center of mass of the
body B

“Qq aa...ap =0,
7) aa..a 0
“Coray..qr = 0. (505)

These orthogonality conditions suggests that the 4-
dimensional components of the external multipoles are
obtained from their 3-dimensional counterparts by making
use of the matrix of transformation (479) which yields

Qa]“.a, = Aila] "'Ai]a, Qi,...i,’
Ca]“.a, = Aila] "-Ai]a,cil...i,v
Pal...a, = Aila] "'Ailalpil...il‘ (506)
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We have used in here the matrix of transformation (479)
because the external multipoles are defined originally as
tensor coefficients of the Taylor expansions of the external
potentials U, P, etc., which are expressed in terms of partial
derivatives from these potentials and behave under coor-
dinate transformations like tensors of type [ |. Definitions
(506) and the properties of the matrices of transformation
suggest that 4-dimensional tensors Q, .. C4 . 4 and
Pq,..q are STF tensors in the sense of (503) that is
F1"Qq o =0, etc.

It is known that in general relativity the external multi-
poles, Q; ; and C; _; are defined in the local coordinates
by partial derivatives of the Riemann tensor, I_?“ﬂﬂ,/, of the
background metric (476) taken at the origin of the local
coordinates [47,58,297,298]. This definition remains valid
with some modification in the scalar-tensor theory of
gravity which is explained below. The external multipoles,
Pi,.i,» of the scalar field are not related in any way to the
Riemann tensor because they depend merely on derivatives
of the background scalar field ¢.

As we show below, the 4-dimensional tensor formulation
of the external multipoles is achieved by contracting the
Riemann tensor with vectors of 4-velocity, i, and taking
the covariant derivatives V,, projected on the hyperplane
being orthogonal to the 4-velocity. The projection is
fulfilled with the help of the operator of projection,

my = 65 + ug,
”(lﬂ — g(lﬁ + uau/)”

Top — g(l[)’ + aau/)" (507)

The operator of projection satisfies the following relations:
ﬂ;,’ﬂ%, = 71’;;, 7% = g"”ﬂf, Top = gayﬂ;, and 7% = 3. The
latter property points out that 5 has only three algebrai-
cally independent components which are reduced to the
Kronecker symbol when s is computed in the local
coordinates of body B, that is in the local coordinates
JTO 0, 7'[0 = Jt =0, 7r = 5’ In other words, the projec-
tion operator is a 3- d1mens1onal Kronecker symbol 6; lifted
up to 4-dimensional effective background manifold M. We
notice that the operator of the projection has some addi-
tional algebraic properties. Namely,

mN, =Ny Q= (508)
that are in accordance with the condition of orthogonality

(492). They point out that 7 can be also represented as a

product of two reciprocal transformation matrices,
my = QYN (509)

The projection operator is required to extend 3-dimen-
sional spatial derivatives of geometric objects to their 4-

dimensional counterparts. Indeed, in the local coordinates
the external multipoles are purely spatial Cartesian tensors
which are expressed in terms of the partial spatial deriv-
atives of the external perturbations of the metric tensor and/
or scalar field. It means that the extension of a spatial partial
derivative to its 4-dimensional form must preserve its
orthogonality to the 4-velocity u#* of the worldline Z which
is achieved by coupling the spatial derivatives with the
projection operator. For example, 4-dimensional STF form
of the external STF scalar multipole P, =7P; ; =
Pi...i,y introduced in (153) in terms of the spatial deriv-
atives of the external scalar field, reads

Pal. = Allal Ai a,Pil.i.i, = A<ila] "'All (l[v .i,)f_p
= Al LAY QP PN 0
= 7r[)illl (1[ /}1 /}l(p’ (510)

where ¢ is the background scalar field perturbation, and the
angular brackets around Greek indices indicate 4-dimen-
sional generalization of 3-dimensional STF tensor defined
earlier in (2). Extending 3-dimensional Kronecker symbol
and other 3-tensors to 4-dimensional form we get

. _%(—l)n N @I-2n-1)
(ag...q1) = n
1 — 2"n! (I=2n)! (2I-1)!
X ”(alaz...ﬂaz”,,az”Saan,__a,)'[;'lyl_“ﬂnynﬂﬂlh P,
(511)

We also notice that the projection operator can be effec-
tively used to rise and/or to lower 4-dimensional (Greek)
indices of the internal and external multipoles like the
metric tensor g,z This is because all multipoles are
orthogonal to the 4-velocity #“ Thus, for example,
Qupd’" = Qupr’ = Q,7, etc.

The external multipoles Q, ,, and C,, ,, are directly
connected to the Riemann tensor of the background
manifold and its covariant derivatives. In order to establish
this connection we work in the local coordinates and
employ a covariant definition of the Riemann tensor (4)
of the background manifold where the background metric
tensor in the local coordinates is

Sop = Nap + fzi}}(u, w) + ?Z?}(u, w), (512)

with the perturbations he" and l‘”‘t defined in (117)—(120)
respectively. The products of the connections entering (4) at

the post-Newtonian level of approximation requires the
following components of the Christoffel symbols:
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_. _ 1 .
oo = ng - _Eaihg}(()t’

(0;h5 + 0,15 = 0, %‘) (513)

[ROioj]STF = —D<> + 3D<D jy 1 2DD(U> + 2(

0

i [+7 O ywhn? — (
24220+ 7)(1+3)1n 0t

where we have discarded all terms of the post-post-
Newtonian order and introduced the shorthand notations

©.1
D=D(u,w) = ZEQK(M)WK, (515)
=1
|
H=H(uw)= ZEPK(M)WK’ (516)
=0
2.1
D; ;= Dil...il<”’w) =0;,..,D= ZF Qil...i,K(u)WK’
=0 <
(517)
H, ;=H; ;(uw)=0, ,H= Zk'Pll ax(w)wk.

(518)
Notice that at the origin of the local coordinates where
w' = 0, wehave D(u,0) = 0, H(u,0) = P,D;_; (u,0) =
Q... and H; ; (u,0) =P, ;. Therefore, at the origin
of the local coordinates, that is on the worldline Z, the
value of the STF Riemann tensor (514) is simplified to
[Roioj]5 = =Quij) +3Q4Q)) +2(r -

+ Z(ﬂ - )PiPj.

QP
(519)

This relationship establishes the connection between the
external mass quadrupole Q;; and the STF Riemann tensor.
The reader should notice that (519) includes terms depending
on acceleration Q; of the worldline of the center of mass of
body B. This may look strange as the curvature of spacetime
(the Riemann tensor) does not depend on the choice of the
worldline of the local coordinates. Indeed, it can be verified
that the acceleration-dependent terms in (519) are mutually
canceled out with the similar terms coming out of the explicit
expression for Q;; taken from (155), and obtained by the
asymptotic matching technique.

