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Gravitational wave detectors allow us to test general relativity and to study the internal structure and
orbital dynamics of neutron stars and black holes in inspiralling binary systems with a potentially unlimited
rigor. Currently, analytic calculations of a gravitational wave signal emitted by inspiralling compact
binaries are based on the numerical integration of the asymptotic post-Newtonian expansions of the
equations of motion in a pole-dipole approximation that includes masses and spins of the bodies composing
the binary. Further progress in the accurate construction of gravitational wave templates of the compact
binaries strictly depends on our ability to significantly improve the theoretical description of gravitational
dynamics of extended bodies by taking into account the higher-order (quadrupole, octupole, etc.)
multipoles in equations of motion of the bodies both in the radiative and conservative approximations of
general relativity and other viable alternative theories of gravity. This paper employs the post-Newtonian
approximations of a scalar-tensor theory of gravity along with the mathematical apparatus of the Cartesian
symmetric trace-free tensors and the Blanchet-Damour multipole formalism to derive translational and
rotational equations of motion of N-extended bodies having arbitrary distribution of mass and velocity of
matter. We assume that a spacetime manifold can be covered globally by a single coordinate chart which
asymptotically goes over to the Minkowskian coordinate chart at spatial infinity. We also introduce N local
coordinate charts adapted to each body and covering a finite domain of space around the body. The
gravitational field in the neighborhood of each body is parametrized by an infinite set of mass and spin
multipoles of the body as well as by the set of tidal gravitoelectric and gravitomagnetic multipoles of
external N − 1 bodies. The origin of the local coordinates is set moving along the accelerated worldline of
the center of mass of the corresponding body by an appropriate choice of the internal and external dipole
moments of the gravitational field. Translational equations of motion of the body’s center of mass and
rotational equations of motion for its spin are derived by integrating microscopic equations of motion of the
body’s matter and applying the method of the asymptotic matching technique to splice together the post-
Newtonian solutions of the field equations of the scalar-tensor theory of gravity for the metric tensor and
scalar field obtained in the global and local coordinate charts. The asymptotic matching is also used for
separating the post-Newtonian self-field effects from the external gravitational environment and
constructing the effective background spacetime manifold. It allows us to present the equations of
translational and rotational motion of each body in covariant form by making use of the Einstein principle
of equivalence. This relaxes the slow-motion approximation and makes the covariant post-Newtonian
equations of motion of extended bodies with weak self-gravity applicable for the case of relativistic speeds.
Though the covariant equations of the first post-Newtonian order are still missing terms from the second
post-Newtonian approximation, they may be instrumental in getting a glimpse of the last several orbital
revolutions of stars in an ultracompact binary system just before merging. Our approach significantly
generalizes the Mathisson-Papapetrou-Dixon covariant equations of motion with regard to the number of
the body’s multipoles and the post-Newtonian terms having been taken into account. The equations of
translational and rotational motion derived in the present paper include the entire infinite set of covariantly
defined mass and spin multipoles of the bodies. Thus, they can be used for a much more accurate prediction
of orbital dynamics of tidally deformed stars in inspiralling binary systems and construction of templates of
gravitational waves at the merger stage of a coalescing binary when the strong tidal distortions and
gravitational coupling of higher-order mass and spin multipoles of the stars play a dominant role in the last
few seconds of the binary life.
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I. INTRODUCTION

The mathematical problem of derivation of relativistic
equations of motion of extended bodies has been attracting
theorists since the discovery of general relativity. An
enormous progress in solving this problem has been
reached for the case of an isolated gravitating system
consisting of spinning massive bodies in the so-called pole-
dipole particle approximation [1–3] that was originally
discussed by Mathisson [4,5], Papapetrou [6], and Dixon
[7–11] (see also papers of the other researchers [12–15] and
references therein). These types of equations of motion are
used for a comprehensive study of the nature of gravity
through the monitoring orbital and rotational motion of
bodies in the Solar System [16,17], binary pulsars [18–21],
and inspiralling compact binary systems made of neutron
stars and/or black holes [22]. A new branch of relativistic
astrophysics, gravitational wave astronomy can test general
relativity in a strong field, fast-motion regime of coalescing
binaries to unprecedented accuracy and probe the internal
structure of neutron stars by measuring their Love numbers
[23–27] through the gravitational response of their internal
multipoles subject to the immense strength of the tidal
gravitational field of an inspiralling binary just before the
merger [28]. Therefore, a more advanced study of the
dynamics of a relativistic N-body system is required to take
into account gravitational perturbations generated by
higher-order multipoles of extended bodies (quadrupole,
octupole, etc.) that can significantly affect the orbital
motion of the pole-dipole massive particles [29–35]. The
study of these perturbations is also important for improving
the Solar System experimental tests of various gravity
theories [36,37] and for building more precise relativistic
models of astronomical data processing [38–41].
Over the last three decades most theoretical efforts in

derivation of equations of motion were focused on solving
the two-body problem in general relativity in order to work
out an exact analytic description of the higher-order post-
Newtonian corrections beyond the quadrupole radiative
approximation of Landau and Lifshitz [42] that would
allow one to construct sufficiently accurate waveforms of a
gravitational signal emitted by inspiralling the binary
systems. One of the main obstacles in solving this problem
is the self-interaction of a gravitational field that strongly
affects the orbital dynamics of inspiralling binaries through
nonlinearity of Einstein’s field equations [29,43,44]. The
nonlinearity of a gravitational field severely complicates
derivation of equations of motion and computation of the
waveform templates that are used for detecting a gravita-
tional wave signal by a matched filtering technique and for
estimating physical parameters of the binary system [45].
The nonlinearity of the field equations leads to the
appearance of formally divergent integrals in the post-
Newtonian approximations [46] that have to be regularized
to prescribe them a unique and unambiguous finite value
making physical sense. Major computational difficulty

arises from using the Dirac delta function as a source of
gravitational field of point particles in curved spacetime
[47]. Dirac’s delta function works well in a linear field
theory like electrodynamics but it is not directly applicable
for solving nonlinear field equations in general relativity to
account for the self-field effects of massive stars. This
difficulty had been recognized by Infled and Plebanski [48]
who pioneered the use of distributions in general relativity
to replace the field singularities used in the original
derivation of the Einstein-Infeld-Hoffmann (EIH) equa-
tions of motion [49]. In order to circumvent the math-
ematical difficulty arising from the usage of the delta
functions in the nonlinear approximations of general
relativity, the Lorentz-invariant Hadamard “partie finie”
method has been developed by French theorists [50–53]. It
has been successfully used to regularize the divergent
integrals up to the 3D post-Newtonian approximation
but faces certain limitations beyond it due to the presence
of a specific pole in the quadrupole of the point-particle
binary being intimately associated with the dimension of
space and leading to ambiguities [44]. Therefore, the
Hadamard partie finie method was replaced with a more
powerful method of dimensional regularization [52] to
calculate equations of motion of pointlike massive bodies
in higher-order post-Newtonian approximations [3,44,54].
There are other methods to calculate equations of motion of
pointlike particles in general relativity based on the
matched asymptotic expansions [55–57] such as the appli-
cation of surface integral techniques like in the EIH
approach [49,58] and the strong-field point-particle limit
approach [30,43,59].
It is well understood that the pointlike particle approxi-

mation is not enough for a sufficiently accurate calculation
of gravitational waveforms emitted by inspiralling compact
binaries so that various types of mutual gravitational
coupling of higher multipoles of moving bodies (spin,
quadrupole, etc.) should be taken into account. Spin
effects have been consistently tackled in a large number
of papers [1–3,60–68] while only a few papers, e.g.,
[62,64], attempted to compute the orbital post-
Newtonian effects due to a body’s mass quadrupole
demonstrating a substantial complexity of calculations.
A new generation of gravitational wave detectors will
allow us to measure much more subtle effects of the
multipolar coupling present in gravitational waveforms
emitted by inspiralling compact binaries. Among them,
especially promising from the fundamental point of view,
are the effects associated with the elastic properties of
tidally induced multipoles of neutron stars and black holes
as they provide us with direct experimental access to
nuclear physics of condensed matter at ultrahigh density
of the neutron star’s core and exploration of the true nature
of astrophysical black holes. Therefore, one of the chal-
lenging tasks for theorists working in gravitational wave
astronomy is to derive equations of motion in the
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relativistic N-body problem while accounting for all effects
of multipolar harmonics of extended bodies. This task is
daunting and the progress in finding its solution is slow.
The theoretical approach to resolving the primary diffi-
culties in derivation of the equations of motion in isolated
astronomical systems consisting of N-extended bodies with
arbitrary multipoles has been introduced in a series of
papers by Brumberg and Kopeikin (BK) [69–73] and
further advanced by Damour, Soffel and Xu (DSX)
[74–77]. The two approaches are essentially similar but
the advantage of the DSX formalism is the employment of
the Blanchet-Damour (BD) multipoles of extended bodies
which take into account the post-Newtonian corrections in
the definition of the body’s multipoles. The BD mass
multipoles were introduced by Blanchet and Damour [78]
and the spin multipoles were devised by Damour and Iyer
[79]; see also [80,81]. The BD formulation of a multipolar
structure of a gravitational field significantly improves the
mathematical treatment of relativistic multipoles by Thorne
[82] which suffers from the appearance of divergent inte-
grals from the Landau-Lifshitz pseudotensor of a gravita-
tional field [42] entering the integral kernels. The BK-DSX
formalism was adopted by the International Astronomical
Union as a primary framework for dealingwith the problems
of relativistic celestial mechanics of the Solar System
[17,83]. Racine and Flanagan [84] and Racine et al. [85]
implemented it for a comprehensive study of the post-
Newtonian dynamics of N-extended, arbitrarily structured
bodies and for derivation of their translational equations of
motion while accounting for all mass and spin BD multi-
poles. However, Racine and Flanagan [84] neither derived
the post-Newtonian rotational equations of motion of the
bodies nor did they provided a covariant generalization of
the equations of motion.
In this paper we also use theBK-DSX formalism to derive

translational and rotational equations of motion of N-
extended bodies in the post-Newtonian (PN) approximation
of a scalar-tensor theory of gravity with a full account of an
arbitrary internal structure of the bodies which is mapped to
the infinite set of the BD multipoles extended to the case of
the scalar-tensor theory. Our mathematical approach deals
explicitly with all integrals depending on the internal
structure of the extended bodies and in this respect is
different from the formalism applied by Racine-Vines-
Flanagan (RVF) [84,85]. Besides the metric tensor, a scalar
field is also a carrier of the long-range gravitational
interaction in the scalar-tensor theory of gravity that brings
about complications in computing the equations of motion.
In particular, instead of two sets of general-relativistic BD
multipoles we have to deal with an additional set of multi-
poles associated with the presence of the scalar field
[17,86,87]. We assume that the background value of the
scalar field changes slowly which allows us to parametrize
the scalar-tensor theory of gravity with two covariantly
defined parameters, β and γ, which correspond to the

parameters of the parametrized post-Newtonian (PPN)
formalism [88]. The β-γ parametrization of the equations
of motion in the N-body problem is a powerful tool to test
general relativity against the scalar-tensor theory of gravity
in the Solar System [36,88,89], in binary pulsars [18,20,90],
as well as with gravitational wave detectors [91–93] and
pulsar-timing arrays [93–95]. The present paper signifi-
cantly extends the result of papers [84,85] to the scalar-
metric sector of gravitational physics and checks its con-
sistency in Appendix B.Moreover, the present paper derives
the post-Newtonian rotational equations for spins ofmassive
bodies of the N-body system including all their multipoles.
Post-Newtonian dynamics of extended bodies on curved

spacetime manifold M is known in literature as relativistic
celestial mechanics—the term coined by Brumberg [96,97].
Mathematical properties of the manifold M are fully
determined in general relativity by the metric tensor gαβ
which is found by solving Einstein’s field equations.
General-relativistic celestial mechanics admits a minimal
number of fundamental constants characterizing geometry
of curved spacetime—the universal gravitational constantG
and the fundamental speed of gravity cwhich is assumed to
be equal the speed of light in vacuum [98,99]. For exper-
imental purposesWill [88] denotes the fundamental speed in
a gravity sector as cg to distinguish it from the fundamental
speed c in a matter sector of theory, but he understands it in a
rather narrow sense as the speed ofweak gravitational waves
propagating in a radiative zone of an isolated gravitating
system. On the other hand, Kopeikin [100] defines cg more
generally as the fundamental speed that determines the rate of
change of a gravity field in both near and radiative zones. In
the near zone cg defines the strength of a gravitomagnetic
field caused by rotational and/or translational motion of
matter [17,100,101]. Einstein postulated that in general
relativity cg ¼ c but this postulate along with general
relativity itself is a matter of experimental testing by radio
interferometry [102,103] or with gravitational wave detectors
[104]. The presence of additional (hypothetical) long-range
fields coupled to gravity brings about other fundamental
parameters of the scalar-tensor theory like β and γ which are
well known in PPN formalism [88]. The basic principles of
the parametrized relativistic celestial mechanics of extended
bodies in scalar-tensor theory of gravity remain basically the
same as in general relativity [17,99].
Post-Newtonian celestial mechanics deals with an iso-

lated gravitating N-body system whose theoretical concept
cannot be fully understood without careful study of three
aspects: asymptotic structure of spacetime, approximation
methods, and equations of motion [105,106].1 In what
follows, we adopt that spacetime is asymptotically flat at

1The initial value problem is tightly related to the questions
about origin and existence (stability) of an isolated gravitating
system as well [106–110] but we do not elaborate on it in the
present paper.
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infinity [106,111,112] and the post-Newtonian approxima-
tions (PNA) can be applied for solving the field equations.
Strictly speaking, this assumption is not valid as our
physical Universe is described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric which is con-
formally flat at infinity. Relativistic dynamics of extended
bodies in a FLRW universe requires development of the
post-Friedmannian approximations for solving the field
equations in case of an isolated gravitating system placed
on the FLRW spacetime manifold.2 The post-Friedmannian
approximation method is more general than the post-
Newtonian approximations and includes an additional
small parameter that is the ratio of the characteristic length
of the isolated gravitating system to the Hubble radius of
the Universe. A rigorous mathematical approach for doing
the post-Friedmannian approximations is based on the
field theory of the Lagrangian perturbations of pseudo-
Riemannian manifolds [119], and it has been worked out in
a series of our papers [120–122]. Relativistic celestial
mechanics of an isolated gravitating system in cosmology
leads to a number of interesting predictions [123,124].
More comprehensive studies are required to fully incorpo-
rate various cosmological effects to the Bondi-Sachs
formalism [125] that deals entirely with gravitational waves
in asymptotically flat space time.
Equations of motion of an N-body system describe the

time evolution of a set of independent variables in the
configuration space of the system. These variables are
integral characteristics of the continuous distribution of
mass and current density of matter inside the bodies, and
they are known as mass and spin (or current) multipoles of
a gravitational field [78,80,82]. Among them, mass monop-
ole, mass dipole, and spin dipole of each body play a
primary role in the description of translational and rota-
tional degrees of freedom (d.o.f.). Higher-order multipoles
of each body couples with the external gravitational field of
other bodies of the isolated system and perturbs the
evolution of the lower-order multipoles of the body in
the configuration space. Equations of motion are subdi-
vided into three main categories corresponding to various
d.o.f. of the system configuration variables [126]. They are
the following:

(I) translational equations of motion of the linear
momentum and the center of mass of each body,

(II) rotational equations of motion of the intrinsic
angular momentum (spin) of each body,

(III) evolutionary equations of the higher-order (quadru-
pole, etc.) multipoles of each body.

Translational and rotational equations of motion are suffi-
cient for describing the dynamics of pole-dipole massive
particles which are physically equivalent to spherically

symmetric and rigidly rotating bodies. A deeper under-
standing of celestial dynamics of arbitrarily structured
extended bodies requires derivation of the evolutionary
equations of the higher-order multipoles. Usually, a sim-
plifying assumption of the rigid intrinsic rotation about the
center of mass of each body is used for this purpose
[97,126–129]. However, this assumption works only until
one can neglect the tidal deformation of the body caused by
the presence of other bodies in the system and, certainly,
cannot be applied at the latest stages of a compact binary’s
inspiral before merger. It is worth noticing that some
authors refer to the translational and rotational equations
of the linear momentum and spin of the bodies as to the
laws of motion and precession [58,105,130,131] relegating
the term equations of motion to the center of mass and
angular velocity of rotation of the bodies. We do not follow
this terminology in the present paper.
The most works on the equations of motion of massive

bodies have been done in some particular coordinate
charts from which the most popular are the ADM and
harmonic coordinates [31,66,132].3 However, the coordi-
nate description of relativistic dynamics of an N-body
system must have a universal physical meaning and predict
the same dynamical effects irrespective of the choice of
coordinates on spacetime manifold M. The best way to
eliminate the appearance of possible spurious coordinate-
dependent effects would be derivation of covariant equa-
tions of motion based entirely on the covariant definition of
the configuration variables. To this end Mathisson [4,5],
Papapetrou [6,134] and, especially, Dixon [7–11,135,136]
had published a series of programmatic papers suggesting
constructive steps toward the development of such fully
covariant algorithm for derivation of the set of equations of
motion4 known as Mathisson’s variational dynamics
or the Mathisson-Papapetrou-Dixon (MPD) formalism
[135,136]. However, the ambitious goal to make the
MPD formalism independent of a specific theory of gravity
and applicable to an arbitrary pseudo-Riemannianmanifold
created a number of hurdles that slowed down the advance-
ment in developing the covariant dynamics of extended
bodies. Nonetheless, continuing efforts to elaborate on the
MPD theory had never stopped [12,13,135,139–145].
In order to make the covariant MPD formalism con-

nected to the more common coordinate-based derivations
of the equations of motion of extended bodies the metric
tensor ḡαβ of the effective background spacetime manifold
M̄ must be specified and Dixon’s multipoles of the stress-
energy skeleton [9,11] have to be linked to the covariant
definition of the BD multipoles of extended bodies. To find
out this connection we tackle the problem of the covariant

2Notice that the term “post-Friedmannian” is used differently
by various authors in cosmology [113–116]. We use this term in
the sense used by Milillo et al. [117] and Rampf et al. [118].

3The ADM and harmonic coordinate charts are in general
different structures but they can coincide under certain
circumstances [133].

4See also [137,138].
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formulation of the equations of motion in a particular gauge
associated with the class of conformal harmonic coordi-
nates introduced by Nutku [146,147]. Covariant formu-
lation of the equations of motion is achieved at the final
stage of our calculations by building the effective back-
ground manifold M̄ and applying the Einstein equivalence
principle for mapping the locally defined BD multipoles to
the arbitrary coordinates. This procedure has been proposed
by Landau and Lifshitz [42] and consistently developed
and justified by Thorne and Hartle [58]. It works perfectly
on torsionless manifolds with the affine connection being
fully determined by the metric tensor. Its extension to the
pseudo-Riemannian manifolds with torsion and/or non-
minimal coupling of matter to gravity requires further
theoretical study which is not pursued in the present paper.
Some steps forward in this direction have been made, for
example, by Yasskin and Stoeger [148], Mao et al. [149],
March et al. [150], Flanagan and Rosenthal [151], Hehl
et al. [152], and Puetzfeld and Obukhov [143,153].
Dynamics of matter in an isolated gravitating system

consisting of N-extended bodies is naturally split in two
components: the orbital motion of the center of mass of
each body and the internal motion of matter with respect to
the body’s center of mass. Therefore, the coordinate-based
derivation of equations of motion of N-extended bodies in
the isolated gravitating system suggests a separation of the
problem of motion in two parts: external and internal
[126,154]. The external problem deals with the derivation
of translational equations of bodies relative to each other
while the internal problem provides the definition of
physical multipoles of each body and translational equa-
tions of motion of the center of mass of the body with
respect to the origin of the body-adapted local coordinates.
The internal problem also gives us the evolutionary
equations of the body’s physical multipoles including the
rotational equations of motion of the body’s spin. A
solution of the external problem is rendered in a single
global coordinate chart covering the entire manifold M. A
solution of the internal problem is executed separately for
each body in the body-adapted local coordinates. There are
N-local coordinate charts for N bodies making the atlas of
the spacetime manifold. Mathematical construction of the
global and local coordinates relies upon and is determined
by the solutions of the field equations of the scalar-
tensor theory of gravity. The coordinate-based approach
to solving the problem of motion provides the most
effective way for the unambiguous separation of the
internal and external d.o.f. of matter and for the definition
of the internal multipoles of each body. Matching of the
asymptotic expansions of the solutions of the field equa-
tions in the local and global coordinates allows us to find
out the structure of the coordinate transition functions on
the manifold and to build the effective background metric
ḡαβ on spacetime manifold M̄ that is used for transforming
the coordinate-dependent form of the equations of motion

to the covariant one which can be compared with the MPD
covariant equations of motion.
The global coordinate chart is introduced for describing

the orbital dynamics of the body’s center of mass. It is not
unique and is defined up to the group of diffeomorphisms
which are consistent with the assumption that spacetime
is asymptotically flat at null infinity. This group is called
the Bondi-Metzner-Sachs (BMS) group [125,155] and it
includes the Poincare transformations as a subgroup. It
means that in case of an isolated astronomical system
embedded to the asymptotically flat spacetime we can
always introduce a nonrotating global coordinate chart with
the origin located at the center of mass of the system such
that at infinity (1) the metric tensor approaches the
Minkowski metric, ηαβ, and (2) the global coordinates
smoothly match the inertial coordinates of the Minkowski
spacetime. The global coordinate chart is not sufficient for
solving the problem of motion of extended bodies as it is
not adequately adapted for the description of the internal
structure and motion of matter inside each body in the
isolated N-body system. This description is done more
naturally in a local coordinate chart attached to each
gravitating body as it allows us to exclude various spurious
effects appearing in the global coordinates (like Lorentz
contraction, geodetic precession, etc.) which have no
relation to the motion of matter inside the body
[69,156]. The body-adapted local coordinates replicate
the inertial Lorentzian coordinates only in a limited domain
of spacetime manifold M inside a world tube around the
body under consideration. Thus, a complete coordinate-
based solution of the external and internal problems of
celestial mechanics requires introduction of Nþ 1 coor-
dinate charts—one global and N local ones [83,99]. It
agrees with the topological structure of manifold defined by
a set of overlapping coordinate charts making the atlas of
spacetime manifold [157,158]. The equations of motion of
the bodies are intimately connected to the differential
structure of the manifold characterized by the metric tensor
and its derivatives. It means that the mathematical pre-
sentations of the metric tensor in the local and global
coordinates must be diffeomorphically equivalent; that is,
the transition functions defining spacetime transformation
from the local to global coordinates must map the compo-
nents of the metric tensor of the internal problem of motion
to those of the external problem and vice verse. The
principle of covariance is naturally satisfied when the
law of transformation from the global to local coordinates
is derived by matching the global and local asymptotic
solutions of the field equations for the metric tensor.
The coordinate transformation establishes a mutual func-
tional relation between various geometric objects that
appear in the solutions of the field equations, and deter-
mines the equation of motion of the origin of the local
coordinates adapted to each body. The coordinate trans-
formations are also employed to map the equations of
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motion of the center of mass of each body to the coordinate-
free, covariant form.
The brief content of our study is as follows. Next, Sec. II

summarizes the main concepts and notations used in the
present paper. In Sec. III we discuss a scalar-tensor theory
of gravity in application to the post-Newtonian celestial
mechanics of an N-body system including the β-γ para-
metrization of the field equations, the small parameters, the
post-Newtonian approximations, and gauges. Parametrized
post-Newtonian coordinate charts covering the entire
spacetime manifoldM globally and in a local neighborhood
of each body are set up in Sec. IV. They make up an atlas of
spacetime manifold. Geometrical properties of coordinates
in relativity are characterized by the functional form of the
metric tensor and its corresponding parameters—the inter-
nal and external multipoles of a gravitational field—which
are also introduced and explained in Sec. IV along with the
multipolar structure of the scalar field. The local differential
structure of spacetime manifold M presumes that the
functional forms of the metric tensor and scalar field given
in different coordinates must smoothly match each other in
the buffer regions where the coordinate charts overlap. The
procedure of matching of the asymptotic expansions of the
metric tensor and scalar field in the global and local
coordinates is described in Sec. V that establishes
(1) the functional structure of the body-frame external
multipoles of a gravitational field in terms of the volume
integrals taken from the distribution of mass density, matter
current, pressure, etc., (2) defines the worldline W of the
origin of the body-adapted local coordinates and yields
the equation of its translational motion with respect to the
global coordinate chart, and (3) defines the effective
background metric, ḡαβ, for each extended body that is
used later on for derivation of the covariant equations of
motion of the bodies.
Section VI provides details of how the local coordinate

chart adapted to each extended body is used for a detailed
description of the body’s own gravitational field inside and
outside of the body and for definition of its mass, center of
mass, linear and angular momentum (spin). This section
also derives the equations of motion of a body’s center of
mass moving along worldline Z, and its spin in the body-
adapted local coordinates. Translational equations of
motion of a body’s center of mass in the global coordinates
follow immediately after substituting the local equations of
motion to the parametric description of the worldline W of
the origin of the local coordinates with respect to the global
coordinates. The parametric description of worldline W
follows through the multipolar expansion of the external
gravitational potentials in Sec. VII and that of the external
multipoles in Sec. VIII. Section IX derives the equations of
translational motion of the worldline Z of the center of
mass of each body in terms of the complete set of the
Blanchet-Damour internal multipoles of the bodies com-
prising the N-body system. Rotational equations of motion

for spin of each body with the torque expressed in terms of
the Blanchet-Damour multipoles are derived in Sec. X.
Finally, Sec. XI introduces the reader to the basic concepts
of the Mathisson-Papapetrou-Dixon variational dynamics
and establishes a covariant form of the post-Newtonian
translational and rotational equations of motion of extended
bodies derived previously in the conformal harmonic
coordinates in Secs. IX and X.
The paper has four Appendices. Appendix A sets out

auxiliary mathematical relationships for symmetric trace-
free (STF) tensors. Appendix B compares our equations
of translational motion from Sec. VII with similar equa-
tions derived by Racine and Flanagan [84] and Racine
et al. [85] and analyzes the reason for the seemingly
different appearance of the equations. Appendix C
explains the concept of Dixon’s multipole moments of
extended bodies and discusses their mathematical corre-
spondence with the Blanchet-Damour multipole moments.
Finally, Appendix D compares Dixon’s covariant equa-
tions of translational and rotational motion of extended
bodies with our covariant equations of motion from
Sec. XI.

II. PRIMARY CONCEPTS AND
MATHEMATICAL NOTATIONS

We consider an isolated gravitating system consisting of
N-extended bodies in the framework of a generic scalar-
tensor theory of gravity. The bodies are indexed by either of
three capital letters B, C, D from the Roman alphabet. Each
of these indices takes values from 1 to N. The bodies have
arbitrary but physically admissible distributions of mass,
internal energy, pressure, and velocity of matter which can
depend on time. We exclude processes of the matter
exchange between the bodies so that they interact between
themselves only through the coupling to the gravity and/or
scalar field force. We also exclude processes of nuclear
transmutation of matter particles.
It is now well understood [17,84,97,99,159] that the

solution of the problem of motion of N-body system
requires introduction of one global coordinate chart, xα,
covering the entire spacetime manifold and N-local coor-
dinate charts, wα

B, adapted to each body B of the system. If
there is no confusion with other bodies the subindex B in
the notation of the local coordinate chart of the body B is
omitted.
Equations of scalar-tensor theory of gravity admit a class

of conformal transformations of the metric tensor which
allows us to put the gravity field equations in two different
forms which are referred to as the Einstein and Jordan
frames respectively. The field equations in the Einstein
frame makes the field equations look exactly as Einstein’s
equations of general relativity with the scalar field entering
solely the right-hand side of the field equations in the form
of the stress-energy tensor. The metric tensor in the Einstein
frame is coupled with the scalar field explicitly while the
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Ricci tensor is uncoupled from the scalar field. In the
Jordan frame the situation is opposite—the Ricci tensor
couples with the scalar field explicitly while the metric
tensor is uncoupled from the scalar field. It was debated for
a while which frame—Einstein or Jordan—is physical
[160,161]. The answer is that all classical physical pre-
dictions are to be conformal-frame invariant [162].
Therefore, the choice of the frame is a matter of math-
ematical convenience. In the present paper we shall
primarily work in the Jordan frame in which matter is
minimally coupled to the gravitational field like in general
relativity.
Let us single out a body B in the N-body system and

consider the metric tensor in the local, body-adapted
coordinates. The metric outside the body is parametrized
by two infinite sets of configuration parameters which are
called the internal and external multipoles. The multipoles
are purely spatial, 3-dimensional, symmetric trace-free
Cartesian tensors [50,82,163] residing on the hypersurface
HuB of constant coordinate time uB passing through the
origin of the local coordinate chart, wα

B. The internal
multipoles characterize the gravitational field and internal
structure of the body B itself and they are of two types—the
mass multipolesML

B, and the spin multipoles SL
B where the

multi-index L ¼ i1i2…il consists of a set of spatial indices
with l denoting the rank of the STF tensor ðl ≥ 0Þ. If
there is no confusion, the index B of the internal multipoles
is dropped off. There are also two types of external
multipoles—the gravitoelectric multipoles QL, and the
gravitomagnetic multipoles CL. The external multipoles
with rank l ≥ 2 characterize tidal gravitational field in the
neighborhood of body B produced by other (external)
bodies residing outside body B. Gravitoelectric dipole Qi
describes local acceleration of the origin of the local
coordinates adapted to body B. Gravitomagnetic dipole
Ci is the angular velocity of rotation of the spatial axes of
the local coordinates. In what follows we set Ci ¼ 0. The
scalar field of the scalar-tensor theory of gravity has its own
multipolar decomposition with the internal and external
multipoles. The external multipoles of the scalar field are
denoted as PL. The above-mentioned multipoles are called
canonical as they are directly related to 2 d.o.f. of vacuum
gravitational field and one d.o.f. of the scalar field. The
overall theory also admits the appearance of noncanonical
STF multipoles in the process of derivation of the equations
of motion. These multipoles are related to the gauge d.o.f.
and can be eliminated from the equations of motion by the
appropriate choice in the definition of the canonical multi-
poles and the center of mass of body B.
Definitions of the canonical STF multipoles must be

consistent with the differential structure of spacetime
manifold M determined by the solutions of the gravity
field equations in the global and local coordinate charts.
The consistency is achieved by applying the method of
asymptotic matching of the external and internal solutions

of the field equations that allows us to express the external
multipoles, QL and CL, in terms of the internal multipoles,
ML

B and SL
B. The internal multipoles of an extended body B

are defined by the integrals taken over the body’s volume
from the correspondingly chosen internal distribution of
mass energy inside the body. This distribution includes not
only the internal characteristics of the body B (mass
density, pressure, compression energy, etc.) but also the
energy density of the tidal gravitational field produced by
the external bodies.
There are two important reference worldlines associated

with the translational motion of each body B: a worldline
W of the origin of the body adapted, local coordinates, wα

B,
and a worldline Z of the center of mass of the body.
Equations of motion of the origin of the local coordinates
are obtained by performing the asymptotic matching of the
internal and external solutions of the field equations for the
metric tensor. Equations of motion of the center of mass of
the body are derived by integrating the macroscopic post-
Newtonian equations of motion of matter which are the
consequence of the local law of conservation of the stress-
energy tensor. The center of mass of each body is defined
by the condition of vanishing of the internal mass dipole of
the body in the multipolar expansion of the metric tensor in
the Einstein frame, I i

B ¼ 0. This definition imposes a
constraint on the local accelerationQi that makes worldline
W coincide with Z. It also eliminates the other extraneous
(noncanonical) types of STF multipoles of the gravitational
field from the translational and rotational equations of
motion.
We use G to denote the observed value of the universal

gravitational constant and c as a fundamental speed both in
gravity and matter sectors of the theory. Every time, when
there is no confusion about the system of units, we choose a
geometrical system of units such that G ¼ c ¼ 1 so that G
and c do not appear in equations explicitly. We put a hat
above any function that describes a contribution from the
internal distribution of mass, velocity, etc., of body B in the
local coordinates adapted to the body. A bar over any
function denotes functions produced by the distributions of
mass, velocity, etc., from the bodies being external with
respect to body B. The bar also denotes the gravitational
potentials entering the external multipoles as well as the
metric tensor, ḡαβ, of the effective background manifold, M̄,
that is used to construct covariant equations of motion of
the bodies in Sec. XI.
Primary mathematical symbols and notations used in the

present paper are as follows:
(i) The capital Roman indices B,C,D label the ex-

tended bodies of the N-body system. Each of them
takes values from the set f1; 2;…; Ng.

(ii) The small Greek letters α; β; γ;… denote spacetime
indices of tensors and run through values 0,1,2,3.

(iii) The small Roman indices i; j; k;… denote spatial
tensor indices and take values 1,2,3.
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(iv) The capital Roman letters L, K, N, S denote spatial
tensor multi-indices, for example, L≡ fi1i2…ilg,
N ≡ fi1i2…ing, K − 1≡ fi1i2…ik−1g, etc.

(v) The Einstein summation rule is applied for
repeated (dummy) indices and multi-indices, for
example, PαQα≡P0Q0þP1Q1þP2Q2þP3Q3,
PiQi ≡ P1Q1 þ P2Q2 þ P3Q3, PLQL¼
Pi1i2…ilQi1i2…il , PK−1QK−1¼Pi1i2…ik−1Qi1i2…ik−1 ,
etc.

(vi) The Kronecker symbol δij ¼ δij ¼ δij ¼ δji in
3-dimensional space is a unit matrix

δij ≡
�
1 if i ¼ j;

0 if i ≠ j:

(vii) The Levi-Civita fully antisymmetric symbol,
εijk ¼ εijk, in 3-dimensional space is defined as
ε123 ¼ þ1, and

εijk ≡
8<
:

þ1 if the set fi; j; kg forms an even permutation;

−1 if the set fi; j; kg forms an odd permutation;

0 if; at least; two indices from the set fi; j; kg coincide:

(viii) Eαβγδ is a 4-dimensional generalization of the fully
antisymmetric, 3-dimensional Levi-Civita symbol.

(ix) gαβ is a full metric of spacetime manifold M.
(x) ḡαβ is the effective metric of the background

spacetime manifold M̄.
(xi) ηαβ¼diagf−1;þ1;þ1;þ1g is the Minkowski

metric.
(xii) hαβ is the metric perturbation of the Minkowski

spacetime in the global coordinate chart.
(xiii) ĥαβ is the metric perturbation of the Minkowski

spacetime in the local coordinate chart of body B.
(xiv) wα

B ¼ ðw0
B; w

i
BÞ ¼ ðuB; wi

BÞ are the local coordi-
nates adapted to a body B with uB being the local
coordinate time. Every time, when there is no
confusion, we drop the sub-index B from the
notations of the local coordinates. Thus, by default
wα ¼ ðw0; wiÞ ¼ ðu; wiÞ are the local coordinates
adapted to body B with u being the local coor-
dinate time.

(xv) xα ¼ fx0; xig ¼ ft; xig are the global coordinates
covering the entire spacetime manifold M or M̄.
Notation for the manifold should not be confused
with the mass internal monopole of body B which
is denoted with MB.

(xvi) ∂α ¼ ∂=∂xα is a partial derivative with respect to
coordinate xα.

(xvii) ∂̂α ¼ ∂=∂wα is a partial derivative with respect to
the local coordinate wα.

(xviii) Shorthand notations for the multi-index partial
derivatives with respect to coordinates xα are
∂L≡∂i1…il ¼ ∂i1∂i2…∂il , ∂L−1≡∂i1…il−1 , ∂pL−1≡
∂pi1…il−1 , etc.

(xix) Shorthand notations for the multi-index partial
derivatives with respect to coordinates wα are
∂̂L≡∂̂i1…il¼ ∂̂i1 ∂̂i2…∂̂il , ∂̂L−1 ≡ ∂̂i1…il−1 , ∂̂pL−1≡
∂̂pi1…il−1 , etc.

(xx) ∇̄ standing in front of a group of p tensor
indices denotes an operator of the covariant
derivative of the pth order with respect to the
background metric ḡαβ, for example, ∇̄α1α2…αp ¼
∇̄α1∇̄α2…∇̄αp .

(xxi) ∇ standing in front of a group of p tensor indices
denotes a covariant derivative of the pth order with
respect to the full metric gαβ, that is ∇α1α2…αp ¼∇α1∇α2…∇αp .

(xxii) D
Dτ ¼ ūα∇̄α denotes a covariant derivative along
vector ūα.

(xxiii) DF
Dτ denotes a Fermi-Walker covariant derivative
along vector ūα [ [164], Chapter 1, Sec. 4],

(xxiv) Tensor (Greek) indices of geometric objects on
spacetime manifold M are raised and lowered with
the full metric gαβ.

(xxv) Tensor (Greek) indices of geometric objects on the
effective background manifold M̄ are raised and
lowered with the background metric ḡαβ.

(xxvi) Tensor (Greek) indices of the metric tensor pertur-
bation hαβ are raised and lowered with the
Minkowski metric ηαβ.

(xxvii) The spatial (Roman) indices of geometric objects
are raised and lowered with the Kronecker symbol
δij. Effectively, it means that the position of the
spatial indices—either superscript or subscript—
does not matter.

(xxviii)A symbol of summation over all N bodies of an
N-body system is denoted as

P
B ≡P

N
B¼1, orP

C ≡P
N
C¼1, etc.

(xxix) The symbol of summation over N − 1 bodies of an
N-body system excluding, let us say body C,
is

P
B≠C ≡P

N
B¼1
B≠C

.

(xxx) The ordinary factorial is l!¼ lðl−1Þðl−2Þ…2 ·1.
(xxxi) The double factorial means
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l!!≡
�
lðl − 2Þðl − 4Þ…4 · 2 if l is even;

lðl − 2Þðl − 4Þ…3 · 1 if l is odd:

(xxxii) The round parentheses around a group of
tensor indices denote full symmetrization,

Tðα1α2…αlÞ ¼
1

l!

X
σ∈S

Tσðα1Þσðα2Þ…σðαlÞ;

where σ is a permutation of the set S ¼
fα1; α2;…; αlg

σ ¼
�

α1 α2 α3 … αl

σðα1Þ σðα2Þ σðα3Þ … σðαlÞ

�
;

for example,TðαβγÞ¼ 1
3!
ðTαβγþTβγαþTγαβþTβαγþ

TαγβþTγβαÞ, etc.
(xxxiii) The curled parentheses around a group of tensor

indices denote un-normalized symmetrization
over the smallest set of the index permutations,
for example, Tfαδβγg≡TαδβγþTβδαγþTγδαβ, etc.

(xxxiv) The square parentheses around a pair of tensor
indices denote antisymmetrization, for example,
T ½αβ�γ ¼ 1

2
ðTαβγ − TβαγÞ, etc.

(xxxv) The angular brackets around tensor indices
denote a symmetric trace-free projection of tensor
TL ¼ Ti1i2…il . The STF projection ThLi of tensor
TL is constructed from its symmetric part,

SL ≡ TðLÞ ¼ Tði1i2…ilÞ; ð1Þ

by subtracting all the permissible traces. This
makes ThLi fully symmetric and trace free on all
pairs of indices. The general formula for the STF
projection is [50,82]

ThLi ≡
X½l=2�
n¼0

ð−1Þn
2nn!

l!
ðl − 2nÞ!

ð2l − 2n − 1Þ!!
ð2l − 1Þ!!

× δði1i2…δi2n−1i2nSi2nþ1…ilÞj1j1…jnjn ; ð2Þ

where ½l=2� is the largest integer less than or equal
to l=2.

(xxxvi) The STF spatial derivative is denoted by the
angular parentheses embracing the STF indices,
for example, ∂hLi ≡ ∂hi1i2…ili or ∂hKi ≡ ∂hi1i2…iki.

(xxxvii) The Christoffel symbols on a spacetime mani-
fold M are Γα

βγ ¼ 1
2
gασð∂βgγσ þ ∂γgβσ − ∂σgβγÞ.

(xxxviii) The Christoffel symbols of the effective back-
ground manifold M̄ are Γ̄α

βγ ¼ 1
2
ḡασð∂βḡγσþ∂γ ḡβσ − ∂σ ḡβγÞ.

(xxxix) The sign of the Riemann tensor on spacetime
manifold M is defined by convention (it is the
same as in [165])

Rαβμν ¼
1

2
ð∂ανgβμ þ ∂βμgαν − ∂βνgαμ − ∂αμgβνÞ

þ gρσðΓρ
ανΓσ

βμ − Γρ
αμΓσ

βνÞ: ð3Þ

(xxxx) The Riemann tensor of the effective background
manifold M̄ is

R̄αβμν ¼
1

2
ð∂ανḡβμ þ ∂βμḡαν − ∂βνḡαμ − ∂αμḡβνÞ

þ ḡρσðΓ̄ρ
ανΓ̄σ

βμ − Γ̄ρ
αμΓ̄σ

βνÞ: ð4Þ

The sign conventions (3) and (4) for the Riemann
tensor are opposite to that from the Weinberg
textbook [ [166], Eq. 6.6.2].

Other notations will be introduced and explained in the
main text of the paper as they appear. Useful algebraic and
differential identities of STF tensors are given in
Appendix A of the present paper.

III. SCALAR-TENSOR THEORY AND
POST-NEWTONIAN APPROXIMATIONS

We consider an isolated N-body system comprised of
N-extended bodies with a nonsingular interior described by
the stress-energy tensor Tαβ of baryonic matter. The bodies
have a localized matter support and are supposed to be
isolated one from another in space in the sense that
accretion, transfer, and other fluxes of baryonic matter
outside of the bodies are excluded.
Post-Newtonian celestial mechanics describes orbital

and rotational motions of the bodies on a curved spacetime
manifold M defined by the metric tensor gαβ obtained as a
solution of the field equations of a metric-based theory of
gravitation in the slow-motion and weak-field approxima-
tion. The class of viable metric theories of gravity, which
can be employed for developing relativistic celestial
mechanics, ranges from general theory of relativity
[42,97] to a scalar-vector-tensor theory of gravity proposed
by Bekenstein [167] for describing orbital motion of
galaxies in clusters at cosmological scale. It is not the
goal of the present paper to review all these theories and
we refer the reader to reviews by Will [36] and Turyshev
[37] for further details.
We shall build the parametrized post-Newtonian celestial

mechanics in the framework of a scalar-tensor theory of
gravity introduced by Jordan [168,169] and Fierz [170],
and independently rediscovered later by Brans and Dicke
[171] and Dicke [172,173]. The Jordan-Fierz-Brans-Dicke
(JFBD) theory extends the Lagrangian of general relativity
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by introducing a long-range, nonlinear scalar field (or fields
[86]) being minimally coupled to gravity. The presence of
the scalar field causes deviation of the metric-based gravity
theory from a pure geometric phenomenon. The scalar field
effects are superimposed on gravitational effects of general
relativity, thus, highlighting the geometric role of the metric
tensor and making physical content of the theory richer.
Recent discovery of the scalar Higgs boson at LHC [174]
and its possible connection to the effects of a JFBD scalar
field in gravitation and cosmology [175] reinforce the
significance of application of the scalar-tensor theory in
relativistic astrophysics and celestial mechanics of isolated
gravitating systems.

A. Lagrangian and field equations

A gravitational field in the scalar-tensor theory of gravity
is described by the metric tensor gαβ and a long-range
scalar field Φ with nonlinear self-interaction described by
means of a coupling function ωðΦÞ. Field equations in the
Jordan frame of scalar-tensor theory are derived from the
action [88]

S ¼ −
1

16π

Z
ΦR

ffiffiffiffiffiffi
−g

p
d4xþ 1

8π

Z
LΦ ffiffiffiffiffiffi

−g
p

d4x

þ
Z

LM ffiffiffiffiffiffi
−g

p
d4x; ð5Þ

where g ¼ det½gαβ� < 0 is the determinant of the metric
tensor gαβ, R ¼ gαβRαβ is the Ricci scalar, Rαβ is the Ricci
tensor,

LΦ ¼ ωðΦÞ
2Φ

gαβ∂αΦ∂βΦ − VðΦÞ ð6Þ

is the Lagrangian of the scalar field with VðΦÞ being the
potential of the scalar field, and LM ≡ Lðgαβ;ψÞ is the
Lagrangian of matter of theN-body system with ψ denoting
the dynamic variables characterizing the matter of the
extended bodies comprising the system. We keep the
self-coupling function ωðΦÞ of the scalar field unspecified
for making covariant parametrization of possible deviations
of the scalar-tensor theory from general relativity.
Moreover, we assume the minimal coupling of the metric
tensor gαβ with matter variables ψ without coupling to the
scalar field Φ. It explains why the Lagrangian LM does not
depend on the scalar field Φ.
The action (5) is written in the Jordan frame in which the

metric tensor gαβ has a standard physical meaning of
observable quantity used in the definitions of the proper
time, the proper length, and in the geodesic equation of
motion of test particles [88]. Taking variational derivatives
from the action (5) with respect to the metric tensor, we
obtain gravitational field equations for the metric tensor,

Rμν −
1

2
gμνR ¼ 1

Φ
ð∇μνΦ − gμν□gΦþ TΦ

μνÞ þ
8π

Φ
TM
μν; ð7Þ

where, here and everywhere else, the operator ∇μ denotes a
covariant derivative on the spacetime manifold with the
metric gαβ, the g-box symbol

□g ≡ gμν∇μν ¼ gμν∂μν − gμνΓα
μν∂α ð8Þ

denotes the differential Laplace-Beltrami operator
[165,176] on manifold with metric gαβ, and TΦ

μν and TM
μν

are stress-energy tensors of the scalar field and matter of the
N-body system respectively. In particular,

TΦ
μν ¼

ωðΦÞ
Φ

�
∂μΦ∂νΦ−

1

2
gμν∂αΦ∂αΦ

�
þgμνVðΦÞ; ð9Þ

and

TM
μν ¼ ρð1þ ΠÞuμuν þ sμν; ð10Þ

where ρ and Π are the density and the specific internal
energy of the baryonic matter, uα ¼ dxα=cdτ is the 4-
velocity of the matter with τ being the proper time along the
worldline of the matter’s volume element, and sαβ is an
arbitrary (but physically admissible) symmetric tensor of
spatial stresses being orthogonal to the 4-velocity of matter

uαsαβ ¼ 0: ð11Þ

Equation (11) means that the stress tensor has only spatial
components in the frame comoving with matter.
Equation for the scalar fieldΦ is obtained by variation of

action (5) with respect to Φ. After making use of a
contracted form of (7) it yields [88]

□gΦ¼ 1

3þ2ωðΦÞ

×

�
8πTM−

dω
dΦ

∂αΦ∂αΦ−2Φ
dV
dΦ

þ4VðΦÞ
�
; ð12Þ

where TM ¼ gαβTM
αβ is the trace of the stress-energy tensor

of matter which serves as a source of the scalar field along
with its own kinetic (due to the self-coupling) and potential
energies.
A gravitational field and matter are tightly connected via

the Bianchi identities of the field equations for the metric
tensor [42,165] which read

∇ν

�
Rμν −

1

2
gμνR

�
≡ 0: ð13Þ

The Bianchi identities make four out of ten components of
the metric tensor fully independent. This freedom is usually
fixed by picking up a specific gauge condition, which
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imposes four constraints on the components of the metric
tensor and/or its first derivatives. At the same time the
Bianchi identity (13) imposes four differential constraints
on the stress-energy tensor of matter and scalar field which
constitute microscopic equations of motion of matter [42].
Due to the Bianchi identities (13) the source of the
gravitational field standing in the right-hand side of (7)
is also conserved. The law of conservation of this tensor is
convenient to write down in the following form:

8π∇νT
μν
M ¼ −∇νT

μν
Φ þ∇μΦ

2Φ
ð8πTM þ TΦ − 3□gΦÞ: ð14Þ

After taking the covariant derivative from the stress-energy
tensor of the scalar field (9), and making use of the scalar
field equation (12) we can check by direct calculation that
the right-hand side of (14) vanishes. It yields the laws of
conservation of the stress-energy tensor of baryonic matter
of an N-body system,

∇νT
μν
M ¼ 0: ð15Þ

The conservation of the stress-energy leads to the (exact)
equation of continuity

∇αðρuαÞ ¼
1ffiffiffiffiffiffi−gp ∂αðρ

ffiffiffiffiffiffi
−g

p
uαÞ ¼ 0; ð16Þ

and to the thermodynamic law of conservation of energy
that is expressed as a differential relation between the
specific internal energy Π and the stress tensor of matter

ρuα∂αΠþ sαβ∇αuβ ¼ 0: ð17Þ

These equations will be employed later on for solving the
field equations and for derivation of equations of motion of
the extended bodies.

B. Post-Newtonian approximations

We shall assume that the potential VðΦÞ of the scalar
field can be neglected in the following calculations.
Discarding the potential VðΦÞ is justified from an obser-
vational point of view in a weak gravitational field (like in
the Solar System) as it does not reveal any measurable
effect in orbital and rotational motion of celestial bodies on
sufficiently long intervals of time [36,37]. On the other
hand, if the potential of the scalar field is not identically nil,
it may become important in astrophysical systems having a
strong gravitational field like compact binary neutron stars
or black holes, and its inclusion to the theory leads to
important physical consequences [86,177].
Neglecting the scalar field potential simplifies the field

equations (7) and (12) and reduces them to the following
form:

Rμν−
1

2
gμνR¼ 1

Φ

�
8πTμνþ

ωðΦÞ
Φ

�
∂μΦ∂νΦ−

1

2
gμν∂αΦ∂αΦ

�

þ∇μνΦ−gμν□gΦ
�
; ð18Þ

□gΦ ¼ 1

3þ 2ωðΦÞ
�
8πT −

dω
dΦ

∂αΦ∂αΦ
�
; ð19Þ

where we suppressed index M at the stress-energy tensor of
the baryonic matter for simplicity: Tμν ≡ Tμν

M and T ≡ Tα
α.

Field equations (18) and (19) of the scalar-tensor theory
of gravity represent a system of eleventh nonlinear differ-
ential equations in partial derivatives. It is challenging to
find their solution in the case of an N-body system made of
extended bodies with a sufficiently strong gravitational
field whose backreaction on the geometry of a spacetime
manifold cannot be neglected. Like in general relativity, an
exact solution of this problem is not known and may not be
available in analytic form. Hence, one has to resort to
approximations to apply the analytic methods. Two basic
methods have been worked out in asymptotically flat
spacetime: the post-Minkowskian (PMA) and the post-
Newtonian (PNA) approximations [17,30,154]. Post-
Newtonian approximations are applicable in cases when
matter moves slowly and the gravitational field is weak
everywhere—the conditions, which are satisfied, e.g., within
the Solar System. Post-Minkowskian approximations relax
the requirement of the slow motion but the weak-field
limitation remains. A strong field regime requires more
involved techniques [43]. We use the method of the post-
Newtonian approximations in this paper which is remarkably
effective and consistent in describing the gravitational field of
isolated gravitating systems including binary pulsars con-
taining dense neutron stars and a binary black hole inspiral-
ling toward a final merger [178].
The post-Newtonian approximation scheme suggests

that the metric tensor can be expanded in the near zone
of an N-body system in powers with respect to the inverse
powers of the fundamental speed c.5 This expansion may
be not analytic at higher post-Newtonian approximations in
a certain class of coordinate charts including the harmonic
coordinates [50,180]. The exact mathematical formulation
of the basic axioms underlying the post-Newtonian expan-
sion was given by Rendall [181]. Practically, it requires one
to have several small parameters characterizing the N-body
system and the interior structure of the bodies. They are
ϵi ∼ vi=c, ϵe ∼ ve=c, and ηi ∼Ui=c2, ηe ∼Ue=c2, where vi
is a characteristic internal velocity of motion of matter
inside an extended body, ve is a characteristic velocity of
the relative motion of the bodies with respect to each other,

5For historical reasons the speed c in all sectors of fundamental
interactions is called “the speed of light” [179]. It is clear that in
the gravity sector its physical meaning is the speed of gravity
[98,100].
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Ui is the internal Newtonian gravitational potential inside
each body, and Ue is the external Newtonian gravitational
potential in the regions of space between the bodies. If we
denote a characteristic radius of an extended body as L and
a characteristic distance between the bodies as R, the
internal and external gravitational potentials will have
the following estimates: Ui ≃GM=L and Ue ≃GM=R,
where M is a characteristic mass of the body. Due to the
virial theorem of the Newtonian gravity [42] the small
parameters are not fully independent. Specifically, one has
ϵ2e ∼ ηe and ϵ2i ∼ ηi if the internal motions of matter inside
the body are governed by the gravitational field of the
body through macroscopic equations of motion. The slow-
motion parameter ϵi is not related to the weak-field
parameter ηi in all other cases like rotational motion of
the body, convection of matter, sound waves, etc.
Parameters ϵi and ϵe are the primary parameters in
calculating the post-Newtonian expansions of the solutions
of the field equations for the metric tensor and scalar field.
In what follows, we use a single notation ϵ to quantify the
order of the parametric expansion in the post-Newtonian
series.
Besides the small parameters ϵ and η, the post-

Newtonian approximation utilizes two more small param-
eters: δ ∼ L=R characterizing the dependence of the body’s
gravitational field on its finite size L, and the asphericity
parameter λ ≃ ΔL=L estimating how much the shape of the
body under consideration deviates from the sphere. These
parameters appear in vacuum multipolar expansion of the
metric tensor and scalar field. As the metric tensor has ten
algebraically independent components, we might expect
appearance of ten different types of tensor multipoles but
only two types of them (mass and spin multipoles) are
physically significant because eight types of the tensor
multipoles are gauge dependent and can be eliminated from
the multipolar expansion of the metric tensor by using the
gauge freedom of the theory [50,78,82]. Multipolar expan-
sion of the scalar field has naturally one type of the (scalar)
multipoles which is fully independent of the choice of the
metric gauge. The property of disappearance of eight types
of the tensor multipoles in the multipolar expansion of the
metric tensor is known as the effacing principle [154]
which tells us that the only information about the internal
structure of the body obtained from the measurement of its
vacuum gravitational field, can be extracted from the
canonical mass and spin multipoles of the body. It imposes
certain limitations on our ability to get unambiguous
information about the distribution of mass, velocity, pres-
sure, and other internal characteristics of the body, for
example, the gravitational field of an extended body having
spherically symmetric distribution of mass cannot be
distinguished from that of a massive pointlike particle
having the same mass due to the Birkhoff theorem that is
valid in the scalar-tensor theory of gravity as well as in
general relativity [182].

In principle, translational and/or rotational equations of
motion of extended bodies might depend on more than the
two (canonical) types of the multipoles of the bodies. This
is because derivation of the equations of motion is based on
integration of macroscopic equations of motion of matter
over finite volumes of the bodies and it is not evident that
the result of a such integration will not produce additional
noncanonical types of the multipoles entering the gravita-
tional force and/or torque exerted on each body. Had this
happened the parameter δ ¼ L=Rwould appear in the post-
Newtonian expansions even if the bodies comprising the N-
body system were spherically symmetric. Scrutiny into the
theoretical study of the problem of motion in general
relativity has shown that such noncanonical multipoles
do not appear in the equations of motion of an N-body
system and the internal structure of extended bodies is
completely effaced up to 2.5 PN approximation for spheri-
cally symmetric bodies [154,183–186] and up to 1 PN
approximation for arbitrarily structured bodies [75,84,87].
We demonstrate in the present paper that the effacing
principle is also valid in the scalar-tensor theory of gravity
in 1PN approximation. The effacing of the internal struc-
ture and disappearance of the noncanonical multipoles of
the bodies from equations of motion indicates that the
equations can be extrapolated to the case of structureless
bodies like black holes in compact binaries.
The multipoles of extended bodies have some bare

values in cases when the body is nonrotating and fully
isolated from an external gravitational environment. The
numerical value of the multipoles will deviate from the
bare value if the body rotates and interacts gravitationally
with other members of the N-body system as it brings
about intrinsic deformations in the distribution of matter
inside the body. The measured value of each multipole is
a sum of its bare value and the induced deformations. The
magnitude of the induced deformations depends on the
parameters of elasticity of each body which are intrinsi-
cally related to the equation of state of the body’s matter.
These parameters are known as Love’s numbers κnl where
subindex n ¼ 1, 2, 3 indicates the physical type of the
Love number and l is the multipole number [187–190].
Measurement of the Love numbers of neutron stars and
black holes in compact inspiralling binaries is one of the
main goals of gravitational wave astronomy [23–26].
Generally speaking, the Love numbers κnl depend on
the frequency of orbital harmonics and are different
for each multipole [27]. Therefore, a complete study of
the internal structure of neutron stars by means of the
gravitational wave astronomy requires including all multi-
poles of the bodies to the translational and rotational
equations of motion in order to get an exhaustive amount of
information about their internal physical characteristics—
equation of state, radius, distribution of mass density, etc.
The present paper accounts for all internal multipoles of the
bodies.
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C. Post-Newtonian expansions

Post-Newtonian series are expansions of the metric
tensor, scalar field, and matter variables around their
background values with respect to the small parameters
introduced above. We denote Φ0 the background value of
the scalar field Φ and assume that the dimensionless
perturbation of the field, ϕ, is small compared with Φ0.
In the cosmological case, Φ0 is not constant and changes
subject to the Hubble expansion of the Universe [191]. The
inverse value of the background scalar field is proportional
to the universal gravitational constant G ∼ 1=Φ0 as shown
below in (47). Therefore, the time variation of Φ0 causes a
secular evolution of the universal gravitational constant
G ¼ G0 þ _Gðt − t0Þ as well as other PPN parameters of the
scalar-tensor theory [124]. The rate of the hypothetical
secular variation of the universal gravitational constant has
been measured by lunar laser ranging and is negligibly
small— _G=G0 ¼ ð7.1� 7.6Þ × 10−14 yr−1 [192]. Other
techniques yield similar constraints [90,193,194]. In this
paper we consider the case of asymptotically flat space time
and treat Φ0 as constant. We write exact decomposition

Φ
Φ0

¼ 1þ ϕ; ð20Þ

where ϕ is the dimensionless value of the scalar field Φ
normalized to Φ0.
According to theoretical expectations [191] and exper-

imental limitation on PPN parameters [36,37,192], the
post-Newtonian perturbation ϕ of the scalar field has a
very small magnitude, so that we can expand all quantities
depending on the scalar field in a Maclaurin series with
respect to ϕ using it as a small parameter in the expansion.
In particular, the post-Newtonian decomposition of the
coupling function ωðΦÞ can be written as

ωðΦÞ ¼ ω0 þ ω0
0ϕþOðϕ2Þ; ð21Þ

where ω0 ≡ ωðΦ0Þ, ω0
0 ≡ ðdω=dϕÞΦ¼Φ0

, and we impose
the boundary condition on the scalar field such that ϕ
approaches zero as the distance from the N-body system
approaches infinity; see Eqs. (60) and (61). The post-
Newtonian expansion of the perturbation ϕ is given in the
form

ϕ ¼ ϵ2ϕð2Þ þOðϵ3Þ; ð22Þ
where the post-Newtonian correction ϕð2Þ will be defined
below, and the symbol Oðϵ3Þ indicates the expected
magnitude of the residual terms. Notice that the linear
term being proportional to ϵ does not appear in (22) as it is
incompatible with the field equations (19).
The unperturbed value of the metric tensor gαβ in

asymptotically flat spacetime is the Minkowski metric,
ηαβ. The metric tensor is expanded in the post-Newtonian
series with respect to parameter ϵ around the Minkowski
metric as follows:

gαβ ¼ ηαβþ ϵhð1Þαβ þ ϵ2hð2Þαβ þ ϵ3hð3Þαβ þ ϵ4hð4Þαβ þOðϵ5Þ: ð23Þ

The generic post-Newtonian expansion of the metric tensor
is not analytic with respect to parameter ϵ [50,154,180].
However, the nonanalytic (logarithmic) terms emerge only
in higher post-Newtonian approximations and do not affect
the results of the present paper since we restrict ourselves
with the first post-Newtonian approximation. Notice also
that the linear, with respect to ϵ, terms in the metric tensor
expansion (23) do not originate from the field equa-
tions (18) and are a pure coordinate-dependent effect.
Hence, they can be eliminated by making an appropriate
adjustment of the coordinate chart [58,87,195]. If we kept
them, they would make the coordinate grid nonorthogonal
and rotating at classic (Newtonian) level. Reference frames
with such properties are rarely used in astronomy and
astrophysics. Therefore, we shall postulate that the linear
term in expansion (23) is absent.
After eliminating the linear terms in the post-Newtonian

expansion of the metric tensor and substituting the expan-
sion to the field equations (18) we can check by inspection
that various components of the metric tensor and the scalar
field have in the first post-Newtonian approximation the
following form [195]:

g00 ¼ −1þ ϵ2hð2Þ00 þ ϵ4hð4Þ00 þOðϵ6Þ; ð24Þ

g0i ¼ ϵ3hð3Þ0i þOðϵ5Þ; ð25Þ

gij ¼ δij þ ϵ2hð2Þij þOðϵ4Þ; ð26Þ

where each term of the expansions will be defined and
explained below. In order to simplify notations, we shall
use the following abbreviations for the metric tensor
perturbations:

h00 ≡ hð2Þ00 ; l00 ≡ hð4Þ00 ; h0i ≡ hð3Þ0i ;

hij ≡ hð2Þij ; h≡ hð2Þkk : ð27Þ

Post-Newtonian expansion of the metric tensor (24)–(26)
introduces a corresponding expansion of the stress-energy
tensor of matter (10),

T00 ¼ Tð0Þ
00 þ ϵ2Tð2Þ

00 þOðϵ4Þ; ð28Þ

T0i ¼ ϵTð1Þ
0i þOðϵ3Þ; ð29Þ

Tij ¼ ϵ2Tð2Þ
ij þOðϵ4Þ; ð30Þ

where

Tð0Þ
00 ¼ ρ�; ð31Þ
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Tð1Þ
0i ¼ −ρ�vi; ð32Þ

Tð2Þ
ij ¼ ρ�vivj þ sij; ð33Þ

Tð2Þ
00 ¼ ρ�

�
v2

2
þ Π − h00 −

h
2

�
; ð34Þ

vi ¼ cui=u0 ¼ dxi=dt is 3-dimensional velocity of matter,
and

ρ� ≡ ffiffiffiffiffiffi
−g

p
u0ρ ¼ ρþ ϵ2

2
ρðv2 þ hÞ þOðϵ4Þ ð35Þ

is the invariant density of matter that is a useful math-
ematical variable in relativistic hydrodynamics [126] due to
the exact law (16) of conservation of rest mass. This
conservation law can be recast, following (16), to the
equation of continuity [126]

∂tρ
� þ ∂iðρ�viÞ ¼ 0; ð36Þ

which has the exact Newtonian form in arbitrary coordi-
nates. Since Eq. (36) is exact it makes calculation of the
total time derivative from a volume integral of arbitrary
differentiable function fðt; xÞ simple,

d
dt

Z
VB

ρ�ðt; xÞfðt; xÞd3x ¼
Z
VB

ρ�ðt; xÞ dfðt; xÞ
dt

d3x; ð37Þ

where VB denotes a volume of body B, and the operator of
the total time derivative is

d
dt

¼ ∂
∂tþ vi

∂
∂xi : ð38Þ

In derivation of (37) we have taken into account that the
boundary of the volume of body B can change as time
progresses [17] but there is no flux of baryonic matter
through the boundary of the body. We also notice that
Eq. (37) is exact.
In what follows, we shall give up on the post-Newtonian

expansion parameter ϵ in all subsequent equations because
we work only in the first post-Newtonian approximation,
and leaving out ϵ should not cause confusion. We also use
the geometric system of units, G ¼ c ¼ 1. Physical units
like SI or CGS can be easily put back to our equations by
making use of dimensional analysis [196].

D. Conformal harmonic gauge

The post-Newtonian field equations for the post-
Newtonian components of the metric tensor and scalar
field variables can be derived after substituting the post-
Newtonian series of the previous section to the covariant
equations (18) and (19), and arranging the terms in the

expansion in the order of smallness with respect to
parameter ϵ. The post-Newtonian equations are covariant
like the original field equations that is their form is
independent of the choice of spacetime coordinates.
Hence, their solutions are determined up to four arbitrary
functions reflecting a freedom of coordinate transforma-
tions called the gauge freedom of the metric tensor. It is a
common practice to limit the coordinate arbitrariness
by imposing a gauge condition which limits the choice
of coordinates on spacetime manifold. The gauge condi-
tion does not fix the freedom in choosing coordinates
completely—a restricted class of coordinate transforma-
tions within the imposed gauge still remains. This class of
transformations is called a residual gauge freedom which
plays an important role in theoretical formulation of
relativistic dynamics of an N-body system.
One of the most convenient gauge conditions in a scalar-

tensor theory of gravity was proposed by Nutku [146,147]
as a generalization of the harmonic gauge of general
relativity

∂νðΦ
ffiffiffiffiffiffi
−g

p
gμνÞ ¼ 0: ð39Þ

The Nutku gauge condition (39) is equivalent to the
following condition imposed on the Christoffel symbols:

gμνΓα
μν ¼ gαβ∂β lnΦ: ð40Þ

Let us consider now the Laplace-Beltrami operator intro-
duced above in (8) and write it down in the Nutku gauge in
the case of an arbitrary scalar function F≡ FðxαÞ. It yields

□gF≡ gαβð∂αβF − ∂αF∂β lnΦÞ: ð41Þ

Any function F that is subject to the homogeneous
Laplace-Beltrami equation, □gF ¼ 0, is called harmonic.
The Laplace-Beltrami operator (41) applied to each par-
ticular coordinate being considered as a scalar function
F ¼ xα, gives us

□gxα ¼ −gαβ∂β lnΦ ≠ 0; ð42Þ

which means that the coordinates xα are not harmonic
functions on the spacetime manifold in the Jordan frame
and in the Nutku gauge. Nonetheless, such nonharmonic
coordinates are more convenient in the scalar-tensor theory
of gravity because they allow us to eliminate more
coordinate-dependent terms from the field equations as
compared with the harmonic gauge condition □gxα ¼ 0

which is not equivalent to the Nutku gauge (39). We call the
class of the coordinates satisfying the Nutku gauge (39) the
conformal harmonic coordinates [87]. As we have learned
above, these coordinates are not harmonic in the Jordan
frame but it can be shown that they are harmonic functions
of spacetime manifold in the conformal Einstein frame with
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the metric g̃αβ ≡Φgαβ. Indeed, in the Einstein frame, the
Nutku gauge condition (40) reads ∂βð

ffiffiffiffiffiffi
−g̃

p
g̃αβÞ ¼ 0, which

is exactly the harmonic gauge condition.
The conformal harmonic coordinates have many proper-

ties similar to the harmonic coordinates in general relativity.
Our preferences in choosing the conformal harmonic
coordinates for constructing a theory of motion of extended
celestial bodies are justified by three factors:
(1) the conformal harmonic coordinates become har-

monic coordinates in general relativity when the
scalar field is switched off, Φ → 0,

(2) the conformal harmonic coordinates represent a
natural generalization of the IAU 2000 resolutions
[83] on relativistic reference frames from general
relativity to scalar-tensor theory of gravity, and

(3) the Nutku gauge condition (39) significantly sim-
plifies the field equations and facilitates finding their
solutions like in the case of the harmonic gauge in
general relativity.

Harmonic coordinates in the Jordan frame have been used by
Klioner and Soffel [197] for constructing post-Newtonian
reference frames in PPN formalism. The conformal har-
monic coordinates were employed in our publications
[17,87] for discussing relativistic celestial mechanics of
the Solar System.We shall also use the conformal harmonic
coordinates in the present paper.
The gauge condition (40) does not fix the conformal

harmonic coordinates uniquely. Let us change the coor-
dinates

xα ↦ wα ¼ wαðxαÞ ð43Þ
but keep the Nutku gauge condition (40) intact in the new
coordinates. After applying the coordinate transformation
(43) to (40) it is straightforward to show that the new
conformal harmonic coordinates wα must satisfy a homo-
geneous wave equation

gμνðxβÞ ∂2wα

∂xμ∂xν ¼ 0; ð44Þ

which describes the residual gauge freedom in choosing
the conformal harmonic coordinates that remain after
imposing the Nutku gauge condition on the metric tensor.
Equation (44) has the infinite number of nontrivial solu-
tions defining the entire set of the conformal harmonic
coordinates on a spacetime manifold. The residual gauge
freedom in the scalar-tensor theory of gravity is similar to
that existing in the harmonic gauge of general relativity. We
shall specify the set of the conformal harmonic coordinates
used for derivation of equations of motion of celestial
bodies in N-body system in Sec. IV.

E. Post-Newtonian field equations

Before writing down the field equations, it is worth
noticing that the post-Newtonian approximation of the

scalar-tensor theory of gravity with a variable coupling
function ωðΦÞ has two parameters, ω0 and ω0

0, character-
izing deviation from general relativity. It is more conven-
ient to bring these parameters to the standard form of PPN
parameters, γ and β [88]

γ ¼ ω0 þ 1

ω0 þ 2
; ð45Þ

β ¼ 1þ ω0
0

ð2ω0 þ 3Þð2ω0 þ 4Þ2 : ð46Þ

General relativity is obtained as a limiting case of
the scalar-tensor theory when parameters γ ¼ β ¼ 1 or
ω0 → ∞. Notice that in order to get this limit convergent,
the derivative of the coupling function, ω0

0, must grow
slower than ω3

0 as ω0 approaches infinity. Currently, there
are no experimental data restricting the asymptotic behav-
ior of ω0

0 ∼ ω3
0β which could help us to understand better

the nature of the coupling function ωðΦÞ. This makes the
parameter β a primary target for experimental study in the
near-future gravitational experiments [198–200] including
the advanced lunar laser ranging [201–203] and gravita-
tional wave detectors [91]. The background scalar field Φ0

and the parameter of coupling ω0 determine the observed
numerical value of the universal gravitational constant

G ¼ 2ω0 þ 4

2ω0 þ 3
Φ−1

0 : ð47Þ

Had the background valueΦ0 of the scalar field been driven
by cosmological evolution, the measured values of the
universal gravitational constant G and parameters β and γ
would depend on time [124]. Notice also that in the
geometric system of units G ¼ 1, and Eq. (47) reads

Φ0 ¼
2ω0 þ 4

2ω0 þ 3
¼ 2

γ þ 1
; ð48Þ

which allows us to express the background value Φ0 of the
scalar field in terms of the PPN parameter γ.
Let us now substitute the post-Newtonian expansions

given by Eqs. (24)–(30) to the field equations (18) and (19)
and make use of the conformal harmonic gauge condition
(39) in the first post-Newtonian approximation. It reads

∂0ðhkk þ h00Þ þ 2ð1 − γÞ∂0φ ¼ 2∂jh0j; ð49Þ

∂iðhkk − h00Þ þ 2ð1 − γÞ∂iφ ¼ 2∂jhij; ð50Þ

where, for the sake of simplifying the field equations, we
have introduced a new notation of the post-Newtonian
perturbation, ϕð2Þ, of the scalar field, namely,

ϕð2Þ ≡ ð1 − γÞφ: ð51Þ
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It is worth noting that in the first post-Newtonian approxi-

mation the metric tensor component hð4Þ00 ≡ l00 does not
enter (49) and (50) and should be taken into account only at
the second post-Newtonian approximation which we do not
consider in the present paper.
After making use of the stress-energy tensor (31)–(34),

definitions of the PPN parameters (45)–(46) and (48),
one obtains the final form of the post-Newtonian field
equations:

□ηφ ¼ −4πρ�; ð52Þ

□ηh00 ¼ −8πγρ�; ð53Þ

□ηhij ¼ −8πγρ�δij; ð54Þ

□ηh0i ¼ 8πð1þ γÞρ�vi; ð55Þ

□ηl00¼−8πρ�
��

γþ1

2

�
v2þΠþ γ

skk

ρ�
−
hkk
6

− ð2β− γ−1Þφ
�
−
1

2
□η½h200þ4ðβ−1Þφ2�; ð56Þ

where the η-box symbol, □η ≡ ημν∂μ∂ν, is the
D’Alembert (wave) operator of the Minkowski spacetime.
Equations (52)–(56) are valid in the conformal harmonic
coordinate charts defined by the gauge condition (39)
imposed on the components of the metric tensor. Their
solution depends on the boundary conditions imposed on
the metric tensor and the scalar field perturbations. In their
own turn, the boundary conditions singled out a certain
type of coordinate chart. We discuss the coordinate charts
in next section.

IV. PARAMETRIZED POST-NEWTONIAN
COORDINATES

Standard textbooks on the post-Newtonian celestial
mechanics [16,17,48,96,101,126,159] derives post-
Newtonian equations of motion in a particular gauge to
suppress the gauge-dependent effects and to bring the
equations to a form which is suitable for finding analytic
solutions and for computational applications like numerical
orbital simulations, data processing, etc. The coordinate-
based approach is also used for solving the field equations
and deriving relativistic equations of motion of compact
inspiralling binaries for the purposes of gravitational wave
astronomy [29–31,204]. The post-Newtonian equations
admit a large freedom in making the gauge (coordinate)
transformations on spacetime manifold as well as in the
configuration space of the orbital parameters characterizing
motion of bodies [205,206]. Therefore, each single term
taken in such post-Newtonian equations separately from the
othersmakes no physical sense—it can be always changed or
even eliminated by making the post-Newtonian coordinate

transformations. Only after the equations are solved and their
solutions are substituted to observables can we unambigu-
ously discuss gravitational physics because the observables
are invariantly defined. Therefore, a primary goal of the
present paper is to derive the post-Newtonian equations of
translational and rotational motion of arbitrarily structured
bodies in the N-body problem in a fully covariant form.
Nonetheless, the coordinate-dependent form of equations of
motion is more convenient for practical use in various
applications. This is why we, first, derive the equations of
motion in the conformal harmonic coordinates and, then,
establish their correspondence to the covariant form of the
equations of motion.
Derivation of the covariant equations of motion of bodies

from the field equations can be achieved directly by the
methods of differential geometry like in the Mathisson-
Papapetrou-Dixon formalism. They can be compared with
the coordinate-dependent form of the equations of motion
by projecting the corresponding covariant quantities onto
the coordinate basis but we use an alternative approach in
the present paper. More specifically, we build a set of N
local coordinate charts adapted to each body, derive
equations of motion of each body in the local chart, and
then, prolongate the coordinate-dependent description to
the covariant form by making use of the Einstein principle
of equivalence (EEP) applied on the effective background
spacetime manifold M̄ to the multipoles propagated along
the accelerated worldline of the origin of the local coor-
dinates. This procedure is equivalent to “comma-goes-to-
semicolon” rule [165][Chapter 16] applied on the worldline
of the origin of the local coordinates. EEP effectively
allows us to replace each spatial partial derivative ∂̂i in the
local coordinates with a covariant derivative ∇̄α projected
on the hypersurface being orthogonal to the 4-velocity ūα

of the origin of the local coordinates. It also replaces each
time derivative in the local coordinates with the Fermi-
Walker covariant derivative of the Fermi-Walker transport;
see Sec. XI E for more details.
Nonetheless, it is not guaranteed that taking the first

post-Newtonian equations of motion and “covariantizing”
them by making use of the comma-goes-to-semicolon rule
will automatically lead to results which are even formally
valid in the fast motion and thus, for binaries, strong-field
regime. Each term in the “generalized” covariant equations
of motion results from a corresponding term in the post-
Newtonian equations of motion, which have themselves
relied on the post-Newtonian field equations for their
derivation. It is certainly conceivable and perhaps even
likely, especially at sufficiently high orders in the multipole
expansions, that there could exist higher-order nonlinear-
ities and higher-order time-derivative terms in some appro-
priate formally valid covariant equations of motion which
would leave no imprint on the appropriately expanded
post-Newtonian equations of motion. Such terms would
then not be produced by the covariantization procedure as
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implemented in the present paper. The limits of application
of the EEP to the derivation of the covariant equations of
motion beyond the first post-Newtonian approximation
requires additional study.
Direct derivation of the covariant equations of motion of

extended bodies having an arbitrary set of multipoles has
been proposed in general relativity by Mathisson [4,5],
further developed by Tulczyjew [207], Tulczyjew and
Tulczyjew [208], Papapetrou [6,134,209], Taub [137],
Madore [138] and, especially, by Dixon [7–11] with some
improvements made by Ehlers and Rudolph [139],
Schattner [140] and Dixon [136]. Subsequent development
of the MPD covariant approach [143,144,210,211] brought
more progress to our understanding of the covariant nature
of motion but it has not yet been elaborated to the extent
that allows us to apply the formalism in astrophysical work.
The MPD approach operates on worldlines of the center-

of-mass of the extended bodies which are considered as
pointlike particles endowed with an infinite set of Dixon’s
multipoles [9]. Such treatment of the extended bodies
requires one to replace the continuous stress-energy tensor
of matter with a, so-called, stress-energy skeleton defined
in terms of distributions [212]. The skeleton must lead to
the same solution of the field equations and to the same
equations of motion as the continuous stress-energy
tensor. This identity has been checked in the linearized
approximation of general relativity but it is not yet clear
how to build the skeleton in the nonlinear gravity regime
that hampers extension of the MPD approach to astro-
physical objects with strong gravity like neutron stars and
black holes whose equations of motion are currently
derived by the matched asymptotic expansions technique
[55–57,213,214].
The MPD covariant approach to the problem of motion

of an N-body system of extended bodies has an ambiguity
concerning the most optimal definition of the center of
mass of an extended body. There are four competing
mathematical definitions based on the, so-called, spin
supplementary condition demanding the intrinsic angular
momentum (spin) of the body to be orthogonal to either
4-velocity of the center of mass (Mathisson-Pirani condi-
tion) or to the body’s linear momentum (Tulczyjew-Dixon
condition) or to some timelike vector (Newton-Wigner
condition) or to the unit vector being tangent to the
coordinate time axis (Corinaldesi-Papapetrou condition).
Depending on the choice of the spin supplementary con-
dition, the MPD equations of motion take different forms
leading to different solutions of the equations of motion
which are intensively discussed in literature—see, e.g.,
[15,211,215–217]—but there is no general agreementwhich
solution corresponds to a real physical motion of the body.
The above-mentioned problems with the MPD formal-

ism convinced us to use a more practical, coordinate-based
route to the derivation of covariant equations of motion
used along with the method of asymptotic matching of the

solutions of the internal and external problems in the N-
body problem and the Blanchet-Damour (BD) multipole
formalism. The employment of a set of global and local
coordinates is a necessary intermediate step in building the
covariant theory of motion of extended bodies. Coordinates
are necessary to give a physically meaningful definition of
the BD multipoles of the bodies in the nonlinear gravity
regime, to unambiguously single out the center of mass of
each body and its worldline, and to separate the self-action
force of each body from the external gravitational force of
the other bodies of an N-body system. The coordinate
description is practically useful in astrophysics for com-
putation of orbital motion of inspiralling binaries and in the
relativistic celestial mechanics of the Solar System [17]. On
the other hand, the coordinate description of the equations
of motion can be easily converted to the covariant form as
soon as the theory is completed. As we have learned above,
discussion of the dynamics of the N-body problem requires
introduction of one global and N local coordinate charts
adapted to each body. Geometric properties of the coor-
dinate charts as well as their kinematic and dynamic
characteristics are defined by the boundary conditions
imposed on the metric tensor and scalar field.

A. Global coordinate chart

1. Boundary conditions

We consider an isolated system consisting of N-extended
bodies which are gravitationally bound, occupy a finite
volume of space, and there is no other matter outside it.
Since there is no matter outside the system, the spacetime
manifold with the metric tensor gαβ can be considered at
infinity as asymptotically approaching to flat spacetime
with the Minkowski metric ηαβ ¼ diagð−1;þ1;þ1;þ1Þ.
We further assume, in accordance with the post-Newtonian
approximations, that there are no physical singularities on
the manifold like black holes, wormholes, etc., among the
bodies of the system, and that the bodies move slowly and
the gravitational field is weak everywhere.
These founding assumptions allow us to cover the whole

spacetime manifold with a global coordinate chart denoted
as xα ¼ ðx0; xiÞ, where x0 ¼ t is the coordinate time and
xi ≡ x are the spatial coordinates. The global coordinates
are used for describing orbital dynamics of the bodies, for
calculating generation and propagation of gravitational
waves emitted by the isolated system, and for formulating
the global laws of conservation and conserved quantities
[119]. The coordinate time, t, and spatial coordinates, xi,
have no immediate physical meaning in the regions of
space where the gravitational field is not negligible.
However, when one approaches to infinity the global
coordinates approximate the Lorentz coordinates of the
inertial observer in the Minkowski space. For this reason,
one can interpret the coordinate time t and the spatial
coordinates xi respectively as the proper time and the
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proper distance measured by a set of the inertial observers
located at rest at spatial infinity [126]. The global coor-
dinates are not defined uniquely but up to a group of
transformation preserving the asymptotic flatness of space-
time. Contrary to the original expectations this group of
transformation is not a 10-parametric Poincaré group but
the infinite-dimensional BMS group which is isomorphic to
the semidirect product of the homogeneous Lorentz group
with the Abelian group of supertranslations [106]. The
Poincaré group is a subgroup of the BMS group.
A precise mathematical description of properties of the

global post-Newtonian coordinates can be given in terms of
the metric tensor that is the solution of the field equa-
tions (53)–(56) with the boundary conditions imposed at
infinity. To formulate the boundary conditions, we intro-
duce the metric perturbation

hαβðt; xÞ≡ gαβðt; xÞ − ηαβ; ð57Þ

where hαβ is the full post-Newtonian series defined in (23).
The global coordinates must match asymptotically with the
inertial coordinates of the Minkowski spacetime which
presumes that the products rhαβ and r2hαβ;γ where r ¼ jxj,
are bounded at spatial infinity [126,184], while at the future
null infinity

lim
r→∞

tþr¼const:

hαβðt; xÞ ¼ 0: ð58Þ

An additional boundary condition must be imposed on the
first derivatives of the metric tensor to exclude nonphysical
(advanced) radiative solutions associated with gravitational
waves incoming to the N-body system from infinity. This
condition is imposed because we have assumed that there
are no sources of gravitational waves outside of the isolated
N-body system. It is formulated as follows [126,184]:

lim
r→∞

tþr¼const:

½∂rðrhαβÞ þ ∂tðrhαβÞ� ¼ 0; ð59Þ

where ∂r and ∂t denote the partial derivatives with respect to
radial coordinate r and time t, respectively. Though, the first
post-Newtonian approximation does not include gravita-
tional waves, the boundary condition (59) tells us to choose
the retarded solution of the field equations (53)–(56).
Similarly, we impose the “no-incoming-radiation”

conditions on the perturbation φ of the scalar field defined
in (51),

lim
r→∞

tþr¼const:

φðt; xÞ ¼ 0; ð60Þ

lim
r→∞

tþr¼const:

½∂rðrφÞ þ ∂tðrφÞ� ¼ 0: ð61Þ

These conditions eliminates the advanced radiative solution
for the scalar field.

2. Scalar field

The scalar field in the global coordinates is obtained as a
solution of the field equation (52) with the no-incoming
(scalar) radiation boundary conditions (60), (61). This
solution is a retarded potential

φðt; xÞ ¼
Z
R3

ρ�ðt − jx − x0j; x0Þ
jx − x0j d3x0; ð62Þ

where the integration is performed over the entire spaceR3.
The post-Newtonian expansion of the retarded potential is
obtained by expanding the integrand in (62) around the
instant of time t, and integrating each term of the expan-
sion. In what follows, we need merely the first term of the
expansion. Moreover, since the density of matter ρ�
vanishes outside the bodies of the N-body system, the
integration is carried out over only the volumes of the
bodies, which yield

φðt; xÞ ¼ Uðt; xÞ: ð63Þ

Here,

Uðt; xÞ ¼
X
C

UCðt; xÞ ð64Þ

is a linear superposition of the Newtonian gravitational
potentials UCðt; xÞ of the bodies ðC ¼ 1; 2;…; NÞ, and

UCðt; xÞ ¼
Z
VC

ρ�ðt; x0Þ
jx − x0j d

3x0; ð65Þ

where VC denotes the spatial volume occupied by the
body C.
Subsequent derivation requires one to single out one of

the bodies, let say a body B, and split the scalar field in two
parts—internal and external,

Uðt; xÞ ¼ UBðt; xÞ þ Ūðt; xÞ; ð66Þ

where UB denotes the internal gravitational potential
produced by the body B alone,

UBðt; xÞ ¼
Z
VB

ρ�ðt; x0Þ
jx − x0j d

3x0; ð67Þ

and

Ūðt; xÞ ¼
X
C≠B

UCðt; xÞ; ð68Þ

denotes the external gravitational potential of all other
bodies of the N-body system but the body B.
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3. Metric tensor

The metric tensor gαβðt; xÞ in the global coordinates is
obtained by solving the field equations (53)–(56) with the
boundary conditions (58)–(59). It yields [17,87]

h00ðt; xÞ ¼ 2Uðt; xÞ; ð69Þ
hijðt; xÞ ¼ 2γδijUðt; xÞ; ð70Þ

h0iðt; xÞ ¼ −2ð1þ γÞUiðt; xÞ; ð71Þ

l00ðt; xÞ ¼ 2Ψðt; xÞ − 2βU2ðt; xÞ − ∂ttχðt; xÞ; ð72Þ

where the operator ∂tt ≡ ∂2=∂t2, the post-Newtonian
potential

Ψðt; xÞ≡
�
γ þ 1

2

�
Ψ1ðt; xÞ þ ð1 − 2βÞΨ2ðt; xÞ

þ Ψ3ðt; xÞ þ γΨ4ðt; xÞ; ð73Þ
and parameters γ and β have been defined in (45) and (46)
respectively.
Newtonian gravitational potential U has been defined

above in (64). Post-Newtonian potentials Ui, χ, Ψn (n ¼ 1,
2, 3, 4) are linear combinations of the gravitational
potentials produced by the bodies of the N-body system,

Uiðt; xÞ ¼
X
C

Ui
Cðt; xÞ;

Ψnðt; xÞ ¼
X
C

ΨCnðt; xÞ; χðt; xÞ ¼
X
C

χCðt; xÞ: ð74Þ

Here, the summation index C ¼ 1; 2;…; N numerates the
bodies of the N-body system, and the gravitational poten-
tials of body C are defined as integrals performed over a
spatial volume VC occupied by the body’s matter,

Ui
Cðt; xÞ ¼

Z
VC

ρ�ðt; x0Þviðt; x0Þ
jx − x0j d3x0; ð75Þ

ΨC1ðt; xÞ ¼
Z
VC

ρ�ðt; x0Þv2ðt; x0Þ
jx − x0j d3x0; ð76Þ

ΨC2ðt; xÞ ¼
Z
VC

ρ�ðt; x0ÞUðt; x0Þ
jx − x0j d3x0; ð77Þ

ΨC3ðt; xÞ ¼
Z
VC

ρ�ðt; x0ÞΠðt; x0Þ
jx − x0j d3x0; ð78Þ

ΨC4ðt; xÞ ¼
Z
VC

skkðt; x0Þ
jx − x0j d

3x0; ð79Þ

where vi ¼ viðt; xÞ is velocity of the element of matter
located at time t at a spatial point xi ¼ x in the global
coordinates, and v2 ¼ δijvivj.

Superpotential χC is determined as a particular solution
of the inhomogeneous Poisson equation

△χCðt; xÞ ¼ −2UCðt; xÞ ð80Þ

where△≡ δij∂i∂j is the Laplace operator in the Euclidean
space. The source of the superpotential χC is the Newtonian
gravitational potential UC that presents everywhere in a
whole space. Nevertheless, because it falls off as 1=r at
infinity, the solution of the Poisson equation (80) has a
compact support, and is given by an integral taken over the
finite volume of body C [88,126]

χCðt; xÞ ¼ −
Z
VC

ρ�ðt; x0Þjx − x0jd3x0: ð81Þ

It is useful to emphasize that all of above-given volume
integrals defining the metric tensor in the global coordi-
nates are taken on the spacelike hypersurface Ht of
constant coordinate time t. Changing the time coordinate
does not change the functional form of the integrals but
transforms the time hypersurface that makes the numerical
value of the integrals different. This remark is important for
understanding the post-Newtonian transformations and the
technique of matched asymptotic expansions of the metric
tensor and scalar field which we explain below in Sec. V.
In what follows we single out a body B, and split all post-

Newtonian potentials in two parts—internal and external—
like we did above in (66) for the Newtonian gravitational
potential

Uiðt; xÞ ¼ Ui
Bðt; xÞ þ Ūiðt; xÞ; ð82Þ

Ψðt; xÞ ¼ ΨBðt; xÞ þ Ψ̄ðt; xÞ; ð83Þ

χðt; xÞ ¼ χBðt; xÞ þ χ̄ðt; xÞ: ð84Þ

Here, functions with subindex B denote the internal
potentials produced by the body B alone,

Ui
Bðt; xÞ ¼

Z
VB

ρ�ðt; x0Þviðt; x0Þ
jx − x0j d3x0; ð85Þ

ΨB1ðt; xÞ ¼
Z
VB

ρ�ðt; x0Þv2ðt; x0Þ
jx − x0j d3x0; ð86Þ

ΨB2ðt; xÞ ¼
Z
VB

ρ�ðt; x0ÞUðt; x0Þ
jx − x0j d3x0; ð87Þ

ΨB3ðt; xÞ ¼
Z
VB

ρ�ðt; x0ÞΠðt; x0Þ
jx − x0j d3x0; ð88Þ

ΨB4ðt; xÞ ¼
Z
VB

skkðt; x0Þ
jx − x0j d

3x0; ð89Þ
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χBðt; xÞ ¼ −
Z
VB

ρ�ðt; x0Þjx − x0jd3x0; ð90Þ

and functions covered with a bar denote the external
potentials,

Ūiðt; xÞ ¼
X
C≠B

Ui
Cðt; xÞ; Ψ̄ðt; xÞ ¼

X
C≠B

ΨCðt; xÞ;

χ̄ðt; xÞ ¼
X
C≠B

χCðt; xÞ; ð91Þ

where potentialsUi
C,ΨC, χC are given by integrals (75)–(79)

respectively. It is worth emphasizing [218] that the integrand
of integrals (77), (87) depends on the total gravitational
potential U of all bodies of an N-body system as defined in
(64). It is also important to notice that the Newtonian
gravitational potential Uðt; xÞ has a double camouflage in
the scalar-tensor theory of gravity. It appears in the solution
(63) of the field equation for scalar field φ, and, also, in (69)
and (70) describing perturbations of the metric tensor
components h00 and hij. It would be wrong, however, to
interpret the metric tensor component h00 ¼ 2U, and the
trace h≡ δijhij ¼ hkk ¼ 6U like scalars; they can be
expressed in terms of the scalar field φ alone only in the
global coordinates. By definition, the metric tensor pertur-
bations,h00 andhkk, are transformed as tensors not as scalars.
A mathematical description of orbital dynamics of

extended bodies in anN-body systemwould be significantly
simplified if we could keep the position of the center of mass
of an N-body system at the origin of the global coordinates
for any instant of time. This condition suggests that the
dipole, Di, of the gravitational field of an N-body system in
the multipolar expansion of h00ðt; xÞ component of the
metric tensor perturbation vanishes along with the dipole
(linear momentum), Pi, in the multipolar expansion of the
h0i component [165]. This condition cannot be satisfied at
higher post-Newtonian approximations due to the gravita-
tional wave recoil which makes the system’s center of mass
movingwith acceleration [219]. Nonetheless, in the first and
second post-Newtonian approximations the orbital dynam-
ics of an N-body system is fully determined by the
Lagrangian admitting ten conservation laws corresponding
to ten infinitesimal generators of the Poincaré group pre-
serving the invariance of the Lagrangian of the N-body
problem [48,126,220–222]. The post-Newtonian law of
conservation of the total linear momentum, Pi, allows
one to hold the center of mass of an N-body system always
at the origin of the global coordinate chart [17].

B. Local coordinate chart

1. Boundary conditions

We label the local coordinates adapted to body B by
letters wα

B ¼ ðw0
B; w

i
BÞ ¼ ðuB; wi

BÞ where uB stands for the

local coordinate time and wi
B denote the spatial coordinates

ðB ¼ 1; 2;…; NÞ. There areN local coordinate charts—one
for each body. In a case when there is no confusion, we drop
off the subindex B in the notation of the local coordinates.
Hence, by default the local coordinates adapted to body B
will be denoted by wα ¼ ðu; wiÞ≡ ðuB; wi

BÞ. The origin of
the local coordinates adapted to body B moves along a
reference worldline W which is chosen to be sufficiently
close to the worldline Z of the center of mass of body B.
Initially, the two worldlines are different but can be made
identical after careful study of the problem of definition of
the center of mass and its equations of motion relative toW.
This will be done in Sec. VI.
The local coordinates are used to describe the internal

motion of matter inside the body, to define its center of
mass, linear momentum, spin and the other, higher-order
internal multipoles of body’s gravitational field. The
importance of the local coordinates for adequate math-
ematical description of relativistic dynamics of extended,
self-gravitating massive bodies in an N-body system was
emphasized by Fock [126]. Concrete mathematical con-
struction of the body-adapted, local coordinates was
achieved in the post-Newtonian approximation by the
technique of asymptotic matching in papers [69,156]—
for extended bodies, and in papers [56,223]—for black
holes. Later on, a more rigorous mathematical BK-DSX
formalism of construction of the local coordinates has been
elaborated in a series of publications [72–76] which led to
the development and adoption of the IAU 2000 resolutions
on general-relativistic reference frames in the Solar System
[17,83,159]. Below we extend this formalism to the scalar-
tensor theory of gravity.
The scalar field and metric tensor in the local coordinates

adapted to body B are solutions of the field equations (52)–
(54) inside a bounded spatial domain enclosing worldlineZ
of the center of mass of body B and having radius spreading
out to another nearest body from the N-body system. Thus,
the right side of the inhomogeneous equations (52)–(56)
includes only matter of body B. In order to distinguish
solutions of the field equations in the local coordinates from
the corresponding solutions of the field equations in the
global coordinates, we put a hat over functions of the local
coordinates. The solution of the field equation for metric
tensor or scalar field in the local coordinates is a linear
combination of a particular solution of the inhomogeneous
equation and a general solution of a homogeneous equation.
The particular solution yields the internal gravitational field
of body B alone while the general solution of the homo-
geneous equation pertains to the external field of other
bodiesC ≠ B.Thenonlinear nature of the field equation (56)
brings in mixed terms l00 to the metric tensor perturbation
describing a coupling between the first-order perturbations.
The post-Newtonian solution of the scalar field equa-

tion (52) in the local coordinates adapted to body B is
written as a sum of two terms
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φ̂ðu;wÞ ¼ φ̂intðu;wÞ þ φ̂extðu;wÞ; ð92Þ

describing contributions of the internal matter of body B
and external bodies C ≠ B respectively. If we had no other
bodies but the body B, the internal solution had to vanish at
infinity. Hence, it obeys the boundary conditions similar to
(60) and (61). The external solution must be regular at the
origin of the local coordinates and diverges at infinity.
Perturbation of the metric tensor in the local coordinates

is denoted

ĥμνðu;wÞ ¼ ĝμνðu;wÞ − ημν; ð93Þ

where each component of ĥμν is expanded in the post-
Newtonian series similar to (24)–(26),

ĥ00ðu;wÞ ¼ ϵ2ĥð2Þ00 ðu;wÞ þ ϵ4ĥð4Þ00 ðu;wÞ þOðϵ6Þ; ð94Þ

ĥ0iðu;wÞ ¼ ϵ3ĥð3Þ0i ðu;wÞ þOðϵ5Þ; ð95Þ

ĥijðu;wÞ ¼ δij þ ϵ2ĥð2Þij ðu;wÞ þOðϵ4Þ; ð96Þ

and each term of the post-Newtonian series will be denoted

ĥ00 ≡ ĥð2Þ00 ; l̂00 ≡ ĥð4Þ00 ; ĥ0i ≡ ĥð3Þ0i ;

ĥij ≡ ĥð2Þij ; ĥ≡ ĥð2Þkk : ð97Þ

The post-Newtonian solution of the field equations (53)–
(56) in the local coordinates is given as a sum of three
terms [58]

ĥμνðu;wÞ ¼ ĥintμνðu;wÞ þ ĥextμν ðu;wÞ þ ĥmix
μν ðu;wÞ; ð98Þ

where ĥintμν describes the gravitational field generated by the
internal matter of body B, ĥextμν describes the tidal gravita-
tional field produced by external bodies C ≠ B, and the
term ĥmix

μν is a contribution due to the nonlinear coupling of
the internal and external metric perturbations in the field
equation (56). In the first post-Newtonian approximation
the coupling term ĥmix

μν appears only in the l̂00ðu;wÞ
component of the metric tensor perturbation. The body-
frame field ĥintμνðu;wÞ is the same as if the other bodies of
the N-body system were absent. Therefore, it is defined by
imposing the boundary conditions similar to (58) and (59).
Since the external metric perturbation ĥextμν ðu;wÞ has a
physical meaning of the tidal field caused by external
bodies, it must be regular on the worldline W of the origin
of the local coordinates. The coupling field ĥmix

μν ðu;wÞ is
obtained directly by finding a particular solution of the
nonlinear part of the field equation (56). Since the internal
and external part of the metric tensor perturbation have
been already specified, there is no need to impose a

separate boundary condition on the coupling component
of the metric tensor perturbation.
The origin of the local coordinates moves along some,

yet unspecified, worldline, W, which will be determined
later on by matching the solutions of the field equations
obtained in the local and global coordinates in the buffer
domain where the two coordinate charts overlap. Because
we are interested in derivation of equations of motion of the
center of mass of each body, we wish to make the origin of
the local coordinates coinciding with the center of mass of
the body under consideration at any instant of time. This
requires a precise post-Newtonian definition of the center
of mass. Any deficiency in the definition of a body’s center
of mass introduces to the equations of motion fictitious
forces and torques that have no direct physical meaning.
We prove in the present paper that the freedom in choosing
the position of the center of mass is large enough to
completely remove such fictitious forces and torques from
the equations of motion of extended bodies in the scalar-
tensor theory of gravity.
We should also impose a limitationon the rotationof spatial

axes of the local coordinates as theymove alongworldlineW.
Spatial axes of the local coordinates are called kinematical
nonrotating if their spatial orientation does not change with
respect to the spatial axes of the global coordinates at infinity
as time goes on [224,225]. Dynamical nonrotating spatial
coordinates are defined by demanding that equations of
motion of test particles in the local coordinates do not have
the Coriolis and centrifugal forces [224]. Because anN-body
system is isolated the spatial axes of the global coordinate do
not rotate in any sense. On the other hand, the local
coordinates are adapted to a single body B that is not fully
isolated from external gravitational environment of other
bodies of anN-body system. Therefore, we have to postulate
whether the spatial axes of the local coordinates are non-
rotating in a kinematic or dynamic sense. For the sake of
mathematical simplifications in writing solutions of the field
equations it is more convenient to postulate that the spatial
axes of the local coordinates are not rotating dynamically.
Relativistic nature of gravitational interaction suggests that
the spatial axes of the dynamically nonrotating local coor-
dinates will be slowly rotating (precessing) in the kinematic
sensewith respect to the spatial axes of theglobal coordinates.
Relativistic precession of the spatial axes of the local
coordinates has a pure geometric origin and includes three
physically different terms that are called respectively de-Sitter
(geodetic), Lense-Thirring (gravitomagnetic), and Thomas
precession [165]. The exact formula for the matrix of the
kinematic precession of spatial axes of the local coordinates is
given below in Eq. (151).