~1)D,H, +2(/3— 1) x

> (I-1)(+1) . =
221+5 l+2)|QLl]L+ lz:

Substituting (512) and (513) to (4) and taking into account
all post-Newtonian terms we get the STF part of the
Riemann tensor component [Ro;]5™ = Ry in the
following form:

[HiHj + (H = P)H ;]
QL+ 1)(+1) 4
21+5 l+2) LWL
) o0 l+1 _
,Z 2z+7 )l P LWLW”Z 121 Crati Cipp ™"
(514)

Relationship between the STF covariant derivative of
[th order from the Riemann tensor and the external
gravitoelectric multipole of the same order is derived by
taking covariant derivatives / times from both sides of
(514). Covariant derivative of the order [ from the
Riemann tensor is a linear operator on the background
manifold that involves the products of the Christoftel
symbols and the covariant derivatives of the order / — 1
from the Riemann tensor. They can be calculated by
iterations starting from / = 1. Straightforward but tedious
calculation shows that at the post-Newtonian level of
approximation the covariant derivative of the order [ — 2
combined with the Riemann tensor to STF tensor of the
order [, reads

\7? 4..i,_2ROi,_, Oi,]STF

-3
S
[all RS zROI/ |011 " +2Z k+] ke z[Diz-k—z---il-lDiD]
k=0
Z 3
(k+2)0, iy [Di,,k,z...i,,lHi,)}' (520)
k=0

Applying the Leibniz rule of differentiation to the
product of two functions [[264], Eq. (0.42)] standing
in the right-hand side of (520), we obtain a more simple
expression,

Vi, ...il_QRol',_, Oi,]STF

= [ai] g QROi[ loi,]STF

2y Yy k2l (i1 Do)
e s!(k—s)! !
-3k
(1= k= 1)k!
+2(r-1) E — 7 Hiiy Disi)-
s i sl(k—s)! aet

(521)
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-2

The [ —2th order partial derivatives from terms DD}, P B (1=2)
) ine [0, . Re . ISTF D sl Higl = ) e B iy,
DD, etc., entering [0; ; ,Ro;_o;,]>"" , are also calcu = k!(l-k=-2)
lated with the help of the Leibniz rule, yielding (525)
Qi 1Dy Diy] = iﬂp D, . 2 (1-2)
(iy...0i2 70y ) ra— k!(l —k— 2)! (i1evipr1 P i) a(il...i,,z[Di,fliﬂ(H_P)] :Zk (l . 2)| (iy. it onrid)
(522) (526)
-2
i D, " D] = Z (1=2)! Dy D, i Actually, we need the covariant derivatives of the STF
b k(1 =k —2)1 e e part of the Riemann tensor only at the origin of the local
(523) coordinates adapted to body B. Therefore, after taking the
STF covariant derivatives from the Riemann tensor we take
-2 Y the value of the local spatial coordinates w' = 0, which
iy i [D; H; >] = Z# iy i) eliminates all terms depending on the time derivatives of
P kIl —k—2)1 e e the external multipoles in the right hand side of (514) for
(524) the STF part of the Riemann tensor. Hence, the STF
covariant derivative of the Riemann tensor taken on the
worldline of the center of mass of body B reads
-2
y > STF (1-2)!
[vil---il—zROil—IOil}Z = _Q(il i) +3 Z k'(l — k- 2)! Q<il' L1 Qik+2' i)
k=0 "" :
1-2 -3k
(1-2)! (l—k=-2)k
+2|:;k'(l—k—2)' Q<i1 lk“ +IZ:Z S! —S (ll"'i.r+lQis+2~'-il>
1-2 =3k
(I-2)! (I—k—-1k
+ 2(}/ 1) [Z k'(l —k— 2)y Q<i1 lk+1 + Z Z S' _ S <l]'--is+] Qi:+2-~il>
k=1 : k=0 s=0 *°°
-2 -2
(I-2)! (1-2)!
+2(ﬂ_ 1)|: ky(l_k_z)y (iy- ~ikpik+1 ) + k'(l_k_2)1P<il-‘~ik+l7)ik+2---il> : (527)
k=1 k=0

It is rather straightforward now to convert (527) to 4-dimensional form valid in arbitrary coordinates on the effective
manifold M by making use of the transformation matrices and the operator of projection as it was explained above. We
introduce a new notation for the covariant STF derivative of the Riemann tensor taken on the worldline Z,

(11 o= ﬁﬁl ﬂ.ﬂz

nﬁl [vﬂl Bz ﬂﬂt 1/3zl'uﬂu ]

STF

S, (528)

and use it for transformation of (527) to arbitrary coordinates. It yields a covariant expression for the external gravitoelectric
multipoles Q, ,, in terms of the STF covariant derivatives from the Riemann tensor,

Qal...a, = al .ay) + 3 Z k' l— k 2 <a1~~~ak+1gak+2~-"l>
k=0
-2 -3 &k
(1-2)! (I—k—2)k!
|:Z kl | —k— 2 (0’1~~~0‘k A1) + Z S'(k -5 (a...a31C a5 5...0p)
1 k=0 s=0 .
{i N Hi(l—k—l)k! P }
— k! | — k 2 ‘11 T Oy ) L Lt S'(k _ S)' (ay...ag 1 Cagys...qp)
1— -2
(1-2)! (1-2)!
+ Z(ﬂ - 1) l:kZI k'(l —k— 2) (a)...0p Fagyy...ap) + — k'(l —k— 2)| (ay...ap) Fagan...ap) | (529)
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where we have made identification: £, = Q,,. At this stage
of calculation, it is worth noticing that 4-acceleration of the
center of mass of body B, a, = 1‘4/’7/;12”, is not exactly
equal to &£, because of a term depending on the time
derivative of body’s mass, M, in the right-hand side of
(495). Only in case when the mass is conserved, a* = £.

Similar, but less tedious procedure allows us to calculate
4-dimensional form of the external gravitomagnetic multi-
poles Cy, _,, in terms of the STF covariant derivative of the
Riemann tensor. We get

— o STF
Ca].‘.a, = ﬂ'{;]ﬂgg“ ﬂ'ﬁ [vﬁl P zRO'MDﬁl L Epy “u ] (530)

where we have utilized 3-dimensional covariant tensor of
Levi-Civita €,5, which is a projection of 4-dimensional,
fully antisymmetric Levi-Civita symbol E,,, [[165],

§ 3.5] on the hyperplane being orthogonal to 4-velocity i,

eapy = (=)' W ToTG T E o (531)

It can be checked by inspection that in the global coor-
dinates the right-hand sides of (529) and (530) are reduced
to Q; and C; respectively as it must be.

Four-dimensional definitions of the external multipoles
given in this section allow us to transform products of the
multipoles given in the local coordinates to their covariant
counterparts, for example, Q;M:=Q; M=
Quy..qM® %, etc. In all such products the matrices
of transformation cancel out giving rise to covariant
expressions being independent of a particular choice of
coordinates.

E. Covariant translational equations of motion

A generic form of the covariant translational equations of
motion have been formulated in (495). Substituting to these
equations the force F* = —M Q* where Q* was introduced
in (501), yields

Du#
M— = F' — Mi® 532
Dy it (532)
where the force
Ft = Fq+ F, + Fp + Fb, (533)

and the second term in the right-hand side of (532) is due to
the nonconservation of mass (165) having the following
covariant form:

. ©_ DFM(II...(II DF'P
== 0)(PY i P+ TR M)

@ Dp M-
_Z(l— 1)! Qo py

=1

D ga]...a,

_ZH_IMOH ] Dr ,

(534)

where we have wused the covariant Fermi-Walker
derivative of the multipole moments which is a covar-
iant generalization of the total time derivative in the
local coordinates. The Fermi-Walker derivative is
explained in more detail at the end of this section;
see Eq. (542).

Gravitational force F* in the right-hand side of (532) is
the 4-dimensional extension of 3-dimensional force (501)
with the local 4-acceleration Q; defined in (184) where the
complementary function Z. is chosen as 7% = 3Q, M¥, or.
in 4-dimensional form

T8 = 3QuM, (535)

This form of Z¢ eliminates the terms depending on the local
acceleration Q,, coupled with the quadrupole moment M@
of the body from the force F*, and delivers a covariant
definition of the center of mass of body B. It is similar but
not exactly equal to the choice (289) of this function in the
global coordinates.

The first term in the right side of (533) describes the
Dicke-Nordtvedt anomalous force caused by the violation
of the strong principle of equivalence (SEP)

Fg=qP%, (536)

where

P* = 1%V (537)

is an external scalar-field dipole and ¢ = M — M is the
difference between the active—M, and conformal—M,
masses of body B. The quantity q can be interpreted as
an effective scalar charge of body B interacting with the
external scalar field and causing the body to accelerate
with respect to a body having negligible self-gravity but
the same set of internal multipole moments. The
anomalous scalar-field gravitational force Fj was pre-
dicted by Dicke and its effect in three body system
(Earth-Moon-Sun) was studied by Nordtvedt in the
framework of PPN formalism [[88], § 8.1]. Explicit
expression for the scalar charge q is obtained from (166)
and reads
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1 s 1 DN
= ——(y—1 28— 1
a 2/VBpUBdw Sr=1) T 25— 1)MP
©
B=1)D Py g Ma
noe

=1

Z Qg MO0, (538)
=1

The first and second terms in the right-hand side of (538)
compose a bare part of the scalar charge being proportional to
self-gravitational energy of the body and the second time
derivative of the body’s moment of inertia /. Standard
treatment of the Nordtvedt effect [[88], § 8.1] takes into
account only the very first term in the right-hand side of (538)
which is proportional to the Nordtvedt parameter 77 assuming
that the time derivative of the moment of inertia is either
negligibly small or that its average value vanishes for periodic
motions and/or stationary rotation of celestial bodies. This
assumption may be sufficient in case of slow-motion and
|

weak gravitational field approximation. However, it is not
true in strongly gravitating N-body systems like coalescing
binary neutron stars and/or black holes. The remaining terms
in the right-hand side of (538) describe gravitational coupling
of the internal multipoles of body B and external multipoles
of gravitational field. The dominant term, 2(f — 1) MP, is
usually included to the Einstein-Infeld-Hoffmann force
[[17], Eq. 6.82] and is not treated as a part of the
Nordtvedt effect. The coupling terms depending on high-
order multipoles in (538) are fairly small in the Solar System
and have never been taken into account so far. Nonetheless,
they become large at the latest stage of evolution of
coalescing binary systems and can be used for more deep
testing of scalar-tensor theory of gravity by gravitational
wave detectors.

The other components of the 4-dimensional force stand-
ing in the right-hand side of (532) describe gravitational
interaction between the internal multipoles of body B and
the external multipoles. We have

=1 R P+1+4 DiMraa 2014 12421+ 5DpQ DpMHFa--@
Fﬂ — 777 ap...op _ F _ ay...q;
Q ;lzgﬂ Q.M 1; (z+1)! Qoo =2 2 1+1 (I+1)! Dt Dr
Zl + 1 12 + 31 + 6 a .. = l+ 1 DFS{m"“a’
MHa 1 i oy
> 2053 (1+1)! 4 Z1+2 et~
I+1 [+1 - DpS°
ek oo l’ - ay...o
+ Zm ] et D O M
1 K1 Dr
o — el So— ap...o 539
M l' Dr (Q/ml ..JIZM ) ( )
© © DpMoaa [ 4] DiC
Ho_ —Uv S _ Hp | C F oay...q pay ... 540
C lzzl:(l+ vag...q; ;<l+1)'8 0|: paj...q Dr l—|—2M —DT ( )
00 1 D2Mya1...a, oS 21 +1 1 D]:P DFMyal...a,
Fp=2(1- Py — ——
=2 y){;(wl)z Lo D2 <1+1(I+1)! Dz Dr
20+ 1 - al P i“’: [+1 DpSoc--a
— 20+ 3(1+1)! (1+2)! Poay . Dt
[+1 [+1 DeP
ehp _Soar-..a e . 541
ZHW 5 541

Time derivatives of the internal and external multipoles
of body B in the local coordinates are taken at the fixed
value of the spatial coordinates, w! = 0, that is at the origin
of the local coordinates. The multipoles are STF Cartesian
tensors which are orthogonal to 4-velocity of worldline Z
representing the motion of the origin of the local coor-
dinates which coincides with the center of mass of body B.

084008-
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This worldline is not a geodesic on the effective back-
ground manifold M but is accelerating with the local
acceleration Q,. Therefore, the time derivative of the
multipoles corresponds to the Fermi-Walker covariant
derivative—denoted as Dr/Dr—on the background mani-
fold taken along the direction of the 4-velocity vector #“
with accounting for the Fermi-Walker transport [[164],
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Chapter 1, Sec. 4]. For example, the first time derivative
taken from 3-dimensional internal multipole M=

M2+ i the local coordinates is mapped to the 4-
dimensional Fermi-Walker covariant derivative as follows:

. D M(ll(lz...(ll DM{llaz...al
L F
M= =

Dz Dz

T lQﬂu(al Maz...a,)ﬂ7
(542)

where DM @%@ /Dy = @ VyMi@®-a) is a standard
covariant derivative of tensor /\/l<“1“2"'“’>, and Q% is 4-
acceleration of the origin of the local coordinates. In a
similar way, the second time derivative from 3-dimensional
internal multipole, M* = M7/ can be mapped to the
4-dimensional Fermi-Walker covariant derivative of the
second order by applying the rule (542) two times,

. fD2Ma1a2...a,
ML F
w Dr?
D2Ma1a2...a, . fDMaz...al)ﬂ
= T + 2lQI}M< ! T
+ Z_DQ'H ula Maadb lQﬂQ(alMaz~~a/>ﬁ
Dt

+ 2 Qﬁ Qyu(al anMag.‘.a,)ﬂy’ (543)
where DQ*/Dr = ﬁﬁvﬁ O% is the covariant derivative of
the 4-acceleration of the origin of the local frame taken
along the direction of its 4-velocity.

Comparison of our covariant Egs. (532)—(541) of trans-
lational motion of the center of mass of body B with the
corresponding Eq. (467) derived by Dixon [11] will be
done in Appendix D 2.