2. Scalar field: Internal and external solutions

In the local coordinates adapted to body B, the internal,
φ̂intðu;wÞ, and external, φ̂extðu;wÞ, parts of scalar field
perturbation (92) have the following form:
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φ̂intðu;wÞ ¼ ÛBðu;wÞ; ð99Þ

φ̂extðu;wÞ ¼
X∞
l¼0

1

l!
PLwL: ð100Þ

Here, the scalar field φ̂intðu;wÞ is a particular solution of
inhomogeneous equation (52) with the right-hand side
depending solely on the matter density ρ� of body B. It
is expressed in terms of the Newtonian gravitational
potential of body B, ÛBðu;wÞ, that is defined below in
Eq. (106). The scalar field, φ̂extðu;wÞ, is a general solution
of a homogeneous Laplace equation (52) without sources.
As φ̂extðu;wÞ must be regular at the origin of the local
coordinates, the solution is given in the form of a Maclaurin
series with respect to STF harmonic polynomials,
wL ≡ whi1…ili, made out of the products of the spatial local
coordinateswi and theKronecker symbols δij; see definition
of STF tensor projection in (2). Coefficients of the expansion
are scalar external multipoles, PL ≡ Phi1…iliðuÞ, which are
STFCartesian tensors in 3-dimensional Euclidean space that
is tangent to hypersurfaceHu of constant coordinate time u
taken at the origin of the local coordinates adapted to bodyB.

3. Metric tensor: Internal solution

The boundary conditions imposed on the internal sol-
ution ĥintαβ for the metric tensor perturbation in the local
coordinates adapted to body B are identical with those
given in Eqs. (58) and (59). For this reason the internal
solution has the same form as in the global coordinates but
all functions now refer solely to body B. We obtain

ĥint00ðu;wÞ ¼ 2ÛBðu;wÞ; ð101Þ

ĥint0i ðu;wÞ ¼ −2ð1þ γÞÛi
Bðu;wÞ; ð102Þ

ĥintij ðu;wÞ ¼ 2γδijÛBðu;wÞ; ð103Þ

l̂int00ðu;wÞ¼ 2Ψ̂Bðu;wÞ−2βÛ2
Bðu;wÞ−∂uuχ̂Bðu;wÞ; ð104Þ

where the partial time derivative ∂uu ≡ ∂2=∂u2,

Ψ̂Bðu;wÞ ¼
�
γ þ 1

2

�
Ψ̂B1ðu;wÞ þ ð1 − 2βÞΨ̂B2ðu;wÞ

þ Ψ̂B3ðu;wÞ þ γΨ̂B4ðu;wÞ; ð105Þ

and index B indicates that the potential having this index is
generated by matter of body B only. All the potentials are
defined as integrals over volume VB occupied by matter of
body B:

ÛBðu;wÞ ¼
Z
VB

ρ�ðu;w0Þ
jw − w0j d

3w0; ð106Þ

Ûi
Bðu;wÞ ¼

Z
VB

ρ�ðu;w0Þνiðu;w0Þ
jw − w0j d3w0; ð107Þ

Ψ̂B1ðu;wÞ ¼
Z
VB

ρ�ðu;w0Þν2ðu;w0Þ
jw − w0j d3w0; ð108Þ

Ψ̂B2ðu;wÞ ¼
Z
VB

ρ�ðu;w0ÞÛBðu;w0Þ
jw − w0j d3w0; ð109Þ

Ψ̂B3ðu;wÞ ¼
Z
VB

ρ�ðu;w0ÞΠðu;w0Þ
jw − w0j d3w0; ð110Þ

Ψ̂B4ðu;wÞ ¼
Z
VB

skkðu;w0Þ
jw − w0j d3w0; ð111Þ

χ̂Bðu;wÞ ¼ −
Z
VB

ρ�ðu;w0Þjw − w0jd3w0: ð112Þ

νi ¼ dwi=du is the coordinate velocity of body’s matter
with respect to the origin of the local coordinates. Notice
that the integrals (106)–(112) are taken over hypersurface
Hu of coordinate time u that is different from the hyper-
surface Ht of constant coordinate time t, which is used for
spatial integration in Eqs. (65), (75)–(79) defining gravi-
tational potentials in the global coordinates xα. This is
important for the post-Newtonian transformation of gravi-
tational potentials as it requires one to use a Lie transport of
functions from hypersurface Hu to hypersurface Ht; for
more details, see [ [17], Sec. 5. 2. 3].
The internal potentials of the metric tensor in the local

coordinates given by (101) and (107) are connected
through the exact equation

∂uÛBðu;wÞ þ ∂iÛ
i
Bðu;wÞ ¼ 0; ð113Þ

which is a direct consequence of the equation of continuity
(36) applied in the local coordinates.

4. Metric tensor: External solution

The solution of the homogeneous field equations (53)–
(55) for the linearized metric tensor perturbation in the local
coordinates adapted to body B yields the tidal gravitational
field of external bodies of an N-body system in terms of the
external STF multipoles [17,87]. The external solution is
convergent at the origin of the local coordinates and its
most general form is given by Kopeikin et al. [17] and
Kopeikin and Vlasov [87]

ĥext00 ðu;wÞ ¼ 2
X∞
l¼1

1

l!
QLwL; ð114Þ

ĥext0i ðu;wÞ ¼
X∞
l¼2

l
ðlþ 1Þ! εipqCpL−1w

qL−1 þ
X∞
l¼0

1

l!
ZiLwL

þ
X∞
l¼0

1

l!
SLwiL; ð115Þ
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ĥextij ðu;wÞ¼ 2δij
X∞
l¼1

1

l!
ALwLþ

X∞
l¼0

1

l!
BLwijL

þ
X∞
l¼1

1

l!
½DiL−1wjL−1þ εipqEpL−1wjqL−1�symðijÞ

þ
X∞
l¼2

1

l!
½FijL−2wL−2þ εpqðiGjÞpL−2wqL−2�;

ð116Þ

where AL, BL, etc., are STF Cartesian tensors defined on
worldline W of the origin of the local coordinate, and the
symbol symðijÞ denotes symmetrization.
Tensors AL, BL, etc., are the external multipoles which

depend on the coordinate time u only, that is AL ≡ ALðuÞ,
BL ≡ BLðuÞ, etc. Four gauge conditions (49) and (50)
imposed on the components (114)–(116) of the metric
tensor perturbations reveal that only six out of ten external
multipoles are algebraically independent. This allows one
to eliminate four multipoles, BL, EL, SL,DL, from the local
metric perturbation [17,87]. The remaining six multipoles,
AL, CL, FL, GL,QL, ZL, can be constrained by making use
of the residual gauge freedom allowed by the differential
equation (44) that excludes four other multipoles—AL, FL,
GL, ZL [17,87]. Finally, only two families of the external
multipoles—gravitoelectric multipoles QL and gravito-
magnetic multipoles CL—have real physical meaning
reflecting the existence of 2 d.o.f. (polarization states)
for the tidal gravitational field of the metric tensor.
After fixing the gauge freedom as indicated above, the

external metric tensor assumes in the local coordinates the
following form:

ĥext00 ðu;wÞ ¼ 2
X∞
l¼1

1

l!
QLwL; ð117Þ

ĥext0i ðu;wÞ¼
1− γ

3
_Pwiþ

X∞
l¼1

lþ1

ðlþ2Þ!εipqCpLw
qL

þ2
X∞
l¼1

2lþ1

ð2lþ3Þðlþ1Þ! ½2
_QLþðγ−1Þ _PL�wiL;

ð118Þ

ĥextij ðu;wÞ ¼ 2δij
X∞
l¼1

1

l!
½QL þ ðγ − 1ÞPL�wL; ð119Þ

where the scalar external multipoles appear in the metric
perturbations through the gauge conditions (49) and (50),
and a dot above the external multipoles denotes a total
derivative with respect to time u. The external dipole Qi is
acceleration of worldlineW of the origin of the local frame
adapted to body B with respect to a worldline of a freely
falling particle, and monopole P is the value of the scalar

field generated by external bodies C ≠ B, taken at the
origin of the local coordinates [17]. It cannot be excluded
from the ĥext0i component by gauge transformation. On the
other hand, the monopole Q in the metric perturbation is
gauge dependent and has been eliminated by rescaling of
the local coordinate time.
The nonlinear part l̂00 of the perturbation of the external

metric tensor is determined as a particular solution of the
field equation (56) that yields [87]

l̂ext00 ðu;wÞ¼−2
�X∞

l¼1

1

l!
QLwL

�
2

−2ðβ−1Þ
�X∞

l¼1

1

l!
PLwL

�
2

þ
X∞
l¼1

1

ð2lþ3Þl!Q̈LwLw2; ð120Þ

where, here and everywhere else, a double dot above a
function denotes a second derivative with respect to time u.
We have excluded the scalar field components P2 and PPi
from the second term in the right-hand side of (120)
because P2 is removed by rescaling of the local coordinate
time while PPi is absorbed to, yet unknown, acceleration
Qi, in (117). We might also decompose the product of two
sums in (120) in algebraic sum of irreducible components
and absorb the STF part of the decomposition to multipoles
QL (l ≥ 2). However, this way of writing solution (120)
complicates calculations and we do not implement it.

5. Metric tensor: The coupling component

The coupling of the internal and external solutions of the
linearized metric tensor perturbations is described by the
mixed term l̂mix

00 . It is found as a particular solution of
the inhomogeneous field equation (56) with the right side
taken as a product of the internal and external solutions
found on the previous step of the post-Newtonian iter-
ations. Solving (56) yields

l̂mix
00 ðu;wÞ¼−2

�
ηPþ2

X∞
l¼1

1

l!
½QLþðβ−1ÞPL�wL

�
ÛBðu;wÞ

−2
X∞
l¼1

1

l!
½QLþ2ðβ−1ÞPL�

×
Z
VB

ρ�ðu;w0Þw0L

jw−w0j d3w0; ð121Þ

where η≡ 4β − γ − 3 is called the Nordtvedt parameter
[88], and VB denotes the volume of body B. The best
experimental limitation on the numerical value of
Nordtvedt’s parameter, jηj < 5 × 10−4, is known from
the lunar laser ranging experiment [226]. Gravitational
wave astronomy will improve its measurement by many
orders of magnitude. Equation (121) completes derivation
of the metric tensor in the local coordinates in the post-
Newtonian approximation.

COVARIANT EQUATIONS OF MOTION OF EXTENDED … PHYS. REV. D 99, 084008 (2019)

084008-23



6. Body-frame internal multipoles

Multipolar decomposition of the metric tensor of an
isolated gravitating system residing in asymptotically flat
spacetime has been thoroughly studied by a number of
researchers [82,227–230]. The most useful technique for
the case of the post-Newtonian approximations has been
worked out by Blanchet and Damour [78] and Damour and
Iyer [79,80]. This technique has been extended to the case
of a self-gravitating system embedded to a curved, non-
asymptotically flat spacetime in general relativity [58,74]
and in scalar-tensor theory of gravity [87], and is used in the
present paper.
A single body B from an N-body system interacts

gravitationally with other bodies of the system and this
interaction cannot be ignored in multipolar decomposition
of the gravitational field of the body. The presence of the
external bodies brings about the interaction field (121) to
the metric tensor in the local coordinates whose energy
density gives rise to the contribution of the gravitational
field of the external fields to the definition of the internal
multipoles of body B. It, first, looked like an ambiguity as it
was unclear whether the contribution of the external fields
has to be included to the definition of the body multipoles
or not [58]. This issue was resolved in general relativity by
Damour et al. [74] and in scalar-tensor theory of gravity by
Kopeikin and Vlasov [87] who demonstrated that the
contribution of the interaction field is to be included in
the definition of the body’s internal multipoles in order to
eliminate the noncanonical multipoles, N L and RL—see
(123) and (124)—originating from the nonlinear part of the
metric tensor perturbation (121), from the equations of
motion of extended bodies. This effectively erases any
dependence of the equations of motion on the internal
structure of extended bodies and promotes application of
the effacing principle [154,185] from spherically symmet-
ric bodies to all multipoles.
There are two families of the canonical internal multi-

poles in general relativity which are called mass and spin
multipoles [50,78,83]. In scalar-tensor theory of gravity the
mass multipoles are additionally split in two algebraically
independent families which are called active and conformal
multipoles [88]. The active mass multipoles of a body B
from an N-body system are defined by equation [17,87]

ML ¼
Z
VB

σðu;wÞ
�
1 − ð2β − γ − 1ÞP

−
X∞
k¼1

1

k!
½QK þ 2ðβ − 1ÞPK�whKi

�
whLid3w

þ 1

ð2lþ 3Þ
�
1

2
N̈ hLi − 2ð1þ γÞ 2lþ 1

lþ 1
_RhLi

�
ð122Þ

where the angular brackets around spatial indices denote
STF Cartesian tensor [50,82], and

N L ¼
Z
VB

σðu;wÞw2whLid3w; ð123Þ

RL ¼
Z
VB

σiðu;wÞwhiLid3w ð124Þ

are two additional noncanonical sets of STF multipoles,
and VB is volume of body B over which the integration is
performed. Noncanonical multipoles N L generalize the
second-order rotational moment of inertia of body B,

N ¼
Z
VB

ρ�w2d3w; ð125Þ

with respect to the origin of the local coordinates, and RL

are noncanonical multipoles associated with matter currents
inside the body. The density σ in (122) is called the active
mass density [87],

σðu;wÞ ¼ ρ�ðu;wÞ
�
1þ

�
γ þ 1

2

�
ν2ðu;wÞ þ Πðu;wÞ

− ð2β − 1ÞÛBðu;wÞ
�
þ γskkðu;wÞ; ð126Þ

and the vector

σiðu;wÞ ¼ ρ�ðu;wÞνiðu;wÞ ð127Þ

is the matter’s current density. All integrals in (122)–(125)
are performed over hypersurface Hu of a constant coor-
dinate time u.
The conformal mass multipoles of the body B are

defined as follows [17,87]:

IL ¼
Z
VB

ϱðu;wÞ
�
1 − ð1 − γÞP −

X∞
k¼1

1

k!
QKwhKi

�
whLid3w

þ 1

ð2lþ 3Þ
�
1

2
N̈ hLi − 4

2lþ 1

lþ 1
_RhLi

�
; ð128Þ

where, again, the integration is performed over a hyper-
surface Hu of constant coordinate time u, and

ϱ ¼ ρ�ðu;wÞ
�
1þ 3

2
ν2ðu;wÞ þ Πðu;wÞ − ÛBðu;wÞ

�
þ skkðu;wÞ ð129Þ

is the conformal mass density of matter which does not
depend on the PPN parameters β and γ as contrasted to the
definition (126) of the active mass density.
There is one more type of the multipoles called scalar

multipoles, ĨL. However, they are not independent and
relate to the active and conformal multipoles by a simple
formula [87]
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ĨL ¼ 2MhLi − ð1þ γÞI hLi: ð130Þ

In addition to the gravitational mass multipoles,ML and
IL, there is a set of internal spinmultipoles. In theNewtonian
approximation they are defined by expression [87]

SL ¼
Z
VB

εpqhilwil−1…i1ipσqðu;wÞd3w; ð131Þ

where the matter’s current density σq has been defined in
(127). All multipoles of body B are functions of time u only.
They are the STF Cartesian tensors in the tangent Euclidean
space attached to the worldline W of the origin of local
coordinates adapted to body B. Definition (131) is sufficient
for deriving the post-Newtonian translational equations of
motion of the extended bodies in an N-body system.
However, derivation of the post-Newtonian rotational equa-
tions of motion requires a post-Newtonian definition of the
body’s angular momentum (spin). We shall discuss it later in
Sec. VI D.

V. MATCHED ASYMPTOTIC EXPANSIONS AND
COORDINATE TRANSFORMATIONS

A. Basic principles

Post-Newtonian transformations between the global and
local coordinate charts are derived by the method of
matched asymptotic expansions [231]. It involves finding
several different approximate solutions of the field equa-
tion, each of which is valid for a specific domain of space,
and then combining these different solutions together in a
buffer domain where all different solutions overlap, in order
to obtain a single approximate solution. The technique of
matched asymptotic expansions in general relativity was
first implemented by Demiański and Grishchuk [232] for
deriving equations of motion of black holes in the
Newtonian limit. D’Eath [56,223] significantly extended
this technique to the next approximations of general
relativity and it is now commonly used for derivation of
equations of motion of black holes [57,213,214]. Matching
asymptotic expansions are indispensable in case of the
singular perturbations of the field equations but the method
turned out to be very effective also for derivation of
equations of motion of extended bodies [69,73–75,156]
and for constructing a post-Newtonian theory of reference
frames in the Solar System [17,72,83,159].
In the present paper the independent dynamic field

variables are the scalar field and metric tensor which
describe the asymptotic solutions of the field equations
in the form of the post-Newtonian expansions which are
valid in the spatial domains covered by the global or local
coordinates. These solutions describe one and the same
value of the dynamic variables in any type of coordinates
which means that the solutions can be spliced in the spatial
region where the coordinate charts overlap. The splicing

relies upon the tensor transformation law applied to the
post-Newtonian expansions of the metric tensor and scalar
field. The post-Newtonian transition functions entering the
transformation establish the correspondence between the
global and local coordinates. Coordinate distance from
the origin of the local coordinates to the first singular points
of the Jacobian of the transformation determines the
domain of applicability of the local coordinates [17].
The matching procedure is organized as follows. We use

conformal harmonic coordinates defined by the Nutku
gauge condition (40). Transition functions of the post-
Newtonian coordinate transformation are constrained by
this condition and must obey differential equation (44)
describing the residual gauge freedom. Solutions of this
homogeneous equation are to be continuously differentia-
ble functions that are regular at the origin of the local
coordinates. These functions can be represented in the form
of a Taylor series of the harmonic polynomials of the spatial
local coordinates. Coefficients of the Taylor series are the
STF Cartesian tensors defined on the worldline W of the
origin of the local coordinates. The transition functions
are to be substituted to the matching equations describing
the splicing of the internal and external solutions of the
field equations in the global and local coordinates.
Matching the asymptotic post-Newtonian expansions of
the scalar field and the metric tensor allows us to fix all
degrees of the residual gauge freedom in the final form of
the post-Newtonian coordinate transformation and to
determine a functional form of all external multipoles
except for the external dipole Qi which is not constrained
by the matching conditions and must be found separately
from the equations of motion of the center of mass of body
B in the body-adapted local coordinates.
Physically, the post-Newtonian transformation between

coordinate times, t and u, describes the Lorentz (velocity-
dependent) and Einstein (gravitational-field-dependent)
time dilation associated with the different simultaneity of
events in the two coordinate charts [69,156]. It also
includes an infinite series of the polynomial terms
[72,233]. The post-Newtonian transformation between
the spatial coordinates, xi and wi, is a quadratic function
of spatial coordinates. The linear part of the transformation
includes the Lorentz and Einstein contractions of length as
well as a matrix of rotation describing the post-Newtonian
precession of the spatial axes of the local coordinates with
respect to the global coordinates due to the translational and
rotational motion of the bodies [154,183]. The Lorentz
length contraction takes into account the kinematic aspects
of the post-Newtonian transformation and depends on the
relative velocity of motion of the local coordinates with
respect to the global coordinates. The Einstein (gravita-
tional) length contraction accounts for static effects of the
scalar field and the metric tensor [17,87]. The quadratic part
of the spatial transformation depends on the orbital accel-
eration of the local coordinates and accounts for the effects
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of the affine connection (the Christoffel symbols) of the
spacetime manifold.
Let us now discuss the mathematical structure of the

post-Newtonian transformation between the local coordi-
nates, wα ¼ ðw0; wiÞ ¼ ðu;wÞ, and the global coordinates,
xα ¼ ðx0; xiÞ ¼ ðt; xÞ in more detail. This coordinate trans-
formation must be compatible with the weak-field and
slow-motion approximation used in the post-Newtonian
expansions. Hence, the coordinate transformation is given
as a post-Newtonian expansion:

u ¼ tþ ξ0ðt; xÞ; ð132Þ
wi ¼ Ri

B þ ξiðt; xÞ; ð133Þ
where ξ0 and ξi are the post-Newtonian corrections to the
Galilean transformation, u ¼ t, Ri

B ≡ xi − xiBðtÞ, and xiBðtÞ
is a spatial position of the origin of the local coordinates in
the global coordinates. We denote velocity and acceleration
of the origin of the local coordinates as viB ≡ _xiB and aiB ≡
ẍiB respectively, where a dot above a function denotes a
derivative with respect to time t. At this step, we do not
know yet equations for worldline W of the origin of the
local coordinates adapted to body B nor for worldline Z of
the body’s center of mass. Therefore, it is natural to assume
that originally the two worldlines, W and Z, are different.
Later on, we shall show that the two worldlines can be
made identical by demanding the conservation of the linear
momentum of body B. It can be always achieved by
choosing the external dipole Qi to compensate the non-
inertial acceleration of the body’s center of mass caused by
tidal forces [17,69,87]. The presence of nonvanishing
dipole Qi in the local metric (117) makes the local
coordinates adapted to body B to be noninertial.
It is instructive to notice that the local coordinates used

by Thorne and Hartle [58] are inertial that is the origin of
the Thorne-Hartle local coordinates moves along a geo-
desic worldline of the effective spacetime manifold M̄ with
metric, ḡαβ ¼ ηþ h̄αβ, which is obtained from the original
spacetime manifold M with metric, gαβ ¼ ηþ hαβ, by
deleting from hαβ the internal part of the metric hintαβ. In
such local inertial coordinates the external dipole Qi ≡ 0
but the center of mass of body B does not move along the
geodesic in the most general case due to the tidal interaction
of the internal multipoles ML and SL of the body with an
external gravitational field of other bodies.
The asymptotic matching equations for independent

dynamic variables—the scalar field φ and the metric tensor
gμν—are given by the laws of coordinate transformations of
these geometric objects [157]

φðt; xÞ ¼ φ̂ðu;wÞ; ð134Þ

gμνðt; xÞ ¼ ĝαβðu;wÞ
∂wα

∂xμ
∂wβ

∂xν : ð135Þ

Equations (134) and (135) are valid in the spacetime region
that is covered simultaneously by the local and global
coordinates. Functions on the left-hand side of these
equations are known and given in Sec. IVA 3 as integrals
from the body’s matter variables (density, pressure, etc.)
performed over volumes of all bodies of the N-body system
on hypersurface Ht of constant time t. The right-hand side
of the matching equations contains, besides the known
integrals from the matter variables of body B taken on
hypersurface Hu of constant time u, yet unknown external
multipoles, PL, QL, CL of the external part of the metric
tensor in the local coordinates and the transition functions
ξα ¼ ðξ0; ξiÞ from the coordinate transformations (132) and
(133). We prove below that both the external multipoles
and the transition functions can be determined by solving
matching Eqs. (134) and (135) that also yield equations of
motion of the origin of the local coordinates, xiB ¼ xiBðtÞ.
Matching the post-Newtonian expansions of the metric
tensor and scalar field does not yield equations of motion
of the center of mass of body B. An additional procedure of
integration of the microscopic equations of motion of
matter of body B is required for this purpose to determine
the motion of the center of mass of body B with respect to
the origin of the local coordinates and to derive rotational
equations of motion of the body’s spin. It is explained
in Sec. VI.

B. Transition functions

A comprehensive description of the matching procedure
establishing the correspondence between the global and
local coordinates in the N-body problem is given in
[17,87,159]. Here, we summarize the main results of the
matching.
Solving matching Eqs. (134) and (135) begins from the

ĝ0i component of the metric tensor perturbation in the local
coordinates adapted to body B. This component does not
contain 0.5 post-Newtonian term of the order of OðϵÞ
because we have chosen the spatial axes of the local
coordinates dynamically nonrotating and orthogonal to
worldlineW of its origin at any instant of time. It eliminates
the angular and linear velocity terms of the order ofOðϵÞ in
ĝ0i and implies that function ξ0ðt; xÞ in (132) satisfies the
following constraint [74,87]:

∂iξ
0ðt; xÞ ¼ −viB þ ∂iκðt; xÞ; ð136Þ

where κðt; xÞ is the post-Newtonian, yet unknown correc-
tion of the order of Oðϵ2Þ. Integration of the partial
differential equation (136) yields

ξ0ðt; xÞ ¼ AðtÞ − vkBR
k
B þ κðt; xÞ; ð137Þ

where AðtÞ is a constant of integration depending on time.
At second step we use differential equation (44) in order

to find out the transition functions κ from (137) and ξi
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from (133). We replace (137) to (132) and substitute it
along with wi from (133) in Eq. (44) which yields two
decoupled inhomogeneous Poisson equations for the post-
Newtonian components of the transition functions,

△κðt; xÞ ¼ 3vkBa
k
B þ Ä − _akBR

k
B; ð138Þ

△ξiðt; xÞ ¼ −aiB; ð139Þ

where△≡ δij∂i∂j is the Laplace operator in the Euclidean
space. A general solution of these elliptic-type equations
must be regular at the origin of the local coordinates
adapted to body B and consists of two parts—a funda-
mental solution of the homogeneous Laplace equation
and a particular solution of the inhomogeneous Poisson
equation [74,87]

κ ¼
�
1

2
vkBa

k
B −

1

6
Ä
�
R2
B −

1

10
_akBR

k
BR

2
B þ Ξðt; xÞ; ð140Þ

ξi ¼ −
1

6
aiBR

2
B þ Ξiðt; xÞ: ð141Þ

Here, functionsΞ andΞi are the fundamental solutions of the
homogeneous Laplace equation—the harmonic polyno-
mials with respect to the local spatial coordinates expressed
in terms of the global coordinates, wi ¼ Ri

B þOðϵ2Þ,

Ξðt; xÞ ¼
X∞
l¼0

1

l!
BLRhLi

B ; ð142Þ

Ξiðt; xÞ ¼
X∞
l¼1

1

l!
DiLRhLi

B þ
X∞
l¼0

εipq
ðlþ 1Þ!F

pLRhqLi
B

þ
X∞
l¼0

1

l!
ELRhiLi

B ; ð143Þ

where the coefficients, BL, DL, FL and EL of the expa-
nsions are STF Cartesian tensors which should not be
confused with the external multipoles entering the local
metric tensor. These coefficients are defined on the world-
lineW of the origin of the local coordinates and depend only
on time t of the global coordinates. An explicit form of
coefficientsBL,DL,FL is derivedby substituting transitions
functions wα ¼ ðu; wiÞ in the form of (132), (133), (137),
(140)–(143) to matching Eqs. (134)–(135) and solving
them. This solution also determines the external multipoles
and the equations of motion for the origin of the local
coordinates—worldline W. The overall procedure of solv-
ing the matching equations is rather long and technical and
we do not describe it here. The reader can find its
comprehensive description in papers [87,234] and in the
book [ [17], Chapter 5]. The matching solution is given in
Sec. V C below.

C. Matching solution

1. Post-Newtonian coordinate transformation

Parametrized post-Newtonian transformation between
the local coordinates wα adapted to body B and the global
coordinates xα is given by two equations [17,69],

u ¼ tþ 1

c2
ðA − vkBR

k
BÞ

þ 1

c4

�
B þ

�
1

3
vkBa

k
B −

1

6
_̄Uðt; xBÞ −

1

10
_akBR

k
B

�
R2
B

þ
X∞
l¼1

1

l!
BLRL

B

�
þOðc−6Þ; ð144Þ

wi ¼ Ri
B þ 1

c2

��
1

2
viBv

k
B þ δikγŪðt; xBÞ þ Fik

B

�
Rk
B

þ akBR
i
BR

k
B −

1

2
aiBR

2
B

�
þOðc−4Þ; ð145Þ

where Ri
B ¼ xi − xiB is the coordinate distance on the

hypersurface Ht of constant time t between the point of
matching, xi, and the origin of the local coordinates,
xiB ¼ xiBðtÞ, and we have shown in these equations the
fundamental speed c explicitly to attenuate the post-
Newtonian order of different terms.
FunctionsA and B depend on the global coordinate time

t and define transformation between the local time u and
the global coordinate time t at the origin of the local
coordinates. They obey the ordinary differential equations,

dA
dt

¼ −
1

2
v2B − Ūðt; xBÞ; ð146Þ

dB
dt

¼ −
1

8
v4B −

�
γ þ 1

2

�
v2BŪðt; xBÞ þ

1

2
Ū2ðt; xBÞ

þ 2ð1þ γÞvkBŪkðt; xBÞ − Ψ̄ðt; xBÞ þ
1

2
∂ttχ̄ðt; xBÞ

ð147Þ

that describe the post-Newtonian transformation between
time u of the local coordinates and time t of the global
coordinates. The other functions entering (144) and (145)
are defined by algebraic relations

Bi¼ 2ð1þ γÞŪiðt;xBÞ− ð1þ2γÞviBŪðt;xBÞ−
1

2
viBv

2
B;

ð148Þ
Bij ¼ 2ð1þ γÞ∂hiŪjiðt; xBÞ

− 2ð1þ γÞvhiB∂jiŪðt; xBÞ þ 2ahiBa
ji
B ; ð149Þ

BiL ¼ 2ð1þ γÞ∂hLŪiiðt; xBÞ
− 2ð1þ γÞvhiB∂LiŪðt; xBÞ ðl ≥ 2Þ; ð150Þ
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where the angular brackets denote STF projection of
indices, and the external (with respect to body B) potentials
Ū, Ūi, Ψ̄, χ̄ are defined in (68) and (91). Notations Ūðt; xBÞ,
Ūiðt; xBÞ, Ψ̄ðt; xBÞ, and χ̄ðt; xBÞmean that the potentials are
taken at the origin of the local coordinates adapted to body
B at instant of time t.
The skew-symmetric rotational matrix Fij

B is a solution of
the ordinary differential equation

dFij
B

dt
¼ 2ð1þ γÞ∂ ½iŪj�ðt; xBÞ

þ ð1þ 2γÞv½iB∂j�Ūðt; xBÞ þ v½iBQ
j�; ð151Þ

describing the rate of the kinematic rotation of the spatial
axes of the local coordinates adapted to body B with respect
to the global coordinates [69,87]. Equation (151) has been
derived here for arbitrarily structured bodies by the method
of matched asymptotic expansions. The same equation was
obtained independently for spinning test particle (gyro-
scope) through the Fermi-Walker transport of spin [ [165],
§ 40.7]. The first term on the right-hand side of (151)
describes the Lense-Thirring (gravitomagnetic) precession
which is also called the draggingof inertial frames [101,165].
The second term on the right-hand side of (151) describes the
de-Sitter (geodetic) precession, and the third term describes
the Thomas precession depending on the local (nongeodesic)
accelerationQi ¼ δijQj of the origin of the local coordinates
with respect to a geodesic worldline of a freely falling test
particle. In the scalar-tensor theory both the Lense-Thirring
and de-Sitter precession depend on the PPN parameter γ
while the Thomas precession does not. The reason is that the
Thomas precession is generically a special relativistic effect
[235] that cannot depend on a particular version of an
alternative theory of gravity.
The Lense-Thirring and geodetic precession have been

recently measured in Gravity Probe B gyroscope experi-
ment [236] and by the satellite laser ranging technique
[237,238]. Relativistic precession is an attractive mecha-
nism for theoretical explanation of quasiperiodic oscilla-
tions (QPO) in the optical power density spectra of
accreting black holes [239]. It is also important to include
relativistic precession of spins of stars in merging compact
binaries for adequate prediction and analysis of gravita-
tional waveforms emitted by the binaries [240–243].

2. Body’s self-action force and bootstrap effect

Self-action force is a key concept in gravitational dynam-
ics of extended bodies both in the Newtonian and relativistic
gravity theories [141,142,244]. It is defined as the net action
of the gravitational field generated by a single body from an
N-body system on the body itself. The self-action force
includes a conservative part and dissipative terms which are
known as the gravitational radiation-reaction force [245–
247]. The self-action of the gravitational radiation appears

for the first time at 1.5 PN approximation in scalar-tensor
theory of gravity due to the emission of dipolar scalar field
radiation [88,248] and at 2.5 PN approximation in general
relativity [184,220,249–251] due to the emission of quadru-
pole gravitational waves by the moving bodies [42,165].
Calculation of the radiation-reaction force beyond 2.5 post-
Newtonian approximation is a challenging theoretical task
[47,245–247] whose solution is of paramount importance
for correct prediction of inspiral motion of compact binaries,
especially in the extreme mass ratio limit [252,253].
Chicone et al. [254] studied the origin of the self-action

force by means of the mathematical theory of delay
equations which include the field-retardation effects, and
predicted that all of them must have runaway modes. It was
shown that when retardation effects are small, the physically
significant solutions belong to the so-called slowmanifoldof
the dynamic system which is identified with the attractor in
the state space of the delay equation. It was also demon-
strated via an example that when retardation effects are no
longer small, the motion of the system exhibits bifurcation
phenomena that are not contained in the local equations of
motion. The bifurcation behavior of the solutions of the
delay equations pointed out by Chicone et al. [254] is absent
in the conservative post-Newtonian approximations but has
to be studied more attentively by analysts computing the
gravitational waveforms of inspiral binary systems.
Radiation-reaction force does not prevent a sufficiently

compact and nonspinning body from moving on a geodesic
in a particularly chosen, regular effective external metric if a
singular part of the full metric is properly removed by
regularization [255]. Thus, the regular part of radiation-
reaction force does not violate the Einstein principle of
equivalence [256]. The singular part of the metric corre-
sponds to the conservative part of the self-action force
which apparently must obey the third Newton’s law to get
a vanishing net internal force, thus, preventing self-
accelerated runaway motion of the body which we call a
bootstrap effect. Bootstrapping can happen only in some
nonconservative (nonviable) alternative theories of gravity
[88]. It does not occur in the first post-Newtonian approxi-
mation of scalar-tensor theory for arbitrarily structured
bodies as one can see from matching Eqs. (134) and
(135) where all the terms depending on a body’s internal
gravitational potentials mutually cancel out. The bootstrap
effect is also absent in the second post-Newtonian approxi-
mation both in general relativity [183,186] and in scalar-
tensor theory of gravity [248].

3. Worldline of the origin of the local coordinates

The origin of the local coordinates adapted to body B
moves in spacetime along worldline W. Matching
Eq. (135) for the metric tensors in the local and global
coordinates yields equations of translational motion of the
origin of the local coordinates, xiB ¼ xiBðtÞ, with respect to
the global coordinates. It reads [ [17], Eq. 5.88]
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aiB ¼ ∂iŪðt;xBÞ−QiþFij
BQjþ∂iΨ̄ðt;xBÞ−

1

2
∂tt∂iχ̄ðt;xBÞ

þ2ð1þ γÞ _̄Uiðt;xBÞ−2ð1þ γÞvjB∂iŪjðt;xBÞ
− ð1þ2γÞviB _̄Uðt;xBÞþð2−2β− γÞŪðt;xBÞ∂iŪðt;xBÞ

þð1þ γÞv2B∂iŪðt;xBÞ−
1

2
viBv

j
B∂jŪðt;xBÞ−

1

2
viBv

j
Ba

j
B

−v2Ba
i
B− ð2þ γÞaiBŪðt;xBÞ; ð152Þ

where a dot above a function denotes a total derivative with
respect to time t, viB ≡ _xiB and aiB ≡ ẍiB are velocity and
acceleration of the origin of the local coordinates relative to
the global coordinates, and Qi ¼ δijQj is a dipole term
(l ¼ 1) in the external solution for ĥext00 component of the
metric tensor perturbation (114) which describes a local
acceleration of the worldline W.
The right-hand side of (152) is a gravitational force per unit

mass causing the coordinate acceleration aiB of the origin of
the local coordinates of body B with respect to the global
coordinates. The force is explicitly expressed in terms of the
external gravitational potentials, Ū, Ūi, Ψ̄, χ̄, and their time
and/or spatial derivatives. It also depends on the external
dipole,Qi ¼ δijQj, which represents a local acceleration of
worldline W with respect to a timelike geodesic on the
effective spacetime manifold M̄ which is explained in more
detail in Sec. XI B. Function Qi does not depend on the
choice of gauge condition and constitutes a part of the
definition of the state of motion of the origin of the local
coordinates [257].Only after specificationofQi as a function
of time, formula (152) becomes an ordinary differential
equation whose solution yields worldlineW of the origin of
the local coordinates as a known function of time xiBðtÞ.
A trivial choice of the local acceleration, Qi ¼ 0, looks

attractive as it immediately converts (152) to a fully
determined differential equation. It is this choice that has
been made, for example, by Dixon [11] and Thorne and
Hartle [58] which means that worldline W of the origin of
the local coordinates is a geodesic of the effective back-
ground manifold M̄. However, this choice does not allow us
to keep the origin of the local coordinates always at the
center of mass of body B if the body has nonvanishing
internal multipolesML and SL which interact with the tidal
field multipoles QL and CL of the external bodies C ≠ B
from the N-body system. The interaction exerts a force on
the body B and makes its center of mass moving along a
nongeodesic worldline havingQi ≠ 0 [58,69]. Thus, world-
lineZ of the center of mass of body B is not geodesic in the
most general case. If we want to retain the center of mass of
body B at the origin of the body-adapted local coordinates at
any instant of time, the acceleration Qi must obey the
equations of motion of the body’s center of mass with
respect to the local coordinates. Derivation of this equation
cannot be achieved by the method of matched asymptotic
expansions and requires either integration of microscopic

equations of matter over the volume of body B in the local
coordinates [74,75,87] or finding asymptotes of the surface
integrals in the buffer region of overlapping the local and
global coordinates [30,58]. We deal with a regular distri-
bution of matter inside the extended bodies and apply the
technique of integration of the microscopic equations of
motion to find the local acceleration Qi in Sec. VI E.

4. Body-frame external multipoles

Scalar-field multipoles.—Matching determines the external
(with respect to body B) tidal multipoles in terms of the
partial derivatives from the gravitational potentials of
external bodies [17,87]. The external scalar field multipoles
are obtained by solving (134) and read

PL ¼ ∂Lφ̄ðt; xBÞ; ðl ≥ 0Þ ð153Þ
where the external scalar field φ̄ is expressed in terms of the
external Newtonian potential Ū

φ̄ðt; xÞ ¼ Ūðt; xÞ: ð154Þ

We remind the reader that the scalar field perturbation φ is
coupled either with the factor γ − 1 or β − 1, so that all
physical effects of the scalar field are proportional to these
factors and canbeeasily identified in theequations that follow.
It should be noticed that the external scalar field monopole
P (l ¼ 0) and dipole Pi (l ¼ 1) cannot be removed from
observable gravitational effects by rendering a coordinate
transformation to a freely falling frame because the scalar field
is a true scalar. In otherwords, the gradient of scalar field is not
equivalent to the inertial force caused by acceleration as it
cannot be eliminated by changing the state of motion of
observer. It was the primary reasonwhy Einstein abandoned a
pure scalar field theory of gravity in favor of general relativity
where the gravitational field is identifiedwith the components
of the metric tensor, and, unlike a scalar field, can be removed
by transformation to the local inertial frame.
Rather remarkable, this difference in transformation prop-

erties between scalar field and metric tensor has no direct
consequence for equivalence between inertial and gravita-
tional masses of test bodies. It was discovered [258] that the
inertial and gravitational masses of massive test bodies
remain equal in a wide class of scalar-tensor theories of
gravity and the freely falling test bodies move in the same
way independently of their mass. This observation forces us
to carefully discriminate betweenvarious formulations of the
weak equivalence principle (WEP) in scalar-tensor theories.

Gravitoelectric multipoles.—External gravitoelectric multi-
polesQL ≡Qhi1i2…ili (l ≥ 2) are obtained by solving (135)
and given by the following equation [ [17], Eq. 5.89]6:

6Be mindful that the spatial indices are raised and lowered with
the Kronecker symbol δij so that the position of the spatial indices
does not matter.
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QL ¼ ∂hLiŪðt;xBÞþ∂hLiΨ̄ðt;xBÞ−
1

2
∂tt∂hLiχ̄ðt;xBÞþ2ð1þ γÞ∂hL−1 _̄Uiliðt;xBÞ−2ð1þ γÞvjB∂hLiŪjðt;xBÞ

þðl−2γ−2ÞvhilB ∂L−1i _̄Uðt;xBÞþð1þ γÞv2B∂hLiŪðt;xBÞ−
l
2
vjBv

hil
B ∂L−1ijŪðt;xBÞþð2−2β− lγÞŪðt;xBÞ∂hLiŪðt;xBÞ

− ðl2− lþ2γþ2ÞahilB ∂L−1iŪðt;xBÞ− lFjhil
B ∂L−1iŪjðt;xBÞþXL; ðl≥ 2Þ ð155Þ

where XL represents a contribution of the local inertial
forces to the gravitoelectric multipole,

XL ≡
(
3ahi1B ai2iB if l ¼ 2;

0 if l ≥ 3:
ð156Þ

We point out that in spite of the fact that the term XL

appears in the expression (155) for the external multipoles,
QL, it is not a part of the curvature of spacetime manifold
[71,87] and is exclusively associated with the local accel-
eration of worldline W of the origin of the body-adapted
local coordinates. This is proved in Sec. XI D 2.

Gravitomagnetic multipoles.—External gravitomagnetic
multipoles CL≡Chi1i2…ili for l ≥ 2 are also obtained by
solving (135) and given by Xie and Kopeikin [ [234],
Eq. 5.37]7

εipkCpL ¼ 4ð1þ γÞ
�
v½iB∂k�hLiŪðt; xBÞ þ ∂hLi½iŪk�ðt; xBÞ

−
l

lþ 1
δhil½i∂k�L−1i _̄Uðt; xBÞ

�
; ðl ≥ 1Þ ð157Þ

where the dot denotes the time derivativewith respect to time
t, the angular brackets denote STF symmetry with respect to
multi-indexL ¼ i1; i2;…; il, and the square brackets denote
antisymmetrization: T ½ij� ¼ ðTij − TjiÞ=2. The external
multipoles QL and CL are analogs of Dixon’s multipoles
Aα1…αlμν and Bα1…αlμν respectively; see (463) and (464)
below. We shall use the above-given expressions for the
external multipoles in derivation of the equations of motion
of extended bodies in the next section.

VI. POST-NEWTONIAN EQUATIONS OF MOTION
OF AN EXTENDED BODY IN THE LOCAL

COORDINATES

Coordinate acceleration aiB of worldline W of the origin
of the local coordinates adapted to bodyBwith respect to the
global coordinates is given by Eq. (152). It depends on the
local acceleration Qi of the origin of the local coordinates
with respect to a timelike geodesic of the effective back-
ground metric ḡαβ. The acceleration Qi cannot be

determined by solving the matching Eqs. (134) and
(135), and remains an arbitrary function of time. The center
of mass of body B has not yet been defined but it certainly
moves along worldline Z which is formally different from
W in the most general case. However, we have enough
freedom in choosingworldlineW whichwe can use in order
to make the two worldlines coincide. Mathematically, it
means that the center of mass of bodyB remains at rest at the
origin of the local coordinates adapted to bodyB as the body
moves on a spacetime manifold. This condition imposes a
functional constraint on the local acceleration Qi which
converts the translational equations of motion (152) of the
origin of the local coordinates to those for the center of mass
of body B with respect to the global coordinates. In order to
put the center of mass of body B to the origin of the local
coordinates and to hold it in there, we have to know the
translational equations of motion of the body’s center of
mass in the local coordinates adapted to the body.
Derivation of translational equations of motion of the

center of mass of body B in the local coordinates can be
executed in three different ways, which are the following:
(1) the Fock-Papapetrou method of integration of micro-

scopic equations of motion of matter over the body’s
volume [6,126,134,209,259];

(2) the Mathisson-Dixon method of integration of skel-
eton of the stress-energy tensor of matter of body B
given in terms of distributions [4,5,11] and amended
with some regularization technique [47,48,184];

(3) the Einstein-Infeld-Hoffmann (EIH) method of
asymptotic surface integrals [30,49,58,84,85].

The Mathisson-Dixon and EIH methods consider the
extended bodies in an N-body system as singularities of a
gravitational field endowed with a set of the internal multi-
poles which represent the internal structure of the bodies.
The multipoles in these approaches are not given in terms of
volume integrals from a smooth distribution of matter inside
the bodies but are merely functions of time given on
worldline Z of each body’s center of mass. On the other
hand, the Fock-Papapetrou method operates with a con-
tinuous distribution of matter inside the bodies and defines
the internal multipoles of the bodies in terms of the volume
integrals like in Sec. IV B 6 of the present paper. It is
assumed that theMathisson-Dixon and EIHmethods should
give the same equations of motion for extended, arbitrarily
structured bodies as in the Fock-Papapetrou method. This is
indeed true in case of pole-dipole particle approximation
corresponding to rigidly rotating, spherically symmetric

7Formula (157) corrects a typo in [ [17], Eq. 5.74] for the
external gravitomagnetic multipole CL.
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bodies. However, this correspondence has been never
checked for higher-order internal multipoles. We use the
Fock-Papapetrou method of derivation of translational
equations of motion of extended bodies having all mass
and spin internal multipoles, and compare them with
similar equations derived by Racine and Flanagan [84]
and Racine et al. [85] with the EIH technique [see
Appendix B and with the covariant equations derived by
Dixon [11] (see Appendix D)].
In this section we define a center of mass and a linear

momentum of body B, derive the post-Newtonian micro-
scopic equations of motion of matter of the body in the local
coordinates and, then, integrate them over the body’s
volume in order to get the post-Newtonian equations of
motion of the linear momentum and the center ofmass of the
body. As soon as the equations ofmotion for these quantities
are established, the local accelerationQi is determined from
the condition of vanishing of the linear momentum and the
integral of the center ofmass of the bodywhichwarrants that
the center of mass of body B is always at the origin of the
local coordinates. At the end of this section we give a post-
Newtonian definition of the intrinsic angular momentum
(spin) of body B and derive the spin’s rotational equations of
motion in the local coordinates.

A. Microscopic equations of motion of matter

The microscopic post-Newtonian equations of motion of
matter of body B include the following:
(1) equation of continuity,
(2) thermodynamic equation relating the elastic energy,

Π ¼ Πðu;wÞ, to the stress tensor, sαβ ¼ sαβðu;wÞ,
(3) equation of conservation of the stress-energy tensor.

The equation of continuity of matter of body B in the body-
adapted local coordinates wα ¼ ðu;wÞ has the most simple
form if we use the invariant density ρ� ¼ ρ�ðu;wÞ, defined
in (35). It reads

∂ρ�
∂u þ ∂ðρ�νiÞ

∂wi ¼ 0; ð158Þ

where νi ¼ νiðu;wÞ ¼ dwi=du is a coordinate velocity of
matter in the local coordinates. Equation (158) is exact in
any order of the post-Newtonian approximations like (36).
The thermodynamic equation relating the internal elastic

energy, Π, and the stress tensor, sαβ, of body B is required
only in a linearized approximation where the stress-energy
tensor is completely characterized by its spatial (stress)
components sij. After making this substitution to the
covariant Eq. (17) we get the following thermodynamic
equation in the local coordinates:

ρ�
dΠ
du

þ sij
∂νi
∂wj ¼ 0; ð159Þ

where the operator of the total time derivative, d=du≡
∂=∂uþ νi∂=∂wi.

The covariant equation of conservation of the stress-
energy tensor of matter of body B is (15). We need in the
post-Newtonian approximation only the spatial component
of this equation. Straightforward calculations with making
use of the post-Newtonian components (31)–(34) of the
stress-energy tensor of matter of body B yield the following
form of the law of conservation (15) in the local coordinates:

ρ�
d
du

��
1þ1

2
ν2þΠþ1

2
ĥ00þ

1

3
ĥkk

�
νiþ ĥ0i

�

¼ 1

2
ρ�
∂ðĥ00þ l̂00Þ

∂wi −
∂sij
∂wj

þρ�
�
1

4
ðν2þ2Πþ ĥ00Þ

∂ĥ00
∂wi þ

1

6
ν2
∂ĥkk
∂wi þνk

∂ĥ0k
∂wi

�

þ1

2

∂
∂wj

�
sij

�∂ĥ00
∂wk −

1

3

∂ĥkk
∂wk

��
þ1

6
skk

∂ĥjj
∂wi þ

∂ðsijνjÞ
∂u ;

ð160Þ
where the metric tensor perturbations ĥ00, l̂00, ĥ0i, ĥij, and
ĥii in the local coordinates have been defined above in
Secs. IV B 3–IV B 5.

B. Post-Newtonian mass of a single body

There are two algebraically independent definitions of the
post-Newtonianmass in the scalar-tensor theory—the active
mass (Jordan’s frame) and the conformal mass (Einstein’s
frame) which are defined respectively by equations (122)
and (128) for multipolar index l ¼ 0. More specifically, the
active mass of body B is [17,87]

M¼MGR½1þð1þ γ−2βÞP�þ1

6
ðγ−1ÞN̈

−
1

2
η

Z
VB

ρ�ÛBd3w

−
X∞
l¼1

1

l!
½ðγlþ1ÞQLþ2ðβ−1ÞPL�ML; ð161Þ

wherePL,QL are the scalar field and gravitoelectric external
multipoles given in (153) and (155) respectively,

MGR ¼
Z
VB

ρ�
�
1þ1

2
ν2þΠ−

1

2
ÛB

�
d3w ð162Þ

is a bare post-Newtonian mass of body B [88], ML are
active multipoles of the body defined in (122), N is the
rotational moment of inertia defined in (125), and N̈ ¼
d2N =du2 denotes a second derivative of the moment of
inertia with respect to time u.
Mass MGR depends only on the internal distribution of

mass, kinetic, thermal, and gravitational energy densities of
body B. It coincides with the Tolman mass [260] of a single,
isolated body residing in an asymptotically flat spacetime
derived by volume integration of Tolman’s superpotential
[119], Eq. 1.4.32]. Had the body B been isolated, the mass
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MGR would be conserved. However, in an N-body system
gravitational interaction of body B with external bodies
causes the body’s tidal deformations which change the
internal distribution of matter and shape of body B, thus,
making MGR dependent on time. The temporal change of
MGR is governed by the ordinary differential equation [17,75]

_MGR ¼
X∞
l¼1

1

l!
QL

_ML; ð163Þ

where the overdot denotes a derivative with respect to
coordinate time u.
The conformal mass of body B, M ≡ I , is defined by

equation (128) taken for l ¼ 0, and is [17,87]

M ¼ MGR½1þ ðγ − 1ÞP� −
X∞
l¼1

lþ 1

l!
QLML: ð164Þ

The conformal massM defines the inertial mass of a single
body B in an N-body system as we shall demonstrate in
Sec. IX B. In case of a single isolated body the last term
in the right-hand side of (164) is absent but it appears in the
N-body system (if the body under consideration is not
spherically symmetric) and can be interpreted in the spirit
of Mach’s principle stating that the body’s inertial mass
originates from its gravitational interaction with an external
Universe. Mach’s idea is not completely right because the
inertial mass of the body is primarily originating from the
bare mass MGR but it has a partial support as we cannot
completely ignore the gravitational interaction of a single
body with its external gravitational environment in the
definition of the inertial mass of the body. This effect is
important to take into account in inspiralling compact
binaries as they are tidally distorted and, hence, the part
of the inertial mass of each star associated with the very last
term in (164) rapidly changes as the distance between them
is decreasing. The overall time variation of the conformal
mass M is given by equation,

_M ¼ ðγ − 1Þ
�
P
X∞
l¼1

1

l!
QL

_ML þ _PMGR

�

−
X∞
l¼1

1

ðl − 1Þ!
�
QL

_ML þ lþ 1

l
_QLML

�
; ð165Þ

where we have made use of (163).
Relation between the active and conformal masses is

obtained by comparing (161) with (164)

M ¼ Mþ 1

2
η

Z
VB

ρ�ÛBd3w −
1

6
ðγ − 1ÞN̈

þ 2ðβ − 1Þ
�
MP þ

X∞
l¼1

1

l!
PLML

�

þ ðγ − 1Þ
X∞
l¼1

1

ðl − 1Þ!QLML; ð166Þ

where η ¼ 4β − γ − 3 is called the Nordtvedt parameter
[88]. We can see that the conformal mass M of body B
differs from its active mass M. This fact was noticed by
Dicke [173,261], Will [88], and Nordtvedt [262] who found
the integral term being proportional to the Nordtvedt
parameter η in the right-hand side of (166). The actual
difference between the masses turns out to be more
complicated and includes a term with the second time
derivative of the rotational moment of inertia of the body as
well as the tidal contributions originating from gravitational
interaction of the body’s internal multipoles with the
external multipoles. Had body B been completely isolated
from the external gravitational field, the difference between
the active and conformal masses would be caused only by
the Dicke-Nordtvedt self-gravity term depending on param-
eter η, and the second time derivative of the body’s
rotational moment of inertia due to, e.g., radial oscillations
of the body. In case of an N-body system the gravitational
field of N − 1 external bodies cannot be ignored in the
definition of the post-Newtonian mass of a single body due
to the gravitational coupling of the external and internal
multipoles of the body.

C. Post-Newtonian center of mass and linear
momentum of a single body

The functional form of equations of motion of extended
bodies in anN-body system depends crucially on the choice
of the reference point inside body B that defines its
center of mass. There is a large freedom in choosing the
definition of the center of mass beyond the Newtonian
limit. Physically, any definition is allowed and makes a
certain sense. However, the most optimal definition of the
center of mass makes the equations of motion look simple
and eliminates a number of spurious terms which would
contaminate the equations of motion, like the noncanonical
multipole moments N L and RL mentioned above, if the
center of mass is not chosen properly. Damour et al. [74,75]
have shown that in general relativity the position of the
center of mass of body B, which is a member of the N-body
system, is the most optimally determined by picking up the
zero value of the Blanchet-Damour mass dipole in the
internal solution for the metric tensor perturbation. In
scalar-tensor theory of gravity there are two possible
definitions of the internal mass dipole depending on
whether the Jordan or the Einstein frame is chosen for
the multipole expansion of the metric tensor. The Jordan
frame gives the active dipole momentMi, and the Einstein
frame defines the conformal dipole I i. Before performing
computations it is difficult to foresee which choice of the
dipole is the best for positioning the center of mass of the
body. Only after completing the derivation of the equations
of motion does it become clear that it is the conformalmass
dipole that yields the most optimal choice of the post-
Newtonian center of mass of each body [17,87]. The
physical reason for this is that the conformal dipole
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moment obeys the law of conservation of linear momen-
tum, pi, of each body in its own local coordinate chart while
the post-Newtonian active dipole does not have such a
property.
Thus, we define the post-Newtonian center of mass of

each body B by making use of the conformal definition
(128) of the internal multipoles of body B for a multipolar
index l ¼ 1. It yields

I i ¼ I i
b þ I i

c; ð167Þ
where

I i
b ¼

Z
VB

ϱðu;wÞ
�
1 − ð1 − γÞP −

X∞
l¼1

1

l!
QLwL

�
wid3w

−
2

5

�
3 _Ri −

1

4
N̈ i

�
ð168Þ

is the bare conformal dipole of body B, and I i
c is a

complementary post-Newtonian translation that is intro-
duced in order to have freedom in a residual adjustment of
worldlineZ of the center of mass of the body in the process
of derivation of equations of motion. At this stage the
translation I i

c is left undetermined. It will be specified later
on; see Eqs. (289) and (535).
The last two terms in the right-hand side of (168) can be

written down more explicitly if we use a vector virial
theorem,

2

5

�
3 _Ri −

1

4
N̈ i

�
¼

Z
VB

�
ρ�ν2 þ skk −

1

2
ρ�ÛB

�
wid3w

þ
X∞
l¼1

1

ðl − 1Þ!QLMiL

−
1

2

X∞
l¼0

1

ð2lþ 3Þl!QiLN L: ð169Þ

Replacing (169) to (168) brings the bare conformal dipole
to the following form:

I i
b ¼

Z
VB

ρ�ðu;wÞ
�
1þ1

2
ν2þΠ−

1

2
ÛBþðγ−1ÞP

�
wid3w

−
X∞
l¼1

lþ1

l!
QLMiL−

1

2

X∞
l¼0

1

ð2lþ3Þl!QiLN L; ð170Þ

where the STF noncanonical multipole, N L, has been
defined in (123).
We will also need the definition of the active dipole,Mi,

for it will appear in the equations of motion explicitly. The
definition of the active mass dipole follows directly from
the generic post-Newtonian formula for mass multipoles
(122) taken for l ¼ 1. After applying the virial theorem
(169), we find out that the active dipole, Mi, of body B
relates to its bare conformal dipole, I i

b as follows:

Mi ¼ I i
b þ ðγ − 1Þ

�
3

5
_Ri −

1

10
N̈ i

�

−
η

2

�Z
VB

ρ�ÛBwid3wþ
X∞
l¼0

1

ð2lþ 3Þl!QiLN L

�

−
X∞
l¼1

ðγ − 1Þlþ 2ðβ − 1Þ
l!

QLI iL

− 2ðβ − 1ÞðPk −QkÞ
�
Mik þ 1

3
δikN

�
: ð171Þ

The volume integrals entering definitions (170) and (171)
of the conformal and active dipoles of body B are
performed over hypersurface Hu of constant time u. All
other terms entering these definitions are taken on world-
line W of the origin of the local coordinates adapted to the
body, at the point of intersection of W with hypersurface
Hu. Therefore, the dipole is a function of time u only.
The dipole defines a vector of displacement of the center

of mass of body B from the origin of the local coordinates
adapted to the body. If the origin of the local coordinates
coincides with the center of mass of the body, the dipole
vanishes. We draw to the attention of the reader that the
post-Newtonian definition of the center of mass of body B
depends (like in the case of the post-Newtonian definition
of a body’s mass) not only on the distribution of matter
density, velocity, and stresses inside the body but also on
the terms describing the coupling of the internal and
external multipoles. Thorne and Hartle [58] were the first
to notice the presence of such terms in the post-Newtonian
definition of the center of mass (and other mass multi-
poles), but they did not provide their exact form that was
found later by Damour et al. [74,75] in general relativity
and by Kopeikin and Vlasov [87] in the scalar-tensor theory
of gravity. We notice that dipole’s definitions (170) and
(171) contain noncanonicalmultipoles,RL andN L, which
do not appear in the canonical multipole decomposition of
the metric tensor perturbation in vacuum [50,78,82].
Comprehensive calculations of equations of motion of
extended bodies by the Fock-Papapetrou method have
revealed [74,75,87] that if the noncanonical multipoles
RL and N L are removed from the definition of the dipole,
they appear explicitly in the equations of motion, thus,
making them incompatible with the equations of motion in
the Mathisson-Dixon or EIH approaches which cannot
have the noncanonical multipoles, RL and N L, at all.
Therefore, it is natural to hold the noncanonical multipoles
RL and N L in the definitions of the post-Newtonian mass,
center of mass, and mass multipoles ML of body B.
Definition (167) of the conformal dipole of body B is

used to define the position of its center of mass with respect
to the origin of the local coordinates adapted to body B. The
center of mass, wi

cm, of the body is defined in its local
coordinates by the overall value of its dipole,
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Mwi
cm ¼ I i; ð172Þ

where M is the post-Newtonian conformal mass of body B
defined above in (164). The post-Newtonian linear momen-
tum pi of body B is defined as the first derivative of the
dipole (167) with respect to the local time u,

pi ≡ _I iðuÞ ¼ pib þ _I i
c; ð173Þ

where pib ≡ _I i
b, and the overdot denotes the time derivative

with respect to u. After taking the time derivative from the
bare dipole (170) and using the local equations of motion of
matter (160) to transform the integrand, we obtain [87]

pib ¼
Z
VB

ρ�νi
�
1þ 1

2
ν2 þ Π −

1

2
ÛB

�
d3w

þ
Z
VB

�
sikνk −

1

2
ρ�Ŵi

B

�
d3w

þ d
du

�
I i
c − ð1 − γÞPMi −

X∞
l¼1

lþ 1

l!
QLMiL

−
1

2

X∞
l¼0

1

ð2lþ 3Þl!QiLN L

�

þ
X∞
l¼1

1

l!

�
QL

_MiL þ l
2lþ 1

QiL−1
_N L−1

−QL

Z
VB

ρ�νiwLd3w

�
; ð174Þ

where

Ŵi
B ¼

Z
VB

ρ�ðu;w0Þν0kðwk − w0kÞðwi − w0iÞ
jw − w0j3 d3w0 ð175Þ

is a new internal potential of gravitational field of body B;
cf. [ [88], Eq. 4.32].
We remind the reader now that the point xiB represents

the position of the origin of the local coordinates adapted to
body B in the global coordinates taken at instant of time t. It
moves along worldlineW which we want to make identical
to worldline Z of the center of mass of body B. It can be
achieved if we can retain the center of mass of body B at the
origin of the local coordinates adapted to the body, that is to
have for any instant of time, wi

cm ¼ 0. This condition means
that both functions of time—the conformal dipole I i of the
body and its linear momentum pi—have to vanish,

I i ¼ 0; pi ¼ 0: ð176Þ
These constraints imposed on the conformal dipole and
linear momentum of body B can be satisfied if, and only if,
the local equation of motion of the center of mass of the
body can be reduced to equation

_piðuÞ ¼ _pib þ Ï i
c ¼ 0: ð177Þ

It is remarkable that Eq. (177) can be, indeed, fulfilled after
making an appropriate choice of the external dipoleQi that
characterizes the acceleration of the origin of the local
coordinates of body B with respect to a geodesic worldline
of the effective external manifold M̄. We prove this state-
ment below in Sec. VI E.

D. Post-Newtonian spin of a single body

In the post-Newtonian approximation the spin multipoles
of an extended body B appear in the multipolar decom-
position of the metric tensor in the Newtonian form (131)
where the body’s spin corresponds to l ¼ 1. The Newtonian
definition of spin is insufficient for derivation of the post-
Newtonian equations of rotational motion and must be
extended to include the post-Newtonian terms. The post-
Newtonian definition of spin of a single body residing in
asymptotically flat spacetime can be extracted from the
multipolar expansion of the metric tensor component
ĝ0iðu;wÞ by taking into account terms of the post-post-
Newtonian order [79]. The problem we face in the present
paper is that we have to define the post-Newtonian spin of
bodyBwhich is not residing in asymptotically flat spacetime
but is amember of theN-body system.We have also take into
account the contribution of the scalar field as we work in
scalar-tensor theory of gravity.
A post-Newtonian definition of the spin can be extracted

from the local law of conservation of the stress-energy
complex Θμν

Θμν
;ν ¼ 0; ð178Þ

which is used for building definitions of conserved quan-
tities in metric theories of gravity [119]. The stress-energy
complex is not unique and is defined up to a term whose
divergence vanishes identically. One of the most convenient
definitions of the symmetric stress-energy tensor in the
scalar-tensor theory of gravity was found by Nutku [147]. It
generalizes the Landau-Lifshitz stress-energy complex [42]
and reads

Θμν ¼ −gð1þ ϕÞðTμν þ tμνÞ; ð179Þ
where g ¼ det½gμν�, ϕ is the perturbation of the scalar field
(20), Tμν is the stress energy-tensor of matter, and tμν is an
analog of the Landau-Lifshitz pseudotensor tμνLL of the
gravitational field [42]. The pseudotensor has been deter-
mined by Nutku [147] and reads

tμν ¼ 1

16π

�
ð1þ ϕ3ÞtμνLL

þ 2ωðϕÞ þ 3

1þ ϕ

�
∂μϕ∂νϕ −

1

2
gμν∂αϕ∂αϕ

��
: ð180Þ

Let us now introduce the post-Newtonian definition of a
bare spin of body B in the local coordinates adapted to the
body, as follows:
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Si
b ¼

Z
R3

εijkwj½−ĝðu;wÞ�½1þ ðγ − 1Þφ̂ðu;wÞ�

× ½T̂0kðu;wÞ þ t̂0kðu;wÞ�d3w; ð181Þ

where εijk is 3-dimensional symbol of Levi-Civita and the
integration is performed over the entire 3-dimensional
space R3. Special attention should be paid to the variables
entering definition (181). Namely, the scalar field pertur-
bation φ̂ is given by (92) and includes both external and
internal parts; the stress-energy tensor T̂μν depends solely
on matter variables of body B as defined in Eqs. (31)–(34)
but it includes the overall—external and internal—post-
Newtonian perturbations of the metric tensor (98) and

scalar field (92), while the Nutku pseudotensor t̂μν intro-
duced in (180) depends only on the internal part of the post-
Newtonian perturbations of the metric tensor (101)–(103)
and scalar field (99). These limitations introduced to the
definition of spin of body B prevents appearance of
divergent terms that could emerge from the integration
of a pseudotensor which is formally defined in the entire
space R3.
Integrating by parts allows us to reduce (181) to the

integral over the volume VB of body B only. Expanding it in
the post-Newtonian series yields explicit expression for
the bare post-Newtonian spin of body B in the following
form [87]:

Si
b¼

Z
VB

ρ�εijkwjνk
�
1þ1

2
ν2þΠþð2γþ1ÞÛBþð1−γÞP

�
d3wþ

Z
VB

εijkwjskpνpd3w

þ
X∞
l¼1

1

l!
½3QLþ2ðγ−1ÞPL�

Z
VB

ρ�εijkwjνkwLd3w−
1

2

Z
VB

ρ�εijkwj½Ŵk
Bþð3þ4γÞÛk

B�d3w; ð182Þ

where νi ¼ dwi=du is velocity of matter of body
B in the local coordinates, the integration is over
volume of body B, and vector potential Ŵk

B is
defined in (175). The reader can notice that the spin
of body B which is a member of the N-body system
depends not only on the internal structure of the body
but also on the gravitational field of external bodies like
in the case of the internal mass multipoles. We shall use
definition (182) to derive the rotational equations of
motion of the body’s spin below in this section and in
Sec. X.

E. Translational equation of motion of the
center of mass of a single body

Translational equations of motion of the center of mass of
body Bwith respect to the local coordinateswα adapted to the
bodyare derivedby theFock-Papapetroumethod from the law
of conservation (177) of the total linear momentum pi of the
body. In order to implement this law we have to find out the
time derivative of the bare linear momentum, pib of the body.
To this end, we differentiate both sides of Eq. (174) one time
with respect to the local coordinate time u, make use of the
microscopic equations of motion (158)–(160), and integrate
by parts to rearrange a number of terms. One obtains [17,234]

_pib¼MQiþ
X∞
l¼1

1

l!
QiLMLþ

X∞
l¼1

l
ðlþ1Þ!CiLS

L−
X∞
l¼1

1

ðlþ1Þ! ½ðl
2þ lþ4ÞQLþ2ðγ−1ÞPL�M̈iL

−
X∞
l¼1

2lþ1

ðlþ1Þðlþ1Þ! ½ðl
2þ2lþ5Þ _QLþ2ðγ−1Þ _PL� _MiL

−
X∞
l¼1

2lþ1

ð2lþ3Þðlþ1Þ! ½ðl
2þ3lþ6ÞQ̈Lþ2ðγ−1ÞP̈L�MiL−

X∞
l¼1

1

ðlþ1Þ!εipq
�
CpL _MqLþ lþ1

lþ2
_CpLMqL

�

þ2
X∞
l¼0

lþ1

ðlþ2Þ!εipq
�
ð2QpLþðγ−1ÞPpLÞ _SqLþ lþ1

lþ2
ð2 _QpLþðγ−1Þ _PpLÞSqL

�

− ðPi−QiÞ
�
1

2
η

Z
VB

ρ�ÛðBÞd3w−
1

6
ðγ−1ÞN̈ þ2ðβ−1Þ

�
MPþ

X∞
l¼1

1

l!
PLML

�

þðγ−1Þ
X∞
l¼1

1

ðl−1Þ!QLML

�
; ð183Þ

COVARIANT EQUATIONS OF MOTION OF EXTENDED … PHYS. REV. D 99, 084008 (2019)

084008-35



where the spatial indices are raised and lowered with the
Kronecker symbol, the active mass multipoles ML are
defined in (122) and include the post-Newtonian correc-
tions, and the spin multipoles SL are sufficient in the
Newtonian limit (131). We have not shown in (183) a
number of terms which are directly proportional to the
internal conformal dipole, I i, and the linear momentum, pi,
of body B because these terms vanish if the origin of the
local coordinates coincides with the center of mass of body
B under condition (176) which we employ in the rest of the
paper. The omitted dipole-dependent terms in (183) can be
found in [ [17], Eq. 6.19].
Equation (183) is the post-Newtonian generalization of

the second Newton’s law applied to body B and written
down in the body-adapted local coordinates. Therefore, the
right-hand side of (183) is the net force exerted on body B.
This force does not include the self-action force as the
scalar-tensor theory of gravity belongs to the class of
conservative theories [88]. Formally, the self-action force
terms appeared at different stages of the computation of the
time derivative of the linear momentum but they all have
mutually canceled out at the final expression (183). The
external force standing in the right-hand side of (183)
consists of three parts:
(1) the tidal gravitational force caused by the coupling

of the internal active multipoles, ML, SL of body B
with the external multipoles QL, PL, CL for l ≥ 2,

(2) the force of inertia consisting of MQi and all other
post-Newtonian terms being proportional to Qi,
caused by the nongeodesic motion of the origin
of the local coordinates adapted to body B;

(3) the Dicke-Nordtvedt force that is proportional to the
difference Pi −Qi as shown by the very last term in
the right-hand side of (183), caused by the violation
of the strong principle of equivalence (SEP) in
scalar-tensor theory of gravity.

In order to ensure vanishing of the total linear momentum
of body B, _pi ¼ 0, we shall choose the local acceleration
Qi to compensate all terms in the right-hand side of (183)
along with the complementary term Ï i

c that is used for small
residual adjustment of the acceleration. This choice elimi-
nates the relative acceleration of the worldline Z of the
center of mass of body B with respect to worldlineW of the
origin of the body-adapted local coordinates. In this locally
accelerated frame we can still have the center of mass of
body B moving with respect to the origin of the local
coordinates with constant velocity, but we impose further
constraint (176) to eliminate this rectilinear motion and to
put the center of mass of body B at the origin of its own
local coordinates. It makes worldlines Z and W identical.
The solution of the law of conservation of the linear

momentum (177), where _pib is given by (183), with respect
to Qi yields

Qi ¼ QN
i þQpN

i −
Ï i
c

M
; ð184Þ

where the first term is the Newtonian part of acceleration,
the second term is the post-Newtonian correction, and the
third term is the complementary acceleration which allows
us to make residual adjustments in the position of the center
of mass of the body, if necessary. The residual freedom in
choosing the position of the center of mass of body B is
fixed at the last steps of derivation of translational equations
of motion; see (289) and (535).
The Newtonian and post-Newtonian counterparts of the

local acceleration of body B are defined by the following
equations:

MQN
i ¼ ðM −MÞPi −

X∞
l¼1

1

l!
QiLML; ð185Þ

MQpN
i ¼

X∞
l¼1

1

ðlþ1Þ! ½ðl
2þ lþ4ÞQLþ2ðγ−1ÞPL�M̈iLþ

X∞
l¼1

2lþ1

ðlþ1Þðlþ1Þ! ½ðl
2þ2lþ5Þ _QLþ2ðγ−1Þ _PL� _MiL

þ
X∞
l¼1

2lþ1

ð2lþ3Þðlþ1Þ! ½ðl
2þ3lþ6ÞQ̈Lþ2ðγ−1ÞP̈L�MiLþ

X∞
l¼1

1

ðlþ1Þ!εipq
�
CpL _MqLþ lþ1

lþ2
_CpLMqL

�

−
X∞
l¼1

l
ðlþ1Þ!CiLS

L−2
X∞
l¼0

lþ1

ðlþ2Þ!εipq
�
ð2QpLþðγ−1ÞPpLÞ _SqLþ lþ1

lþ2
ð2 _QpLþðγ−1Þ _PpLÞSqL

�
; ð186Þ

whereM andM are the conformal and active gravitational
masses of body B. The two masses, M and M, are not
equal according to (166). The difference between them
plays a role of a scalar charge, q≡M −M, of the scalar
field ϕ which couples with the external dipole of the
scalar field Pi ¼ Ū;i and causes the Dicke-Nordtvedt
anomalous acceleration, qPi, in (185) [88,173,261].

In general relativity, q ¼ 0, and the Dicke-Nordtvedt
acceleration in the right-hand side of (184) vanishes.
Equation (184) is a condition for the fulfillment of

the law of conservation of linear momentum (177) in
local coordinates. It ensures that the worldline W of the
origin of local coordinates does not accelerate with respect
to the worldline Z of the center of mass of body B.
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Equation (184) does not guarantee, however, thatW and Z
coincide. The origin of the local coordinates still can move
uniformly with respect to the center of mass of the body. To
eliminate this uniform motion we impose condition,
pi ¼ 0. The freedom which remains is a constant relative
displacement of the origin of the local coordinates with
respect to the center of mass of the body. This constant
displacement is removed by an additional constraint
imposed on the internal conformal dipole of the body,
I i ¼ 0. This procedure results in the constraint (176) and
ensures that the worldlines W and Z coincide.
AccelerationQi given in (184) must be substituted to the

equations of motion of the origin of the local coordinates
(152) to convert them to the translational equations of
motion of the center of mass of body B in the global
coordinates. These equations still contain the external
gravitational potentials Ū, Ψ̄, Ūi, and χ̄ defined in (68)
and (91), which are given in the form of integrals expressed
in the global coordinates. These integrals should be
explicitly expanded with respect to the internal multipoles
of the bodies of the N-body system in order to complete the
theory. We shall conduct this computation in Sec. VII and
derive translational equations of motion of extended bodies
in an N-body system in terms of their internal multipoles as
well as coordinates and velocities of their centers of mass.

F. Rotational equations of motion
of spin of a single body

Rotational equations of motion of spin of an extended
body are derived in the local coordinates by differentiating
the bare spin of body B given by Eq. (182) with respect to
the local coordinate time u. After taking the time derivative
and making use of the microscopic equations of motion in
the local coordinates given in Sec. VI A, we perform
several transformations in the integrand to reduce similar
terms, integrate the contributions from partial derivatives
by parts, and simplify the final result. After long and
tedious calculation we obtain the following expression for
the first time derivative of the bare spin of body B in the
local coordinates adapted to the body [87]

dSi
b

du
¼ T i

b þ T i
c − _Si

c; ð187Þ

where T i
b is the bare torque exerted on the body B due to

the coupling of its internal multipoles with the external tidal
multipoles, and T i

c is a post-Newtonian correction to the
bare torque caused by the difference (171) between the
active and conformal dipoles of body B, while _Si

c ≡
dSi

c=du and Si
c is a linear combination of terms which

can be treated as a complementary contribution to the bare
spin of the body.
Gravitational bare torque, T i

b, and the other terms in the
right-hand side of (187) read as follows [87]:

T i
b ¼ ½1þ ð2β − γ − 1ÞP�

X∞
l¼0

1

l!
εijkQkLMjL

þ
X∞
l¼0

lþ 1

ðlþ 2Þl! εijkCkLS
jL; ð188Þ

T i
c ¼ εijka

j
B

�
ð1 − γÞ

�
3

5
_Rk −

1

10
N̈ k

�

þ η

2

�Z
VB

ρ�ÛBwkd3wþ
X∞
l¼0

1

ð2lþ 3Þl!QkLN L

�

þ
X∞
l¼1

ðγ − 1Þlþ 2ðβ − 1Þ
l!

QLMkL

þ 2ðβ − 1ÞapB
�
Mkp þ 1

3
δkpN

��
; ð189Þ

Si
c¼−

X∞
l¼1

l
ðlþ1Þ!CLM

iLþ
X∞
l¼0

1

ð2lþ3Þl!CiLN
L

þ
X∞
l¼0

1

ð2lþ5Þl!εijk
�
1

2
QkL

_N jL−
lþ2ð2γþ3Þ
2ðlþ2Þ

_QkLN jL

−
2ð1þ γÞð2lþ3Þ

lþ2
QkLRjL

�

þ1− γ

5
εijkð3RjakBþN j _aiBÞþðγ−1ÞPSi

b; ð190Þ

where the noncanonical multipoles, N L and RL have been
defined earlier in (123) and (124) respectively, and in all
post-Newtonian terms the global acceleration, aiB, is
interpreted as the difference between the dipole of the
scalar field and the local acceleration, aiB ¼ Pi −Qi.
The bare torque, T i

b, is caused by gravitational coupling
of the internal and external multipoles of body B, and is
rooted in general relativity. The complementary torque, T i

c,
is caused by the difference between the conformal and
active dipoles of the body (171) and exists only in the
scalar-tensor theory. Indeed, by comparison of (189) with
(171) we can see that

T i
c¼ εijka

j
BðIk

b−MkÞ¼ εijkðPj−QjÞðIk
b−MkÞ; ð191Þ

where I i
b is the bare conformal dipole (170), andMi is the

active dipole of body B respectively. Equation (191) can be
further transformed to yet another form by taking into
account that the total conformal dipole (167) vanishes,
I i ¼ 0, due to our choice of the center of mass (176). After
making use of this choice and implementing (167), the
complementary torque takes on the following form:

T i
c ¼ −εijkðPj −QjÞMk − εijka

j
BI

k
c ; ð192Þ
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where the complementary vector function Ik
c is still

arbitrary. It will be fixed later by condition (289).
The complementary term _Sc in (187) is a total time

derivative which is naturally combined with the bare spin,
thus, forming the total spin of body B,

Si ≡ Si
b þ Si

c: ð193Þ

Defining the total torque in the local coordinates of
body B by

T i≡T i
bþT i

c

¼ εijk

�
PkMjþ

X∞
l¼1

1

l!
QkLMjLþakBI

j
c

þð2β− γ−1ÞP
X∞
l¼1

1

l!
QkLMjLþ

X∞
l¼1

lþ1

ðlþ2Þl!CkLS
jL

�

ð194Þ

brings about the rotational equation of motion of spin of
body B to its final form,

dSi

du
¼ T i; ð195Þ

which includes all Newtonian and post-Newtonian correc-
tions. Derivation of the rotational equations of motion
given in this section follows the approach proposed by
Damour et al. [76] in general relativity and by Kopeikin and
Vlasov [87] in scalar-tensor theory of gravity.

VII. MULTIPOLAR EXPANSION OF EXTERNAL
POTENTIALS IN THE GLOBAL COORDINATES

Equations of translational motion of each body B in the
global coordinates are given in (152) where the local
acceleration Qi should be taken from (184)–(186).
However, the external gravitational potentials of the body—
Ū, Ψ̄, Ūi, χ̄—defined in (68) and (91) are represented in
the form of volume integrals which have not yet been
explicitly performed in terms of the configuration variables
defining each body of the N-body system—the internal
multipoles, coordinates of the centers of mass, and their
velocities. Computation of the integrals is rather straight-
forward and rendered by expanding an integrand in each
integral defining the external potential, in a Taylor series
around the point of the center of mass of body B with
subsequent integration of the coefficients of the expansion
over volume of body B. The resulting expansion of the
external potentials is given in terms of the internal multi-
pole moments of the bodies which are the integrals
performed in the global coordinates, xα. Additional trans-
formation of the internal multipoles from the global to the
body-adapted local coordinates is required. This section
describes the details of the overall procedure of the

multipolar expansion of the external potentials which are
used, then, in the translational equations of motion.
We have built the local coordinates, wα¼ðu;wiÞ≡

ðuB;wi
BÞ, adapted to body B ∈ f1; 2;…; Ng by the matched

asymptotic expansion technique. We have suppressed the
subindex B in previous sections for all functions of the local
coordinates adapted to body B to simplify notations.
However, computations in this section involves the bodies
of the N-body system which are external with respect to
body B, and we need to distinguish the local coordinates
built around each body C from those adapted to body B.
Therefore, we shall use a subindex C ∈ f1; 2;…; Ng to
explicitly label the local coordinates adapted to body C
along with all configuration variables associated with it.

A. Multipolar expansion of potential Ū

The local coordinates adapted to body C are denoted
wα
C ¼ ðuC; wi

CÞ and the subindex C will appear explicitly in
all computations associated with the body C. Post-
Newtonian coordinate transformation between wα

C and
the global coordinates xα is identical to Eqs. (144) and
(145) describing the transformation from the local coor-
dinates adapted to body B to the global coordinates except
that now we have to pin the label C to all quantities related
to the local coordinates adapted to body C to distinguish
them from the local coordinates adapted to body B. More
specifically, the transformation reads

uC ¼ tþ 1

c2
ðAC − vkCR

k
CÞ

þ 1

c4

��
1

3
vkCa

k
C −

1

6
_̄UCðt; xCÞ −

1

10
_akCR

k
C

�
R2
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þ
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1
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BL
CR

L
C

�
; ð196Þ

wi
C ¼ Ri

C þ 1

c2

��
1

2
viCv

k
C þDik

C þ Fik
C

�
Rk
C þDijk

C Rj
CR

k
C

�
;

ð197Þ

where Ri
C ¼ xi − xiC, x

i
C ¼ xiCðtÞ marks the global spatial

coordinates of the origin of the local coordinates adapted to
body C, viC ¼ dxiC=dt is velocity of the origin of the local
coordinates of body C, aiC ¼ dviC=dt is acceleration of the
origin of the local coordinates, and we have made use of
abbreviations,

Dik
C ≡ δikγŪCðt; xCÞ; ð198Þ

Dijk
C ≡ 1

2
ðajCδik þ akCδ

ij − aiCδ
jkÞ; ð199Þ

that allows us to shorten formula (197) and is also useful in
the computations which follow. Equations for functions
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like AC ¼ ACðtÞ, BL
C ¼ BL

CðtÞ, etc., in (196) and (197)
repeat the corresponding equations for A, BL, etc., in
Sec. V C 1, after attaching the subindex C to all functions in
(146)–(151). Notice that the potential ŪCðt; xCÞ in (198)
denotes the Newtonian gravitational potential of all massive
bodies being external to body C,

ŪCðt; xÞ ¼
X
B≠C

UBðt; xÞ: ð200Þ

We emphasize that the instant of time t that appears in (196)
and which is also a time argument of all functions and
functionals of body C in the global coordinate chart is the
same as the instant of time t for functions and functionals of
body B. This is because we consider dynamics of the entire
N-body system as a continuous past-to-future diffeomor-
phism of spatial coordinates of the bodies taken on a
hypersurface of simultaneity Ht which points have the
same value of a single parameter—time t.
The multipolar expansions of the external gravitational

potentials Ū, Ūi, Ψ̄, χ̄ of body B defined in (68) and (91)
are represented in the form of the multipolar expansions
from a linear superposition of potentials UCðt; xÞ, Ui

Cðt; xÞ,
ΨCðt; xÞ, and χCðt; xÞ correspondingly. Therefore, we focus
on the multipolar expansions of the individual potentials.
Potentials UCðt; xÞ, Ui

Cðt; xÞ, ΨCðt; xÞ are given in the
global coordinates as integrals (65), (75)–(79) with a kernel,
jx − x0j−1, which is a Green function of the Laplace
equation. This kernel is expanded into a multipolar series
as follows:

1

jx − x0j ¼
1

jRC − R0
Cj

¼
X∞
l¼0

ð−1Þl
l!

R0hLi
C ∂L

�
1

RC

�
; ð201Þ

where R0i
C ¼ x0i − xiC is the coordinate distance from the

origin of the local coordinates xiC adapted to body C, Ri
C ¼

xi − xiC is the coordinate distance from xiC to the field point,
RC ¼ ðδijRi

CR
j
CÞ1=2, ∂L ≡ ∂i1…il denotes a partial derivative

of lth order with respect to spatial global coordinates where
each ∂i ¼ ∂=∂xi, the angular parentheses around indices
indicate the STF projection, and the point x0i lies inside
volume with radius R0

C < RC so that the series (201) is
convergent. Equation (201) yields the multipolar expansion
of the Newtonian potential of body C in the global
coordinates as follows:

UCðt; xÞ ¼
Z
VC

ρ�ðt; x0Þ
jx − x0j d

3x0 ¼
X∞
l¼0

ð−1Þl
l!

IhLiC ∂L

�
1

RC

�
;

ð202Þ

where

ILC ≡ ILCðtÞ ¼
Z
VC

ρ�ðt; x0ÞR0i1
C R0i2

C …R0il
C d

3x0 ð203Þ

are the Newtonian mass moments computed in the global
coordinates. We preserve the prime in the notation of the
spatial coordinates R0i

C ¼ x0i − xiC that appear in the inte-
grand of (203) to prevent confusion of the point of
integration x0i with the field point xi. Symmetric multipoles
ILC have to be transformed from the global to local coor-
dinates adapted to body C in order to express them in terms
of the internal STF mass and spin multipoles defined in
Sec. IV B 6. The transformation procedure is somehow
subtle and should be done with care as it involves not only
a pointwise transformation of coordinates but a Lie transport
of the integration points along worldlines of matter of body
C [73,87]; see Fig. 1.
It starts from the post-Newtonian transformation of

radius-vector Ri
C ¼ xi − xiC from the global to local coor-

dinates wi
C adapted to body C. This is achieved by applying

the inverse coordinate transformation of (197):

Ri
C ¼ wi

C −
1

c2

��
1

2
viCv

k
C þDik

C þ Fik
C

�
wk
C þDijk

C wj
Cw

k
C

�
:

ð204Þ

However, we actually need a post-Newtonian transforma-
tion not Ri

C but a radius-vector R0i
C ¼ x0i − xiC from the

global to the local coordinates because it is R0i
C which

appears in the definition of ILC in (203) as a consequence of
the Taylor expansion (202). This transformation is slightly
different from (204) because in all integrals performed in
the global coordinates the points xi and x0i are lying on
hypersurfaceHt of constant global coordinate time t, while
the points wi

C and w0i
C are lying on hypersurfaces HuC of

constant local coordinate time uC in all integrals defining
the internal part of the metric tensor perturbation of body C.
Hypersurface Ht differs from that HuC . Therefore, trans-

formation of IhLiC from the global to local coordinates must
include not only the transformations between the coordi-
nate points but also a Lie transport of the integration point
with coordinates x0i from hypersurface Ht to hypersurface
HuC performed along the timelike worldlines of matter of
body C. The magnitude of the Lie transport of each point of
integration depends on the size of spatial separation of the
integration point x0i from the origin of the local coordinates
adapted to body C, and is determined from the equation of
time transformation (196), and a condition that all points on
the hypersurface HuC have the same value of the local
coordinate time uC as the field point P in Fig. 1. The Lie
transport of the corresponding element of matter with
coordinates x0i is accompanied by the point-wise post-
Newtonian transformation (196) applied to x0i and the
resulting transform was worked out by Brumberg and
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Kopejkin [73] and Kopejkin [263] and its comprehensive
explanation is given in full detail in our textbook [ [17],
Secs. 5.2.3.1 and 6.3.2]. It yields for the post-Newtonian
Lie transform of the spatial coordinate w0i

C the following
result [ [17], Eq. 6.56]:

R0i
C ¼ w0i

C −
1

c2

��
1

2
viCv

k
C þDik

C þ Fik
C

�
w0k
C

þDijk
C w0j

Cw
0k
C þ ν0iCv

k
Cðw0k

C − wk
CÞ
�
; ð205Þ

where ν0iC ¼ v0i − viC is the relative velocity of matter of
body C located at point x0i with respect to the origin of the
local coordinates of the body, v0i ¼ dx0i=dt, viC ¼ dxiC=dt.
The difference between transformations (204) and (205) is
in the presence of the very last term in (205) which is due to
the Lie transport of an element of integration from the
hypersurface Ht of constant time t to that HuC of uC along
worldlines of matter some of which are shown by dotted
lines in Fig. 1. This term brings about a seemingly different
appearance of our translational equations of motion for the
center of mass of each body as compared with translational
equations of motion derived by Racine and Flanagan [84]
with corrections outlined in [85]. This is a matter of choice
of the hypersurface of integration HuC in the local

coordinates adapted to the body under consideration. We
reconcile this issue in Appendix B; see discussion follow-
ing Eq. (B17).
Equation (205) allows us to transform IhLiC ≡ IhLiC ðtÞ from

the global to local coordinates as follows [ [17], Eq. 6.60]:

IhLiC ¼ IhLi
C −

l
2
vkCv

hil
C IL−1ik

C þ lFkhil
C IL−1ik

C − lDkhil
C IL−1ik

C

− lIjkhL−1
C Dilijk

C − vkC _IkhLi
C þ vkCR

k
C
_IhLi
C

þ vkC

Z
VC

ρ�0Cν
0k
Cw

0hLi
C d3w0

C; ð206Þ

where a shorthand notation, ρ�0C ≡ ρ�CðuC;w0
CÞ, stands for

the invariant density of matter at the integration point w0
C in

the local coordinates, the moments

IL
C ≡ICðuCÞ ¼

Z
VC

ρ�0Cw
0i1
C w0i2

C …w0il
C d

3w0
C; ð207Þ

are symmetric moments of body C depending on the local
time uC, and we have made use of the fact that the product
of the mass density ρ� with 3-dimensional coordinate
volume is Lie invariant when transported from hypersur-
face Ht to hypersurface HuC along worldlines of matter,
that is ρ�Cðt; x0Þd3x0 ¼ ρ�CðuC;w0

CÞd3w0
C [17]. Notice that

FIG. 1. World tube of matter of body C intersected by hypersurfaces of simultaneity in the global and local coordinates adapted to
body C. Integration in the global coordinates goes over the hypersurface Ht of constant time t passing through points P and Q.
Integration in the local coordinates goes over the hypersurface HuC of constant time uC passing through points P and R. The two
hypersurfaces intersect at the field point P having global coordinates xαP ¼ ft; xg and local coordinates wα

P ¼ fuC;wCg. The points Q
and R are lying on the worldlineW of the origin of the local coordinates adapted to body C. Lie transport of the elements of integration
from Ht to HuC is shown by dotted lines and carried out along worldlines of matter particles forming the element of integration.
Hypersurface HtþΔt of constant time tþ Δt is passing through point R. Points Q and R have global coordinates xαQ ¼ ft; xCðtÞg and
xαR ¼ ftþ Δt; xCðtþ ΔtÞg, respectively. Local coordinates of point R are wα

R ¼ fuC; 0g. Time shift Δt between hypersurfaces Ht and
HtþΔt is determined by the time transformation (196) applied to coordinates of two points, P and R which have the same value of the
local time uC. It is given by Δt ¼ vkCR

k
C.
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formula (206) is not a pointwise transformation of the
moments performed at the origin of the local coordinates
adapted to body C because of the presence of the last but

one term, vkCR
k
C
_IhLi
C , which depends on the coordinate

distance Rk
C from the origin of the local coordinates to the

field point (point P in Fig. 1). At first glance, the
appearance of this term may look strange as by definition

(203) the moments IhLiC are solely functions of time t alone.
The reader should keep in mind that the moments IL

C are

functions of the local time uC and, though both IhLiC and IL
C

are functions pinned down to the origin of the local
coordinates adapted to body C, they are taken at different
points on the worldline W of the origin because the field
point ðt; xiÞ is considered as being fixed in the derivation of
the transformation (206). Therefore, the transformation of
the time arguments of the moments involves the time shift
Δt ¼ vkCR

k
C of the moments along the worldline W, which

explains the origin of term vkCR
k
C
_IkhLi
C in (206). It is worth

noticing that the term vkCR
k
C
_IhLi
C is not present in the

transformation equations for multipole moments derived by
Racine and Flanagan [84] as they have computed the
multipoles of each body C at the value of the local time
uC taken at the center of mass of body C which is different
from our convention. This leads to the translational
equations of motion which look different from ours by
several terms. This apparent difference is not an indicator of
mistake but, as we show in Appendix B, a matter of
computational approach and conventions.
It should be emphasized that the momentsIL

C are not the
STF Cartesian tensors. Their STF projection is denoted as

IhLi
C and, in general, IL

C ≠ IhLi
C . It means that after

contraction of any two indices in (207) we get the trace
IkkL−2

C ≠ 0, and it must be taken into account in subsequent
calculations. The STF part of the Newtonian-like moments
(207) is related to the STF post-Newtonian internal mass
multipoles, ML

C ≡ML
CðuCÞ, of body C as follows [234]:

IhLi
C ¼ ML

C½1þ ð2β − γ − 1ÞPC� −
Z
VC

ρ�0C

��
γ þ 1

2

�
ν02C þ Π0

C þ γ
s0kkC

ρ�0C
− ð2β − 1ÞÛ0

C

�
w0hLi
C d3w0

C

−
1

2ð2lþ 3Þ
�
N̈ hLi

C − 4ð1þ γÞ 2lþ 1

lþ 1
_RhLi
C

�
þ
X∞
k¼1

1

k!
½QK

C þ 2ðβ − 1ÞPK
C �

Z
VC

ρ�0Cw
0hKi
C w0hLi

C d3w0
C; ð208Þ

where a prime standing after function (like Π0
C, etc.) in the

integrand means that the function is taken at the point w0i
C, an

overdot denotes a total time derivative with respect to the
coordinate timeuC of the local coordinates adapted to bodyC,

PK
C ≡X

B≠C
∂KUBðt; xCÞ ðk ≥ 0Þ ð209Þ

are monopole and higher-order external multipoles of the
scalar field generated by all bodies being external to body C,

QK
C ≡X

B≠C
∂KUBðt; xCÞ ðk ≥ 2Þ ð210Þ

arehigher-ordergravitoelectric externalmultipoles of bodyC,
and the local accelerationQi

C is defined in (184) and must be

referred to body C, and the noncanonical multipolesN L
C and

RL
C are defined by equations similar to (123) and (124) where

the integrals must be taken over a volume of body C,

N L
C ≡

Z
VC

ρ�CðuC;wCÞw2
Cw

hLi
C d3wC; ð211Þ

RL
C ≡

Z
VC

ρ�CðuC;wCÞνkCwhkLi
C d3wC: ð212Þ

Now, we replace expression (206) for IhLiC to multipolar
expansion (202) of the Newtonian potential of body C and
use (208). It results in

UCðt;xÞ¼
X∞
l¼0

ð−1Þl
l!