F. Covariant rotational equations of motion

Covariant rotational equations of motion generalize 3-
dimensional form (194), (195) of the rotational equations
for spin of body B which is a member of an N-body system,
to a 4-dimensional, coordinate-independent form. Spin is a
vector that is orthogonal to 4-velocity of the worldline Z of
the center of mass of body B and carried out along this
worldline according to the Fermi-Walker transportation
rule. The covariant form of (194) is based on the Fermi-
Walker derivative, and reads

DSt
Dr

TH, (544)

or more explicitly,

DSH _
E = Tﬂ - (SﬁQﬁ)Mﬂ, (545)

where the second term in the right-hand side is due to the
fact that the Fermi-Walker transport is executed along the

accelerated worldline Z of the center of mass of body B, the
torque 7# is a covariant generalizations of 3-torque (194),
and the center-of-mass condition (535) has been imple-
mented. We have

TH = —¢", {PpM" +3(P, - Q,)QsM
=<1
+ (Zﬂ -r- 1)/PZE Q/Ja]...a,Maalma[
=1
=1
— 8}4/)0_ Zﬁ Q/)a]A..a,Mmll L)
=1 "

oo
— e, Z i C oa..a

— (I+2)l! S (546)

where the external multipole moments Q, ., and Cq,, 4,
are expressed in terms of the Riemann tensor of the
background manifold in accordance with Egs. (529) and
(530) respectively. Acceleration Q% = —F*/M, where the
force F“ is taken from (533), and P, is defined in (537). It
should be noticed that the terms entering the first line of the
right-hand side of (546) are present only in the scalar-tensor
theory of gravity while the last two terms are the genuine
general-relativistic components of the torque caused by the
presence of the tidal gravitoelectric and gravitomagnetic
fields respectively.

Comparison of our Eq. (545) for evolution of spin of
body B with the corresponding Eq. (468) derived by Dixon
[11] will be done in Appendix D 3.
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APPENDIX A: AUXILIARY MATHEMATICAL
PROPERTIES OF STF TENSORS

The definition of the symmetric trace-free (STF)
Cartesian tensor was introduced by Pirani [299] and is
given in Eq. (2) of the present paper. Here, we provide the
reader with a number of auxiliary algebraic and differential
identities involving the STF tensors that were instrumental
for doing our computations.

Perhaps one of the most important algebraic identities
of the STF tensors is the index-peeling formula that
helps one to separate a single index from the rest of
other STF indices in the STF tensor. Let us demonstrate
how this formula is applied in the case of a product of
vector with a STF tensor. We denote two STF tensors
as Ty =Ty and R, =Ry, and let V; be an arbitrary

covector. The index-peeling formula reads [[80],
Eq. (2.14)]
[
Vil = mViTL +mTi<L—1Vi1>
21
ViTwi-10iyi- (A1)

NECOES)

The index-peeling formula can be applied to two or
more indices by successive iterations.

The index-peeling formula (Al) is directly extended
from covector V; to tensors. For example, by replacing
Vi > §;;in (Al), and reducing similar terms we can get the
followmg identities [84]:

2143

—T; A2
2l+1 iL>» ( )

Tio)); =

T8 = T,. (A3)

(I+1)(21+1)

Replacing V; — R;; in (Al) yields [ [75], Eq. (4.26)]

Ry Ty = Ry Ty. (Ad)

1
EES

Two other useful formulas are for a product of the unit
vectors n' = x'/r, where r = (5;;x'x/)!/2. They are [ [50],
Eqgs. (A22a) and (A23)]

(L) — pip(L) _ (i1, L=1) A5
n n'n T ; (A5)
o [+1
i (iL) — (L) A
S T R (A6)

Differential identities for the STF partial derivatives from
the radial distance r are [ [50], Egs. (A32) and (A34)]

niL)
8<L>r_l zaLr_l = (—1)1(21— I)Hﬁ, (A7)
r
. niL)
8<L>r:(—1)+ (21_3)”F' (A8)
A partial spatial derivative from an STF tensor n'L) is [ [50],
Eq. (A24)]
ron't) = (14 Dn'n't) — 21+ 1)nlh). (A9)

Other useful algebraic and differential identities for STF
tensors are given in papers [50,75,80,82,84,300].

APPENDIX B: COMPARISON WITH THE
RACINE-VINES-FLANAGAN EQUATIONS
OF MOTION

Translational equations of motion for arbitrary structured
bodies have been derived by Racine and Flanagan [84] with
a corrigendum published in [85]. Definitions of the internal
multipoles of body B in those papers are the same as in the
present paper. The Racine-Vines-Flanagan (RVF) equa-
tions of motion are given in [ [84], Eqs. (6.11-6.16)] and,
besides directly computed terms, contain four terms
depending on the STF Cartesian tensor function P§ =

PG, [184], Eq. (6.16)] which is'®

PE=ME+ 2k MET 0 4k (k= 1)ME 2010 (B
Function 135 enters Egs. (6.13a), (6.13b), and (6.13g) in
[84]. The terms with Pg must be developed explicitly in
order to combine it in similar terms in other parts of the
RVF equations of motion.

It is more convenient to develop the products of Pg with
the STF combinations of a unit vector, nbg = Rig/Rcg,
where Rl = xi — x} is the coordinate distance between
centers of mass of bodies B and C. The RVF equations of
motion depend on four such combinations which have not
been shown in [84,85] so that we present them explicitly

Two of them are products, n{& “ MiF PIX and n8E) ML PIK
which appear in the first and second terms in the right- hand
side of equation (6.12a) in [84]. In order to compute these
terms we successively apply the index-peeling formula (A1)
two times to separate the index of velocity of body B in f’iCK
from the STF multi-indices and, then, render contraction of
the multi-indices. It yields

""Notice that we use indices B and C to label the bodies of an
N-body system while Racine and Flanagan [84] use an index B
instead of C, and an index A instead of B. We prefer to use our
index notations to facilitate the comparison of the equations of
motion. Relabeling the RVF equations is achieved with the
simple replacements of the body’s indices: B - C and A — B.
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nés " MY PE = ndEH M (ME + 20 ME) + 2kn K

. - 1 R .
x |:UJCM§L(MIC;K L ME) = e (2oe M 1+v%M§‘1)M{SL}
i — j 4
+k(k=1)ngP 2 o e 2<v{:M‘1L T CM’L> (B2)

A MEPE = n8 ME(ME + 200 ME) + 2k M

- . 1 LK N
x [< oL (MEET £ ol METY) - K 0p MK véM?l)}

2k+1 B
4
+ k(k = 1)l ML< UPLK=2) pqik—2 _ T n{ILK=2) p g2k 2) (B3)

There are two other terms in the RVF equations of motion which contain combinations, nCB M’LP and n(;{; L MEPE, in

the second and seventh terms of the right-hand side of Eq. (6.12a) in [84]. These terms are easy to deal with. Straightforward
application of (B1) and contraction of multi-indices yield

D MILPE = ML MK 4 20kn 550 MK 0+ k(k = 1)nl8) ME=20l07], (B4)
nKD MEPE = ME[EKD KK + 20nl8FK0 ME vl + k(k = 1)nlIrHK=2 pE-20L00). (BS)

Substituting (B2)—(B5) to Egs. (6.13a), (6.13b), (6.13g) of the paper [84], and making use of (293), (294) from the
present paper in the inverse order, allow us to write down the RVF equations of motion given in [ [84], Eq. (6.11)] with typos
fixed in [85], as follows:

Mgay = Fy + Fin (B6)

where My is the inertial (relativistic mass) of body B, ai, = d*x%/di* is acceleration of the center of mass of body B,
&L is the Newtonian force, and %EN is the post-Newtonian force. After taking into account our Egs. (B2)-(B5) the