ML
C∂L

�
1

RC

�
½1þð2β− γ−1ÞPC�−

X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

�

×

�Z
VC

ρ�0C

��
γþ1

2

�
ν02C þΠ0

Cþ γ
s0kkC

ρ�C
0 − ð2β−1ÞÛ0

C

�
w0hLi
C d3w0

Cþ
1

2ð2lþ3Þ
�
N̈ hLi

C −4ð1þ γÞ2lþ1

lþ1
_RhLi
C

�

−
X∞
k¼1

1

k!
½QK

C þ2ðβ−1ÞPK
C �
Z
VC

ρ�0Cw
0hKi
C w0hLi

C d3w0
Cþ

l
2
vkCv

hil
C IL−1ik

C − lFkhil
C IL−1ik

C þ lDkhil
C IL−1ik

C þ lIjkhL−1
C Dilijk

C

þvkC _IkhLi
C −vkCR

k
C
_IhLi
C −vkC

Z
VC

ρ�0Cν
0k
Cw

0hLi
C d3w0

C

�
: ð213Þ
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Neither the multipolesIL
C nor the very last integral in (206)

are the STF Cartesian tensors. Therefore, Eq. (213) must be
further transformed to bring it to the form depending on the
STF internal mass and spin multipoles,ML

C and SL
C. This is

achieved by making use of the following equations:

vkCv
hil
C IL−1ik

C ¼vkCv
hil
C ML−1ik

C þ l−1

2l−1
vhi1C vi2CN

L−2i
C ; ð214Þ

Dkhil
C IL−1ik

C ¼ γŪCðt; xCÞML
C; ð215Þ

IjkhL−1
C Dilijk

C ¼ ajCM
jL
C −

1

2ð2lþ 1Þ a
hil
C N L−1i

C ; ð216Þ

vkC _IkhLi
C ¼ vkC _MkL

C þ l
2lþ 1

vhilC
_N L−1i
C ð217Þ

Z
VC

ρ�0Cν
0k
Cw

0hLi
C d3w0

C

¼ 1

lþ1
_MkL

C þ l
lþ1

εkphilSL−1ip
C þ2l−1

2lþ1
δkhilRL−1i

C ; ð218Þ

where the overdot denotes a total time derivative with
respect to coordinate time uC of the local coordinates
adapted to body C, and we have used everywhere in the

post-Newtonian terms IhLi
C ¼ ML

C which is valid in the
approximation under consideration. Substituting (214)–
(218) to Eq. (213) yields a multipolar post-Newtonian
expansion of the Newtonian potential of body C given in
terms of the internal active mass and spin multipoles of the
body,

UCðt; xÞ ¼ WCðt; xÞ þΦCðt; xÞ; ð219Þ

where

WCðt; xÞ ¼
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

�
ML

C; ð220Þ

ΦCðt; xÞ ¼ ð2β − γ − 1ÞPC

X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

�
ML

C

−
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

��Z
VC

ρ�0C

��
γ þ 1

2

�
ν02C þ Π0

C þ γ
s0kkC

ρ�C
0 − ð2β − 1ÞÛ0

C

�
w0hLi
C d3w0

C

þ 1

2ð2lþ 3Þ
�
N̈ L

C − 4ð1þ γÞ 2lþ 1

lþ 1
_RL
C

�
−
X∞
n¼1

1

n!
½QN

C þ 2ðβ − 1ÞPN
C �

Z
C
ρ�0Cw

0hNi
C w0hLi

C d3w0
C

þ l
2
vkCv

hil
C ML−1ik

C − lFkhil
C ML−1ik

C þ lγŪðt; xCÞML
C þ lakCM

kL
C þ vkC _MkL

C − vkCR
k
C
_ML

�

þ
X∞
l¼0

ð−1Þl
ðlþ 1Þ! ∂L

�
1

RC

�
vkC _MkL

C þ
X∞
l¼1

ð−1Þll
ðlþ 1Þ! εkpqv

k
C∂qL−1

�
1

RC

�
SpL−1
C

þ
X∞
l¼1

ð−1Þlð2l − 1Þ
ð2lþ 1Þl! vkC∂kL−1

�
1

RC

�
RL−1

C −
1

2

X∞
l¼0

ð−1Þl
ð2lþ 3Þl! ∂pqL

�
1

RC

�
vhpC vqCN

Li
C

−
1

2

X∞
l¼0

ð−1Þl
ð2lþ 3Þl! ∂pL

�
1

RC

�
ahpC N Li

C þ
X∞
l¼0

ð−1Þl
ð2lþ 3Þl! ∂pL

�
1

RC

�
vhpC

_N Li
C : ð221Þ

The reader can notice that (221) includes explicitly a
number of integrals depending on the intrinsic physical
quantities of body C such as the internal velocity of matter
νiC, potential energyΠC, the stress tensor s

ij
C, and self-gravity

potential ÛC, as well as the noncanonical multipoles, N L
C

andRL
C. The appearance of such terms is not expected in the

final equations of motion if the principle of effacing of the
internal structure is valid. Indeed, subsequent calculations
demonstrate that the multipolar expansions of other gravi-
tational potentials also contain similar terms depending
on the internal structure of body C which are mutually

canceled out in the final form of the post-Newtonian
equations of motion.
Multipolar expansion of the Newtonian potential was

rather cumbersome because we had to take into account the
post-Newtonian corrections to the definitions of the internal
multipoles ML and to implement the post-Newtonian
transformation from the global to local coordinates.
Multipolar expansions of other external potentials are less
laborious as they show up only in the post-Newtonian terms
in definition of the external gravitoelectric multipoles QL.
Thus, their multipolar expansions can be performed by
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operating merely with the Newtonian part of the coordinate
transformations and taking the leading (Newtonian-order)
terms in the definition of the active internal multipolesML.

B. Multipolar expansion of potential Ūi

The external vector potential Ui
C is defined in the global

coordinates byEq. (75) and depends on thevelocity ofmatter
vi of the body C taken with respect to the origin of the global
coordinates. This velocity is a linear sum of two pieces,

vi ¼ viC þ νiC; ð222Þ

where viC ¼ dxiC=dt is velocity of the origin of local
coordinates adapted to body C with respect to the global
coordinates, and νiC is velocity of matter of body C with
respect to the origin of the local coordinates. After account-
ing for the linear decomposition of the velocity, the vector
potential Ui

C is expanded in terms of the internal multipoles
as follows:

Ui
Cðt; xÞ ¼

Z
VC

ρ�ðt; x0Þv0i
jx − x0j d3x0

¼
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

�
ML

Cv
i
C

þ
X∞
l¼1

ð−1Þl
ðlþ 1Þ! ∂L

�
1

RC

�
_MiL

C

þ
X∞
l¼1

ð−1Þll
ðlþ 1Þ! εipq∂qL−1

�
1

RC

�
SpL−1
C

þ
X∞
l¼1

ð−1Þl
l!

2l − 1

2lþ 1
∂iL−1

�
1

RC

�
RL−1

C ; ð223Þ

whereML
C and SL

C are the canonical internal mass and spin
multipoles of bodyC defined in (122) and (131) respectively,
and RL are the noncanonical multipoles of body C defined
in (124).

C. Multipolar expansion of potential Ψ̄
Multipolar expansion of the external potential Ψ̄ entering

the definition of the external tidal potential QL for body B
is a sum of gravitational potentials of the bodies being
external with respect to body B,

Ψ̄ðt; xÞ ¼
X
C≠B

ΨCðt; xÞ; ð224Þ

where

ΨCðt; xÞ≡
�
γ þ 1

2

�
ΨC1ðt; xÞ þ ð1 − 2βÞΨC2ðt; xÞ

þ ΨC3ðt; xÞ þ γΨC4ðt; xÞ ð225Þ

is a linear superposition of potentials ΨC1, ΨC2, ΨC3, ΨC4
defined in (76)–(79) respectively.
Potential ΨC1 is a quadratic functional of matter’s

velocity with respect to the global coordinates. The square
of the velocity is split in three pieces in accordance with
decomposition (222),

v2 ¼ v2C þ 2vkCν
k
C þ ν2C: ð226Þ

Replacing v2 with the right-hand side of (226) in (76), and
performing multipolar decomposition of each integral with
the help of (201), we obtain

ΨC1ðt; xÞ

¼
Z
VC

ρ�ðt; x0Þv02
jx − x0j d3x0

¼
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

��
ML

Cv
2
C þ

Z
VC

ρ�0Cν
02
Cw

0hLi
C d3w0

C

�

þ 2
X∞
l¼1

ð−1Þl
ðlþ 1Þ! ∂L

�
1

RC

�
vpC _MpL

C

þ 2
X∞
l¼1

ð−1Þll
ðlþ 1Þ! v

k
Cεkpq∂qL−1

�
1

RC

�
SpL−1
C

þ 2
X∞
l¼1

ð−1Þl
l!

2l − 1

2lþ 1
vkC∂kL−1

�
1

RC

�
RL−1

C ; ð227Þ

where a prime after a function means that the function is
taken at the integration point with coordinates w0i

C in the
local coordinates adapted to body C.
Potential ΨC2 depends on the total Newtonian potential

U of all bodies in an N-body system. It is split in two
pieces,

Uðt; xÞ ¼ UCðt; xÞ þ ŪCðt; xÞ; ð228Þ
where UCðt; xÞ is the Newtonian potential of body C, and
ŪCðt; xÞ ¼

P
B≠CUBðt; xÞ is the Newtonian potential of all

other bodies of the N-body system. Transformation of the
Newtonian potential from the global to local coordinates of
body C is sufficient in the Newtonian approximation:
UCðt; xÞ ¼ UCðuC;wCÞ. The external Newtonian potential
is decomposed in a Taylor series around the origin xiC of the
local coordinates of body C, which is also transformed
from the global to local coordinates,

ŪCðt; xÞ ¼ ŪCðt; xCÞ þ
X∞
k¼1

1

k!
∂KŪCðt; xCÞwK

C ; ð229Þ

where we have used notations

ŪCðt; xCÞ≡
X
B≠C

UBðt; xCÞ;

∂KŪCðt; xCÞ≡ lim
x→xC

X
B≠C

∂hi1…ikiUBðt; xÞ: ð230Þ
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Taking the above considerations into account, and perform-
ing calculations of integrals, we get a multipolar decom-
position of potential ΨC2 in the following form:

ΨC2ðt;xÞ¼
Z
VC

ρ�ðt;x0ÞUðt;x0Þ
jx−x0j d3x0

¼
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

�Z
VC

ρ�0CU
0
Cw

0hLi
C d3w0

C

þ
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

��
ŪCðt;xCÞML

C

þ
X∞
k¼1

1

k!
∂KŪCðt;xCÞ

Z
VC

ρ�0Cw
0hKi
C w0hLi

C d3w0
C

�
:

ð231Þ

Multipolar decompositions of potentials ΨC3, ΨC4 are
straightforward, and result in

ΨC3ðt;xÞ¼
Z
VC

ρ�ðt;x0ÞΠðt;x0Þ
jx−x0j d3x0

¼
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

�Z
VC

ρ�0CΠ0
Cw

0hLi
C d3w0

C; ð232Þ

ΨC4ðt; xÞ ¼
Z
VC

skkðt; x0Þ
jx − x0j d

3x0

¼
X∞
l¼0

ð−1Þl
l!

∂L

�
1

RC

�Z
VC

s0kkC w0hLi
C d3w0

C: ð233Þ

D. Multipolar expansion of potential χ̄

Multipolar expansion of external potential χCðt; xÞ
defined by Eq. (81), is based on the multipolar expansion
of coordinate distance jx − x0j ¼ jRC − R0

Cj that is a kernel
of the integral in (81), near the origin of the local coordinates
that is the point with coordinates xC. Taylor’s expansion of
the kernel jx − x0j with respect to x0 is given in terms of the

Gegenbauer polynomials, C
ð−1

2
Þ

l ðxÞ, [ [264], Sec. 8.93], and
its STF expansion near the origin of the local coordinates of
body B reads

jx − x0j ¼
X∞
l¼0

ð−1Þl
l!

R0hLi
C ∂LRC

þ
X∞
l¼0

ð−1Þl
ð2lþ 3Þl!R

02
CR

0hLi
C ∂L

�
1

RC

�
: ð234Þ

Therefore, the multipolar expansion of external potential
χCðt; xÞ has the following form:

χCðt;xÞ¼−
Z
VC

ρ�ðt;x0Þjx−x0jd3x0

¼−
X∞
l¼0

ð−1Þl
l!

∂LRCML
C

−
X∞
l¼0

ð−1Þl
ð2lþ3Þl!∂L

�
1

RC

�
N L

C; ð235Þ

which is a direct consequence of integration of (234).
In what follows, we will need the multipolar expansion

of the second partial derivative of the potential χC with
respect to the global coordinate time, ∂2

t χCðt; xÞ, because it
is this quantity that enters definition of the external
gravitoelectric multipoles, QL. The partial time derivative
of χC with respect to the global coordinate time, t, should
be transformed to the time derivative taken with respect to
the local coordinate time uC of body C which allow us to
separate the internal, time-dependent physical processes
inside body C from the temporal changes caused by motion
of body C with respect to the global coordinates. The law of
transformation of the first time derivative is derived directly
from the coordinate transformation (196), (197) and is
given by

∂
∂t ¼

∂
∂uC

∂uC
∂t þ ∂

∂wi

∂wi

∂t ¼ ∂
∂uC − vkC

∂
∂Rk

C

; ð236Þ

where we have neglected all terms of the post-Newtonian
order because they contribute only to the post-post-
Newtonian approximation which we do not consider.
Applying (236) one more time, we get for the second partial
derivative

∂2

∂t2 ¼
∂2

∂u2C − 2vkC
∂2

∂Rk
C∂uC þ vkCv

p
C

∂2

∂Rk
C∂Rp

C

− akC
∂

∂Rk
C

:

ð237Þ

Now, we employ (237) to calculate the second time
derivative from expansion (235). In doing this, we remind
the reader that the internal potentials, ML

C and N L
C, are

functions of the local coordinate time uC only, and the partial
derivative ∂=∂Ri

C ¼ ∂=∂xi ≡ ∂i. Therefore, taking the sec-
ond time derivative from χC results in

∂2χC
∂t2 ¼−

X∞
l¼0

ð−1Þl
l!

½M̈L
C∂LRC−2 _ML

CvkC∂kLRC

þML
Cv

k
Cv

p
C∂kpLRC−ML

Ca
k
C∂kLRC�

−
X∞
l¼0

ð−1Þl
ð2lþ3Þl!

�
∂L

�
1

RC

�
N̈ L

C−2vkC∂kL

�
1

RC

�
_N L
C

þvkCv
p
C∂kpL

�
1

RC

�
N L

C−akC∂kL

�
1

RC

�
N L

C

�
; ð238Þ
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where we have discarded all post-Newtonian terms
as they contribute only to the second post-Newtonian
approximation which we do not consider; viC ¼ dxiC=dt
and aiC ¼ dviC=dt are, respectively, velocity and accelera-
tion of the origin of the local coordinates of body C with
respect to the global coordinates.
It is worth noticing that the partial derivatives from

function 1=RC like ∂Lð1=RCÞ, ∂kLð1=RCÞ, etc., are STF
derivatives with respect to all indices. At the same time
the partial derivatives from RC, like ∂LRC, ∂kLRC, etc.,
are not STF derivatives with respect to their indices;
only that part of indices in the derivatives which is
contracted with STF multipoles becomes symmetric and
trace free. Transformation of the partial derivatives from
RC to their STF counterpart will be required in deriva-
tion of the equations of motion and is given below
in (268).

VIII. MULTIPOLAR EXPANSION
OF EXTERNAL MULTIPOLES

IN THE GLOBAL COORDINATES

The external tidal multipoles PL, QL, and CL of body
B have been introduced in Sec. V C 4 in the form of the
STF partial derivatives from the external potentials. We
need explicit expressions of the external multipoles in
terms of the multipolar series with respect to the internal
multipoles of the extended bodies for calculating equa-
tions of motion of an N-body system in the global

coordinates. The present section provides this multipolar
decomposition.

A. Scalar-field multipoles PL

Multipolar decomposition of the external scalar-field
multipoles PL of body B is obtained from (153) where the
scalar field φ̄ðt; xBÞ ¼ W̄ðt; xBÞ of external bodies and
W̄ðt; xBÞ ¼

P
C≠BWCðt; xBÞ is the external Newtonian

potential. Multipolar decomposition of the potential
WCðxBÞ of body C is given in (220). Making use of it,
we get the external scalar-field multipoles

PL ¼ ∂LW̄ðt; xBÞ ¼
X
C≠B

X∞
n¼0

ð−1Þn
n!

MN
C∂LN

�
1

RC

�
x¼xB

;

ð239Þ

where the STF index N should not be confused with the
number N of the extended bodies in the N-body system.
Expression (239) will be used later for calculating the post-
Newtonian part of the gravitational force depending on the
external scalar-field multipoles.

B. Gravitoelectric multipoles QL

Gravitoelectric multipoles QL are defined by Eq. (155).
It is instructive to introduce potentials W̄, V̄, and V̄i as
linear combinations of potentialsWC, VC, Vi

C of individual
bodies from the N-body system,

W̄ðt; xÞ≡X
C≠B

WCðt; xÞ; V̄ðt; x; lÞ≡X
C≠B

VCðt; x; lÞ; V̄iðt; x; lÞ≡
X
C≠B

Vi
Cðt; x; lÞ; ð240Þ

where the scalar potential WC has been defined earlier in (220), the scalar potential

VCðt;x; lÞ≡ΦCðt;xÞþΨCðt;xÞ−
1

2
∂ttχCðt;xÞ−2ð1þ γÞvkBUk

Cðt;xÞþð1þ γÞv2BUCðt;xÞþð2−2β− lγÞŪðt;xBÞUCðt;xÞ;
ð241Þ

and the vector potential

Vi
Cðt; x; lÞ≡ 2ð1þ γÞ _Ui

Cðt; xÞ þ ðl − 2 − 2γÞviB _UCðt; xÞ −
l
2
viBv

k
B∂kUCðt; xÞ

− ðl2 − lþ 2þ 2γÞaiBUCðt; xÞ − lFki
B∂kUCðt; xÞ: ð242Þ

Notice that potentials VCðt; x; lÞ and Vi
Cðt; x; lÞ depend explicitly on the multipolar index l. In terms of the new potentials

the gravitoelectric multipole QL takes on a simpler expression,

QL ¼ ∂hLiW̄ðt; xBÞ þ ∂hLiV̄ðxB; lÞ þ ∂hL−1V̄iliðxB; lÞ þ XhLi ðl ≥ 2Þ: ð243Þ

Multipolar expansion of potential WC is given in (220). Multipolar expansion of two other gravitational potentials are
obtained form the results of Sec. VIII
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VCðt; x; lÞ ¼
X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

��
ð1þ γÞv2B þ

�
γ þ 1

2

�
v2C

�
MN

C

þ
X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

�
½ð2 − 2β − lγÞŪðt; xBÞ − γðnþ 1ÞŪCðt; xCÞ�MN

C

−
X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

��
n
2
vpCv

in
CM

pN−1
C − nFpin

C MpN−1
C þ ðnþ 1ÞapCMpN

C þ vpC _MpN
C − vpCR

p
C
_MN

C

�

þ
X∞
n¼0

ð−1Þn
n!

�
1

2
M̈N

C∂NRC − _MN
Cv

p
C∂pNRC þ 1

2
MN

Cv
p
Cv

q
C∂pqNRC −

1

2
MN

Ca
p
C∂pNRC

�

þ 2ð1þ γÞ
�X∞
n¼1

ð−1Þnn
ðnþ 1Þ! εkpq∂pN−1

�
1

RC

�
SqN−1
C vkBC −

X∞
n¼0

ð−1Þn
ðnþ 1Þ! ∂N

�
1

RC

�
_MpN

C vpBC

−
X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

�
vpBv

p
CM

N
C −

X∞
n¼1

ð−1Þn
n!

2n − 1

2nþ 1
∂pN−1

�
1

RC

�
RN−1

C vpBC

−
X∞
n¼1

ð−1Þn
n!

2n − 1

2nþ 1
∂N−1

�
1

RC

�
_RN−1
C

�
; ð244Þ

where

viBC ≡ viB − viC ð245Þ

is the relative coordinate velocity between the bodies B and
C, and the external potentials Ū and ŪC have been defined
in (68) and (230).
Expression (242) for Vi

C contains the total time deriv-
atives from the potentials taken on the worldline, xiBðtÞ, of
the origin of the local coordinates adapted to body B. It is
expressed in terms of the partial time and spatial derivatives
as follows:

d
dt

¼ ∂
∂tþ viB

∂
∂xi ; ð246Þ

where viB ¼ dxiB=dt is velocity of the origin of the local
coordinates adapted to body B with respect to the global
coordinates. The partial time derivative in (246) is taken
with respect to the variables associated with each body C
that is external to the body B. It is related to the partial time
derivative taken with respect to the local coordinate time uC
of body C by Eq. (236). Hence, the total time derivative
from the external potentials associated with body C taken
on the worldline of body B reads

d
dt

¼ ∂
∂uC þ viBC

∂
∂xi : ð247Þ

where again viBC ≡ viB − viC is the relative velocity between
two bodies, B and C. After employing (247) for taking the
total time derivatives in (242) and the multipolar expansions
of other potentials entering the definition of V̄i

C, we get

Vi
Cðt; x; lÞ ¼ 2ð1þ γÞ

�X∞
n¼1

ð−1Þn
ðnþ 1Þ! ∂N

�
1

RC

�
M̈iN

C þ
X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

�
ð _MN

CviC þMN
Ca

i
CÞ

−
X∞
n¼1

ð−1Þnn
ðnþ 1Þ! εipq∂pN−1

�
1

RC

�
_SqN−1
C −

X∞
n¼1

ð−1Þnn
ðnþ 1Þ! εipq∂kpN−1

�
1

RC

�
SqN−1
C vkBC

þ
X∞
n¼1

ð−1Þn
ðnþ 1Þ! ∂pN

�
1

RC

�
_MiN

C vpBC þ
X∞
n¼0

ð−1Þn
n!

∂pN

�
1

RC

�
MN

Cv
p
BCv

i
C

þ
X∞
n¼1

ð−1Þn
n!

2n − 1

2nþ 1
∂iN−1

�
1

RC

�
_RN−1
C þ

X∞
n¼1

ð−1Þn
n!

2n − 1

2nþ 1
∂ipN−1

�
1

RC

�
RN−1

C vpBC

�

þ ðl − 2 − 2γÞ
�X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

�
_MN

CviB þ
X∞
n¼0

ð−1Þn
n!

∂pN

�
1

RC

�
MN

Cv
p
BCv

i
B

�

− ðl2 − lþ 2þ 2γÞ
X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

�
MN

Ca
i
B −

l
2

X∞
n¼0

ð−1Þn
n!

∂pN

�
1

RC

�
MN

Cv
p
Bv

i
B − lFki

B∂kŪðt; xBÞ: ð248Þ
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Multipolar expansion of the external gravitoelectric
multipole QL is obtained by substituting (244) and (248)
to definition (243). It is remarkable that each potential,
Vðt; x; lÞ and V̄iðt; x; lÞ, entering (243) depends separately
on the noncanonical multipoles RL and N L but they
are mutually canceled out in the linear combination
∂hLiV̄ðt; x; lÞ þ ∂hL−1V̄iiðt; x; lÞ so that the gravitoelectric
multipolesQL depend exclusively on the canonical internal
active mass, ML

C, and spin, SL
C, multipoles. We do not

provide here the explicit expression for the multipolar
decomposition ofQL. It will be given below in Sec. IX A 1.

C. Gravitomagnetic multipoles CL

Gravitomagnetic external multipoles, CL, have been de-
fined in (157). They represent a linear combination of the
gravitomagnetic multipoles, HikL

C , generated by all bodies
of the N-body system which are external with respect to
body C. More specifically, we reformulate (157) as follows:

εipkCpL ≡ H̄ikL; ð249Þ

where

H̄ikL ¼
X
C≠B

HikL
C ðt; xBÞ; ð250Þ

and HikL
C is a skew-symmetric tensor with respect to the first

two indices and STF tensor with respect to the multi-index

L, that isHikL
C ≡H½ik�hLi

C . The same property naturally holds
for H̄ikL.
For each body C Eq. (157) yields

HikL
C ðt; xÞ ¼ 4ð1þ γÞfv½iB∂k�LUCðt; xÞ þ ∂L½iUk�

C ðt; xÞg

− 2ð1þ γÞ l
lþ 1

fδihil∂L−1ik _UCðt; xÞ
− δkhil∂L−1ii _UCðt; xÞg: ð251Þ

According to definition (249) we have εipkCpkL−1 ≡ 0
due to the antisymmetry of the Levi-Civita symbol and

the STF symmetry of CL. It follows, then, that H
ikhkL−1i
C ¼0

as well. This property can be confirmed by inspection
after contracting the corresponding indices in the right-
hand side of (251), and remembering that according to
equation of continuity (36), we have in the global coor-
dinates, ∂kUk

C þ ∂tUC ¼ 0.
Multipolar expansion of HikL

C is obtained after making
use of multipolar decomposition of potentials UC and Ui

C
given above in Secs. VII A and VII B,

HikL
C ðt; xÞ ¼ 2ð1þ γÞ

X∞
n¼0

ð−1Þn
n!

�
viBC∂kLN

�
1

RC

�
− vkBC∂iLN

�
1

RC

��
MN

C

− 2ð1þ γÞ
X∞
n¼0

ð−1Þn
ðnþ 1Þ!

�
_MiN

C ∂kLN

�
1

RC

�
− _MkN

C ∂iLN

�
1

RC

��

þ 2ð1þ γÞ
X∞
n¼0

ð−1Þn
ðnþ 2Þn!

�
εpqi∂kqLN

�
1

RC

�
− εpqk∂iqLN

�
1

RC

��
SpN
C

− 2ð1þ γÞ
X∞
n¼0

ð−1Þnl
ðlþ 1Þn! v

p
BC½δihil∂L−1iNpk

�
1

RC

�
− δkhil∂L−1iNpi

�
1

RC

��
MN

C

− 2ð1þ γÞ
X∞
n¼0

ð−1Þnl
ðlþ 1Þn!

�
δihil∂L−1iNk

�
1

RC

�
− δkhil∂L−1iNi

�
1

RC

��
_MN

C : ð252Þ

It is worth noticing that the noncanonical multipoles RL
which are present in the multipolar expansion (223) of the
external gravitomagnetic potential Ūi

C are canceled out in
(252) after taking the skew-symmetric partial derivative,
Ū½i;k�. Therefore, the external gravitomagnetic multipoles,
CL, do not depend on the noncanonical multipoles RL.

IX. TRANSLATIONAL EQUATIONS OF MOTION
OF BODIES IN THE GLOBAL COORDINATES

The aim of this section is to derive the post-Newtonian
equations of translational motion of extended bodies in the

global coordinates while taking into account all possible
gravitational interactions taking place between mass and
spin internal multipoles of the bodies in an N-body system.
Our derivation is based on the Fock-Papapetrou method
along with the matched asymptotic expansions technique
and significantly extends the post-Newtonian equations of
motion of extended bodies in gravitationally bound systems
beyond the pole-dipole approximation. A similar task was
set forth and solved in the post-Newtonian approximation
of general relativity by Racine and Flanagan [84] and
Racine et al. [85] who used the EIH technique of surface
integration along with the post-Newtonian transformations
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of asymptotic expansions of the metric tensors and
Blanchet-Damour multipole formalism. We shall compare
our translational equations with those derived previously
by Racine and Flanagan [84] and Racine et al. [85] in
Appendix B.

A. Computation of gravitational force

1. Reduction of similar terms

Translational equations of motion of the center of
mass of body B in the global coordinates follow directly
from the equations of motion (152) of the origin of the
local coordinates adapted to body B after making use of
the specific value of the local acceleration Qi defined in
(184)–(186) and the multipolar decomposition of the
external multipoles PL, QL, CL provided in Sec. VIII.
This makes the worldline W of the origin of the local
coordinates of body B identical with the worldline Z of the
body’s center of mass.
It is instrumental to rewrite the right-hand side of (152)

in terms of the gravitational potentials V̄ðt; x; lÞ and
V̄iðt; x; lÞ introduced above in (241) and (242). We have

aiB ¼ ∂iW̄ðt; xBÞ −QN
i þ ∂iV̄ðt; xB; 1Þ þ V̄iðt; xB; 1Þ

−QpN
i þ Ï i

c

MB
−
1

2
viBv

k
Ba

k
B − Fik

Ba
k
B − v2Ba

i
B

þ γaiBŪðt; xBÞ; ð253Þ

where accelerations QN
i and QpN

i are determined by (185)
and (186), the external gravitational potentials

V̄ðt; x; 1Þ≡X
C≠B

VCðt; x; 1Þ; V̄iðt; x; 1Þ≡
X
C≠B

Vi
Cðt; x; 1Þ;

ð254Þ

and gravitational potentials of body C are given respec-
tively by (241) and (242) for the value of multipole index
l ¼ 1,

VCðt; x; 1Þ≡ΦCðt; xÞ þ ΨCðt; xÞ −
1

2
∂ttχCðt; xÞ

− 2ð1þ γÞvkBUk
Cðt; xÞ þ ð1þ γÞv2BUCðt; xÞ

þ ð2 − 2β − γÞŪðt; xBÞUCðt; xÞ; ð255Þ

Vi
Cðt; x; 1Þ≡ 2ð1þ γÞ _Ui

Cðt; xÞ − ð1þ 2γÞviB _UCðt; xÞ

−
1

2
viBv

k
B∂kUCðt; xÞ − 2ð1þ γÞaiBUCðt; xÞ

− Fki
B∂kUCðt; xÞ: ð256Þ

Local accelerationQN
i of the center of mass of body B is

given by (185) where the external gravitoelectric multipoles
QL are defined in (243) in terms of the derivatives from the
potentials W̄ðt; xÞ, V̄ðt; x; lÞ, and V̄iðt; x; lÞ. Taking into
account in the definition (185) of QN

i that, according to
(239), the external scalar-field dipole Pi ¼ ∂iW̄ðt; xBÞ, we
can reduce relativistic equation of motion (253) to the form
of the second Newton’s law,

MBaiB ¼ Fi; ð257Þ
where MB is the conformal mass of body B, and

Fi ¼
X∞
l¼0

1

l!
∂hiLiW̄ðt; xBÞML

B

−
X∞
l¼0

1

l!

�
½v2B − γŪðt; xBÞ�∂hiLiŪðt; xBÞML

B þ 1

2
viBv

k
B∂hkLiŪðt; xBÞML

B

�

þ
X∞
l¼0

1

l!
f∂hiLiV̄ðt; xB; lþ 1ÞML

B þ ∂hLV̄iiðt; xB; lþ 1ÞML
B −MBQ

pN
i þ Ï i

c − Fik
B∂hkLiŪðt; xBÞML

Bg ð258Þ

is a relativistic force exerted on body B by external
bodies of the N-body system. It depends explicitly on
the active internal multipoles, ML

B of body B, and we
identify, here and everywhere else, the active mass MB
of body B with a monopole value (l ¼ 0) of the active
mass multipole of body B, that is M≡MB. It is
instructive to emphasize that the Newtonian part of the
force, given by the first term in the right-hand side of
(258), depends on the active dipole, Mi

B, of body B
which does not vanish in scalar-tensor theory of gravity
because the position of the center of mass of body B is

defined by the condition (176) of vanishing of the
conformal dipole moment, I i

B of body B.8

Before proceeding to the explicit calculation of the
gravitational force, we notice that there are some cancella-
tions of similar terms in (258). More specifically, we note
the following:

The very last term in the third line of (244) can be
transformed to

8We remind the reader that in general case, Mi
B ≠ I i

B. The
difference has a post-Newtonian order of magnitude.
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p
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C∂N
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�
¼ _Ma1…an

C vpC
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∂hpa1…aniRC − n

2n − 1

2nþ 1
δpha1∂a2…ani

�
1

RC

��

¼ _Ma1…an
C vpC

�
∂pa1…anRC −

2

2nþ 1
δfpa1∂a2…ang

�
1

RC

�
− n

2n − 1

2nþ 1
δpha1∂a2…ani

�
1

RC

��

¼ _MN
Cv

p
C∂pNRC − nvpC _MpN−1

C ∂N−1

�
1

RC

�
: ð259Þ

The first and second terms in the very last line of (259) cancel out, respectively, the second term in the forth line of (244)
and the forth term in the third line of (244) which all depend on the time derivative _ML

C.
The very last term in (248) enters Eq. (258) in STF form ðlþ 1ÞFkhi

B ∂LikŪðt; xBÞwhich can be decomposed with the help
of peeling formula (A1) separating the STF index i from that L, so that we get

X∞
l¼0

lþ 1

l!
Fkhi
B ∂LikŪðt; xBÞML

B ¼
X∞
l¼0

1

l!
Fki
B∂kLŪðt; xBÞML

B þ
X∞
l¼0

1

l!
Fkp
B ∂ikLŪðt; xBÞMpL

B : ð260Þ

The first term in the right-hand side of (260) cancels the very last (precessional) term in (258).
Each potential Vðt; x; lþ 1Þ and V̄iðt; x; lþ 1Þ entering (258) depends on the noncanonical multipoles RL and N L

but they are mutually canceled out in the linear combination ∂hiLiV̄ðt; x; lþ 1Þ þ ∂hLV̄iiðt; x; lþ 1Þ so that the right side
of the translational equations of motion (258) depends only on the active internal mass and spin multipoles ML

C and SL
C

of the bodies.
Finally, we notice that the post-Newtonian term, XL, which is a part of QL, does not appear in (258). The term XL

would appear in (258) only in the form of the quadrupole-dipole coupling, XipM
p
B, as a consequence of its definition

(156). However, with sufficient accuracy the active mass dipole Mp
B ¼ Ip

B ¼ 0 in the post-Newtonian approximation
due to the choice of the center of mass (176).
The above-mentioned cancellations simplify (258) and recast it to

Fi ¼
X∞
l¼0

1

l!
∂hiLiW̄ðt; xBÞML

B −
�
v2Bδ

ik þ 1

2
viBv

k
B

�X∞
l¼0

1

l!
∂hkLiŪðt; xBÞML

B

− Fpk
B

X∞
l¼0

1

l!
∂hipLiŪðt; xBÞMkL

B þ
X∞
l¼0

1

l!
∂hiLiΩ̄ðt; xB; lÞML

B

þ
X∞
l¼0

1

l!
∂hLΩ̄iiðt; xB; lÞML

B −MBQ
pN
i þ M̈i

c; ð261Þ

where the external potentials

W̄ðt; xÞ≡X
C≠B

WCðt; xÞ; Ω̄ðt; x; lÞ≡X
C≠B

ΩCðt; x; lÞ; Ω̄iðt; x; lÞ≡
X
C≠B

Ωi
Cðt; x; lÞ; ð262Þ

represent the linear superposition of gravitational potentials WC, ΩC, and Ωi
C generated by body C ≠ B. Multipolar

expansion of potential WCðt; xÞ is given in (220). The new potentials ΩCðt; x; lÞ and Ωi
Cðt; x; lÞ are modifications of

VCðt; x; lþ 1Þ and Vi
Cðt; x; lþ 1Þ respectively after taking into account the above-mentioned cancellations of similar terms

in (258). They read

ΩCðt; x; lÞ ¼
X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

��
ðγ þ 1Þv2B þ

�
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2

�
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þ
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�
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�
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þ
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�
1
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��
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2
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k
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C MkN
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�
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ð−1Þnðnþ 1Þ
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∂N

�
1

RC

�
apCM

pN
C

þ 1

2

X∞
n¼0

ð−1Þn
n!

½M̈N
C∂NRC þMN

Cv
p
Cv

q
C∂pqhNiRC −MN

Ca
p
C∂phNiRC�
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− 2ð1þ γÞ
�X∞
n¼0

ð−1Þn
ðnþ 2Þn! εkpq∂pN
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�
; ð263Þ

Ωi
Cðt; x; lÞ ¼ 2ð1þ γÞ

�X∞
n¼1

ð−1Þn
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�
1

RC
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X∞
n¼0
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�
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�
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�
MN

Cv
p
BCv

i
B

�

−
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2
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n¼0
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n!

∂pN

�
1

RC

�
MN

Cv
p
Bv

i
B − ðl2 þ lþ 2þ 2γÞ

X∞
n¼0

ð−1Þn
n!

∂N

�
1

RC

�
MN

Ca
i
B: ð264Þ

Notice that both potentials ΩCðt; x; lÞ and Ωi
Cðt; x; lÞ

depend on the multipolar index l explicitly which should
be taken into account when rendering summation in (258).

2. STF derivatives from the scalar potentials W̄ and Ū

The force contains the STF derivatives from the scalar
potentials W̄ and Ū that appear in the first line of (261). The
derivatives are computed with the help of expansions (220)
and observation that we can equate UC to WC in the post-
Newtonian terms. Accounting for the fact that the partial
derivative of any order from the inverse distance, R−1

C , is
automatically STF Cartesian tensor because this function is
a fundamental solution of the Laplace equation, we get

X∞
l¼0

1

l!
∂hiLiW̄ðt;xÞML

B¼
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂iLN

�
1

RC

�
ML

BM
N
C ;

ð265Þ

X∞
l¼0

1

l!
∂hkLiŪðt;xÞML

B¼
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂kLN

�
1

RC

�
ML

BM
N
C ;

ð266Þ

X∞
l¼0

1

l!
∂hipLiŪðt; xÞMkL

B ¼
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂ipLN

�
1

RC

�

×MkL
B MN

C ; ð267Þ

where we have dropped the angular (STF) brackets around
spatial indices of the partial derivatives from R−1

C as they are

redundant because the partial and STF derivatives of R−1
C

are identical, ∂iLNR−1
C ¼ ∂hiLNiR−1

C , etc.

3. STF derivatives from the scalar potential Ω̄
Computation of the STF partial derivative from Ω̄ in the

second line of Eq. (261) for the force Fi involves taking the
partial derivatives from the coordinate distance RC. We
already know that all the partial derivatives taken from the
inverse distance, R−1

C , are automatically STF derivatives in
the sense that ∂LR−1

C ¼ ∂hLiR−1
C for any number l of

indices. On the other hand, the partial derivatives from
RC are not the STF derivatives, that is ∂LRC ≠ ∂hLiRC. The
partial derivatives from RC enter the forth line of for-
mula (263) for ΩCðt; x; lÞ, and additional partial derivatives
from RC are taken in (261) in the form of ∂hiLiΩ̄ðt; x; lÞ.
The derivatives from RC have to be converted to the STF
partial derivatives in order to represent all terms in the
equations of motion as expansions with respect to the STF
Cartesian tensors. This is achieved by making use of the
following complementary relation allowing us to transform
a partial derivative of order p from RC to its STF
counterpart [ [50], Eq. (A21b)]:

∂a1a2…apRC ¼ ∂<a1a2…ap>RC

þ 2

2p − 1
δfa1a2∂a3…apg

�
1

RC

�
; ð268Þ

where the curly brackets around tensor indices denote a full
symmetrization with respect to the smallest set of permu-
tations ð1; 2;…; pÞ of the indices.

SERGEI M. KOPEIKIN PHYS. REV. D 99, 084008 (2019)

084008-50



Let us consider a transformation of the partial derivatives
from RC to the STF derivatives more explicitly. The first
term in ∂hiLiΩ̄ with the partial derivatives from RC is
proportional toML

BM̈
N
C∂hiLiNRC. It is converted to the STF

derivative by applying (268) in two steps. First, we use
(268) in reverse order,

ML
BM̈

N
C∂hiLiNRC

¼ ML
BM̈

N
C

�
∂iLNRC −

2

2lþ 1
δfia1∂a2…algb1…bn

�
1

RC

��
;

ð269Þ

with the purpose of getting the symmetric partial derivative
∂iLNRC from the partial derivative ∂hiLiNRC which contains

a mixture of the STF and symmetric derivatives. Second,
we apply (268) in direct order for converting the symmetric
derivative ∂iLNRC to its STF counterpart,

ML
BM̈

N
C∂iLNRC ¼ML

BM̈
N
C

�
∂hiLNiRC

þ 2

2lþ 2nþ 1
δfia1∂a2…alb1…bng

�
1

RC

��
:

ð270Þ

Expanding the symmetric permutation symbol in the
second term of (270) to a corresponding number of terms
and remembering that the Laplacian from R−1

C vanishes,
ΔR−1

C ¼ 0, we eventually get
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BM̈

N
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Proceeding in a similar way, we get for two other partial derivatives from RC
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Employing these relations to present all terms in ∂hiLiΩ̄ in the STF form, we compute its contribution to the force (261) as
follows:
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where, in the fifth line of this long formula, we keep the angular brackets around indices of the spatial derivatives from RC to
make clear that these are the STF partial derivatives from RC.

4. STF derivatives from the vector potential Ω̄i

Our next step is the computation of the STF derivative ∂hLΩ̄iiðt; x; lÞ that appears in the third line of equation (261) for
force Fi. Calculation of this term is based on application of the index peeling-off formula (A1) which yields
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that helps to disentangle one index from the remaining STF indices and simplifies computation of the partial derivative.
Vector potential Ω̄i is given by the last term in (262) as a linear superposition of vector-potentials Ωi

C of bodies with index
C ≠ B that are external with respect to body B. Applying (275) to the individual Ωi

C defined in (264), we obtain the first
term in the right-hand side of (275),
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B: ð276Þ

In order to compute the second and third terms in the right-hand side of (275) it is useful to reformulate them by
changing the index of summation, l → lþ 1, which also replaces STF index L − 1 → L. This procedure is convenient for
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reduction of similar terms in the final equation for the force which consists of the contributions of many separate pieces.
We have
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l
ðlþ 1Þ! ∂iL−1Ω̄pðt; x; lÞMpL−1

B ¼
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1
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B ð277Þ
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and the STF derivatives are
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5. Post-Newtonian local acceleration QpN
i

We also need to express the post-Newtonian partQpN
i of the local acceleration (186) of body B explicitly as a function of

the STF mass and spin internal multipoles of all bodies in the N-body system. For completing this task we, first of all,
transform the terms in the first three lines of expression (186) for QpN

i by making use of the fact that the external
gravitoelectric multipolesQL ¼ PL for l ≥ 2 in all post-Newtonian terms. After accounting for this equality, Eq. (186) can
be reshuffled to the following form:

MBQ
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B þ ð2 _Qk þ ðγ − 1Þ _PkÞSq
B�: ð281Þ

At the second step of the computation, we take advantage of equation of motion (152) in the global coordinates to replace
the local acceleration Qi everywhere in (281) with its global counterpart aiB. The Newtonian approximation is sufficient,
Qi ¼ ∂iŪðt; xBÞ − aiB ¼ Pi − aiB, where we employed ∂iŪðt; xBÞ ¼ Pi in accordance with the definition of the external
scalar-field multipoles provided in Sec. V C 4. Proceeding in this way, we obtain

MBQ
pN
i ¼

X∞
l¼0

l2 þ lþ 2þ 2γ

ðlþ 1Þ! PLM̈
iL
B þ

X∞
l¼0

2lþ 1

lþ 1

l2 þ 2lþ 3þ 2γ

ðlþ 1Þ!
_PL

_MiL
B

þ
X∞
l¼0

2lþ 1

2lþ 3

l2 þ 3lþ 4þ 2γ

ðlþ 1Þ! P̈LMiL
B −

X∞
l¼0

l
ðlþ 1Þ! CiLS

L
B

þ
X∞
l¼0

1

ðlþ 1Þ! εipq
�
CpL _MqL

B þ lþ 1

lþ 2
_CpLM

qL
B

�

− 2ð1þ γÞ
X∞
l¼0

lþ 1

ðlþ 2Þ! εipq
�
PpL

_SqL
B þ lþ 1

lþ 2
_PpLS

qL
B

�

þ εikqð2akB _Sq
B þ _akBS

q
BÞ − 3ðakBM̈ik

B þ 2_akB _Mik
B þ äkBM
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where we have formally extended summation to value
l ¼ 0 in all sums by taking into account that in terms of the
post-Newtonian order of magnitude the active dipole of
each body vanishes, Mi

B ¼ 0.
The external multipoles, PL and CL are expressed in

terms of the external gravitational potentials, Ū and Ūi of
the body B with the help of (153), (154), and (157)
respectively. Particular attention should be paid to the
term CiLSL

B. After a few algebraic transformations it
becomes

CiLSL
B ¼ δpqCipL−1S

qL−1
B ¼ 1

2
εjpkεjqkCpiL−1S

qL−1
B

¼ 1

2
εjqkH̄jkhiL−1iSqL−1; ð283Þ

where, at the last step, we have used (249). After sub-
stituting H̄jkhiL−1i from (250) and (251) to the above
expression and noticing that contraction of any two indices
in STF multipole SL

B vanishes, we get

CiLSL
B ¼ 2ð1þ γÞεjqk½vjB∂ikL−1Ūðt; xBÞ

− ∂ikL−1Ūjðt; xBÞ�SqL−1
B

þ 2ð1þ γÞ
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εijq∂jL−1
_̄Uðt; xBÞSqL−1

B : ð284Þ

After implementing this and other replacements of the
external multipoles in (282) with the corresponding exter-
nal global potentials, and reducing similar terms, the post-
Newtonian local acceleration takes on the following form:

MBQ
pN
i ¼ Ξ̄i

Cðt; xBÞ þ εikqð2akB _Sq
B þ _akBS

q
BÞ

− 3ðakBM̈ik
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ik
B Þ; ð285Þ

where the first term

Ξ̄i
Cðt; xÞ ¼

X
C≠B

Ξi
Cðt; xÞ ð286Þ

is a linear superposition of vectors
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Finally, after making use of multipolar decompositions of potentials UC ¼ WC and Ui
C given in (220) and (223)

respectively, vector Ξi
C becomes
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6. Complementary vector function I i
c.

Adjustment of the center of mass

We notice that the last three terms in (285) represent a
second time derivative from the product, akBM

ik
B . These

terms can be eliminating from the net force (261) by
choosing the complementary vector function I i

c in defi-
nition (167) of the center of mass of body B, as follows:

I i
c ¼ −3akBMik

B : ð289Þ

This choice slightly simplifies equations of translational
motion and makes a small adjustment of the worldline Z of
the center of mass of body B as compared with the choice
I i
c ¼ 0 which was used, for example, in [84,85].
The terms which are proportional to spin Si

B of body B in
the right-hand side of (285) do not represent a second time
derivative and will be left in the equations of motion. In
principle, we can always group some terms in the net force
(261) to form a second time derivative that can be
eliminated from the force. This procedure can make sense
for simplifying the translational equations of motion of

body B. However, it brings additional terms to the rota-
tional equations of motion for the body’s spin and, overall,
may be not so effective. Therefore, we do not implement it
beyond applying Eq. (289).

B. Explicit formula for gravitational force

After making adjustment (289) of the worldline of the
center of mass of body B, translational equations of motion
(257) take on the following form:

MBaiB ¼ Fi
N þ Fi

pN; ð290Þ

where MB is the inertial (conformal) mass of the body, and
the net gravitational force Fi is split in two components: Fi

N
is the Newtonian gravitational force, and Fi

pN is the post-
Newtonian gravitational force. The force components read

Fi
N ¼

X∞
l¼0

1

l!
∂hiLiW̄ðt; xBÞML

B; ð291Þ

Fi
pN ¼

X∞
l¼0

1

l!
∂hiLiΩ̄ðt; xBÞML

B þ
X∞
l¼0

1

l!
∂hLΩ̄iiðt; xBÞML

B − Ξ̄iðt; xBÞ

−
�
v2Bδ

ik þ 1

2
viBv

k
B

�X∞
l¼0

1

l!
∂hkLiŪðt; xBÞML

B − Fpk
B

X∞
l¼0

1

l!
∂hipLiŪðt; xBÞMkL

B

−M−1
B εikq

�
2
X∞
l¼0

1

l!
∂hkLiŪðt; xBÞML

B
_Sq
B þ

X∞
l¼0

1

l!
∂hkLi _̄Uðt; xBÞML

BS
q
B þ

X∞
l¼0

1

l!
∂hkLiŪðt; xBÞ _ML

BS
q
B

�
; ð292Þ

where the very last two terms with spin multipoles
originate from the middle group of the spin-dependent
terms in (285) after replacing acceleration aiB with the
Newtonian equations of motion of body B.
Computation of the explicit form of the force is

now achieved by substituting to (291) and (292) the
STF derivatives of gravitational potentials obtained in
Secs. IX A 2–IX A 5, and employing relations (A7)
and (A8) for computations of partial derivatives from
RC ¼ jx − xCj,

∂hLiR−1
BC ≡ lim

x→xB
∂hLiR−1

C ¼ ð−1Þlð2l − 1Þ!! R
hLi
BC

R2lþ1
BC

; ð293Þ

∂hLiRBC ≡ lim
x→xB

∂hLiRC ¼ ð−1Þlþ1ð2l − 3Þ!! R
hLi
BC

R2l−1
BC

; ð294Þ

which are taken at point xB—the center of mass of body B.
It is worth noticing that ∂hLiR−1

BC ¼ ∂LR−1
BC due to the fact

that function R−1
C is a fundamental solution of the Laplace

equation, △R−1
C ¼ 0, everywhere but the point xi ¼ xiC.

1. Newtonian force

The total Newtonian gravitational force, Fi
N, is given by

a linear superposition of gravitational forces exerted on the
body B by all other bodies of the N-body system. Using
(240) and (265) and taking the partial derivative in (291)
with the help of (293), we get

Fi
N ¼

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
BM

N
C∂iLNR−1

BC

¼ −
X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

ML
BM

N
C

R2lþ2nþ3
BC

RhiLNi
BC ;

ð295Þ

where ML
B ¼ Mha1…ali

B are active STF multipoles of body

B, MN
C ¼ Mhb1…bni

C are active STF multipoles of the
external body C, RBC ¼ jRBCj ¼ ðδijRi

BCR
j
BCÞ1=2,

Ri
BC ≡ xiB − xiC ¼ xiBðtÞ − xiCðtÞ ð296Þ
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is the coordinate distance between the centers of mass of

the bodies, RhiLNi
BC ¼ Rhia1…alb1…bni

BC , and the repeated indi-
ces mean the Einstein summation rule.
We draw to the attention of the reader that the coor-

dinates of the centers of mass of all bodies are computed at
the same instant of global time t that is xiB ¼ xiBðtÞ,
xiC ¼ xiCðtÞ, and so on. On the other hand, each body
STF multipole is a function of the coordinate time of the
corresponding local coordinates adapted to the body.
According to the procedure of derivation of the equa-
tions of motion adopted in the present paper, the nume-
rical values of all local coordinate times are computed

enters the left-hand side of (290). In other words, we have
ML

B ≡ML
Bðu�BÞ and ML

C ≡ML
Cðu�CÞ (and similar con-

vention is applied to the spin multipoles) where the local
times

u�B ¼ uBjx¼xB ¼ tþ 1

c2
ABðtÞ þO

�
1

c4

�
; ð297Þ

u�C ¼ uCjx¼xB ¼ tþ 1

c2
½ACðtÞ − vkCðtÞRk

BC� þO
�
1

c4

�
;

ð298Þ

where time dilation functions AB and AC are defined by
solutions of the ordinary differential equations

dAB

dt
¼ −

1

2
v2BðtÞ − ŪBðt; xBÞ ð299Þ

dAC

dt
¼ −

1

2
v2CðtÞ − ŪCðt; xCÞ; ð300Þ

which constitute a part of the coordinate transformation
between the local and global coordinates of the correspond-
ing massive body. The mass MB in the left-hand side of
Eq. (290) is computed at the time u�B defined above in (297).
We emphasize that the Newtonian gravitational force

(295) in scalar-tensor theory of gravity depends on the active
multipoles which include the post-Newtonian corrections as
shown in (122). The force also has a post-Newtonian
contribution from the active mass dipole Mi of the bodies
(terms with l ¼ 1 and n ¼ 1) which do not vanish because
the center of mass of the body is defined by the condition of
vanishing conformal mass dipole, I i ¼ 0 of each body. The
active dipole Mi ≠ I i according to (171).
Additional notice is that the inertial mass,MB, in the left

side of (290) is the conformal mass (164) of body B while
the gravitational force in the right side of (290) depends on
the active mass MB—see (161)—of body B and the active
masses of other bodies, which corresponds, for example, to
the terms with l ¼ 0 in the right-hand side of (295). The
active and conformal masses do not coincide as follows
from (166). It violates the strong principle of equivalence in
scalar-tensor theory of gravity [88,172,262].

2. Post-Newtonian force

The post-Newtonian gravitational force can be repre-
sented in the form of a linear superposition of STF partial
derivatives taken from functions R−1

BC and RBC,

Fi
pN ¼ 1

2

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
B½M̈N

C∂hiLNi −MN
Ca

p
C∂hipLNi þMN

Cv
p
Cv

q
C∂hipqLNi�RBC

þ
X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

½ðαiLNF þ βiLNF Þ∂hLNi þ ðαipLNF þ βipLNF Þ∂hpLNi þ αipqLNF ∂hpqLNi

þ ðαLNF þ βLNF þ γLNF Þ∂hiLNi þ ðμpLNF þ νpLNF þ ρpLNF Þ∂hipLNi þ σpqLNF ∂hipqLNi�R−1
BC; ð301Þ

where all partial derivatives are understood in the sense of Eqs. (293) and (294) and the coefficients of the differential
operator are

αiLNF ¼ ½viB − 2ð1þ γÞviBC�ML
B
_MN

C þ
�
2ð1þ γÞ
nþ 1

−
1

2lþ 2nþ 3

�
ML

BM̈
iN
C

þ 2ð1þ γÞ
�

1

nþ 1
_ML

B
_MiN

C − _ML
BMN

Cv
i
BC

�
−
2l2 þ 3lþ 3þ 2γ

lþ 1
_MiL

B
_MN

C

−
1

2lþ 3

�
ðlþ 2Þð2lþ 1Þ þ 2n

2lþ 2nþ 3

�
MiL

B M̈N
C −

l2 þ lþ 2þ 2γ

lþ 1
M̈iL

B MN
C ; ð302Þ

βiLNF ¼
��

2þ 2γ −
1

2lþ 2nþ 3

�
aiC − ðlþ 2þ 2γÞaiB

�
ML

BM
N
C ; ð303Þ
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αipLNF ¼
�

2

2lþ 2nþ 5
viCv

p
C − 2ð1þ γÞviBCvpBC − viBv

p
C −

2

MB
εipq _S

q
B

�
ML

BM
N
C

þ 2ð1þ γÞ
nþ 1

ML
B
_MiN

C vpBC þ 2

�ðlþ 2Þð2lþ 1Þ
2lþ 3

vpC − ðlþ 1ÞvpB
�
MiL

B
_MN

C

−
2l2 þ 3lþ 3þ 2γ

lþ 1
_MiL

B MN
Cv

p
BC −

1

MB
εipqðML

B
_MN

CS
q
B þ _ML

BMN
CS

q
BÞ

þ 2ð1þ γÞ
nþ 2

εipqðML
B
_SqN
C þ _ML

BS
qN
C Þ þ 2ð1þ γÞ

lþ 2
εipqð _SqN

B ML
C þ SqN

B
_ML

CÞ; ð304Þ

βipLNF ¼
��

lþ 1 −
1

2lþ 2nþ 5

�
apC − lapB

�
MiL

B MN
C þ 1

2lþ 2nþ 5
apCM

L
BM

iN
C ; ð305Þ

αipqLNF ¼ 1

2lþ 2nþ 7
ðMiL

B MN
C −ML

BM
iN
C ÞvpCvqC − ðlþ 1ÞMiL

B MN
Cv

p
BCv

q
BC

þ 2ð1þ γÞ
lþ 2

εipkSkL
B MN

Cv
q
BC þ 2ð1þ γÞ

nþ 2
εipkML

BS
kN
C vqBC −

1

MB
εipkML

BM
N
CS

k
Cv

q
BC; ð306Þ

αLNF ¼
�
ð1þ γÞv2BC −

1

2

2lþ 2nþ 3

2lþ 2nþ 5
v2C − v2B

�
ML

BM
N
C þMkL

B
_MN

CvkB −
2ð1þ γÞ
nþ 1

ML
B
_MkN

C vkBC

−
1

2lþ 2nþ 5
MkL

B M̈kN
C þ 2ð1þ γÞ

lþ 1

�
_MkL

B MN
Cv

k
BC −

1

nþ 1
_MkL

B
_MkN

C

�
; ð307Þ

βLNF ¼ −ðlþ 1ÞMkL
B MN

Ca
k
B − ðnþ 1ÞML

BM
kN
C akC −

1

2lþ 2nþ 5
ðMkL

B MN
C −ML

BM
kN
C ÞakC; ð308Þ

γLNF ¼ ½ð2 − 2β − lγÞŪðt; xBÞ − γðnþ 1ÞŪðt; xCÞ�ML
BM

N
C ; ð309Þ

μpLNF ¼ 1

2

2lþ 2nþ 3

2lþ 2nþ 7
ML

BM
kN
C vpCv

k
C þ 2ð1þ γÞ

nþ 2
εpkqML

BS
qN
C vkBC

þ
�
vkBv

p
BC −

1

2
vkBv

p
B þ 2

2lþ 2nþ 7
vpCv

k
C

�
MkL

B MN
C

2ð1þ γÞ
ðlþ 1Þðnþ 2Þ εpkq

_MkL
B SqN

C

−
2ð1þ γÞ
lþ 2

εpkqSkL
B

�
MN

Cv
q
BC −

1

nþ 1
_MqN

C

�
; ð310Þ

νpLNF ¼ 1

2lþ 2nþ 7
MkL

B MkN
C apC; ð311Þ

ρpLNF ¼ −Fkp
C ML

BM
kN
C − Fpk

B MkL
B MN

C ; ð312Þ

σpqLNF ¼ −
1

2lþ 2nþ 9
MkL

B MkN
C vpCv

q
C −

2ð1þ γÞ
ðnþ 2Þðlþ 2ÞS

pL
B SqN

C : ð313Þ

The coefficients (302)–(313) depend on the active mass
and spin multipoles of the bodies of the N-body system
and their time derivatives. They also depend on velocities
of the centers of mass and their accelerations with respect
to the origin of the global coordinates. Coefficient (312)
describes dependence of the force on the matrix of
relativistic precession for each body which is a solution

of the equation of relativistic precession (151). Post-
Newtonian force for arbitrarily structured extended bodies
with accounting for all mass and spin multipoles of the
bodies has been derived in general relativity by Racine
and Flanagan [84] and Racine et al. [85]. We compare
their result with our expression (301) for the force in
Appendix B.
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C. Reduced post-Newtonian force

The post-Newtonian force (301) depends explicitly on
the coordinate accelerations aiB and aiC of the centers of
mass of extended bodies. In case, when velocities of bodies
are significantly smaller than the fundamental speed c, we
can use the Newtonian equations of motion of bodies,
MBaiB ¼ Fi

N, in order to replace the accelerations, a
i
B, with

the explicit form of the Newtonian force, Fi
N, taken from

(295). It gives us the reduced post-Newtonian force which
depends on three types of interaction between multipoles of
the extended bodies in the N-body system which are due to
mass-mass, spin-mass, and spin-spin gravitational cou-
plings. In order to set in order the different types of the
multipole-multipole interactions, which enter different
coefficients (302)–(313), we split the post-Newtonian
gravitational force in three main constituents,

Fi
pN ¼ Fi

M þ Fi
S þ Fi

P; ð314Þ

where Fi
M is the force caused by the gravitational inter-

action between the mass multipoles of extended bodies, Fi
S

is the force caused by the spin-mass and spin-spin multi-
pole interactions, and the force Fi

P is due to the relativistic
precession of the body-adapted local coordinates with
respect to the spatial axes of the global coordinates. We

describe the structure of each of the three components of
(314) below.

1. Mass multipole coupling force

The mass multipole coupling force Fi
M consists of a

number of terms describing mutual gravitational interaction
between the mass multipoles of two, three, and four bodies
comprising the N-body system. Besides, the force includes
terms depending on the first and second time-derivatives of
the mass multipoles as well. The force can be represented
as a sum of vectorial components,

Fi
M ¼ Fi

MM þ Fi
M _M

þ Fi
MM̈

þ Fi
_M _M

þ Fi
MMM þ Fi

MMMM; ð315Þ

where each particular term in the right hand-side of (315) is
labeled in correspondence with the number of the mass
multipoles and/or their time derivatives participating in the
multipole-to-multipole coupling. Specific expressions for
different terms in (315) are given in the form of products of
the coupling coefficients ALN

MM, ALN
M _M

, etc., with the

explicit expressions of STF derivatives (293) and (294).
The components of the mass-mass multipole coupling
force, FM, are as follows:

Fi
MM ¼

X
C≠B

X∞
l¼0

X∞
n¼0

�
ALN
MM

RhiLNi
BC

R2lþ2nþ3
BC

þ AijLN
MM

RhjLNi
BC

R2lþ2nþ3
BC

þ AjLN
MM

RhijLNi
BC

R2lþ2nþ5
BC

þ AijpLN
MM

RhjpLNi
BC

R2lþ2nþ5
BC

þ BjpLN
MM

RhijpLNi
BC

R2lþ2nþ5
BC

þ CjpLNMM
RhijpLNi
BC

R2lþ2nþ7
BC

�
; ð316Þ

Fi
M _M

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
AiLN
M _M

RhLNi
BC

R2lþ2nþ1
BC

þ ALN
M _M

RhiLNi
BC

R2lþ2nþ3
BC

þ AijLN
M _M

RhjLNi
BC

R2lþ2nþ3
BC

þ BjLN
M _M

RhijLNi
BC

R2lþ2nþ3
BC

þ CjLN
M _M

RhijLNi
BC

R2lþ2nþ5
BC

�
; ð317Þ

Fi
MM̈

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
AiLN
MM̈

RhLNi
BC

R2lþ2nþ1
BC

þ ALN
MM̈

RhiLNi
BC

R2lþ2nþ1
BC

þ BLN
MM̈

RhiLNi
BC

R2lþ2nþ3
BC

�
; ð318Þ

Fi
_M _M

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
AiLN

_M _M

RhLNi
BC

R2lþ2nþ1
BC

þ ALN
_M _M

RhiLNi
BC

R2lþ2nþ3
BC

�
; ð319Þ

Fi
MMM ¼

X
C≠B

X
D≠C

X∞
l¼0

X∞
n¼0

X∞
k¼0

ALNK
MMM

RhiLNi
BC RhKi

CD

R2lþ2nþ3
BC R2kþ1

CD

þ
X
C≠B

X
D≠B

X∞
l¼0

X∞
n¼0

X∞
k¼0

BLNK
MMM

RhiLNi
BC RhKi

BD

R2lþ2nþ3
BC R2kþ1

BD

; ð320Þ
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Fi
MMMM ¼

X
C≠B

X
D≠C

X∞
l¼0

X∞
n¼0

X∞
k¼0

X∞
s¼0

�
ALNSK
MMMM

RhLNi
BC RhiKSi

CD

R2lþ2nþ1
BC R2kþ2sþ3

CD

þ BLNSK
MMMM

RhijLNi
BC RhjKSi

CD

R2lþ2nþ3
BC R2kþ2sþ3

CD

þ CLNSK
MMMM

RhijLNi
BC RhjKSi

CD

R2lþ2nþ5
BC R2kþ2sþ3

CD

þ ðAjLNSK
MMMM þ BjLNSK

MMMMÞ RhiLNi
BC RhjKSi

CD

R2lþ2nþ3
BC R2kþ2sþ3

CD

þ ðCiLNSK
MMMM þDiLNSK

MMMMÞ RhjLNi
BC RhjKSi

CD

R2lþ2nþ3
BC R2kþ2sþ3

CD

�

þ
X
C≠B

X
D≠B

X∞
l¼0

X∞
n¼0

X∞
k¼0

X∞
s¼0

�
DLNSK

MMMM
RhLNi
BC RhiKSi

BD

R2lþ2nþ1
BC R2kþ2sþ3

BD

þ EjLNSK
MMMM

RhiLNi
BC RhjKSi

BD

R2lþ2nþ3
BC R2kþ2sþ3

BD

þHiLNSK
MMMM

RhjLNi
BC RhjKSi

BD

R2lþ2nþ3
BC R2kþ2sþ3

BD

�
; ð321Þ

where the coupling coefficients ALN
MM, AijLN

MM, etc., are given by

ALN
MM ¼ ð−1Þlð2lþ 2nþ 1Þ!!

l!n!

�
2ðγ þ 1ÞvkBvkC − γv2B −

�
γ þ 1

2
þ 1

2lþ 2nþ 5

�
v2C

�
ML

BM
N
C ; ð322Þ

ALN
M _M

¼ ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

�
2vkBC

�
γ þ 1

nþ 1
ML

B
_MkN

C −
γ þ 1

lþ 1
_MkL

B MN
C

�
þ
�
2γ þ 1

lþ 2
vkC − vkB

�
MkL

B
_MN

C

�
; ð323Þ

ALN
_M _M

¼ 2ðγ þ 1Þ ð−1Þ
lð2lþ 2nþ 1Þ!!

ðlþ 1Þ!ðnþ 1Þ!
_MkL

B
_MkN

C ; ð324Þ

ALN
MM̈

¼ ð−1Þlð2lþ 2n − 1Þ!!
2l!n!

ML
BM̈

N
C ; ð325Þ

AiLN
MM ¼ ð−1Þlð2lþ 2nþ 3Þ!!

l!n!

�
1

2

2lþ 2nþ 3

2lþ 2nþ 7
viCv

p
CM

L
BM

pN
C

þ
�
1

2
viBv

p
B − viCv

p
B þ 2

2lþ 2nþ 7
viCv

p
C

�
MpL

B MN
C

�
; ð326Þ

AiLN
M _M

¼ ð−1Þlð2lþ 2n − 1Þ!!
l!n!

f½viB − 2ðγ þ 1ÞviBC�ML
B
_MN

C − 2ðγ þ 1Þ _ML
BMN

Cv
i
BCg; ð327Þ

AiLN
_M _M

¼ ð−1Þlð2lþ 2n − 1Þ!!
l!n!

�
2ðγ þ 1Þ
nþ 1

_ML
B
_MiN

C −
2l2 þ 3lþ 2γ þ 3

lþ 1
_MiL

B
_MN

C

�
; ð328Þ

AiLN
MM̈

¼ ð−1Þlð2lþ 2n − 1Þ!!
l!n!

��
2ðγ þ 1Þ
nþ 1

−
1

2lþ 2nþ 3

�
ML

BM̈
iN
C

þ
�

1

2lþ 2nþ 3
−
ðlþ 2Þð2lþ 1Þ

ð2lþ 3Þ
�
MiL

B M̈N
C −

l2 þ lþ 2γ þ 2

lþ 1
M̈iL

B MN
C

�
; ð329Þ

AijLN
MM ¼ ð−1Þlð2lþ 2nþ 1Þ!!

l!n!

�
viBv

j
C −

2

2lþ 2nþ 5
viCv

j
C þ 2ðγ þ 1ÞviBCvjBC

�
ML

BM
N
C ; ð330Þ
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AijLN
M _M

¼ ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

�
2

�
ðlþ 1ÞvjBC þ 1

2lþ 3
vjC

�
MiL

B
_MN

C

−
2ðγ þ 1Þ
nþ 1

ML
B
_MiN

C vjBC þ 2l2 þ 3lþ 2γ þ 3

lþ 1
_MiL

B MN
Cv

j
BC

�
; ð331Þ

AijpLN
MM ¼ ð−1Þlð2lþ 2nþ 3Þ!!

l!n!

�
1

2lþ 2nþ 7
½MiL

B MN
C −ML

BM
iN
C �vjCvpC

−
1

2lþ 3
½2vjBvpB − 3vjBv

p
C þ ðlþ 2Þð2lþ 1ÞvjBCvpBC�MiL

B MN
C

�
; ð332Þ

ALNK
MMM ¼ ð−1Þlþkð2lþ 2nþ 1Þ!!ð2k − 1Þ!!

l!n!k!
½γðnþ 1Þ�ML

BM
N
CM

K
D; ð333Þ

ALNSK
MMMM ¼ −

ð−1Þlþsð2lþ 2n − 1Þ!!ð2kþ 2sþ 1Þ!!
l!n!k!s!

�
2ðγ þ 1Þ − 1

2lþ 2nþ 3

�
ML

BM
N
CM

S
CM

K
D

MC
; ð334Þ

AiLNSK
MMMM ¼ −

ð−1Þlþsð2lþ 2nþ 1Þ!!ð2kþ 2sþ 1Þ!!
l!n!k!s!

1

2lþ 2nþ 5

MiL
B MN

CM
S
CM

K
D

MC
; ð335Þ

BLN
MM̈

¼ ð−1Þlð2lþ 2nþ 1Þ!!
ð2lþ 2nþ 5Þl!n! MkL

B M̈kN
C ; ð336Þ

BiLN
M _M

¼ ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

ML
B
_MN

CviC; ð337Þ

BijLN
MM ¼ ð−1Þlð2lþ 2nþ 3Þ!!

2l!n!
ML

BM
N
Cv

i
Cv

j
C; ð338Þ

BLNK
MMM ¼ ð−1Þlþkð2lþ 2nþ 1Þ!!ð2k − 1Þ!!

l!n!k!
½γlþ 2ðβ − 1Þ�ML

BM
N
CM

K
D; ð339Þ

BLNSK
MMMM ¼ −

ð−1Þlþsð2lþ 2nþ 1Þ!!ð2kþ 2sþ 1Þ!!
l!n!k!s!

ML
BM

N
CM

S
CM

K
D

2MC
; ð340Þ

BiLNSK
MMMM ¼ ð−1Þlþsð2lþ 2nþ 1Þ!!ð2kþ 2sþ 1Þ!!

l!n!k!s!

�
nþ 1þ 1

2lþ 2nþ 5

�
ML

BM
iN
C MS

CM
K
D

MC
; ð341Þ

CijLNMM ¼ ð−1Þlð2lþ 2nþ 5Þ!!
l!n!ð2lþ 2nþ 9Þ MpL

B MpN
C viCv

j
C; ð342Þ

CLNSK
MMMM ¼ ð−1Þlþsð2lþ 2nþ 3Þ!!ð2kþ 2sþ 1Þ!!

l!n!k!s!
1

2lþ 2nþ 7

MpL
B MpN

C MS
CM

K
D

MC
; ð343Þ

CiLNSK
MMMM ¼ ð−1Þlþsð2lþ 2nþ 1Þ!!ð2kþ 2sþ 1Þ!!

l!n!k!s!
1

2lþ 2nþ 5

ML
BM

iN
C MS

CM
K
D

MC
; ð344Þ

DLNSK
MMMM ¼ ð−1Þlþsð2lþ 2n − 1Þ!!ð2kþ 2sþ 1Þ!!

l!n!k!s!
½lþ 2ðγ þ 1Þ�M

L
BM

S
BM

N
CM

K
D

MB
; ð345Þ

DiLNSK
MMMM ¼ ð−1Þlþsð2lþ 2nþ 1Þ!!ð2kþ 2sþ 1Þ!!

l!n!k!s!

�ðlþ 2Þð2lþ 1Þ
2lþ 3

−
1

2lþ 2nþ 5

�
MiL

B MN
CM

S
CM

K
D

MC
; ð346Þ
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EiLNSK
MMMM ¼ −

ð−1Þlþsð2lþ 2nþ 1Þ!!ð2kþ 2sþ 1Þ!!
l!n!k!s!

ðlþ 1ÞM
iL
B MS

BM
N
CM

K
D

MB
; ð347Þ

HiLNSK
MMMM ¼ −

ð−1Þlþsð2lþ 2nþ 1Þ!!ð2kþ 2sþ 1Þ!!
ðl − 1Þ!n!k!s!

MiL
B MS

BM
N
CM

K
D

MB
: ð348Þ

2. Spin multipole coupling force

The spin multipole post-Newtonian force entering
the translational equations of motion has the following
structure:

Fi
S ¼ Fi

SM þ Fi
_SM

þ Fi
S _M

þ Fi
SS þ Fi

sMM

þ Fi
sM _M

þ Fi
_sMM; ð349Þ

where each component of the force is expressed in terms of
the corresponding coupling coefficients ApLN

SI , AipLN
_SI

, etc.,
and the STF Cartesian tensors made out of the tensor
products of the relative coordinate distances (296) between
the bodies. Forces Fi

SM, Fi
_SM

, and Fi
S _M

describe gravi-
tational interaction between the spin and mass multipoles of
the bodies. The force Fi

SS describes the spin-spin multipole
interaction between the bodies. It generalizes to higher
multipoles the known spin-spin gravitational force of
interaction between spins of rigidly rotating, spherically
symmetric bodies given by Brumberg [96][page 275,
Eq. (19)], and Barker and O’Connell [ [265], Eq. (54)].
The last three terms in the right-hand side of (349) labeled
with a small Roman letter s take their origin from the last
three terms in (292). They describe gravitational interaction
of spin of body B and its first time derivative with the mass
multipoles of other bodies.
The spin coupling force components are

Fi
SM ¼

X
C≠B

X∞
l¼0

X∞
n¼0

�
ApLN
SM

RhipLNi
BC

R2lþ2nþ5
BC

þ AipqLN
SM

RhpqLNi
BC

R2lþ2nþ5
BC

�
;

ð350Þ

Fi
S _M

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
AipLN
S _M

RhpLNi
BC

R2lþ2nþ3
BC

þ ApLN
S _M

RhipLNi
BC

R2lþ2nþ5
BC

�
;

ð351Þ

Fi
_SM

¼
X
C≠B

X∞
l¼0

X∞
n¼0

AipLN
_SM

RhpLNi
BC

R2lþ2nþ3
BC

; ð352Þ

Fi
SS ¼

X
C≠B

X∞
l¼0

X∞
n¼0

ApqLN
SS

RhipqLNi
BC

R2lþ2nþ7
BC

; ð353Þ

Fi
sMM ¼

X
C≠B

X∞
l¼0

X∞
n¼0

AipqLN
sMM

RhpqLNi
BC

R2lþ2nþ5
BC

; ð354Þ

Fi
sM _M

¼
X
C≠B

X∞
l¼0

X∞
n¼0

AipLN
sM _M

RhpLNi
BC

R2lþ2nþ3
BC

; ð355Þ

Fi
_sMM ¼

X
C≠B

X∞
l¼0

X∞
n¼0

AipLN
_sMM

RhpLNi
BC

R2lþ2nþ3
BC

; ð356Þ

where the coupling coefficients entering the various mem-
bers of the spin coupling force are

ApLN
SM ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 3Þ!!
l!n!

εkpqv
q
BC

�
SkL
B MN

C

lþ 2
þ SkN

C ML
B

nþ 2

�
; ð357Þ

AipqLN
SM ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 3Þ!!
l!n!

εipkv
q
BC

�
SkL
B MN

C

lþ 2
þ SkN

C ML
B

nþ 2

�
; ð358Þ

ApLN
S _M

¼ −2ð1þ γÞ ð−1Þ
lð2lþ 2nþ 3Þ!!

l!n!
εkpq

�
SkL
B

_MqN
C

ðlþ 2Þðnþ 1Þ þ
SqN
C

_MkL
B

ðlþ 1Þðnþ 2Þ
�
; ð359Þ
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AipLN
S _M

¼ −2ðγ þ 1Þ ð−1Þ
lð2lþ 2nþ 1Þ!!

l!n!
εipq

�
SqN
B

_ML
C

ðlþ 2Þ þ
_ML

BS
qN
C

nþ 2

�
; ð360Þ

AipLN
_SM

¼ −2ð1þ γÞ ð−1Þ
lð2lþ 2nþ 1Þ!!

l!n!
εipq

� _SqN
B ML

C

lþ 2
þML

B
_SqN
C

nþ 2

�
; ð361Þ

ApqLN
SS ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 5Þ!!
l!n!ðlþ 2Þðnþ 2Þ SpL

B SqN
C ; ð362Þ

AipqLN
sMM ¼ ð−1Þlð2lþ 2nþ 3Þ!!

l!n!
εikp

Sk
C

MB
ML

BM
N
Cv

q
BC; ð363Þ

AipLN
sM _M

¼ ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

εipq
Sq
B

MB
ðML

B
_MN

C þ _ML
BMN

CÞ; ð364Þ

AipLN
_sMM ¼ 2

ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

εipq
_Sq
B

MB
ML

BM
N
C : ð365Þ

3. Precession multipole coupling force

Finally, the force caused by the relativistic precession of
spatial axes of the local coordinates adapted to each body is

Fi
P ¼

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þlð2lþ 2nþ 3Þ!!
l!n!

× ½Fpk
B MkL

B MN
C þ Fkp

C ML
BM

kN
C � RhikLNi

BC

R2lþ2nþ5
BC

: ð366Þ

This completes derivation of the translational equations of
motion of extended bodies in the global coordinates.

D. Comments

The post-Newtonian force in translational equations of
motion has been calculated in this paper for the system of
the N-extended bodies with an arbitrary internal structure,
shape and density distribution. It includes the Newtonian
and post-Newtonian forces due to the gravitational cou-
pling between all internal mass and spin multipoles of
extended bodies in an N-body system. The force (316),
denoted as Fi

MM, converges in monopole approximation
to Einstein-Infeld-Hoffman (EIH) equations of motion
[49,126,259] of pointlike particles. The force (350),
denoted as Fi

SM, yields the correct analytic expression
for the Lense-Thirring (gravitomagnetic) force due to the
gravitational coupling of a body’s intrinsic spin to orbital
angular momentum of the body [96,101]. The force (353),
denoted as Fi

SS, is reduced to the known spin-spin coupling
force [96,265–267] when higher-order multipoles ðl ≥ 1Þ
are neglected.
Calculation of the post-Newtonian force in quadrupole

approximation (l ¼ 2) were completed by Xu et al. [62] in

general relativity. Their result disagrees by a sufficiently
large number of terms with our expression for the post-
Newtonian force (314) in the quadrupole approximation.
We could not identify the mathematical reason of this
disagreement which origin has yet to be clarified. On the
other hand, the complete post-Newtonian force for the
quadrupole and all other higher-order multipoles taken into
account, derived in general relativity by Racine, Vine, and
Flanagan (RVF) [84,85] by means of a different math-
ematical technique [30,58,59,268] nicely coincides (in case
of the PPN parameters γ ¼ β ¼ 1) with our expression
(314) in spite of different appearance of a few extra terms.
Mathematical origin of this discrepancy is due to the
different convention in the definition of time moments at
which the numerical value of the body multipoles are to be
computed on their worldlines. This is explained in more
detail in Appendix B.
In particular, the term that had been missed in [ [84],

Eq. (6.12c)] and recovered in [ [85], Eq. (1.1)] is given by
our coupling coefficient BLNSK

MMMM in Eq. (340) which
enters our expression (321) for the post-Newtonian force
component Fi

MMMM. Notice also that we give our
coupling coefficients for the expansion of force while
Racine and Flanagan [84] provide their coupling coeffi-
cients for acceleration of body B. Therefore, our tensor
coupling coefficients must be divided by the inertial mass
MB of body B in order to get the RVF coefficients. It is also
worth noticing that, contrary to our choice of dynamically
nonrotating local coordinates, Racine and Flanagan [84]
had chosen the body-adapted local coordinates as being
kinematically nonrotating with respect to the global coor-
dinates. For this reason the force (366) caused by the
relativistic precession of the local frame is absent in the
RVF equations of motion. The present paper generalizes
translational equations of motion derived by Racine and
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Flanagan [84] and Racine et al. [85] to the realm of scalar-
tensor theory of gravity parametrized with two covariantly
defined parameters, β and γ. This generalization is impor-
tant for testing scalar-tensor theories of gravity with
gravitational wave detectors and for developing more
comprehensive experiments within the Solar System.
It is instructive to better understand the correspondence

between the post-Newtonian force (314) for spherically
symmetric bodies and the EIH force [49]. The EIH equations
of motion are traditionally viewed as equations of motion of
pointlike test particles which are modeled as nonrotating
solid spheres having spherically symmetric distribution of
mass. The post-Newtonian force (314) depends on the STF
internal multipoles and it is reduced to the EIH force if we
neglect all STF multipoles except of monopole (l ¼ 0) that
corresponds to the relativistic (Tolman) mass of the body
[42,165,269] if the body is fully isolated from the external
gravitational environment preventing its tidal deformations.
However, the spherically symmetric distribution of matter
does not ensure vanishing internal multipoles of the body.
Indeed, the post-Newtonian definition of the mass multipoles
(122) includes the terms depending on volume integral,
QK

R
VB

σwhKiwhLid3w, which does not vanish after integra-
tion over the unit sphere making the post-Newtonian force
depending on the rotational moments of inertia of the
spherically symmetric bodies. Thus, the post-Newtonian
force of interaction between rigid, spherically symmetric
bodies in an N-body system is not completely reduced to the
EIH force but includes additional terms depending on the
size of extended bodies. It makes clear that spherical bodies
of finite size do not move like massive point particles and the
effacing principle is violated [185].
Finite-size post-Newtonian effects in general-relativistic

equations of motion of spherically symmetric bodies
were discussed previously by Brumberg [96], Spyrou
[127,270–272], Caporali [273,274], Dallas [275],
Vincent [276], and, more recently, by Arminjon [128].
The post-Newtonian correction to the EIH force obtained
by these authors depends on the second-order rotational
moments of inertiaN defined in (125). We have shown in [
[17], Sec. 6.3.4] that this correction is not physical and
represents a spurious, coordinate-dependent effect which
can be removed by adjusting position of the center of mass
and transforming the body’s quadrupole moment from the
global to the body-adapted local coordinates. This fact was
also noticed by Nordtvedt [277]. Nonetheless, the post-
Newtonian force of interaction between spherically sym-
metric bodies can depend on the rotational moments of
inertia of the second order in scalar-tensor theory of
gravity; see [ [17], Eq. (6.85)].

X. ROTATIONAL EQUATIONS OF MOTION OF
SPIN IN THE GLOBAL COORDINATES

Translational equations of motion of the centers of mass
of extended, arbitrarily structured bodies are not sufficient

to describe gravitational dynamics of an N-body system.
This is because the translational equations depend on the
mass and spin multipoles of all bodies which are compli-
cated functions of time. Therefore, they must be comple-
mented with equations describing temporal evolution of the
multipoles in order to close the system of differential
equations for the configuration variables characterizing
dynamics of an N-body system. Derivation of the complete
system of the evolution equations for configuration vari-
ables is a daunting task as it includes among other issues,
solution of the post-Newtonian problem of the elastic
response of an extended body to the tidal perturbations
caused by the presence of external bodies and calculation of
rotational deformations of the body due to its rotation.
Calculation of the tidal and rotational responses requires a
corresponding development of the post-Newtonian theory
of elastic deformations of extended, self-gravitating bodies
[278–280] with its further dissemination to treat more
subtle effects of viscosity and multi-layer structure of stars
in astrophysical systems emitting gravitational waves. The
overall task seems to be very complicated and will be
discussed somewhere else. The present paper centers on the
developing of equation of temporal evolution of the most
important configuration variable in gravitational dynamics
of an N-body system—the intrinsic angular momentum or
spin of the bodies. Spin is closely related to three rotational
d.o.f. of a rigidly rotating extended body characterized
by the vector of angular velocity. Therefore, we call the
equation of temporal evolution for spin as rotational
equations of motion.
Rotational equations of motion of spin of body B in the

body-adapted local coordinates, wα ¼ ðu;wÞ, have been
already derived in Sec. VI F. The rotational equations of
motion are parametrized with the local coordinate time uB
of the body-adpated coordinates and describe the force
precession of body’s spin, Si

B, caused by gravitational
coupling of the internal mass and spin multipoles of body B
with the external multipoles. In its own turn, the body-
adapated local frame is subject to the Fermi-Walker trans-
port [165] describing the relativistic precession of the
spatial axes of the local coordinates with respect to the
global coordinates in accordance with Eq. (151). It is
convenient from a computational point of view to transform
the rotational equations of motion of each body from the
local to global coordinates to parametrize them with a
single parameter—the global coordinate time t and to
include the Fermi-Walker transport to the evolution equa-
tion of spin. Moreover, we want to express all external
multipoles in the rotational equations in the form of explicit
functions of the global coordinates and multipole moments
of the bodies. This procedure will formulate the rotational
equations of motion in terms of the same set of configu-
ration variables as that in the translational equations of
motion of bodies.
Let us define the spin components of body B measured

with respect to the global coordinates as Si. They are related
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to the spin components, Si, measured with respect to
the body-adapted local coordinates by means of a post-
Newtonian rotational transformation,

Si ¼ Sjðδij − Fij
BÞ; ð367Þ

where Fij
B is the matrix of the Fermi-Walker precession of

the local coordinates of body B. Then, rotational equations
of motion of spin Si in the global coordinates are

dSi

dt
¼ dSi

du
du
dt

−
dFij

B

dt
Sj − Fij

B
dSj

du
; ð368Þ

where all derivatives are taken along the worldline Z of the
center of mass of body B. Using Eqs. (146), (151), (195) for
computing the time derivatives in (368), we get the rota-
tional equations of spin of body B in the form

dSi

dt
¼ Ti ð369Þ

where the spin Si is considered now as a function of
time t that is Si ¼ SiðuÞju¼t. The total torque Ti ¼ Ti

B þ
Ti
FW is a linear combination of a torque Ti

B caused by the

gravitational interaction of the internal multipoles of body
B with the external multipoles, and a torque Ti

FW stemming
from the Fermi-Walker precession,

Ti
B ¼

�
1þ 1

2
v2B − Ūðt; xBÞ

�
T i − Fij

BT
j; ð370Þ

Ti
FW ¼ fv½iBaj�B − 2ð1þ γÞ∂ ½iŪj�ðt; xBÞ

− 2ð1þ γÞv½iB∂j�Ūðt; xBÞgSjB: ð371Þ

Torque T i in (370) was introduced earlier in (194). The
next step in derivation of the rotational equations of motion
is to compute the torque in the right hand-side of (369) in an
explicit analytic form as a function of common configu-
ration variables—the global coordinates of the center of
mass of the bodies and their internal mass and spin
multipole moments.

A. Computation of torque

Torque Ti
B in (370) is proportional to torque T i given by

Eq. (194) that is computed by accounting for (176), (191)
and (243). It yields

Ti
B ¼ εijk

X∞
l¼0

1

l!

�
1þ 1

2
v2B þ ð2β − γ − 2ÞŪðt; xBÞ

�
∂hkLiW̄ðt; xBÞMjL

B

þ εijk
X∞
l¼0

1

l!

�
∂hkLiV̄ðt; xB; lþ 1ÞMjL

B þ ∂hLV̄kiðt; xB; lþ 1ÞMjL
B þ lþ 1

lþ 2
CkLS

jL
B

�

− εjpkF
ij
B

X∞
l¼0

1

l!
∂hkLiW̄ðt; xBÞMpL

B þ εijkakBð3apBMjp
B þ I j

cÞ; ð372Þ

where we have taken into account that the active dipole moment Mi
B can be neglected in the post-Newtonian terms.

Gravitational potentials V̄ðt; xB; lþ 1Þ and V̄iðt; xB; lþ 1Þ are defined in (240) as sums taken over all bodies of an N-body
system from potentials VC and Vi

C given in (241) and (242) along with (244) and (248). The linear sum of the STF
derivatives from potentials V̄ðt; xB; lþ 1Þ and V̄iðt; xB; lþ 1Þ that appear in (372) does not contain the noncanonical
potentials RL and N L which are mutually canceled out. We also notice that the acceleration-dependent terms in the third
line of (372) actually vanish because of the adjustment of the position of the center of mass of body B given by the
complementary dipole function Iic defined in (289). After summing up all terms in (372) and accounting for the index
peeling-off formula (275), we reduce the torque to a simpler form

Ti
B ¼ εijk

X∞
l¼0

1

l!

�
1þ 1

2
v2B þ 2ðβ − γ − 1ÞŪðt; xBÞ

�
∂hkLiW̄ðt; xBÞMjL

B

þ εijk
X∞
l¼0

1

l!
∂hkLiΩ̄ðt; xB; lÞMjL

B þ εijk
X∞
l¼0

1

ðlþ 1Þ! ∂LΩ̄kðt; xB; lÞMjL
B

þ εijk
X∞
l¼0

l
ðlþ 1Þ! ∂kL−1Ω̄pðt; xB; lÞMpjL−1

B þ
X∞
l¼0

lþ 1

ðlþ 2Þl! H̄jiLS
jL
B

− εjpkF
ij
B

X∞
l¼0

1

l!
∂hkLiW̄ðt; xBÞMpL

B − εijk
X∞
l¼0

1

l!
½Fpk

B ∂hpLiW̄ðt; xBÞMjL
B þ Fqp

B ∂hkqLiW̄ðt; xBÞMjpL
B �; ð373Þ
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where the potentials W̄, Ω̄, Ω̄k are given in (262)–(264) and tensor H̄jiL is explained in (249)–(252). The STF derivatives
from W̄, Ω̄, and Ω̄k have been computed in (265), (274), and (275)–(280) respectively.
The torque depends on the contraction of the STF derivatives of the potentials with the Levi-Civita symbol εijk. For

computational convenience of the reader we provide their exact form below in order to facilitate tracking down the process of
the computation. Because each of the barred potential is a linear superposition of the corresponding potentials of each body
labeled with a letter C, we write down the corresponding formulas of contraction of the Levi-Civita symbol with the STF
derivatives for the single-body potentials. Contraction of the derivatives from potentials WC and ΩC with the Levi-Civita
symbol are

εijk
X∞
l¼0

1

l!
∂hkLiWCðt; xÞMjL

B ¼ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂kLN

�
1

RC

�
MjL

B MN
C ; ð374Þ

εijk
X∞
l¼0

1

l!
∂hkLiΩCðt;x; lÞMjL

B

¼ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂kLN

�
1

RC

��
ð1þ γÞv2BC−

1

2

2lþ2nþ3

2lþ2nþ5
v2C

�
MjL

B MN
C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂kLN

�
1

RC

�
½ð2−2β− lγÞŪðt;xBÞ− γðnþ1ÞŪðt;xCÞ�MjL

B MN
C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂kpLN

�
1

RC

��
1

2
vpCv

q
C−Fqp

C

�
MjL

B MqN
C þ εijk

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ðnþ1Þ∂kLN

�
1

RC

�
apCM

jL
B MpN

C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
2l!n!

½M̈N
C∂hkLNiRCþMN

Cv
p
Cv

q
C∂hkpqLNiRC−MN

Ca
p
C∂hkpLNiRC�MjL

B

− εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ3
∂LN

�
1

RC

�
MjL

B M̈kN
C − εijk

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ5
∂kLN

�
1

RC

�
MjpL

B M̈pN
C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

2

2lþ2nþ5
∂pLN

�
1

RC

�
MjL

B MN
Cv

p
Cv

k
C−εijk

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ7
∂pqLN

�
1

RC

�
MjL

B MkN
C vpCv

q
C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

2

2lþ2nþ7
∂kpLN

�
1

RC

�
ðMjqL

B MN
C −MjL

B MqN
C ÞvpCvqC

− εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ9
∂kpqLN

�
1

RC

�
MjmL

B MmN
C vpCv

q
C− εijk

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ3
∂LN

�
1

RC

�
MjL

B MN
Ca

k
C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ5
∂pLN

�
1

RC

�
MjL

B MkN
C apC

− εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ5
∂kLN

�
1

RC

�
ðMjpL

B MN
C −MjL

B MpN
C ÞapC

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

2lþ2nþ7
∂kpLN

�
1

RC

�
MjqL

B MqN
C apC−2ð1þ γÞεijk

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

nþ1
∂kLN

�
1

RC

�
MjL

B
_MpN

C vpBC

−2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

nþ2
εmpq∂kpLN

�
1

RC

�
MjL

B SqN
C vmBC: ð375Þ

The very last term in the right-hand side of (375) contains a product of two Levi-Civita symbols which can be expressed as a
linear combination of the Kronecker delta symbols [ [165], Exercise 3.13],
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εijkεmpq≡
							
δim δip δiq

δjm δjp δjq

δkm δkp δkq

							 ¼ δimδjpδkq þ δipδjqδkm þ δiqδjmδkp − δjmδipδkq − δjpδiqδkm − δjqδimδkp: ð376Þ

It allows us to recast the term with two Levi-Civita symbols to a more transparent form

εijkεmpq∂kpLN

�
1

RC

�
MjL

B SqN
C vmBC ¼ 2∂ipLN

�
1

RC

�
MqL

B SN½q
C vp�BC − 2∂pqLN

�
1

RC

�
MqL

B SN½i
C vp�BC: ð377Þ

The two terms in (373) depending on the contraction of the Levi-Civita symbol with the STF derivatives of the vector
potential Ωi

C are

εijk
X∞
l¼0

1

ðlþ 1Þ! ∂LΩk
Cðt; x; lÞMjL

B ¼ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n!

1

nþ 1
∂LN

�
1

RC

�
MjL

B M̈kN
C

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n! ∂LN

�
1

RC

�
ð _MN

CvkC þMN
Ca

k
CÞMjL

B

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n!

1

nþ 2
εkpq∂pLN

�
1

RC

�
MjL

B
_SqN
C

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n!

1

nþ 2
εkpq∂mpLN

�
1

RC

�
MjL

B SqN
C vmBC

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼1

ð−1Þn
ðlþ 1Þ!n!

1

nþ 1
∂pLN

�
1

RC

�
MjL

B
_MkN

C vpBC

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n! ∂pLN

�
1

RC

�
MjL

B MN
Cv

p
BCv

k
C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n! ðl − 1 − 2γÞ∂LN

�
1

RC

�
MjL

B
_MN

CvkB

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n! ðl − 1 − 2γÞ∂pLN

�
1

RC

�
MjL

B MN
Cv

p
BCv

k
B

−
1

2
εijk

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂pLN

�
1

RC

�
MjL

B MN
Cv

p
Bv

k
B

− εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
ðlþ 1Þ!n! ðl

2 þ lþ 2þ 2γÞ∂LN

�
1

RC

�
MjL

B MN
Ca

k
B; ð378Þ
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εijk
X∞
l¼0

l
ðlþ 1Þ! ∂kL−1Ω

p
Cðt; x; lÞMjpL−1

B

¼ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!ðnþ 1Þ!

1

lþ 2
∂kLN

�
1

RC

�
MjpL

B M̈pN
C

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

lþ 2
∂kLN

�
1

RC

�
ð _MN

Cv
p
C þMN

Ca
p
CÞMjpL

B

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þnðnþ 1Þðlþ 1Þ
ðlþ 2Þ!ðnþ 2Þ! εpmq∂kmLN

�
1

RC

�
MjpL

B
_SqN
C

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þnðnþ 1Þðlþ 1Þ
ðlþ 2Þ!ðnþ 2Þ! εpmq∂kbmLN

�
1

RC

�
MjpL

B SqN
C vbBC

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!ðnþ 1Þ!

1

lþ 2
∂kmLN

�
1

RC

�
MjpL

B
_MpN

C vmBC

þ 2ð1þ γÞεijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

1

lþ 2
∂kmLN

�
1

RC

�
MjpL

B MN
Cv

m
BCv

p
C

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

l − 2γ

lþ 2
∂kLN

�
1

RC

�
MjpL

B
_MN

Cv
p
B

þ εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

l − 2γ

lþ 2
∂kmLN

�
1

RC

�
MjpL

B MN
Cv

m
BCv

p
B

−
1

2
εijk

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

∂kmLN

�
1

RC

�
MjpL

B MN
Cv

m
Bv

p
B

− εijk
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

l2 þ 3lþ 4þ 2γ

lþ 2
∂kLN

�
1

RC

�
MjpL

B MN
Ca

p
B: ð379Þ

Again, we use (376) in order to simplify those terms in (378) and (379) which contain the product of two Levi-Civita
symbols. More specifically, the two terms in Eq. (378) are simplified to

εijkεkpq∂pLN

�
1

RC

�
MjL

B
_SqN
C ¼ 2∂iLN

�
1

RC

�
MqL

B
_SqN
C − 2∂pLN

�
1

RC

�
MpL

B
_SiN
C ; ð380Þ

εijkεkpq∂mpLN

�
1

RC

�
MjL

B SqN
C vmBC ¼ 2∂ipLN

�
1

RC

�
MqL

B SqN
C vpBC − 2∂pqLN

�
1

RC

�
MpL

B SiN
C vqBC; ð381Þ

and the two other terms in (379) are

εijkεpmq∂kmLN

�
1

RC

�
MjpL

B
_SqN
C ¼ 2∂jkLN

�
1

RC

�
MjL½i

B
_Sk�N
C þ ∂ikLN

�
1

RC

�
MqkL

B
_SqN
C ; ð382Þ

εijkεpmq∂kbmLN

�
1

RC

�
MjpL

B SqN
C vbBC ¼ 2∂jkpLN

�
1

RC

�
MjL½i

B Sk�N
C vpBC þ ∂ikpLN

�
1

RC

�
MqkL

B SqN
C vpBC; ð383Þ
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Multipolar expansion of the term in (373) containing the product of the STF derivative of HjiL
C with the spin multipoles,

reads

X∞
l¼0

lþ 1

ðlþ 2Þl!H
jiL
C SjL

B ¼ 4ð1þ γÞ
X∞
l¼0

X∞
n¼0

ð−1Þn
n!

lþ 1

ðlþ 2Þl! v
½j
BC∂i�LN

�
1

RC

�
MN

CS
jL
B

− 4ð1þ γÞ
X∞
l¼0

X∞
n¼0

ð−1Þn
ðnþ 1Þ!

lþ 1

ðlþ 2Þl!
_MN½j

C ∂i�LN
�

1

RC

�
SjL
B

þ 4ð1þ γÞ
X∞
l¼0

X∞
n¼0

ð−1Þn
ðnþ 2Þn!

lþ 1

ðlþ 2Þl! ε
pq½j∂i�qLN

�
1

RC

�
SpN
C SjL

B

þ 2ð1þ γÞ
X∞
l¼0

X∞
n¼0

ð−1Þn
n!