RVF forces can be written down similar to our equations (295) and (301) in the form of the partial derivative
operator,

ZZ l! ! 5(78 MC(TC)azLNRBC’ (B7)

C#B =0 n=0

. 1 O L (=1)" .
f;N = 5 Z Z( ) Mﬁ[Mga iLN) (ZM Ug + Mé’aé)3<ipLN> + Mg”g”gja(ipqLN)]RBC

A (_1) i i ipLN ipLN ipgLN
+ ZZ It (il + B0y + (@dve + Bive )0 ipiny + GRVE O pary

C#B 1=0 n=0
LN LN LN _
+ (agvE + PRVE + 7RVE) Qi) + (ubvE + vhvy + PRVE)Diprny + ORvE Oipgrny | REE
+ 3(alk M + 2a’}§MB + ik M), (B8)

where all partial derivatives are understood in the sense of Eqgs. (293), (294). We have explicitly indicated the time
arguments of the multipoles in the expression for the Newtonian force (B7) which, according to [ [84], Eq. (5.9)], are
the proper times of the bodies taken on their worldlines at the points of intersection with hypersurface H, of constant
coordinate time ¢ of the global coordinate chart [cf. (297)—(298)],
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1 1
g = Up |x:xB =t+ ?AB(t) + O<?> ’ (Bg)

1 1
Tc = MC|x:xC = t+;Ac(t) + O(?), (BIO)

where time dilation functions Ay and A¢ are defined by
solutions of the ordinary differential equations (299)
and (300).

The coefficients in the RVF post-Newtonian force (B8)
can be directly compared to those in our Eq. (301) where
we have to take f =y = 1 in order to bring it to general-
relativistic form. The comparison is tedious but rather
straightforward. It results in

2

alkl = otV — TRy vEMEME,  (BI1)
ipLN ipLN
Al = o S EMEME

2 2
21+3 2l+2n+5

i

) PMIEMY,  (BI2)

2

aﬁl\\,’F—aéN 421+2 5 C./\/lkLMC

2l+2n+3 L

_— B13

20+2n+5 oEMEMC (B13)
pLN _  pLN kL B14
HRvE = Hp +2l—|—2 +7 CM M ( )

and all other remaining coefficients in (B8) and (301) are

identical for # = y = 1, except for pﬁfg = 0. The reason for

vanishing pﬁ%’ is that the local coordinate system adapted to
body B has been chosen by Racine and Flanagan [84] as
kinematically nonrotating with respect to the spatial axes of
the global coordinates while we operate with dynamically
nonrotating local frame of body B. A kinematically non-
rotating local frame is not carried out along the worldline of
the body’s center of mass in accordance with the Fermi-
Walker transportation rule. It means that particles of matter
moving with respect to the body must experience the
centrifugal and Coriolis forces in this frame. These forces
become sufficiently large at the latest stages of evolution of
inspiralling compact binaries and affect computation of
templates of gravitational waveforms. This effect is, however,
purely coordinate dependent and can be removed by choosing
a dynamically nonrotating local frame adapted to body B
which is our choice.
Now, we notice a useful formula

oooo(_l)n L AAN ppp 1_0000 ) L pN 1
;; o MeMcveRein Re _zz:nz: o M MEVED i1y pyRe + vEME" Dipy Re (B15)
whose expansion in terms of the STF derivatives is as follows:
ii In! MLMC”CRcazLN( 1 )
=0 =0 I'n! RC
S S (=) [ 2 vy (1
= 2 2Ty \MEMEE D Re 5 v MEMEum (R
2 2 1 2 1
- 0 - Mk e
* (21+2n+5 21+3)M MEVED (L <RC> 3T an 5 MBME v (RC)
2 1 2 1
pL P AqPN 8 PN ALY
+ <2l+2 +5vCM MC + vc./\/l > (iLN) (Rc> T JrSvc./\/l Mgy <Rc>
2 1
— e ME ML, B16
a7 e MEve0ip1x) (RC)}' (B16)

Derivation of (B16) is based on application of (259) and transformation (273) where replacements, aé - vé and Mé —
ME must be done in all terms. Employing (B16) in (B8) we find out that the RVF post-Newtonian force %QN relates to our

post-Newtonian force (301) in a fairly simple way,

; ; i A .. i - (_1) 1
in = Fiy + 3(af Mif + 2af M + afMiE) = TR PPN N .
n=0 " BC
= = ( ) L N )4 8 1
=2 > D M EMEUCREOin R (B17)
C#B [=0 n=0 "~ BC
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The first three acceleration-dependent terms in the right-
hand side of (B17) following F ;N are identical to those in
our Eq. (285). Hence, these terms are due to the different
choice of the center of mass of body B in [84] correspond-
ing to the complementary function, Z! = 0, in the defi-
nition of the center of mass of body B as compared to the
choice adopted for this function in Eq. (289) of the present

paper. The next term in the right-hand side of (B17) depends

on coefficient p{;LN given in (312). This coefficient defines

the relativistic transport of the multipoles adapted to body B,
along the worldline of the body’s center of mass. Our
convention is that the local frame is carried out in accordance
with the Fermi-Walker transportation law while Racine and
Flanagan [ [84], Sec. 5F] decided to make the local frame
nonrotating with respect to the spatial axes of the global
coordinates. This difference is a matter of choosing either
kinematical or dynamical definition of the rotation of the
body-adapted local frame and is easy to reconcile.

The very last term in the right-hand side of (B17) is due
to the different time arguments of the multipoles M - taken
at slightly different points on the worldline of body C.
Indeed, by comparing (297) with (B9) and (298) with
(B10), we conclude that the time arguments of the multi-
poles My of body B are identical, 75 = uj;, while the time
arguments of multipoles of body C are shifted one with
respect to another, 7¢ = uf + v5(1)RE .. Looking back to
Fig. 1 we can say that the multipoles My of body B are
taken at point P while the multipoles M of body C are
taken at point R in our approach and at the point Q in the
paper by Racine and Flanagan [84]. This observation
allows us to connect the RVF Newtonian force (B7) with
our Newtonian force (295) by taking the Taylor expansion
of the multipoles M. It yields

. . 2 S (=1)" . 1
%N:F&‘FZZZ(“”), MIéM]gUgR]gCaiLN <R—BC>

C#B [=0 n=0

(B18)

The last term in the right-hand side of (B18) exactly cancels
the very last term in (B17) after substituting (B17) and
(B18) to the total force in the right-hand side of (B6). This
makes it clear that our translational equations of motion are
essentially the same as those derived by Racine and
Flanagan [84] and Racine et al. [85] except of several
terms which are a matter of slightly different conventions
adopted to define the center of mass of the bodies
and rotation of the spatial axes of the body-adapted local
frame. It is remarkable that the agreement is achieved in
spite of wusing a different mathematical technique
based on the Fock-Papapetrou-Chandrasekhar approach
[126,134,209,249,301] to the derivation of equations of
motion of extended bodies in an N-body system made of
matter with continuous stress-energy tensor. Finally, we
bring to the attention of the reader the fact that our equations

of translational motion are more economic than that given
in [84,85] in the sense that the post-Newtonian force F ;N in
our approach has been reduced to the form (314) containing
lesser number of terms than the corresponding force %LN in
[84,85]. It might be more effective to implement our form of
the equations of motion with quadrupole and higher-order
multipoles to the numerical integration of the orbital
evolution of tidally deformed neutron star binaries and
prediction of gravitational wave signals from the mergers;
see, for example, [33-35].

APPENDIX C: THE DIXON MULTIPOLE
MOMENTS

Dixon [11] has defined internal multipoles of an
extended body B in the normal Riemann coordinates,
X%, by means of a tensor integral (458)

]al...amv(z):/Xalmxarf’W(z’X),/—g(z)DX (1>2)
(C1)

where T* is the stress-energy skeleton of the body, the
integration is performed over the tangent 4-dimensional
space to background manifold M at point z taken on a
reference worldline Z, and the volume element of integra-
tion DX = dX° A dX' A dX*> A dX3. The reason for the
appearance of the skeleton 7 in (C1) instead of the regular
stress-energy tensor 7" was to incorporate the self-field
effects of a gravitational field of the body to the definition
of the higher-order multipoles.]1 According to [11], the
skeleton 7"*(z,x) is a distribution [212] defined on the
worldline Z in such a way that it contains complete
information about the body but is entirely independent
of the geometry of the surrounding spacetime to which the
body is embedded. The skeleton is lying on the hyperplane
made out of vectors X* which are orthogonal to the vector
of dynamic velocity n“ It gives the following constraint:
(n X)) XPTHlxl = 0, (C2)
which points out that the skeleton distribution is concen-
trated on the hyperplane n,X* = 0.
Definition (C1) suggests that the Dixon multipole
moments have the following symmetries:
Jo-apy — I(a]“'al)(/“/)’ (C3)
where the round parentheses around the tensor
indices denote a full symmetrization. In addition to (C3)
there are more symmetries of the Dixon multipoles due to

""The influence of the self-field effects on multipoles was
studied by Thorne [82], Blanchet and Damour [78], and Damour
and Iyer [79] with different techniques.
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the one-to-one mapping of the microscopic equation of
motion (449) to a similar equation for the stress-energy
skeleton [11]

V,7"(z,X) = 0. (C4)
Multiplying (C4) with X ... X% X%+ integrating over 4-
dimensional volume and taking into account that 7+

vanishes outside hyperplane n, X% =0, yields [[11],
Eq. (143)],

Jlaapy — 0, (CS)

and a similar relation holds after exchanging indices y and v
due to symmetry (C3). The number of algebraically
independent components of [*“* obeying (C3) is

Ni(l) = C57 x €} where Cj = 2
coefficient. Constraints (C5) reduce the number of the
algebraically independent components of the multipoles
[@@m by N,(I) = C4™ x C} making the number of
linearly independent components of [%-%* equal
to N3(I) =N (I) =N,(I) = (I +3)(I+2)(I-1).

The multipoles [*-** are coupled to the Riemann
tensor R“”/;,, characterizing the curvature of the effective
background spacetime. Therefore, they can be replaced
with a more suitable set of reduced moments J* - @#P
which are defined by the following formulas [9,11]:

1s a binomial

Jo--apipor = Ia]...al,[/l[o'y]v]’

(Co)

where the square parentheses around the tensor indices
denote a full antisymmetrization, and the nested square
brackets in (C6) denote the antisimmetrization on pairs of
indices [4, u] and [v, p] independently. Definition (C6) tells
us that tensor J% - %* ig fully symmetric with respect to
the first p indices and is skew symmetric with respect to the
pairs of indices A, u and o, v,

Jar-apipov — jlay...a)lor] (C7)
Among other properties of J% % we have
Ja-apdluor) — (). Ja-lapgiulov — (). (C8)
which are consequences of the definition (C6), and
Mg, JO1 oL — 0, (C9)

that is the condition of orthogonality following from the
constraint (C2).

Equation (C6) can be transformed to another form. For
this we write down the antisymmetric part of (C6) explicitly
as a combination of four terms, change notations of indices
{ay...a,uv} = {a,...q; 0,1}, and make a full sym-
metrization with respect to the set of indices {a;...o;}. It

gives

1
J(al...a,_1|/4|a,)v = — [[(aluﬂl—laz)ﬂ” — ](aluﬂl—z\/l\al—la/)l/
— [(‘ll~--111-2(1/—|\W‘”/) + [(‘l|-'~(lz-2\ﬂ1/|“/—|(l/)]’

(C10)

where the indices enclosed in vertical bars are excluded
from symmetrization. Remembering that each of the [
moments is separately symmetric with respect to the first /
and the last two indices we can recast (C10) to the
following form:

](almal—l |ular)v :1[1(0’1 o)y _ [(ﬂ(aln-a/—l)al)l/

_1(1/((1]4..(1,,](1,)/1 _|_I(;w(a]...a,,z)a,,](l,)]‘ (Cll)

We now use the constraint (C5) and notice that

[(al---al—lalﬂ)” :_l 1 [[0!1---0!1710!1/41' + ll(ﬂ(al~~-al—l)a1)’/] =0
+1

)

(C12)

which gives
I(/’((lln'”l—l)al)l’ — _llal"-al—la//‘l”

(C13)

and, because of the symmetry with respect to indices
u and v,

](V<a1--~a171)0’t)14 — _llal-“al—lalﬂ’/'

(C14)

We also have

210

](a] QI uY) Jo @ apy g H(M(al...al,l)a,)y
(12!
+ l](”(a1~~al—1)al)/4 +—l(l_ 1) I(/‘V(al~~~al—2)al—lal)
—0, (C15)
which yields
I(/,w(a]...(1,_2)(11_](1[) — oGy (C16)

I(1-1)
Replacing (C13), (C14), and (C16) to (C10) yields

11+1

J(al---aH\ﬂ\a/)’/ =
41-1

Q..o
o0k

(C17)

that shows the algebraic equivalence between the sym-
metrized J(®--a-1lKla)r apd J@1--@rv myltipole moments for
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[ > 2. Due to the orthogonality condition (C9) we conclude
that

ng [ =0 (C18)
for the first [/ indices of [*-*# The number of these
conditions is the same as the number of components of
tensor [*--#-1# that is N3(I—1) = (I+2)(I+ 1)(I=2).
It reduces the number of linearly independent components
of [n-a to N=N;3(l)=N3(I-1)=(1+2)(3]-1)
[11,136].

APPENDIX D: COMPARISON WITH
MATHISSON-PAPAPETROU-DIXON
EQUATIONS OF MOTION

1. Comparison of Dixon’s and Blanchet-Damour
multipole moments

Before comparing our covariant equations of motion
(532) and (545) with analogous equations (467) and (468)
derived by Dixon [11] in the MPD formalism, we need to
establish the correspondence between the Dixon multipole
moments [*--%* and the STF mass and spin multipoles
M2 and S*1--% that are used in the present paper. To
this end we notice that the original definition (C1) of
multipoles [®®# contains the time components, X°, of
vector X* which are nonphysical as they cannot be measured
by alocal observer with dynamic velocity n® at point z on the
reference worldline Z. Only those components of J#1--®#
which are orthogonal to n* can be measured. This explains
the physical meaning of the orthogonality condition (C18).