1

ðlþ 3Þl!
�
vpBC∂pjNL

�
1

RC

�
MN

C þ ∂jNL

�
1

RC

�
_MN

C

�
SijL
B : ð384Þ

B. Explicit formula for torque

The total torque Ti governing precession of spin of body
B in the global coordinates is given in the right-hand side of
the rotational equations of motion (369) as a sum of two
terms, Ti

B þ Ti
FW, where the pure gravitational torque, T

i
B,

has been defined in (370) and (373) and the Fermi-Walker
torque, Ti

FW, is given in (371). After substituting
Eqs. (374)–(384) into (373) and reducing similar terms
the gravitational torque can be represented as a sum of the
Newtonian and post-Newtonian terms, Ti

B ¼ Ti
N þ Ti

pN.
Hence, the total torque Ti is given by

Ti ¼ Ti
N þ Ti

pN þ Ti
FW; ð385Þ

where Ti
N is the Newtonian part of the torque, Ti

pN is its
post-Newtonian counterpart, and Ti

FW is the Fermi-Walker
torque. We provide explicit multipolar expressions for the
gravitational torque in Secs. X B 1 and X B 2 below.
Explicit multipolar expansion of the Fermi-Walker torque
is given in Sec. X B 3.

1. Newtonian torque

The Newtonian torque, Ti
N, is defined by the very first

term in Eq. (373),

Ti
N ¼ εijk

X∞
l¼0

1

l!
∂hkLiW̄ðt; xBÞMjL

B

¼ εijk
X
C≠B

X∞
l¼0

1

l!
∂hkLiWCðt; xBÞMjL

B ð386Þ

where ∂hkLiWCðt; xBÞ ¼ limx→xB∂hkLiWCðt; xÞ, and multi-
polar expansion of gravitational potentialWCðt; xÞ has been
defined in (220). After taking the partial STF derivatives
from the potential WC, the Newtonian torque takes on the
following explicit form:

Ti
N ¼ εijk

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

MjL
B MN

C∂hkLNiR−1
BC: ð387Þ

Applying (293) yields the Newtonian torque in its final
form,

Ti
N ¼ −εijk

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

×MjL
B MN

C
RhkLNi
BC

R2lþ2nþ3
BC

; ð388Þ

where, here and everywhere else, all multipoles of body B
are taken at the time u�B given by (297), and all multipoles
of body C ≠ B are taken at time u�C given by (298). Formula
of the multipolar expansion for the Newtonian torque has
been also derived by Racine [129] in general relativity.
Torque (388) depends on the active mass multipoles in the
right-hand side of this equation and generalizes the results
of [129] to scalar-tensor theory of gravity. Equation (388)
reduces to the expression derived by Racine [129] in case of
the PPN parameters β ¼ γ ¼ 1.
We draw to the attention of the reader the fact that the

active multipoles in (388) are defined with taking into
account all post-Newtonian contributions from the stress-
energy tensor of the extended bodies in accordance with
their definition (122). It is also worth noticing that the
active dipoleMi

B of each body is explicitly included in the
right-hand side of the Newtonian torque (388) as it does not
vanish because the center of mass of each body B is defined
by the condition of vanishing conformal dipole, I i

B ¼ 0, in
accordance with (176). It means that in contrast to general
theory of relativity (cf. [ [129], Eq. (91)]), the dipole-
monopole gravitational torque that is the term with l ¼ 0,
n ¼ 0 in (388) is present in the scalar-tensor theory of
gravity even if the origin of the local coordinates is
fixed exactly at the center of mass of the body. The

COVARIANT EQUATIONS OF MOTION OF EXTENDED … PHYS. REV. D 99, 084008 (2019)

084008-71



dipole-monopole torque in the rotational equation of
motion of spin causes an anomalous precession of the
body’s spin as compared with general relativity. The
anomalous precession of the spin is caused by the differ-
ence between the active, Mi

B, and conformal, I i
B, dipole

moments of the body B in scalar-tensor theory of gravity.
This resembles the Dicke-Nordtvedt effect of violation of
strong principle of equivalence in translational motion of
the bodies, which is caused by the difference between
active,MB, and conformal,MB, masses of the body, to the
case of rotational motion of the bodies. Measurement of the
anomalous pole-dipole torque can help to set a direct
experimental limitation on the PPN parameter β which is

currently measured only indirectly through the measure-
ment of the Nordtvedt parameter η ¼ 4β − γ − 3, primarily
by the lunar laser ranging technique [192,281,282], after
subtracting the best numerical estimate of the parameter γ
obtained, for example, from the measurement of gravita-
tional bending of light [283–285].

2. Post-Newtonian torque

Multipolar expansion of the post-Newtonian gravita-
tional torque, Ti

pN, can be represented in the form of a linear
operator from the STF partial derivatives with respect to
spatial coordinates similarly to the presentation of the post-
Newtonian force in the translational equations of motion,

Ti
pN ¼

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

½ðαiLNT þ βiLNT Þ∂hLNi þ ðαipLNT þ βipLNT þ γipLNT Þ∂hpLNi

þ ðαipqLNT þ βipqLNT Þ∂hpqLNi þ αikpqLNT ∂hkpqLNi�R−1
C

þ
X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

½αLNT ∂hiLNi þ μpLNT ∂hipLNi þ σpqLNT ∂hipqLNi�R−1
C

þ 1

2
εijk

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

MjL
B ½M̈N

C∂hkLNi −MN
Ca

p
C∂hkpLNi þMN

Cv
p
Cv

q
C∂hkpqLNi�RC; ð389Þ

where the STF derivatives from R−1
BC and RBC are understood in the sense of Eqs. (293) and (294). The coefficients of

operator (389) are

αiLNT ¼ εipk

�
2ð1þ γÞ

ðlþ 1Þðnþ 1Þ −
1

2lþ 2nþ 3

�
MpL

B M̈kN
C þ εipk

�
vkB −

2ð1þ γÞ
lþ 1

vkBC

�
MpL

B
_MN

C ; ð390Þ

βiLNT ¼ εikp

��
1

2lþ 2nþ 3
− 2

1þ γ

lþ 1

�
akC þ

�
lþ 2

1þ γ

lþ 1

�
akB

�
MpL

B MN
C ; ð391Þ

αipLNT ¼ εikp

�
1

2
v2B þ ð1þ γÞv2BC −

1

2

2lþ 2nþ 3

2lþ 2nþ 5
v2C

�
MkL

B MN
C − εjkpF

ij
BM

kL
B MN

C

þ εikq

�
vpBCv

q
B −

1

2
vpBv

q
B −

2ð1þ γÞ
lþ 1

vpBCv
q
BC þ 2

2lþ 2nþ 5
vpCv

q
C − Fpq

B

�
MkL

B MN
C

þ εikp

�
2ð1þ γÞ

ðlþ 2Þðnþ 1Þ −
1

2lþ 2nþ 5

�
MkqL

B M̈qN
C þ 2ð1þ γÞ

nþ 1

�
εikq
lþ 1

vpBC − εikpv
q
BC

�
MkL

B
_MqN

C

þ εikp

�
vqB −

2ð1þ γÞ
lþ 2

vqBC

�
MkqL

B
_MN

C − 2ð1þ γÞ lþ 1

lþ 2

�
SpL
B MN

Cv
i
BC −

1

nþ 1
SpL
B

_MiN
C

�

þ 2ð1þ γÞ
lþ 3

SipL
B

_MN
C −

4ð1þ γÞ
ðlþ 1Þðnþ 2ÞM

pL
B

_SiN
C ; ð392Þ

βipLNT ¼ εikp

�
nþ 1þ 1

2lþ 2nþ 5

�
MkL

B MqN
C aqC þ 1

2lþ 2nþ 5
εikqMkL

B MqN
C apC

þ εikp

�
2ð1þ γÞ
lþ 2

aqC −
1

2lþ 2nþ 5
aqC −

l2 þ 3lþ 4þ 2γ

lþ 2
aqB

�
MkqL

B MN
C ; ð393Þ

γipLNT ¼ −γεikp½ðlþ 2ÞŪðt; xBÞ þ ðnþ 1ÞÞŪðt; xCÞ�MkL
B MN

C ; ð394Þ
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αipqLNT ¼ εijq

�
1

2
−

2

2lþ 2nþ 7

�
MjL

B MkN
C vkCv

p
C −

1

2lþ 2nþ 7
εijkM

jL
B MkN

C vpCv
q
C

þ εijq

�
−
1

2
vkBv

p
B þ vpBCv

k
B −

2ð1þ γÞ
lþ 2

vpBCv
k
BC þ 2

2lþ 2nþ 7
vkCv

p
C

�
MjkL

B MN
C

þ 2ð1þ γÞ
ðlþ 2Þðnþ 1Þ εijqM

jkL
B

_MkN
C vpBC − εijqðFkp

C MjL
B MkN

C þ Fpk
B MjkL

B MN
CÞ

þ 2ð1þ γÞ
nþ 2

�
l − 1

lþ 1
MpL

B SiN
C vqBC −MpL

B SqN
C viBC

�
þ 2ð1þ γÞ

lþ 3
SipL
B MN

Cv
q
BC

þ 2ð1þ γÞ
ðlþ 2Þðnþ 2Þ ½M

ipL
B

_SqN
C −MpqL

B
_SiN
C − ðlþ 1ÞεijqSpL

B SjN
C �; ð395Þ

βipqLNT ¼ 1

2lþ 2nþ 7
εijqM

jkL
B MkN

C apC; ð396Þ

αikpqLNT ¼ 2ð1þ γÞ
ðlþ 2Þðnþ 2Þ ½M

iqL
B SkN

C vpBC −MqkL
B SiN

C vpBC� −
1

2lþ 2nþ 9
εijkM

jnL
B MnN

C vpCv
q
C; ð397Þ

αLNT ¼ 2ð1þ γÞ
�
lþ 1

lþ 2
SjL
B MN

Cv
j
BC −

lþ 1

ðlþ 2Þðnþ 1ÞS
jL
B

_MjN
C þ 2

ðlþ 1Þðnþ 2ÞM
qL
B

_SqN
C

�
; ð398Þ

μpLNT ¼ 2ð1þ γÞ
nþ 2

�
lþ 1

lþ 2
εqpkSkN

B SqL
C þMkL

B SpN
C vkBC −

l − 1

lþ 1
MkL

B SkN
C vpBC þ 1

lþ 2
MkpL

B
_SkN
C

�
; ð399Þ

σpqLNT ¼ 2ð1þ γÞ
ðlþ 2Þðnþ 2ÞM

kpL
B SkN

C vqBC: ð400Þ

3. Fermi-Walker torque

The Fermi-Walker torque (371) can be easily calculated by making use of Eqs. (213) and (223) and replacing acceleration
of the center of mass aiB ¼ Fi

N=MB, where the Newtonian force Fi
N is shown in (295). Taking the STF derivatives from the

corresponding expressions we get

Ti
FW ¼ 2ð1þ γÞ

X
C≠B

X∞
l¼0

ð−1Þl
l!

Sj
B

�
ML

Cv
½i
BC∂j�L þ 1

lþ 1
_ML½i

C ∂j�L −
1

lþ 2
SpL
C εpq½i∂j�L

�
R−1
BC

þ 1

MB

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
BM

N
CS

j
Bv

½i
B∂j�LNR−1

BC: ð401Þ

Taking the STF derivatives from R−1
BC defined in (293) we obtain the multipolar expansion of the Fermi-Walker torque,

Ti
FW ¼ −2ð1þ γÞ

X
C≠B

X∞
l¼0

ð2lþ 1Þ!!
l!

�
ML

Cv
½i
BCR

hj�Li
BC þ 1

lþ 1
_ML½i

C Rhj�Li
BC −

1

lþ 2
SpL
C εpq½iRhj�Li

BC

�
Sj
B

R2lþ3
BC

−
1

MB

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þlð2lþ 2nþ 1Þ
l!n!

v½iBR
hj�LNi
BC

R2lþ2nþ3
BC

ML
BM

N
CS

j
B: ð402Þ

C. Reduced post-Newtonian torque

It is instructive to represent the post-Newtonian torque Ti
pN in yet another form by splitting up coefficients (390)–(400)

into various terms describing different types of gravitational coupling between the internal multipoles of extended bodies
like mass-mass, mass-spin, spin-spin multipole interaction as well as the geometric coupling due to the Fermi-Walker
precession. This requires one to reduce the coefficients depending on the acceleration aiB of the center of mass of body B by
making use of the Newtonian equations of translational motion,MBaiB ¼ Fi

N, with the explicit form of the Newtonian force
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Fi
N given in (295). We perform this procedure and split the

post-Newtonian torque in three main constituents,

Ti
pN ¼ Ti

M þ Ti
S þ Ti

P; ð403Þ
where Ti

M is caused by the gravitational coupling between
the mass multipoles of extended bodies, Ti

S describes
gravitational interaction between the spin and mass multi-
poles, and Ti

P originates from the Fermi-Walker precession
of the spatial axes of the body-adapted local coordinates.
Specific expressions for each terms in the right-hand side of
(403) are given below.

1. Mass multipole coupling torque

The mass-mass multipole coupling torque Ti
M consists of

various terms describing two-, three-, and four-body
gravitational interactions between the internal mass

multipoles of the bodies comprisin an N-body system.
The torque depends on the interaction between the first and
second time derivatives of the mass multipoles as well. It
has the following schematic structure:

Ti
M ¼ Ti

MM þ Ti
M _M

þ Ti
MM̈

þ Ti
MMM þ Ti

MMMM;

ð404Þ

where each particular term denotes the number of the
gravitationally coupled multipoles. Specific expressions for
different terms in (404) are given below in terms of the
coordinate distances (296) between the bodies and the
corresponding coupling coefficients KLN

II ;K
iLN
M _M

;KiLN
IÏ

,

etc., which are shown explicitly in Eqs. (410)–(428).
The torque components read

Ti
MM ¼

X
C≠B

X∞
l¼0

X∞
n¼0

�
KipLN

MM
RhpLNi
BC

R2lþ2nþ3
BC

þKipqLN
MM

RhpqLNi
BC

R2lþ2nþ5
BC

�
þ
X
C≠B

X∞
l¼0

X∞
n¼0

�
KikpqLN

MM
RhkpqLNi
BC

R2lþ2nþ7
BC

þ LikpqLN
MM

RhkpqLNi
BC

R2lþ2nþ5
BC

�
; ð405Þ

Ti
M _M

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
KiLN

M _M

RhLNi
BC

R2lþ2nþ1
BC

þKipLN
M _M

RhpLNi
BC

R2lþ2nþ3
BC

þKipqLN
M _M

RhpqLNi
BC

R2lþ2nþ5
BC

�
; ð406Þ

Ti
MM̈

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
KiLN

MM̈

RhLNi
BC

R2lþ2nþ1
BC

þKipLN
MM̈

RhpLNi
BC

R2lþ2nþ3
BC

þ LipLN
MM̈

RhpLNi
BC

R2lþ2nþ1
BC

�
; ð407Þ

Ti
MMM ¼

X
C≠B

X
D≠C

X∞
l¼0

X∞
n¼0

X∞
k¼0

KipLNK
MMM

RhpLNi
BC RhKi

CD

R2lþ2nþ3
BC R2kþ1

CD

þ
X
C≠B

X
D≠B

X∞
l¼0

X∞
n¼0

X∞
k¼0

LipLNK
MMM

RhpLNi
BC RhKi

BD

R2lþ2nþ3
BC R2kþ1

BD

; ð408Þ

Ti
MMMM ¼

X
C≠B

X
D≠C

X∞
l¼0

X∞
n¼0

X∞
k¼0

X∞
s¼0

�
KipLNSK

MMMM
RhLNi
BC RhpKSi

CD

R2lþ2nþ1
BC R2kþ2sþ3

CD

þKipqLNSK
MMMM

RhpLNi
BC RhqKSi

CD

R2lþ2nþ3
BC R2kþ2sþ3

CD

þKiLNSK
MMMM

RhpLNi
BC RhpKSi

CD

R2lþ2nþ3
BC R2kþ2sþ3

CD

þ LipLNSK
MMMM

RhpqLNi
BC RhqKSi

CD

R2lþ2nþ5
BC R2kþ2sþ3

CD

þMipLNSK
MMMM

RhpqLNi
BC RhqKSi

CD

R2lþ2nþ3
BC R2kþ2sþ3

CD

�

þ
X
C≠B

X
D≠B

X∞
l¼0

X∞
n¼0

X∞
k¼0

X∞
s¼0

�
N ipLNSK

MMMM
RhLNi
BC RhpKSi

BD

R2lþ2nþ1
BC R2kþ2sþ3

BD

þN ipqLNSK
MMMM

RhpLNi
BC RhqKSi

BD

R2lþ2nþ3
BC R2kþ2sþ3

BD

�
: ð409Þ

The coupling coefficients of the mass-mass multipole interaction that appear in (405)–(409) are

KipLN
MM ¼ ð−1Þlð2lþ 2nþ 1Þ!!

l!n!

�
εipq

�
1

2
v2B þ ð1þ γÞv2BC −

1

2

2lþ 2nþ 3

2lþ 2nþ 5
v2C

�
MqL

B MN
C

þ εikq

�
vkBv

p
BC −

1

2
vkBv

p
B −

2ð1þ γÞ
lþ 1

vkBCv
p
BC þ 2

2lþ 2nþ 5
vkCv

p
C

�
MqL

B MN
C

�
; ð410Þ
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KipqLN
MM ¼ ð−1Þlð2lþ 2nþ 3Þ!!

l!n!

×

�
εijq

�
1

2
−

2

2lþ 2nþ 7

�
MjL

B MkN
C vkCv

p
C −

1

2lþ 2nþ 7
εijkM

jL
B MkN

C vpCv
q
C

þ εijq

�
−
1

2
vkBv

p
B þ vpBCv

k
B −

2ð1þ γÞ
lþ 2

vkBCv
p
BC þ 2

2lþ 2nþ 7
vkCv

p
C

�
MjkL

B MN
C

�
; ð411Þ

KikpqLN
MM ¼ ð−1Þl

l!n!
ð2lþ 2nþ 5Þ!!
2lþ 2nþ 9

εijkM
jaL
B MaN

C vpCv
q
C; ð412Þ

LikpqLN
MM ¼ ð−1Þlð2lþ 2nþ 3Þ!!

2l!n!
εijkM

jL
B MN

Cv
p
Cv

q
C; ð413Þ

KiLN
M _M

¼ ð−1Þlð2lþ 2n − 1Þ!!
l!n!

εijk

�
vkB −

2ð1þ γÞ
lþ 1

vkBC

�
MjL

B
_MN

C ; ð414Þ

KipLN
M _M

¼ ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

�
2ð1þ γÞ
nþ 1

�
1

lþ 1
εikqv

p
BC − εipqvkBC

�
MqL

B
_MkN

C

− εikp

�
vqB −

2ð1þ γÞ
lþ 2

vqBC

�
MkqL

B
_MN

C

�
ð415Þ

KipqLN
M _M

¼ ð−1Þlð2lþ 2nþ 3Þ!!
l!ðnþ 1Þ!

�
2ð1þ γÞ
lþ 2

�
εijqM

jkL
B

_MkN
C vpBC; ð416Þ

KiLN
MM̈

¼ ð−1Þlð2lþ 2n − 1Þ!!
l!n!

εipk

�
2ð1þ γÞ

ðlþ 1Þðnþ 1Þ −
1

2lþ 2nþ 3

�
MpL

B M̈kN
C ; ð417Þ

KipLN
MM̈

¼ ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

εipq

�
2ð1þ γÞ

ðlþ 2Þðnþ 1Þ þ
1

2lþ 2nþ 5

�
MkqL

B M̈kN
C ; ð418Þ

LipLN
MM̈

¼ ð−1Þlð2lþ 2n − 1Þ!!
2l!n!

εijpM
jL
B M̈N

C ; ð419Þ

KipLNK
MMM ¼ ð−1Þlþkð2lþ 2nþ 1Þ!!ð2k − 1Þ!!

l!n!k!
½γðnþ 1Þ�εijpMjL

B MN
CM

K
D; ð420Þ

LipLNK
MMM ¼ ð−1Þlþkð2lþ 2nþ 1Þ!!ð2k − 1Þ!!

l!n!k!
½γðlþ 2Þ�εijpMjL

B MN
CM

K
D; ð421Þ

KipLNSK
MMMM ¼ ð−1Þlþsð2lþ 2n − 1Þ!!ð2sþ 2kþ 1Þ!!

l!n!s!k!
εijp

�
1

2lþ 2nþ 3
− 2

1þ γ

lþ 1

�
MjL

B MN
CM

S
CM

K
D

MC
; ð422Þ

N ipLNSK
MMMM ¼ ð−1Þlþsð2lþ 2n − 1Þ!!ð2sþ 2kþ 1Þ!!

l!n!s!k!
εijp

�
lþ 2

1þ γ

lþ 1

�
MjL

B MN
CM

S
BM

K
D

MB
; ð423Þ
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KipqLNSK
MMMM ¼ ð−1Þlþsð2lþ 2nþ 1Þ!!ð2sþ 2kþ 1Þ!!

l!n!s!k!
εijp

��
nþ 1þ 1

2lþ 2nþ 5

�
MjL

B MqN
C MS

CM
K
D

MC

þ εijp

�
2ð1þ γÞ
lþ 2

−
1

2lþ 2nþ 5

�
MjqL

B MN
CM

S
CM

K
D

MC

�
; ð424Þ

KiLNSK
MMMM ¼ ð−1Þlþsð2lþ 2nþ 1Þ!!ð2sþ 2kþ 1Þ!!

l!n!s!k!ð2lþ 2nþ 5Þ εijq
MjL

B MqN
C MS

CM
K
D

MC
; ð425Þ

LipLNSK
MMMM ¼ ð−1Þlþsþ1ð2lþ 2nþ 3Þ!!ð2sþ 2kþ 1Þ!!

l!n!s!k!ð2lþ 2nþ 7Þ εijp
MjkL

B MkN
C MS

CM
K
D

MC
; ð426Þ

MipLNSK
MMMM ¼ ð−1Þlþsþ1ð2lþ 2nþ 1Þ!!ð2sþ 2kþ 1Þ!!

2l!n!s!k!
εijp

MjL
B MN

CM
S
CM

K
D

MC
; ð427Þ

N ipqLNSK
MMMM ¼ ð−1Þlþsþ1ð2lþ 2nþ 1Þ!!ð2sþ 2kþ 1Þ!!

l!n!s!k!
l2 þ 3lþ 4þ 2γ

lþ 2
εijp

MjqL
B MN

CM
S
BM

K
D

MB
: ð428Þ

2. Spin multipole coupling torque

The post-Newtonian torque describing the spin-mass and spin-spin coupling between the internal multipoles of the
extended bodies consists of four terms,

Ti
S ¼ Ti

SM þ Ti
_SM

þ Ti
S _M

þ Ti
SS; ð429Þ

where each component of the torque is expressed in terms of the corresponding coupling coeffcients KSI , K _SI , etc. The
components of the spin multipole coupling torque are

Ti
SM ¼

X
C≠B

X∞
l¼0

X∞
n¼0

�
KipLN

SM
RhpLNi
BC

R2lþ2nþ3
BC

þKipqLN
SM

RhpqLNi
BC

R2lþ2nþ5
BC

þKikpqLN
SM

RhkpqLNi
BC

R2lþ2nþ7
BC

þKLN
SM

RhiLNi
BC

R2lþ2nþ3
BC

þKpLN
SM

RhipLNi
BC

R2lþ2nþ5
BC

þ LpqLN
SM

RhipqLNi
BC

R2lþ2nþ7
BC

�
; ð430Þ

Ti
S _M

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
KipLN

S _M

RhpLNi
BC

R2lþ2nþ3
BC

þKLN
S _M

RhiLNi
BC

R2lþ2nþ3
BC

�
; ð431Þ

Ti
_SM

¼
X
C≠B

X∞
l¼0

X∞
n¼0

�
KipLN

_SM

RhpLNi
BC

R2lþ2nþ3
BC

þKipqLN
_SM

RhpqLNi
BC

R2lþ2nþ5
BC

þKLN
_SM

RhiLNi
BC

R2lþ2nþ3
BC

þKpLN
_SM

RhipLNi
BC

R2lþ2nþ5
BC

�
; ð432Þ

Ti
SS ¼

X
C≠B

X∞
l¼0

X∞
n¼0

�
KipqLN

SS
RhpqLNi
BC

R2lþ2nþ5
BC

þKpLN
SS

RhipLNi
BC

R2lþ2nþ5
BC

�
: ð433Þ

The coupling coefficients that appear in (430)–(433) are
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KipLN
SM ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 1Þ!!
l!n!

lþ 1

lþ 2
SpL
B MN

Cv
i
BC; ð434Þ

KipqLN
SM ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 3Þ!!
l!n!

×

�
1

nþ 2

�
l − 1

lþ 1
MpL

B SiN
C vqBC −MpL

B SqN
C viBC

�
þ 1

lþ 3
SipL
B MN

Cv
q
BC

�
; ð435Þ

KikpqLN
SM ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 5Þ!!
l!n!ðlþ 2Þðnþ 2Þ ½MqkL

B SiN
C −MqiL

B SkN
C �vpBC; ð436Þ

KLN
SM ¼ 2ð1þ γÞ ð−1Þ

lþ1ð2lþ 2nþ 1Þ!!
l!n!

lþ 1

lþ 2
SjL
B MN

Cv
j
BC; ð437Þ

KpLN
SM ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 3Þ!!
l!n!ðnþ 2Þ

�
MkL

B SpN
C vkBC −

l − 1

lþ 1
MkL

B SkN
C vpBC

�
; ð438Þ

LpqLN
SM ¼ 2ð1þ γÞ ð−1Þ

lþ1ð2lþ 2nþ 5Þ!!
l!n!ðlþ 2Þðnþ 2Þ MkpL

B SkN
C vqBC; ð439Þ

KipLN
S _M

¼ 2ð1þ γÞ ð−1Þ
lþ1ð2lþ 2nþ 1Þ!!

l!n!

�
lþ 1

ðlþ 2Þðnþ 1ÞS
pL
B

_MiN
C −

1

lþ 3
SipL
B

_MN
C

�
; ð440Þ

KLN
S _M

¼ 2ð1þ γÞ ð−1Þ
lð2lþ 2nþ 1Þ!!
l!ðnþ 1Þ!

lþ 1

lþ 2
SjL
B

_MjL
C ; ð441Þ

KipLN
_SM

¼ 4ð1þ γÞ ð−1Þ
lð2lþ 2nþ 1Þ!!

ðlþ 1Þ!n!ðnþ 2Þ MpL
B

_SiN
C ; ð442Þ

KipqLN
_SM

¼ 2ð1þ γÞ ð−1Þ
lð2lþ 2nþ 3Þ!!

l!n!ðlþ 2Þðnþ 2Þ ½MipL
B

_SqN
C −MpqL

B
_SiN
C �; ð443Þ

KLN
_SM

¼ 4ð1þ γÞ ð−1Þ
lþ1ð2lþ 2nþ 1Þ!!

ðlþ 1Þ!n!ðnþ 2Þ MjL
B
_SjN
C ; ð444Þ

KpLN
_SM

¼ 2ð1þ γÞ ð−1Þ
lð2lþ 2nþ 3Þ!!

l!n!ðlþ 2Þðnþ 2Þ MjpL
B

_SjN
C ; ð445Þ

KipqLN
SS ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 3Þ!!
l!n!ðnþ 2Þ

lþ 1

lþ 2
εiqjS

pL
B SjN

C ; ð446Þ

KpLN
SS ¼ 2ð1þ γÞ ð−1Þ

lð2lþ 2nþ 3Þ!!
l!n!ðnþ 2Þ

lþ 1

lþ 2
εpkqSkL

B SqN
C : ð447Þ
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3. Precession-multipole coupling torque

The Fermi-Walker precession causes a spatial rotation of each body-adapted local coordinates with respect to the distant
observers at spatial infinity which is interpreted in the global coordinates as torque Ti

P caused by the geometric coupling of
the matrix of relativistic precession to the internal mass multipoles of extended bodies. Picking up the precessional terms in
the coupling coefficients αipLNT and αipqLNT in (392) and (395), we get for the torque

Ti
P ¼

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þlð2lþ 2nþ 1Þ!!
l!n!

ðεkpqFiq
B þ εikqF

pq
B ÞMkL

B MN
C

RhpLNi
BC

R2lþ2nþ3
BC

−
X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þlð2lþ 2nþ 3Þ!!
l!n!

εijqðFkp
C MjL

B MkN
C þ Fpk

B MjkL
B MN

CÞ
RhpqLNi
BC

R2lþ2nþ5
BC

: ð448Þ

Racine [129] analyzed spin evolution equations for a
wide class of extended bodies and gave a surface integral
derivation of the leading-order evolution equations for the
spin of a relativistic body interacting with other bodies. He
expanded the spin evolution equations in the multipolar
series but was unable to obtain the torque beyond the
Newtonian formula (388). The present section significantly
extends the result of paper [129] and provides the multi-
polar expansion of the torque in the post-Newtonian
approximation which has been never published before.

XI. COVARIANT EQUATIONS OF MOTION OF
EXTENDED BODIES WITH ALL MULTIPOLES

This section formulates the translational and rotational
equations of motion derived in the previous sections, in the
covariant form in the spirit of the “covariantization”
approach worked out by Thorne and Hartle [58] who
followed earlier developments outlined in [42,165]. The
covariantization procedure allows us to relax the slow-
motion limitation of the first post-Newtonian approxima-
tion as the covariant equations of motion are apparently
Lorentz invariant and are applicable at both slow- and
ultrarelativistic speeds. However, it should be understood
that such covariant equations are still missing gravity-field
potentials from the second- and higher-order post-
Newtonian approximations and their application is limited
by the weak-field, first post-Newtonian approximation.
Nonetheless, the covariant equations of motion derived
in this section may be instrumental in order to get a glimpse
of the relativistic dynamics of the very last several orbits of
an inspiralling binary system emitting gravitational waves
before the bodies in the binary merge.
Before discussing our own formalism we introduce the

reader to the theory of Mathisson-Papapetrou-Dixon
(MPD) equations of motion of extended bodies with
higher-order multipoles that is considered as one of the
most comprehensive and rigorous approaches for solving
the fundamental problem of derivation of equations
of motion of extended bodies in general relativity

[11,135,136] and in the affine-metric theories of gravity
[143,145]. The original MPD theory has been developed
mainly in the test-body approximation and had a number of
other issues which made the domain of its astrophysical
application fairly limited [58,247]. In order to circumvent
this issue, Harte [141,142,244,286,287] has developed a
solid theoretical platform for stretching out the domain of
applicability of the MPD theory to extended bodies with a
strong self-gravity field. The concrete results obtained in
this section are fully consistent with the basic principles of
Harte’s general formalism and confirm validity of its
predictions in the framework of the post-Newtonian
dynamics of extended self-gravitating bodies possessing
the entire collection of mass and spin multipoles.

A. The Mathisson variational dynamics

The goal to build a covariant post-Newtonian theory of
motion of extended bodies and to find out the relativistic
corrections to the equations of motion of a pointlike particle
which account for all multipoles characterizing the interior
structure of the extended bodies was put forward by
Mathisson [4,5] and further explored by Taub [137],
Tulczyjew [207], Tulczyjew and Tulczyjew [208], and
Madore [138]. However, the most significant advance in
tackling this problem was achieved by Dixon [7–11] who
elaborated on mathematically rigorous derivation of multi-
polar covariant equations of motion of extended bodies
from the microscopic law of conservation of matter,

∇αTαβ ¼ 0; ð449Þ

where ∇α denotes a covariant derivative on spacetime
manifold M with metric gαβ, and Taβ is the stress-energy
tensor of matter composing the extended bodies. Mathisson
has dubbed this approach to the derivation of covariant
equations of motion as variational dynamics [4].
Comprehensive reviews of the historical development
and current status of the variational dynamics can be
found in papers by Dixon [135,136] and Sauer and
Trautman [288].
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Dixon has significantly improved the Mathisson varia-
tional dynamics by employing a novel method of integra-
tion of the linear connection in general relativity as well as
other innovations which allowed him to advance the
original Mathisson’s theory of variational dynamics. The
generic mathematical technique used by Dixon to achieve
this goal was the formalism of two-point world function,
σðz; xÞ, and its partial derivatives (called sometimes bi-
tensors) introduced by Synge [164], the distributional
theory of multipoles stemmed from the theory of general-
ized functions [212,289], and the horizontal and vertical (or
Ehresmann’s [290]) covariant derivatives of two-point
tensors defined on a vector bundle formed by the direct
product of the reference timelike worldline Z and a
spacelike hypersurface consisting of geodesics emitted at
each instant of time from point z on Z in all directions
being orthogonal to Z.
An extended body in Dixon’s approach is idealized as a

timelike world tube filled with continuous matter whose
stress-energy tensor Tαβ vanishes outside the tube. By
making use of the bi-tensor propagators, Kα

μ ≡ Kα
μðz; xÞ

andHα
μ ≡Hα

μðz; xÞ, composed out of the inverse matrices
of the first-order partial derivatives of the world function
σðz; xÞ with respect to z and x, Dixon defined the total
linear momentum, pα ≡ pαðzÞ, and the total angular
momentum, Sαβ ≡ SαβðzÞ, of the extended body by inte-
grals over a spacelike hypersurface Σ, [ [11], Eqs. (66–67)]

pα ≡
Z
Σ
Kα

μTμν ffiffiffiffiffiffi
−g

p
dΣν; ð450Þ

Sαβ ≡ −2
Z
Σ
X½αHβ�

μTμν ffiffiffiffiffiffi
−g

p
dΣν; ð451Þ

where z≡ zαðτÞ is a reference worldline Z of a represen-
tative point that is associated with the center of mass of the
body with τ being the proper time on this worldline, and
vector

Xα ¼ −gαβðzÞ ∂σðz; xÞ∂zβ ð452Þ

is tangent to a geodesic emitted from the point z and
passing through point x. The oriented element of integra-
tion on the hypersurface,

dΣα ¼
1

3!
EαμνσdXμ ∧ dXν ∧ dXσ; ð453Þ

where Eαμνσ is 4-dimensional, fully ant-symmetric symbol
of Levi-Chivita, and the symbol ∧ denotes the wedge
product [ [165], § 3.5] of the 1-forms dXα. Notice that
Dixon’s definition (451) of Sαβ yields (after a duality
transformation) spin of the body that has an opposite sign
as compared to our definition (182) of spin.

It is further assumed in Dixon’s formalism that the linear
momentum, pα, is proportional to the dynamic velocity, nα,
of the body [ [11], Eq. (83)]

pα ≡Mnα; ð454Þ

where M ¼ MðτÞ is the total mass of the body which, in
general, can depend on time. The dynamic velocity is a unit
vector, nαnα ¼ −1. The kinematic 4-velocity of the body
moving along worldline Z is tangent to this worldline,
uα ¼ dzα=dτ. It relates to the dynamic 4-velocity by
condition, nαuα ¼ −1, while the normalization condition
of the kinematic 4-velocity is uαuα ¼ −1. Notice that in the
most general case the dynamic and kinematic velocities are
not equal due to the gravitational interaction between the
bodies of the N-body system; see [ [11], Eq. (88)] and [139]
for more detail.
Dixon defines the mass dipole, mα ¼ mαðz;ΣÞ, of the

body [ [11], Eq. (78)],

mα ≡ Sαβnβ; ð455Þ

and chooses the worldline z ¼ zαðτÞ of the center of mass
of the body by condition, mα ¼ 0 This condition is
equivalent due to (454) and (455), to

pβSαβ ¼ 0; ð456Þ

which is known as Dixon’s supplementary condition
[[11], Eq. (81)].
Dixon builds the body-adapted, local coordinates at each

point z on worldline Z as a set of the Riemann normal
coordinates [ [291], Chapter III, Sec. 7] denoted by Xα with
the time coordinate X0 along a timelike geodesic in the
direction of the dynamic velocity nα, and the spatial
coordinates Xi ¼ fX1; X2; X3g lying on the hypersurface
Σ ¼ ΣðzÞ consisting of all spacelike geodesics passing
through z orthogonal to the unit vector nα so that,

nαXα ¼ 0: ð457Þ

It is important to understand that the Fermi normal
coordinates (FNC) of an observer moving along a timelike
geodesic do not coincide with the Riemann normal coor-
dinates (RNC) used by Dixon [11,135]. The FNC are
constructed under the condition that the Christoffel sym-
bols vanish at every point along the geodesic [ [291],
Chapter III, Sec. 8] while the Christoffel symbols of the
RNC vanish only at a single event on a spacetime manifold.
The correspondence between the RNC and the FNC is
discussed, for example, in [ [292], Chapter 5], [293] and
generalization of the FNC for the case of accelerated
and locally rotating observers is given in [[165], Sec. 13.6]
and [257]. The present paper uses the conformal-harmonic
gauge (39) to build the body-adapted local coordinateswhich
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coincide with the FNC of accelerated observer only in the
linearized approximation of the Taylor expansion of the
metric tensor with respect to the spatial coordinates around
the worldline of the observer.
Further development of the variational dynamics

requires a clear separation of the matter and field variables
in the solution of the full Einstein’s field equations. This
problem has not been solved in the MPD approach
explicitly.9 It was replaced with the solution of a simpler
problem of the separation of the matter and field variables
in the equations of motion (449) by introducing a sym-
metric tensor distribution T̂μν known as the stress-energy
skeleton of the body [4,5,11]. Effectively, it means that
the variational dynamics of each body is described on the
effective background manifold M̄ that is equivalent to
the full manifold M from which the self-field effects of the
body have been removed. We denote the geometric
quantities and fields defined on the effective background
manifold with a bar above the corresponding object.
Mathematical construction of the effective background
manifold in our formalism is given below in Sec. XI B.
Dixon [ [11], Eq. (140)] defined high-order multipoles of

an extended body in the normal Riemann coordinates, Xα,
by means of a tensor integral

Iα1…αlμνðzÞ ¼
Z

Xα1…Xαl T̂μνðz; XÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðzÞ

p
DX ðl ≥ 2Þ

ð458Þ

where Xα ≡ Xαðz; xÞ is the same vector as in (452),
T̂μν is the stress-energy skeleton of the body, and
the integration is performed over the tangent space of
the point z with the volume element of integration
DX ¼ dX0 ∧ dX1 ∧ dX2 ∧ dX3. Definition (458) implies
the following symmetries:

Iα1…αlμν ¼ Iðα1…αlÞðμνÞ; ð459Þ

where the round parentheses around the tensor indices
denote a full symmetrization. Microscopic equation of
motion (449) also tells us that

Iðα1…αlμÞν ¼ 0; ð460Þ

and a similar relation holds after exchanging indices μ and ν
due to symmetry (459). Dixon’s multipoles have a number
of interesting symmetries which are discussed in [10,136]
and summarized in Appendix C of the present paper.
Appendix D 1 compares the Dixon multipoles (458)
with the Blanchet-Damour multipoles (122) and (131)
and establishes a relationship between them in the

post-Newtonian approximation of general relativity when
the effects of the hypothetical scalar field are ignored.
Dixon [11] presented a number of theoretical arguments

suggesting that the covariant equations of motion of the
extended body have the following covariant form [ [9],
Eqs. (4.9–4.10)]:

Dpα
Dτ

¼ 1

2
ūβSμνR̄μνβαþ

1

2

X∞
l¼2

1

l!
∇̄αAβ1…βlμνI

β1…βlμν ð461Þ

DSαβ

Ds
¼ 2p½αūβ� þ

X∞
l¼1

1

l!
Bγ1…γlσμνḡ

σ½αIβ�γ1…γlμν; ð462Þ

where D=Dτ≡ ūα∇̄α is the covariant derivative taken
along the reference line z ¼ zðτÞ, the moments Iα1…αlμν

are defined in (458), Aβ1…βlμν and Bγ1…γlσμν are the
symmetric tensors computed at point z, and the bar above
any tensor indicates that it belongs to the background
spacetime manifold M̄.
Thorne and Hartle [58] call the body’s multipoles

Iα1…αlμν the internal multipoles. Tensors Aβ1…βlμν and
Bγ1…γlμνσ are called the external multipoles of the back-
ground spacetime. The external multipoles are the normal
tensors in the sense of Veblen and Thomas [294]. They are
reduced to the repeated partial derivatives of the metric
tensor, ḡμν, and the Christoffel symbols, Γ̄σμν, in the
Riemann normal coordinates taken at the origin of the
coordinate X ¼ 0 (corresponding to the point z in coor-
dinates xα) [11,291],

Aβ1…βlμν ¼ lim
X→0

∂β1…βl ḡμνðXÞ; ð463Þ

Bβ1…βlσμν ¼ 2lim
X→0

∂β1…βlΓσμνðXÞ
¼ lim

X→0
½∂β1…βlσ ḡμνðXÞ þ ∂β1…βlμḡνσðXÞ

− ∂β1…βlνḡσμðXÞ�: ð464Þ

In arbitrary coordinates xα, the normal tensors are
expressed in terms of the Riemann tensor, R̄α

μβν, and its
covariant derivatives [ [291], Chapter III, Sec. 7]. More
specifically, if the terms being quadratic with respect to the
Riemann tensor are neglected, the external Dixon multi-
poles read

Aβ1…βlμν ¼ 2
l − 1

lþ 1
∇̄ðβ1…βl−2R̄jμjβl−1βlÞν; ð465Þ

Bβ1…βlσμν ¼
2l

lþ2
½∇̄ðβ1…βl−1R̄jμjσβlÞν

þ ∇̄ðβ1…βl−1R̄jσjμβlÞν− ∇̄ðβ1…βl−1R̄jσjνβlÞμ� ð466Þ

where the vertical bars around an index means that it is
excluded from the symmetrization denoted by the round

9In the present paper the separation of the matter and field
variables in the metric tensor is achieved by means of the matched
asymptotic expansion technique.
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parentheses. Notice that each term with the Riemann tensor
in (465) and (466) is symmetric with respect to the first
and forth indices of the Riemann tensor. This tells us that
Aβ1…βlμν ¼ Aðβ1…βlÞðμνÞ and Bγ1…γlσμν ¼ Bðγ1…γlÞðσμÞν in
accordance with the symmetries of (463) and (464).
Substituting these expressions to (461) and (462) yields

the Dixon equations of motion in the following form:

Dpα
Dτ

¼ 1

2
ūβSμνR̄μνβα

þ
X∞
l¼2

l − 1

ðlþ 1Þ! ∇̄αðβ1…βl−2R̄jμjβl−1βlÞνJ
β1…βl−1μβlν;

ð467Þ

DSαβ

Dτ
¼ 2p½αūβ�

þ 2
X∞
l¼1

lðlþ 1Þ
ðlþ 2Þ! ∇̄ðγ1…γl−1R̄jμjσγlÞνḡ

σ½αJβ�γ1…γl−1μγlν;

ð468Þ

where

Jα1…αpλμσν ≡ Iα1…αp½λ½σμ�ν� ð469Þ

denotes the internal multipoles with a skew symmetry with
respect to two pairs of indices, ½λμ� and ½σν�. The Dixon I
and J multipoles are compared in Appendix C of the
present paper. Comparison of Dixon’s equations of motion
(467), (468) with our covariant equations is given in
Appendix D.
Mathematical elegance and apparently covariant nature

of the variational dynamics has been attracting researchers
to work on improving various aspects of derivation of the
MPD equations of motion [13,105,139,140,144,145,247,
295,296]. From an astrophysical point of view Dixon’s
formalism is viewed as being of considerable importance
for the modeling of the gravitational waves emitted by the
extreme mass-ratio inspirals (EMRIs) which are binary
black holes consisting of a supermassive black hole and a
stellar mass black hole. EMRIs form a key science goal for
the planned space based gravitational wave observatory
LISA and the equations of motion of the black holes in
those systems must be known with unprecedented accuracy
[28,252]. Nonetheless, in spite of the power of Dixon’s
mathematical apparatus, there are several issues which
make the MPD theory of the variational dynamics yet
unsuitable for relativistic celestial mechanics, astrophysics,
and gravitational wave astronomy which have been pointed
out by Dixon himself [11] and by Thorne and Hartle [58].
The main problem is that the variational dynamics is too

generic and does not engage any particular theory of
gravity. It tacitly assumes that some valid theory of gravity
is chosen, gravitational field equations are solved, and the

metric tensor is known. However, the field equations and
the equations of motion of matter are closely tied up—
matter generates gravity while gravity governs motion of
matter. Due to this coupling the definition of the center of
mass, linear momentum, spin, and other body’s internal
multipoles depend on the metric tensor which, in its own
turn, depends on the multipoles through the nonlinearity of
the field equations. It complicates the problem of inter-
pretation of the gravitational stress-energy skeleton in the
nonlinear regime of a gravitational field and makes the
MPD equations (461), (462) valid solely in the linearized
approximation of general relativity. For the same reason it
is difficult to evaluate the residual terms in the existing
derivations of the MPD equations and their multipolar
extensions. One more serious difficulty relates to the lack of
prescription for separation of self-gravity effects of a
moving body from the external gravitational environment.
The MPD equations of motion are valid on the background
effective manifold M̄ but its exact mathematical formu-
lation remains unclear in the framework of the variational
dynamics alone [247]. Because of these shortcomings the
MPD variational dynamics has not been commonly used in
real astrophysical applications in spite of the fact that it is
sometime claimed as a “standard theory” of the equations
of motion of massive bodies in relativistic gravity [210].
In order to complete the MPD approach to variational

dynamics and make it applicable in astrophysics several
critical ingredients have to be added. More specifically,
what we need includes the following:
(1) the procedure of unambiguous characterization and

determination of the gravitational self-force and self-
torque exerted by the body on itself, and the proof
that they are actually vanishing;

(2) the procedure of building the effective background
spacetime manifold M̄ with the background metric
ḡαβ used to describe the motion of the body which is
a member of the N-body system;

(3) the precise algorithm for calculating the body’s
internal multipoles (458) and their connection to
the gravitational field of the body;

(4) the relationship between the Blanchet-Damour mass
and spin body’s multipoles,Mα1…αl and Sα1…αl , the
Dixon internal multipoles (458), and the gravita-
tional stress-energy skeleton.

In this section we implement the formalism of derivation
of covariant equations of motion of massive bodies
proposed by Thorne and Hartle [58] which yields a
complete set of the covariant equations of translational
and rotational motion. It relies upon the construction of the
effective background manifold M̄ by solving the field
equations of scalar-tensor theory of gravity and applying
the asymptotic matching technique which separates the
self-field effects from the external gravitational environ-
ment, defines all external multipoles, and establishes the
local equations of motion of the body in the body-adapted
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local coordinates. The body’s internal multipoles are
defined in the conformal harmonic gauge by solving the
field equations in the body-adapted local coordinates as
proposed by Blanchet and Damour [78]. The covariant
equations of motion follow immediately from the local
equations of motion by applying the Einstein equivalence
principle [58]. We compare our covariant equations of
motion, derived in this section, with the MPD equations in
Appendix D.