It is reasonable to introduce a new notation for the
physically meaningful components of Dixon’s multipoles,

ja, oy

:P;:...PZ;/EXﬁ'...X/}’T"”(Z,X)\/—g(z)dz (122),
(D1)

where the integration is performed in 4-dimensional space-
time over the hypersurface X passing through the point z
with the element of integration d¥ = n*dZ%,, and

P‘g = 5?3 + n"nﬂ (DZ)

is the operator of projection on the hypersurface X making
all vectors X* in (D1) orthogonal to n”. The multipoles
J*--4# have the same symmetries (C3), (C5) as %1%k,

Je-amy — flan...a)(p) (D3)

j(al...am)v =0, (D4)

while the orthogonality condition (C18) is identically satis-
fied and is no longer considered as an additional constraint.
The projection operator is idempotent [302] that is

Y (D5)

PAPl, = Py,
which makes only 3 out of 4 components of X* linearly
independentin (D1). On the other hand, the indices ¢ and v in
Jo--am still take values from the set {0, 1,2,3}. Thus,
Eq. (D3) tells us that the number of components of 7%+
is Ct? x C3 = 5(1+2)(1+ 1) while the number of con-
straints (D4) is C5™ x C} =2(1+3)(I +2). It gives the
number of the algebraically independent components of
Ja--am equal to N = (I 4 2)(31 — 1) which exactly coin-
cides with the number of algebraically independent compo-
nents of Dixon’s multipoles /%1-+®H,

Picking up the local Riemann coordinates in such a way
that the X° component of vector X* is directed along the
dynamic velocity n® and three other components X' =
{X',X2, X3} are lying in the hypersurface T yields the
skeleton’s structure,

™(z,X) = / - S(XO T (X7 dx®, (D6)

where 5(X°) is Dirac’s delta function and the distribution
T’f € X. Substituting (D6) to (D1) and taking into account
that in these coordinates DX = dX°dX, we obtain that
Dixon’s multipoles [%-%H = J%--@H and, due to the
tensor nature of the multipoles, this equality is retained in
arbitrary coordinates.

The exact nature of the distribution 7%"(X’) in full
general relativity is not yet known due to the nonlinearity
of the Finstein equations. Nonetheless, the Dirac delta
function is a reasonable candidate being sufficient to work
in the post-Newtonian approximation with corresponding
regularization techniques [51]. For the purpose of the
present paper it is sufficient to assume that in arbitrary
coordinates the stress-energy skeleton (D6) has the follow-
ing structure [12,13,247]:

b o) ® i _ " 84(x = 2)
e =2 f [t ="
ds
X —— (D7)

V _gm/ (Z> nfn? ’

where s is an affine parameter along the geodesic in
direction of the dynamic velocity n% &4(x—z)=
54[x* — z%(s)] is 4-dimensional Dirac’s delta function,
t@--@#v are generalized multipole moments defined on
the worldline Z that are orthogonal to n” in the first /
indices (m, t"-%" = (), and vali__a, zval...vm is a
covariant derivative of the order / taken with respect to
the argument x = x® of the Dirac delta function on the
background manifold. Notice that expression (D7) is a
simplification of the original Mathisson theory [4] pro-
posed by Tulczyjew [207]. Dixon [11] did not specify the
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nature of the singularity entering definition (D7) assuming
that Dirac’s delta function is solely valid in the pole-dipole
approximation while a more general type of distribution is
required in the definition of the stress-energy skeleton for
higher-order multipoles. The Dirac delta function is widely
adopted in computations of equations of motion of rela-
tivistic binary systems [29,31,65] amended with corre-
sponding regularization techniques to deal with the
singularities in the nonlinear approximations of general
relativity [52,53,154,300].

The generalized multipoles t*~%** are used to derive
the explicit form of the MPD equations of motion in
terms of the linear momentum p?, angular momentum
S and Dixon’s multipole moments %% as dem-
onstrated by Mathisson [4,5], Papapetrou [134,209],
Dixon [11], and other researchers [12,13,145,210,258].
It turns out that the generalized multipoles t*%* are
effectively equivalent to the body multipoles, J* - *H.
Indeed, replacing the stress-energy skeleton (D7) to
(C1), transforming the most general coordinates x* in
(D7) to the local Riemannian coordinates X%, and taking
the covariant derivatives yield

o0
Ty — PZ:P% § v phv
n=0

9"8,(X)
a 2 Ya\A)
X/X/ X o DX (D8)

Integrating by parts, taking the partial derivatives from
X*, and accounting for the integral properties of the delta
function [212], we conclude

jal...a,/w — (—l)ll!ta“"a’m’. (D9)

To proceed further on, we shall assume that the
dynamic velocity n* is equal to the kinematic velocity
u”. This assumption is consistent with Dixon’s math-
ematical development and agrees with our covariant
definition (493) of the linear momentum of an extended
body moving on the background spacetime manifold. It
also allows us to employ the results obtained previously
by Ohashi [12], to retrieve a covariant expression for the
generalized multipoles t*--%# of the gravitational skel-
eton 7% from the multipolar expansion of the metric
tensor of a single body. We have derived the generalized
multipoles of the stress-energy skeleton from [[12],
Eq. (3.1)] after reconciling the sign conventions of the
metric tensor perturbation and the normalization coef-
ficients of multipoles adopted in [12] with those adopted
by Blanchet and Damour [[50], Eq. (2.32)] which we
also use in the present paper. The generalized moments
of the stress-energy skeleton read

—1)! .
-y — ( 1) 7Y R 2 ﬁ(yMU)(llmfl[
I [+1

1 .
uvay ...
Tarniro™M }
(1) 21 _,
o141

eﬂv)<alsaz---a1>/3

2 .
+ l+28ﬁ<al(ﬂsy)a2'”al>ﬁ:|’ (D10)

where the dot above functions denotes the Fermi-Walker
covariant derivative (542) and (543). Comparing (D10)
with (D9) we obtain the relationship between the Dixon
internal multipoles and the mass and spin multipoles
used in the present paper,

T WY — G M@ +l+ . u(ﬂMv)al»..al
1 .
+ M -a
(I+1)(1+2)

21
I+1

2 .
=(u u)(alsaz...m)ﬂ _ (o (;lSl’)‘ZZ---aI)/}'
u €ﬂ l+2€ﬂ

(D11)

We still have to take into account the identity (D4) in
order to eliminate linearly dependent components of
JM--@rv - The most easy way is to take the double
skew-symmetric part with respect to the last four indices
as shown in Eq. (C6). It yields

Jo-apy = jal clar fagply]

_ 4{ Al ) ]

+zflsﬁwmluws“””)ﬂ}’ 1

where we have taken into account that in calculating the
skew-symmetric part of 4-velocity »* with a purely spatial
tensor we have, for example,

1
Maluﬂl—l[al[tll] — ”ij\/la1~~~a1—1[ﬁlﬁﬂ] — EMabual—lalﬁ/"

(D13)

and so on. Relation between Dixon’s J and / multipole
moments has been defined in (C17). Substituting expres-
sion (D12) for the Dixon multipoles 7 in the right-hand side
of (C17) provides a correspondence between the sym-
metrized Dixon multipoles J and the Blanchet-Damour
mass and spin multipoles in the following form:
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J(al‘..a,_l\ﬂ\m)v _ ii_ ; [M(alm[%-l[m)ﬁll]ﬁb]
+ _Sﬂ [al—lu(ﬂ]gal>”)ﬁ]’ (D14)
[+1

where the antisymmetrization goes over the pair of indices
[;_1¢] and [eyv]. Contracting both sides of (D14) with
4-velocity allows us to express the Blanchet-Damour mass
and spin multipoles in terms of projections of the Dixon
multipoles onto 4-velocity of the center of mass of the
body. More specifically, we have

a a l_l a Q, LX)V 357 17
M- :4l—|——1J< 1oy ulag) i, i, (l 22) (DIS)
S — 2_l _ 1]<a1~~0¢1—1\ﬂ”0'| a) 5 [ >2 D16
SF L ey, (122). (DI6)

It is worth emphasizing that in this section we work in
the framework of general relativity. Therefore, all internal
mass and spin multipoles, M®* % and S$*-%, have only
general-relativistic value with vanishing scalar field con-
tribution. In particular, the mass dipole, M’ = 0, due to the
choice of the origin of the local coordinates at the center of
mass of the body.

2. Comparison of translational equations of motion

In order to compare our translational equations of
motion (532) with Dixon’s equation (467) we need to
symmetrize the covariant derivatives in the right-hand side
of (467). It is achieved with the help of the following
algebraic transformation:
va(ﬁl ~-/3/72R|ll|/5171/31)l/‘]/}l b

= v(aﬂl --ﬂ[—zR‘ﬂlﬁl—lﬂl)l’Jﬂl b

,
+ v”(ﬁl ~~~ﬁl—2R\ll|ﬂt—1ﬁ1)a‘]ﬂ] Pepy 4 O(Rz) ,

D17
I+1 (b17)

where the residual terms are proportional to the square of
the Riemann tensor, and have been discarded. These
quadratic-in-curvature terms are important for the post-
Newtonian equations of motion but complicate the equa-
tions which follow and, hence, will be omitted every time
when they appear. Substituting (D14) to the right-hand side
of (D17) yields

\% a(By--pr- 2R|ﬂ|ﬂ1 1By JhPanb

[+1
ﬁ gaﬁl ﬂIMﬁ] ﬂ’+l—caﬁ1 ﬁlSﬁl i

+ O(R?), (D18)

where the external multipole moments &, ,, and Cy,, 4,
have been defined in (528) and (530) respectively.

Substituting (D18) to the right-hand side of (467) recasts
it to

Dp, 1
e~ 2" Fp

2.1
T Z_ [5aﬂ1-..ﬂ,Mﬂ‘ /i +H—lcaﬂl..,ﬂ,8ﬁl-~ﬁz

(D19)

The very first term in the right-hand side depending on S%
can be incorporated to the sum over the spin moments by
making use of the duality relation between the body’s
intrinsic spin S* and spin-tensor'* S%

S = g S, (D20)

where the Levi-Civita tensor ¢€,;, has been defined above in

(531). It yields

apy

WS R s = CopSP, (D21)

where C,; is given by (530) for [ = 2. Making use of (D20)
allows us to rewrite (D19) in the final form

le b ﬂIMﬂ] B

DY

=1

Dpa

Capy..5; S P+ O(R?).  (D22)

Thus, Dixon’s equation of translational motion (467)
given in terms of Dixon’s internal multipoles and Veblen’s
tensor extensions of the Riemann tensor are brought to the
form (D22) given in terms of the gravitoelectric, Eup, 4,
and gravitomagnetic, C,4, . 5,, external multipoles as well as
mass, MP1# and spin, S/ internal multipoles.
Comparing with the complete covariant form of the trans-
lational equations of motion (532)—(541) taken for the case
of general relativity one can see that Dixon’s equation
reproduces only two terms in the complete expression for
the post-Newtonian force, more specifically, the very first
term of the post-Newtonian force F{; in (539) and that of
F¢ in (540). The terms which are missed in the Dixon’s
translational equations of motion but are present in our
Egs. (532)-(541) include the quadratic-in-curvature terms
through (529) and the terms which depend on the time
derivatives of multipoles, both external and internal ones.
The terms with the time derivatives of the multipoles must
be present in the equations of motion but they have been

">The minus sign in (D20) appears because Dixon’s definition
(451) of S* has an opposite sign as compared to our definition
(182) of spin S*.
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omitted by Dixon as he has taken into account only his J
multipoles while, in fact, all components of the Dixon’s /
multipoles must be taken into account. Independent deri-
vation of the translational equations of motion by Racine and
Flanagan [84] and Racine et al. [85] with different math-
ematical technique corroborates our conclusions about the
missing terms in Dixon’s translational equations of motion
(467). It does not mean that the MPD formalism is erro-
neous. It merely indicates that much more work is required to
take into account all the missing contributions to the post-
Newtonian translational equations of motion derived in the
framework of the Mathisson variational dynamics.

3. Comparison of rotational equations of motion

Dixon’s equations of rotational motion are given by
Eq. (468). The first term in the right-hand side of this
equation vanishes in our approach because the linear momen-
tum of the body p* is chosen to be parallel to 4-velocity u#* of
the center of mass of body B. We express the spin of the body
S% in terms of the spin tensor $* by inverting (D20),

1
5% = — e, 50,

5 (D23)

Taking a covariant derivative from both sides of (D23) and

replacing the covariant derivative from S#7 with the terms
from the right side of (468) yields

DS(X a - l D O MV
Dr —¢ /16ZFV(ﬁI_“m_]meﬂ]}ng [M Pl
=1""
[+1 o, Bi_1 77 v
+l+—28 TPv--Bror g b y], (D24)

where we have also used (D14) to replace the Dixon internal
multipole moments with the Blanchet-Damour mass and spin
multipoles. Now, we employ the covariant definitions (528)
and (530) of the gravitoelectric and gravitomagnetic external
multipoles in (D24) that takes on the following form:

[+1

Ds* a. . ! o g
=—¢ lg;ﬁ [5iﬂ1mﬂzM /31.../314_1_‘__20%1“./}]8 PP

Dzt

(D25)

Now, we can compare Dixon’s equation of rotational
motion (D25) with our Eq. (544) where only general-
relativistic terms in the torque (546) must be retained.
These terms are making up the third and fourth lines in
(546) and they are in a perfect agreement with Dixon’s
torque in the right-hand side of (D25). The difference
between (D25) and (545) is in the presence of the very last
term in the right-hand side of (545) as compared with
(D25). This term is associated with the Fermi-Walker
transport of spin along an accelerated worldline of the
body center of mass. The absence of this term in Dixon’s
rotational equation of motion (D25) tells us that the
reference worldline YW of the origin of the normal
Riemann coordinates used by Dixon [11,136] for compu-
tation of his own results is a timelike geodesic which, in the
most general case, does not coincide with the worldline Z
of the body center of mass because of the gravitational
interaction of the internal moments of the body with the
external gravitoelectric and gravitomagnetic multipoles.
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