B. The effective background manifold

Equations of translational motion (290) of an extended
body B in the global coordinate chart depend on an infinite
set of configuration variables—the internal mass and spin
multipoles of the body, ML

B and SL
B, and the external

gravitoelectric and gravitomagnetic multipoles—QL and
CL—all are pinned down to the worldline Z of the center of
mass of the body. The same equations in the local
coordinate chart adapted to the body B are given by
(183) after applying the law of conservation of the linear
momentum of the body (177). These equations in two
different coordinate charts are interconnected by the space-
time coordinate transformation (144), (145)—the proof is
given below in Sec. XI C. It points out that the equations of
motion derived in the local coordinates can be lifted to the
generic covariant form by making use of the Einstein
equivalence principle applied to body B that can be treated
as a massive particle endowed with the internal multipoles
ML

B and SL
B, and moving along the worldline Z on the

effective background spacetime manifold M̄ whose proper-
ties are characterized by the external multipoles QL and CL
that presumably depend on the curvature tensor on M̄ and
its covariant derivatives. The covariant form of the equa-
tions is independent of a particular realization of the
conformal-harmonic coordinates but we hold on the
gauge conditions (39) to prevent the appearance of
gauge-dependent, nonphysical multipoles of gravitational
field in the equations of motion.
The power of our approach to the covariant equations of

motion is that the effective background manifold M̄ for
each body B is not postulated or introduced ad hoc. It is
constructed by solving the field equations in the local and
global charts and separating the field variables—scalar field
and metric tensor perturbations—in the internal and exter-
nal parts. The separation is fairly straightforward in the
local chart. The internal part of the metric tensor, ĥintαβ and
scalar field φ̂int, are determined by matter of body B and is
expanded in the multipolar series outside the body which
are singular at the origin of the body-adapted local
coordinates. The external part of the metric tensor ĥextαβ

and scalar field φ̂ext are solutions of vacuum field equations
and, hence, are regular at the origin of the local chart. There
is also an internal-external coupling component l̂int00 of the
metric tensor perturbation but it is a nonlinear functional of

the internal solution and its multipolar series is also singular
at the origin of the local chart of body B.
The effective background manifold is regular at the

origin of the local coordinates and its geometry is entirely
determined by the external part of the metric tensor,
ḡαβ ¼ ηαβ þ hextαβ . This is fully consistent with the result
of matching of the asymptotic expansions of the metric
tensor and scalar field in the global and local coordinates
described in Sec. V. All terms whose multipolar expan-
sions are singular at the origin of the local chart are
canceled out identically in the matching Eqs. (134) and
(135). This establishes a one-to-one correspondence
between the external metric perturbation hextαβ in the local
chart and its counterpart in the global coordinate chart
which is uniquely defined by the external gravitational
potentials Ū; Ūi; Ψ̄; χ̄ given in (91). In the rest of this
section we demonstrate that translational equations of
motion of body B are equations of a perturbed timelike
geodesic of a massive particle on the effective background
manifold with the metric ḡαβ. The particle has mass M ¼
MB and internal multipoles ML ¼ ML

B and SL ¼ SL
B.

The perturbation of the geodesic is the local acceleration
Qi caused by the interaction of the particle’s multipoles
with the external gravitoelectric and gravitomagnetic
multipoles, QL and CL, which are fully expressed in
terms of the covariant derivatives of the Riemann tensor,
R̄αβμν and scalar field φ̄ of the background manifold.
Covariant equations of rotational motion of the body spin
are described by the Fermi-Walker transport with the
external torques caused by the coupling of the internal and
external multipoles of the body.
The effective background metric ḡαβ is given in the

global coordinates by the following equations (cf. [58]):

ḡ00ðt; xÞ ¼ −1þ 2Ūðt; xÞ

þ 2

�
Ψ̄ðt; xÞ − βŪ2ðt; xÞ − 1

2
∂ttχ̄ðt; xÞ

�
; ð470Þ

ḡ0iðt; xÞ ¼ −2ð1þ γÞŪiðt; xÞ; ð471Þ
ḡijðt; xÞ ¼ δij þ 2γδijŪðt; xÞ; ð472Þ

where the potentials in the right-hand side of (470)–(472)
are defined in (68) and (91) as functions of the global
coordinates xα ¼ ðt; xÞ. The background metric in arbitrary
coordinates can be obtained from (470)–(472) by perform-
ing a corresponding coordinate transformation. It is worth
emphasizing that the effective metric ḡαβ is constructed for
each body of the N-body system separately and is a
function of the external gravitational potentials which
depend on which body is chosen. It means that we have
a collection of N-effective manifolds M̄—one for each
extended body. Another prominent point to draw to the
attention of the reader is the fact that the effective metric of
the extended-body B depends on the gravitational field of
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the body itself through the nonlinear interaction termΨC2 in
the potential Ψ̄; see (77) and its multipolar expansion (231).
This dependence of the background metric tensor on the
gravitational field of the body itself is known as the back-
action effect of a gravitational field [58,156]. It was first
noticed by Fichtenholtz [218] who pointed out that deriva-
tion of the post-Newtonian equations of motion of bodies of
comparable masses, given in the first edition of the
“Classical Theory of Fields” by Landau and Lifshitz, is
erroneous as theymissed the backaction term in the effective
metric. This error was corrected and did not appear in the
subsequent editions of the Landau-Lifshitz textbook [42].
The background metric, ḡαβ, is a starting point of the

covariant development of the equations of motion. It has
the Christoffel symbols

Γ̄α
μν ¼

1

2
ḡαβð∂νḡβμ þ ∂μḡβν − ∂βḡμνÞ; ð473Þ

which can be directly calculated in the global coordinates,
xα, by taking partial derivatives from the metric compo-
nents (470)–(472). In what follows, we shall make use of a
covariant derivative defined on the background manifold M̄
with the help of the Christoffel symbols Γ̄α

μν. The covariant
derivative on the background manifold, M̄, is denoted ∇̄α in
order to distinguish it from the covariant derivative defined
on the original spacetime manifold, M, denoted ∇α. For
example, the covariant derivative of vector field Vα is
defined on the background manifold by the following
equation:

∇̄βVα ¼ ∂βVα þ Γ̄α
μβV

μ; ð474Þ
which is naturally extended to tensor fields of arbitrary type
and rank in a standard way [17]. It is straightforward to
define other geometric objects on the background manifold
like the Riemann tensor (4),

R̄α
μβν ¼ ∂βΓ̄α

μν − ∂νΓ̄α
μβ þ Γ̄α

σβΓ̄σ
μν − Γ̄α

σνΓ̄σ
μβ; ð475Þ

and its contractions—the Ricci tensor R̄μν ¼ R̄α
μαν, and the

Ricci scalar R̄ ¼ ḡμνR̄μν. Tensor indices on the background
manifold are raised and lowered with the help of the
metric ḡαβ.
The background metric tensor ḡαβðu;wÞ in the local

coordinates wα ¼ ðu; wiÞ adapted to body B is given by

ḡαβðu;wÞ ¼ ηαβ þ ĥextαβ ðu;wÞ; ð476Þ
where the perturbation, ĥextαβ , is given by the polynomial
expansions (117)–(119) of the external gravitational field
with respect to the local spatial coordinates. Notice that at
the origin of the local coordinates, where wi ¼ 0, the
background metric ḡαβ is reduced to the Minkowski metric
ηαβ. It means that on the effective background manifold M̄
the coordinate time u is identical to the proper time τ

measured on the worldline W of the origin of the local
coordinates adapted to body B,

τ ¼ u: ð477Þ
Post-Newtonian transformation from the global to local

coordinates, wα ¼ wαðxβÞ, has been provided in Sec. V C.
It smoothly matches the two forms of the background
metric ḡαβðt; xÞ and ḡαβðu;wÞ on the background manifold
M̄ in the sense that

ḡμνðt; xÞ ¼ ḡαβðu;wÞ
∂wα

∂xμ
∂wβ

∂xν : ð478Þ

This should be compared with the law of transformation
(135) applied to the full metric gαβ on spacetime manifold
M which includes besides the external part also the internal
and internal-external coupling components of the metric
tensor perturbations but they are mutually canceled out in
(135) leaving only the external terms, thus, converting
(135) to (478) without making any additional assumptions
about the structure of the effective background manifold.
The cancellation of the internal and internal-external
components of the metric tensor perturbations in (135) is
a manifestation of the effacing principle [185] that excludes
the internal structure of body B from the definition of the
effective background manifold M̄ used for the description
of motion of the body [99]. Compatibility of Eqs. (135) and
(478) confirms that the internal and external problems of
the relativistic celestial mechanics in an N-body system are
completely decoupled regardless of the structure of the
extended bodies and can be extrapolated to compact
astrophysical objects like neutron stars and black holes.
In what follows, we will need a matrix of transformation

taken on the worldline of the origin of the local coordinates,

Λα
β ≡ Λα

βðτÞ ¼ lim
x→xB

∂wα

∂xβ : ð479Þ

The components of this matrix can be easily computed
from equations of coordinate transformation (144) and
(145) and its complete post-Newtonian form is shown in
[[17], Sec. 5.1.3]. With an accuracy being sufficient for
derivation of the covariant post-Newtonian equations of
motion in the present paper, it reads

Λ0
0 ¼ 1þ 1

2
v2B − Ūðt; xBÞ; ð480Þ

Λ0
i ¼ −viB

�
1þ 1

2
v2B

�
þ 2ð1þ γÞŪiðt; xBÞ

− ð1þ 2γÞviBŪðt; xBÞ; ð481Þ

Λi
0 ¼ −viB

�
1þ 1

2
v2B þ γŪðt; xBÞ

�
− Fij

Bv
j
B; ð482Þ

Λi
j ¼ δij½1þ γŪðt; xBÞ� þ

1

2
viBv

j
B þ Fij

B ; ð483Þ
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where Fij
B is the skew-symmetric matrix of the Fermi-

Walker precession of the spatial axes of the local frame
adapted to body B, with respect to the global coordinates;
see (151).
We will also need the inverse matrix of transformation

between the local and global coordinates taken on the
worldlineW of the origin of the local coordinates. We shall
denote this matrix as

Ωα
β ≡Ωα

βðτÞ ¼ lim
w→0

∂xα
∂wβ : ð484Þ

In accordance with the definition of the inverse matrix we
have

Λα
βΩβ

γ ¼ δαγ ; Ωα
βΛβ

γ ¼ δαγ : ð485Þ

Solving (485) with respect to the components of Ωα
β,

we get

Ω0
0 ¼ 1þ 1

2
v2B þ Ūðt; xBÞ; ð486Þ

Ω0
i ¼ viB

�
1þ 1

2
v2B

�
þ Fij

Bv
j
B − 2ð1þ γÞŪiðt; xBÞ

þ ð2þ γÞviBŪðt; xBÞ; ð487Þ

Ωi
0 ¼ viB

�
1þ 1

2
v2B þ Ūðt; xBÞ

�
; ð488Þ

Ωi
j ¼ δij½1 − γŪðt; xBÞ� þ

1

2
viBv

j
B − Fij

B : ð489Þ

As we shall see below, the matrices Λα
β and Ωα

β are
instrumental in lifting the geometric objects pinned down to
the worldline W and residing on 3-dimensional hypersur-
face Hu of constant time u of the tangent space to the
background manifold, from Hu up to 4-dimensional
spacetime manifold M̄.
In order to arrive to the covariant formulation of the

translational and rotational equations of motion, we take
the equations of motion derived in the local coordinates of
body B, and prolongate them to the 4-dimensional, covar-
iant form with the help of the transformation matrices and
replacing the partial derivatives with the covariant ones.
This is in accordance with the Einstein principle of
equivalence which establishes a correspondence between
spacetime manifold and its tangent space [165]. It turns out
that, eventually, all direct and inverse transformation
matrices cancel out due to (485) and the equations acquire
a final, covariant 4-dimensional form without any reference
to the original coordinate charts that were used in the
intermediate transformations. In what follows, we carry out
this type of calculations.

C. Geodesic worldline and 4-force
on the background manifold

Our algorithm of derivation of equations of motion
defines the center of mass of body B by equating the
conformal dipole of the body to zero, I i ¼ 0. The linear
momentum, pi also vanishes pi ¼ dI i=du ¼ 0, as
explained in Sec. VI C. We have shown that these two
conditions can be always satisfied by choosing the appro-
priate value (184)–(186) of the local acceleration,Qi, of the
origin of the local coordinates adapted to body B in such a
way that the worldline W of the origin of the local
coordinates coincides with the worldline Z of the center
of mass of the body. This specific choice ofQi converts the
equations of motion of the origin of the local coordinates of
body B (152) to the equations of motion of its center of
mass in the global coordinates. Below we prove that this
equation can be interpreted on the background manifold M̄
as the equation of timelike geodesic of a massive particle
with the conformal mass, M ¼ MB, of body B that is
perturbed by the force of inertia produced by the local
acceleration Qi of the origin of the local coordinates. This
is in concordance with the effacing principle [99,154,185]
which determines dynamics in general relativity and scalar-
tensor theory of gravity and suggests that the laws
governing the motion of self-interacting masses are struc-
turally identical to the laws governing the motion of test
bodies [142].
Let us introduce a 4-velocity ūα of the center of mass of

body B. In the global coordinates, xα, the worldlineZ of the
body’s center of mass is described parametrically by
x0B ¼ t, and xiBðtÞ. The 4-velocity is defined by

ūα ¼ dxαB
dτ

; ð490Þ

where τ is the proper time along the worldline Z. The
increment dτ of the proper time is related to the increments
dxα of the global coordinates by equation,

dτ2 ¼ −ḡαβdxαdxβ; ð491Þ

which tells us that the 4-velocity (490) is normalized to
unity, ūαūα ¼ ḡαβūαūβ ¼ −1. In the local coordinates the
worldline Z is given by equations, wα ¼ ðτ; wi ¼ 0Þ, and
the 4-velocity has components ūα ¼ ð1; 0; 0; 0Þ. In the
global coordinates the components of the 4-velocity are
uα ¼ ðdt=dτ; dxiB=dτÞ, which yields 3-dimensional velo-
city of the body’s center of mass, viB ¼ ūi=ū0 ¼ dxiB=dt.
Components of the 4-velocity are transformed from the
local to global coordinates in accordance to the trans-
formation equation, ūα ¼ Ωα

βūβ, which points out that in
the global coordinates ūα ¼ Ωα

0. On the other hand, a
covector of 4-velocity obeys the transformation equation,
ūα ¼ Λβ

αūβ, where ūα ¼ ð−1; 0; 0; 0Þ are components of
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the covector of 4-velocity in the local coordinates. Thus, in
the global coordinates ūα ¼ −Λ0

α. The above presentation
of the components of 4-velocity in terms of the matrices of
transformation along with Eq. (485) makes it evident that
the 4-velocity is subject to two reciprocal conditions of
orthogonality,

Λi
αūα ¼ 0; ūαΩα

i ¼ 0: ð492Þ

Equations (492) will be used later on in the procedure of
lifting the spatial components of the internal and external
multipoles to the covariant form.
In the covariant description of the equations of motion,

an extended body B from the N-body system is treated as a
particle having a conformal mass, M ¼ MB, the active
mass M≡MB, the active mass multipoles ML ≡ML

B,
and the active spin multipoles SL ≡ SL

B attached to the
particle, in other words, to the center of mass of the body.
This set of the internal multipoles fully characterizes the
internal structure of the body. The multipoles, in general,
depend on time including the mass of the body which is not
constant due to the temporal change of the multipoles (163)
caused by tidal interaction. The mass and spin multipoles
are fully determined by their spatial components in the
body-adapted local coordinates in terms of integrals from
the stress-energy distribution of matter through the solution
of the field equations; see Sec. IV B 6. Covariant gener-
alization of the multipoles from the spatial to spacetime
components is provided by the condition of orthogonality
of the multipoles to the 4-velocity ūα of the center of mass
of the body as explained below in Sec. XI D.
We postulate that the covariant definition of the linear

momentum of the body is

pα ¼ Mūα; ð493Þ

where pα is a covariant generalization of 3-dimensional
linear momentum pi of body B introduced in (173) where,
for the time being, we do not specify the complementary
part _I i

c. We are looking for the covariant translational
equations of motion of body B in the following form:

Dpα

Dτ
≡ ūβ∇̄βpα ¼

dpα

dτ
þ Γ̄α

μνpμūν ¼ Fα; ð494Þ

where Fα is a 4-force that causes the worldline Z of the
center of mass of the body to deviate from the geodesic
worldline of the background manifold M̄. We introduce this
force to Eq. (494) because the body’s center of mass
experiences a local acceleration Qi given by (184) which
means that it is not in a state of a free fall and does not move
on the geodesic of the background manifold. In order to
establish the mathematical form of the force Fα it is more
convenient to rewrite (494) in terms of a 4-acceleration
aα ≡Dūα=Dτ ¼ ūβ∇̄βūα

M

�
dūα

dτ
þ Γ̄α

μνūμūν
�

¼ Fα − _Mūα; ð495Þ

where _M is given in (165).
In what follows, it is more convenient to operate with a 4-

force per unit mass defined by fα ≡ Fα=M. Equation of
motion (495) is reduced to

dūα

dτ
þ Γ̄α

μνūμūν ¼ fα −
_M
M

ūα: ð496Þ

The force fα is orthogonal to 4-velocity, uαfα ¼ 0 as a
consequence of (494) and the 4-velocity normalization
condition. Hence, in the global coordinates the time
component of the force is related to its spatial components
as f0 ¼ −viBfi. The condition of the orthogonality also
yields the contravariant time component of the force in
terms of its spatial components,

f0 ¼ −
1

ḡ00
ḡijviBf

j: ð497Þ

Our task is to prove that the covariant equation of motion
(496) is exactly the same as the equation of motion (152) of
the center of mass of body B derived in the global
coordinates that was obtained by asymptotic matching of
the external and internal solutions of the field equations. To
this end we reparametrize Eq. (496) by coordinate time t
instead of the proper time τ, which yields

aiB ¼ −Γ̄i
00 − 2Γ̄i

0pv
p
B − Γ̄i

pqv
p
Bv

q
B

þ ðΓ̄0
00 þ 2Γ̄0

0pv
p
B þ Γ̄0

pqv
p
Bv

q
BÞviB

þ ðfi − f0viBÞ
�
dτ
dt

�
2

; ð498Þ

where viB ¼ dxiB=dt and aiB ¼ dviB=dt are the coordinate
velocity and acceleration of the body’s center of mass with
respect to the global coordinates.
We calculate the Christoffel symbols, Γ̄α

μν, the derivative
dτ=dt, substitute them to (498) along with (497), and
retain only the Newtonian and post-Newtonian terms.
Equation (498) takes on the following form:

aiB ¼ ∂iŪðt; xBÞ þ ∂iΨ̄ðt; xBÞ

−
1

2
∂tt∂iχ̄ðt; xBÞ þ 2ðγ þ 1Þ _̄Uiðt; xBÞ

− 2ðγ þ 1ÞvjB∂iŪjðt; xBÞ − ð2γ þ 1ÞviB _̄Uðt; xBÞ
− 2ðβ þ γÞŪðt; xBÞ∂iŪðt; xBÞ
þ γv2B∂iŪðt; xBÞ − viBv

j
B∂jŪðt; xBÞ

þ fi − viBv
k
Bf

k − ½2Ūðt; xBÞ þ v2B�fi: ð499Þ
This equation exactly matches the translational equation of
motion (152) if we make the following identification of the
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spatial components fi of the force per unit mass with the
local acceleration Qi:

fi ≡ −Qi −
1

2
viBv

j
BQj þ Fij

BQj þ γŪðt; xBÞQi: ð500Þ

By simple inspection we reveal that the right-hand side of
the post-Newtonian force (500) can be written down in a
covariant form

fα ¼ −ḡαβΛi
βQi ¼ ḡαβQβ ¼ −Qα; ð501Þ

where Λi
β is given above in (480)–(483), andQi is a vector

of 4-acceleration in the local coordinates. The quantity
Qα ¼ Λi

αQi defines the covariant form of the local accel-
eration in the global coordinates with Qα being orthogonal
to 4-velocity, ūαQα ¼ 0, which is a direct consequence of
the condition (492). Explicit form of Qi in the local
coordinates is given in (184) and should be used in
(501) along with the covariant form of the external
—QL, CL, PL and internal—ML, SL multipoles in order
to get fα ¼ −ḡaβQβ. The covariant form of the multipoles
is a matter of discussion in the next subsection.

D. Four-dimensional form of multipoles

1. Internal multipoles

The mathematical procedure that was used in construc-
tion of the local coordinates adapted to an extended body B
in anN-body system indicates that all type of multipoles are
defined at the origin of the local coordinates as the STF
Cartesian tensors having only spatial components with their
time components being identically nil. It means that the
multipoles are projections of 4-dimensional tensors on a
hyperplane passing through the origin of the local coor-
dinates orthogonally to 4-velocity ūα of the worldline Z of
the center of mass of the body. The 4-dimensional form of
the internal multipoles can be established by making use of
the law of transformation from the local to global coor-
dinates,

Mα1…αl ≡Ωα1
i1…Ωαl

ilM
i1i2…il ;

Sα1…αl ≡Ωα1
i1…Ωαl

ilS
i1i2…il ; ð502Þ

where the matrix of transformation Ωα
i is given in (486)–

(489). Transforming 3-dimensional STF Cartesian tensors
to 4-dimensional form does not change the property of the
tensors to be symmetric and trace-free in the sense that we
have for any pair of spacetime (Greek) indices

ḡα1α2M
α1α2…αl ¼ 0; ḡα1α2S

α1α2…αl ¼ 0: ð503Þ

The 4-dimensional form (502) of the multipoles along with
Eq. (492) confirms that the multipoles are orthogonal to
4-velocity, that is

ūα1M
α1…αl ¼ 0; ūα1S

α1…αl ¼ 0; ð504Þ

and due to the symmetry of the internal multipoles,
Eq. (504) is valid to each index.
Notice that the matrix of transformation (484) has been

used in making up the contravariant components of the
multipoles (502) which are tensors of type ½l

0
�. Tensor

components of the multipoles, Mα1…αl and Sα1…αl , which
are of the type ½0l� are obtained by lowering each index of
Mα1…αl and Sα1…αl respectively with the help of the
background metric tensor ḡαβ. It is worth emphasizing that
we have introduced 4-dimensional definitions of the
internal multipoles as tensors of type ½l

0
� on the ground

of transformation equations (502) because we defined the
spatial components of Mi1…il and Si1…il as integrals (122)
and (131) taken from the STF products of the components
of 3-dimensional coordinate wi which behaves as a vector
under the linear coordinate transformations. Another reason
to use the contravariant componentsMi1…il and Si1…il as a
starting point for their 4-dimensional prolongation is that
the internal multipoles are the coefficients of the Cartesian
tensors of type ½l

0
� in the Taylor expansions (220), (221),

and (223) of the gravitational potentials UBðt; xÞ and
Ui

Bðt; xÞ with respect to the components of the partial
derivatives ∂i1…il r

−1
B which are considered as the STF

Cartesian tensors of type ½0l�.

2. External multipoles

The external multipoles, Pi1…il , Qi1…il and Ci1…il , have
been defined at the origin of the local coordinates of body B
by external solutions of the field equations for the metric
tensor and scalar field in such a way that they are purely
spatial STF Cartesian tensors of type ½0l�; see Sec. IV B 4. It
means that 4-dimensional tensor extensions of the external
multipoles must be orthogonal to 4-velocity of the origin of
the local coordinates which is, by construction, identical to
4-velocity ūα of the worldlineZ of the center of mass of the
body B,

ūα1Qα1α2…αl ¼ 0;

ūα1Pα1α2…αl ¼ 0;

ūα1Cα1α2…αl ¼ 0: ð505Þ

These orthogonality conditions suggests that the 4-
dimensional components of the external multipoles are
obtained from their 3-dimensional counterparts by making
use of the matrix of transformation (479) which yields

Qα1…αl ≡ Λi1
α1…Λil

αlQi1…il ;

Cα1…αl ≡ Λi1
α1…Λil

αlCi1…il ;

Pα1…αl ≡ Λi1
α1…Λil

αlPi1…il : ð506Þ
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We have used in here the matrix of transformation (479)
because the external multipoles are defined originally as
tensor coefficients of the Taylor expansions of the external
potentials Ū, Ψ̄, etc., which are expressed in terms of partial
derivatives from these potentials and behave under coor-
dinate transformations like tensors of type ½0l�. Definitions
(506) and the properties of the matrices of transformation
suggest that 4-dimensional tensors Qα1…αl , Cα1…αl and
Pα1…αl are STF tensors in the sense of (503) that is
ḡα1α2Qα1…αl ¼ 0, etc.
It is known that in general relativity the external multi-

poles, Qi1…il and Ci1…il are defined in the local coordinates
by partial derivatives of the Riemann tensor, R̄α

μβν, of the
background metric (476) taken at the origin of the local
coordinates [47,58,297,298]. This definition remains valid
with some modification in the scalar-tensor theory of
gravity which is explained below. The external multipoles,
Pi1…il , of the scalar field are not related in any way to the
Riemann tensor because they depend merely on derivatives
of the background scalar field φ̄.
As we show below, the 4-dimensional tensor formulation

of the external multipoles is achieved by contracting the
Riemann tensor with vectors of 4-velocity, ūα, and taking
the covariant derivatives ∇̄α projected on the hyperplane
being orthogonal to the 4-velocity. The projection is
fulfilled with the help of the operator of projection,

παβ ≡ δαβ þ ūαūβ;

παβ ¼ ḡαβ þ ūαūβ;

παβ ¼ ḡαβ þ ūαūβ: ð507Þ
The operator of projection satisfies the following relations:
παγ π

γ
β ¼ παβ , παβ ¼ ḡαγπβγ , παβ ¼ ḡαγπ

γ
β, and παα ¼ 3. The

latter property points out that παβ has only three algebrai-
cally independent components which are reduced to the
Kronecker symbol when παβ is computed in the local
coordinates of body B, that is in the local coordinates
π00 ¼ 0; πi0 ¼ π0i ¼ 0; πij ¼ δij. In other words, the projec-
tion operator is a 3-dimensional Kronecker symbol δij lifted
up to 4-dimensional effective background manifold M̄. We
notice that the operator of the projection has some addi-
tional algebraic properties. Namely,

παβΛi
α ¼ Λi

β; πβαΩα
i ¼ Ωβ

i; ð508Þ
that are in accordance with the condition of orthogonality
(492). They point out that παβ can be also represented as a
product of two reciprocal transformation matrices,

παβ ¼ Ωα
iΛi

β: ð509Þ
The projection operator is required to extend 3-dimen-

sional spatial derivatives of geometric objects to their 4-

dimensional counterparts. Indeed, in the local coordinates
the external multipoles are purely spatial Cartesian tensors
which are expressed in terms of the partial spatial deriv-
atives of the external perturbations of the metric tensor and/
or scalar field. It means that the extension of a spatial partial
derivative to its 4-dimensional form must preserve its
orthogonality to the 4-velocity ūα of the worldline Z which
is achieved by coupling the spatial derivatives with the
projection operator. For example, 4-dimensional STF form
of the external STF scalar multipole PL ≡ Pi1…il ¼
Phi1…ili introduced in (153) in terms of the spatial deriv-
atives of the external scalar field, reads

Pα1…αl ¼ Λi1
α1…Λil

αlPi1…il ¼ Λhi1
α1…Λili

αl∇̄hi1…iliφ̄

¼ Λhi1
α1…Λili

αlΩ
β1 hi1…Ωβl

ili∇̄β1…βl φ̄

¼ πβ1hα1 � � � π
βl
αli∇̄β1���βl φ̄; ð510Þ

where φ̄ is the background scalar field perturbation, and the
angular brackets around Greek indices indicate 4-dimen-
sional generalization of 3-dimensional STF tensor defined
earlier in (2). Extending 3-dimensional Kronecker symbol
and other 3-tensors to 4-dimensional form we get

Thα1…αli ≡
X½l=2�
n¼0

ð−1Þn
2nn!

l!
ðl − 2nÞ!

ð2l − 2n − 1Þ!!
ð2l − 1Þ!!

× πðα1α2…πα2n−1α2nSα2nþ1…αlÞβ1γ1…βnγnπ
β1γ1…πβnγn :

ð511Þ

We also notice that the projection operator can be effec-
tively used to rise and/or to lower 4-dimensional (Greek)
indices of the internal and external multipoles like the
metric tensor ḡαβ. This is because all multipoles are
orthogonal to the 4-velocity ūα. Thus, for example,
Qαβḡβγ ¼ Qαβπ

βγ ¼ Qα
γ , etc.

The external multipoles Qα1…αl and Cα1…αl are directly
connected to the Riemann tensor of the background
manifold and its covariant derivatives. In order to establish
this connection we work in the local coordinates and
employ a covariant definition of the Riemann tensor (4)
of the background manifold where the background metric
tensor in the local coordinates is

ḡαβ ¼ ηαβ þ ĥextαβ ðu;wÞ þ l̂extαβ ðu;wÞ; ð512Þ

with the perturbations ĥextαβ and l̂extαβ defined in (117)–(120)
respectively. The products of the connections entering (4) at
the post-Newtonian level of approximation requires the
following components of the Christoffel symbols:
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Γ̄i
00 ¼ Γ̄0

0i ¼ −
1

2
∂iĥ

ext
00 ;

Γ̄i
jk ¼

1

2
ð∂jĥ

ext
ik þ ∂kĥ

ext
ik − ∂iĥ

ext
jk Þ: ð513Þ

Substituting (512) and (513) to (4) and taking into account
all post-Newtonian terms we get the STF part of the
Riemann tensor component ½R̄0i0j�STF ≡ R̄0hij0jji in the
following form:

½R̄0i0j�STF ¼ −Dhiji þ 3DhiDji þ 2DDhiji þ 2ðγ − 1ÞDhiHji þ 2ðβ − 1Þ × ½HhiHji þ ðH − PÞHhiji�

þ 2
X∞
l¼0

ðl − 1Þðlþ 1Þ
ð2lþ 5Þðlþ 2Þ! Q̈LhiwjiL þ ðγ − 1Þ

X∞
l¼0

ð2lþ 1Þðlþ 1Þ
ð2lþ 5Þðlþ 2Þ! P̈LhiwjiL

−
1

2

X∞
l¼0

lþ 7

ð2lþ 7Þðlþ 3Þl! Q̈hijiLwLw2 − ðγ − 1Þ
X∞
l¼0

1

ð2lþ 7Þðlþ 3Þl! P̈hijiLwLw2 þ
X∞
l¼0

lþ 1

ðlþ 2Þ! εpqhi
_CjipLwqL;

ð514Þ

where we have discarded all terms of the post-post-
Newtonian order and introduced the shorthand notations

D≡Dðu;wÞ ¼
X∞
k¼1

1

k!
QKðuÞwK; ð515Þ

H ≡Hðu;wÞ ¼
X∞
k¼0

1

k!
PKðuÞwK; ð516Þ

Di1…il ≡Di1…ilðu;wÞ ¼ ∂i1…ilD ¼
X∞
k¼0

1

k!
Qi1…ilKðuÞwK;

ð517Þ

Hi1…il ≡Hi1…ilðu;wÞ ¼ ∂i1…ilH ¼
X∞
k¼0

1

k!
Pi1…ilKðuÞwK:

ð518Þ
Notice that at the origin of the local coordinates where
wi ¼ 0, we haveDðu; 0Þ ¼ 0,Hðu; 0Þ ¼ P,Di1…ipðu; 0Þ ¼
Qi1…ip and Hi1…ipðu; 0Þ ¼ Pi1…ip . Therefore, at the origin
of the local coordinates, that is on the worldline Z, the
value of the STF Riemann tensor (514) is simplified to

½R̄0i0j�STFZ ¼ −Qhiji þ 3QhiQji þ 2ðγ − 1ÞQhiPji
þ 2ðβ − 1ÞPhiPji: ð519Þ

This relationship establishes the connection between the
external mass quadrupole Qij and the STF Riemann tensor.
The reader should notice that (519) includes terms depending
on acceleration Qi of the worldline of the center of mass of
body B. This may look strange as the curvature of spacetime
(the Riemann tensor) does not depend on the choice of the
worldline of the local coordinates. Indeed, it can be verified
that the acceleration-dependent terms in (519) are mutually
canceled out with the similar terms coming out of the explicit
expression for Qij taken from (155), and obtained by the
asymptotic matching technique.

Relationship between the STF covariant derivative of
lth order from the Riemann tensor and the external
gravitoelectric multipole of the same order is derived by
taking covariant derivatives l times from both sides of
(514). Covariant derivative of the order l from the
Riemann tensor is a linear operator on the background
manifold that involves the products of the Christoffel
symbols and the covariant derivatives of the order l − 1
from the Riemann tensor. They can be calculated by
iterations starting from l ¼ 1. Straightforward but tedious
calculation shows that at the post-Newtonian level of
approximation the covariant derivative of the order l − 2
combined with the Riemann tensor to STF tensor of the
order l, reads

½∇̄i1…il−2R̄0il−10il �STF

¼½∂i1…il−2R̄0il−10il �STFþ2
Xl−3
k¼0

ðkþ1Þ∂hi1…il−k−3 ½Dil−k−2…il−1Dili�

þ2ðγ−1Þ
Xl−3
k¼0

ðkþ2Þ∂hi1…il−k−3 ½Dil−k−2…il−1Hili�: ð520Þ

Applying the Leibniz rule of differentiation to the
product of two functions [ [264], Eq. (0.42)] standing
in the right-hand side of (520), we obtain a more simple
expression,

½∇̄i1…il−2R̄0il−10il �STF
¼ ½∂i1…il−2R̄0il−10il �STF

þ 2
Xl−3
k¼0

Xk
s¼0

ðl − k − 2Þk!
s!ðk − sÞ! Dhi1…isþ1

Disþ2…ili

þ 2ðγ − 1Þ
Xl−3
k¼0

Xk
s¼0

ðl − k − 1Þk!
s!ðk − sÞ! Hhi1…isþ1

Disþ2…ili:

ð521Þ

SERGEI M. KOPEIKIN PHYS. REV. D 99, 084008 (2019)

084008-88



The l − 2th order partial derivatives from terms DhiDji,
DDhiji, etc., entering ½∂i1…il−2R̄0il−10il �STF, are also calcu-
lated with the help of the Leibniz rule, yielding

∂hi1…il−2 ½Dil−1Dili� ¼
Xl−2
k¼0

ðl − 2Þ!
k!ðl − k − 2Þ!Dhi1…ikþ1

Dikþ2…ili;

ð522Þ

∂hi1…il−2 ½Dil−1iliD� ¼
Xl−2
k¼1

ðl − 2Þ!
k!ðl − k − 2Þ!Dhi1…ikDikþ1…ili;

ð523Þ

∂hi1…il−2 ½Dil−1Hili� ¼
Xl−2
k¼0

ðl − 2Þ!
k!ðl − k − 2Þ!Dhi1…ikþ1

Hikþ2…ili;

ð524Þ

∂hi1…il−2 ½Hil−1Hili� ¼
Xl−2
k¼0

ðl − 2Þ!
k!ðl − k − 2Þ!Hhi1…ikþ1

Hikþ2…ili;

ð525Þ

∂hi1…il−2 ½Dil−1iliðH−PÞ�¼
Xl−2
k¼1

ðl−2Þ!
k!ðl−k−2Þ!Hhi1…ikHikþ1…ili:

ð526Þ

Actually, we need the covariant derivatives of the STF
part of the Riemann tensor only at the origin of the local
coordinates adapted to body B. Therefore, after taking the
STF covariant derivatives from the Riemann tensor we take
the value of the local spatial coordinates wi ¼ 0, which
eliminates all terms depending on the time derivatives of
the external multipoles in the right hand side of (514) for
the STF part of the Riemann tensor. Hence, the STF
covariant derivative of the Riemann tensor taken on the
worldline of the center of mass of body B reads

½∇̄i1…il−2R̄0il−10il �STFZ ¼ −Qhi1…ili þ 3
Xl−2
k¼0

ðl − 2Þ!
k!ðl − k − 2Þ!Qhi1…ikþ1

Qikþ2…ili

þ 2

�Xl−2
k¼1

ðl − 2Þ!
k!ðl − k − 2Þ!Qhi1…ikQikþ1…ili þ

Xl−3
k¼0

Xk
s¼0

ðl − k − 2Þk!
s!ðk − sÞ! Qhi1…isþ1

Qisþ2…ili

�

þ 2ðγ − 1Þ
�Xl−2
k¼1

ðl − 2Þ!
k!ðl − k − 2Þ!Qhi1…ikPikþ1…ili þ

Xl−3
k¼0

Xk
s¼0

ðl − k − 1Þk!
s!ðk − sÞ! Phi1…isþ1

Qisþ2…ili

�

þ 2ðβ − 1Þ
�Xl−2
k¼1

ðl − 2Þ!
k!ðl − k − 2Þ!Phi1…ikPikþ1…ili þ

Xl−2
k¼0

ðl − 2Þ!
k!ðl − k − 2Þ!Phi1…ikþ1

Pikþ2…ili

�
: ð527Þ

It is rather straightforward now to convert (527) to 4-dimensional form valid in arbitrary coordinates on the effective
manifold M̄ by making use of the transformation matrices and the operator of projection as it was explained above. We
introduce a new notation for the covariant STF derivative of the Riemann tensor taken on the worldline Z,

Eα1…αl ≡ πβ1hα1π
β2
α2…:πβlαli½∇̄β1…βl−2R̄μβl−1βlνu

μuν�STFZ ; ð528Þ

and use it for transformation of (527) to arbitrary coordinates. It yields a covariant expression for the external gravitoelectric
multipoles Qα1…αl in terms of the STF covariant derivatives from the Riemann tensor,

Qα1…αl ¼ Ehα1…αli þ 3
Xl−2
k¼0

ðl − 2Þ!
k!ðl − k − 2Þ! Ehα1…αkþ1

Eαkþ2…αli

þ 2

�Xl−2
k¼1

ðl − 2Þ!
k!ðl − k − 2Þ! Ehα1…αkEαkþ1…αli þ

Xl−3
k¼0

Xk
s¼0

ðl − k − 2Þk!
s!ðk − sÞ! Ehα1…αsþ1

Eαsþ2…αli

�

þ 2ðγ − 1Þ
�Xl−2
k¼1

ðl − 2Þ!
k!ðl − k − 2Þ! Ehα1…αkΦαkþ1…αli þ

Xl−3
k¼0

Xk
s¼0

ðl − k − 1Þk!
s!ðk − sÞ! Φhα1…αsþ1

Eαsþ2…αli

�

þ 2ðβ − 1Þ
�Xl−2
k¼1

ðl − 2Þ!
k!ðl − k − 2Þ!Φhα1…αkΦαkþ1…αli þ

Xl−2
k¼0

ðl − 2Þ!
k!ðl − k − 2Þ!Φhα1…αkþ1

Φαkþ2…αli

�
; ð529Þ
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where we have made identification: Ea ≡Qα. At this stage
of calculation, it is worth noticing that 4-acceleration of the
center of mass of body B, aα ≡ ūβ∇̄βūα, is not exactly
equal to Eα because of a term depending on the time
derivative of body’s mass, _M, in the right-hand side of
(495). Only in case when the mass is conserved, aα ¼ Eα.
Similar, but less tedious procedure allows us to calculate

4-dimensional form of the external gravitomagnetic multi-
poles Cα1…αl in terms of the STF covariant derivative of the
Riemann tensor. We get

Cα1…αl ≡ πβ1hα1π
β2
α2…πβlαli½∇̄β1…βl−2R̄σμνβl−1εβl

σμūν�STFZ : ð530Þ

where we have utilized 3-dimensional covariant tensor of
Levi-Civita εαβγ which is a projection of 4-dimensional,
fully antisymmetric Levi-Civita symbol Eαμνρ [ [165],
§ 3.5] on the hyperplane being orthogonal to 4-velocity ūα,

εαβγ ≡ ð−ḡÞ1=2ūμπναπρβπσγEμνρσ: ð531Þ

It can be checked by inspection that in the global coor-
dinates the right-hand sides of (529) and (530) are reduced
to QL and CL respectively as it must be.
Four-dimensional definitions of the external multipoles

given in this section allow us to transform products of the
multipoles given in the local coordinates to their covariant
counterparts, for example, QLML ≡Qi1…ilM

i1…il ¼
Qα1…αlM

α1…αl , etc. In all such products the matrices
of transformation cancel out giving rise to covariant
expressions being independent of a particular choice of
coordinates.

E. Covariant translational equations of motion

A generic form of the covariant translational equations of
motion have been formulated in (495). Substituting to these
equations the force Fα ¼ −MQα whereQα was introduced
in (501), yields

M
Dūμ

Dτ
¼ Fμ − _Mūα; ð532Þ

where the force

Fμ ¼ Fμ
q þ Fμ

Q þ Fμ
C þ Fμ

P ; ð533Þ

and the second term in the right-hand side of (532) is due to
the nonconservation of mass (165) having the following
covariant form:

_M ¼ ðγ − 1Þ
�
P
X∞
l¼1

1

l!
Qα1…αl

DFMα1…αl

Dτ
þDFP

Dτ
M

�

−
X∞
l¼1

1

ðl − 1Þ!Qα1…αl

DFMα1…αl

Dτ

−
X∞
l¼1

lþ 1

l!
Mα1…αl

DFEα1…αl

Dτ
; ð534Þ

where we have used the covariant Fermi-Walker
derivative of the multipole moments which is a covar-
iant generalization of the total time derivative in the
local coordinates. The Fermi-Walker derivative is
explained in more detail at the end of this section;
see Eq. (542).
Gravitational force Fμ in the right-hand side of (532) is

the 4-dimensional extension of 3-dimensional force (501)
with the local 4-acceleration Qi defined in (184) where the
complementary function I i

c is chosen as I i
c ¼ 3QkMik, or,

in 4-dimensional form

Iα
c ¼ 3QβMαβ: ð535Þ

This form of Iα
c eliminates the terms depending on the local

accelerationQα coupled with the quadrupole momentMαβ

of the body from the force Fα, and delivers a covariant
definition of the center of mass of body B. It is similar but
not exactly equal to the choice (289) of this function in the
global coordinates.
The first term in the right side of (533) describes the

Dicke-Nordtvedt anomalous force caused by the violation
of the strong principle of equivalence (SEP)

Fα
q ¼ qPα; ð536Þ

where

Pα ¼ παβ∇̄βφ̄ ð537Þ

is an external scalar-field dipole and q≡M −M is the
difference between the active—M, and conformal—M,
masses of body B. The quantity q can be interpreted as
an effective scalar charge of body B interacting with the
external scalar field and causing the body to accelerate
with respect to a body having negligible self-gravity but
the same set of internal multipole moments. The
anomalous scalar-field gravitational force Fμ

q was pre-
dicted by Dicke and its effect in three body system
(Earth-Moon-Sun) was studied by Nordtvedt in the
framework of PPN formalism [ [88], § 8.1]. Explicit
expression for the scalar charge q is obtained from (166)
and reads
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q ¼ 1

2
η

Z
VB

ρ�ÛBd3w −
1

6
ðγ − 1ÞD

2
FN
Dτ2

þ 2ðβ − 1ÞMP

þ 2ðβ − 1Þ
X∞
l¼1

1

l!
Pα1…αlM

α1…αl

þ ðγ − 1Þ
X∞
l¼1

1

ðl − 1Þ!Qα1…αlM
α1…αl : ð538Þ

The first and second terms in the right-hand side of (538)
compose a bare part of the scalar charge beingproportional to
self-gravitational energy of the body and the second time
derivative of the body’s moment of inertia N . Standard
treatment of the Nordtvedt effect [[88], § 8.1] takes into
account only thevery first term in the right-hand side of (538)
which is proportional to the Nordtvedt parameter η assuming
that the time derivative of the moment of inertia is either
negligibly small or that its averagevaluevanishes for periodic
motions and/or stationary rotation of celestial bodies. This
assumption may be sufficient in case of slow-motion and

weak gravitational field approximation. However, it is not
true in strongly gravitating N-body systems like coalescing
binary neutron stars and/or black holes. The remaining terms
in the right-hand side of (538) describegravitational coupling
of the internal multipoles of body B and external multipoles
of gravitational field. The dominant term, 2ðβ − 1ÞMP, is
usually included to the Einstein-Infeld-Hoffmann force
[[17], Eq. 6.82] and is not treated as a part of the
Nordtvedt effect. The coupling terms depending on high-
order multipoles in (538) are fairly small in the Solar System
and have never been taken into account so far. Nonetheless,
they become large at the latest stage of evolution of
coalescing binary systems and can be used for more deep
testing of scalar-tensor theory of gravity by gravitational
wave detectors.
The other components of the 4-dimensional force stand-

ing in the right-hand side of (532) describe gravitational
interaction between the internal multipoles of body B and
the external multipoles. We have

Fμ
Q ¼

X∞
l¼1

1

l!
ḡμνQνα1…αlM

α1…αl −
X∞
l¼2

l2 þ lþ 4

ðlþ 1Þ! Qα1…αl

D2
FM

μα1…αl

Dτ2
−
X∞
l¼2

2lþ 1

lþ 1

l2 þ 2lþ 5

ðlþ 1Þ!
DFQα1…αl

Dτ

DFMμα1…αl

Dτ

−
X∞
l¼2

2lþ 1

2lþ 3

l2 þ 3lþ 6

ðlþ 1Þ! Mμα1…αl
D2

FQα1…αl

Dτ2
þ 4

X∞
l¼1

lþ 1

ðlþ 2Þ! ε
μρ

σQρα1…αl

DFSσα1…αl

Dτ

þ 4
X∞
l¼1

lþ 1

lþ 2

lþ 1

ðlþ 2Þ! ε
μρ

σSσα1…αl
DFQρα1…αl

Dτ
−

2

M

X∞
l¼1

1

l!
εμρσQρα1…αlM

α1…αl
DFSσ

Dτ

−
1

M

X∞
l¼1

1

l!
εμρσSσ DF

Dτ
ðQρα1…αlM

α1…αlÞ ð539Þ

Fμ
C ¼

X∞
l¼1

l
ðlþ 1Þ! ḡ

μνCνα1…αlS
α1…αl −

X∞
l¼1

1

ðlþ 1Þ! ε
μρ

σ

�
Cρα1…αl

DFMσα1…αl

Dτ
þ lþ 1

lþ 2
Mσα1…αl

DFCρα1…αl

Dτ

�
ð540Þ

Fμ
P ¼ 2ð1 − γÞ

�X∞
l¼1

1

ðlþ 1Þ!Pα1…αl

D2
FM

μα1…αl

Dτ2
þ
X∞
l¼1

2lþ 1

lþ 1

1

ðlþ 1Þ!
DFPα1…αl

Dτ

DFMμα1…αl

Dτ

þ
X∞
l¼1

2lþ 1

2lþ 3

1

ðlþ 1Þ!M
μα1…αl

D2
FPα1…αl

Dτ2
−
X∞
l¼0

lþ 1

ðlþ 2Þ! ε
μρ

σPρα1…αl

DFSσα1…αl

Dτ

−
X∞
l¼0

lþ 1

lþ 2

lþ 1

ðlþ 2Þ! ε
μρ

σSσα1…αl
DFPρα1…αl

Dτ

�
: ð541Þ

Time derivatives of the internal and external multipoles
of body B in the local coordinates are taken at the fixed
value of the spatial coordinates, wi ¼ 0, that is at the origin
of the local coordinates. The multipoles are STF Cartesian
tensors which are orthogonal to 4-velocity of worldline Z
representing the motion of the origin of the local coor-
dinates which coincides with the center of mass of body B.

This worldline is not a geodesic on the effective back-
ground manifold M̄ but is accelerating with the local
acceleration Qα. Therefore, the time derivative of the
multipoles corresponds to the Fermi-Walker covariant
derivative—denoted as DF=Dτ—on the background mani-
fold taken along the direction of the 4-velocity vector ūα

with accounting for the Fermi-Walker transport [[164],
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Chapter 1, Sec. 4]. For example, the first time derivative
taken from 3-dimensional internal multipole _ML ≡
_Mi1i2…il in the local coordinates is mapped to the 4-
dimensional Fermi-Walker covariant derivative as follows:

_ML ↦
DFMα1α2…αl

Dτ
≡DMα1α2…αl

Dτ
þ lQβuhα1Mα2…αliβ;

ð542Þ

where DMhα1α2…αli=Dτ≡ ūβ∇̄βMhα1α2…αli is a standard
covariant derivative of tensor Mhα1α2…αli, and Qα is 4-
acceleration of the origin of the local coordinates. In a
similar way, the second time derivative from 3-dimensional
internal multipole, M̈L ≡ M̈i1i2…il , can be mapped to the
4-dimensional Fermi-Walker covariant derivative of the
second order by applying the rule (542) two times,

M̈L ↦
D2

FM
α1α2…αl

Dτ2

≡D2Mα1α2…αl

Dτ2
þ 2lQβuhα1

DMα2…αliβ

Dτ

þ l
DQβ

Dτ
uhα1Mα2…αliβ þ lQβQhα1Mα2…αliβ

þ l2QβQγuhα1uα2Mα3…αliβγ; ð543Þ

where DQα=Dτ ¼ ūβ∇̄βQα is the covariant derivative of
the 4-acceleration of the origin of the local frame taken
along the direction of its 4-velocity.
Comparison of our covariant Eqs. (532)–(541) of trans-

lational motion of the center of mass of body B with the
corresponding Eq. (467) derived by Dixon [11] will be
done in Appendix D 2.

F. Covariant rotational equations of motion

Covariant rotational equations of motion generalize 3-
dimensional form (194), (195) of the rotational equations
for spin of body B which is a member of anN-body system,
to a 4-dimensional, coordinate-independent form. Spin is a
vector that is orthogonal to 4-velocity of the worldline Z of
the center of mass of body B and carried out along this
worldline according to the Fermi-Walker transportation
rule. The covariant form of (194) is based on the Fermi-
Walker derivative, and reads

DFSμ

Dτ
¼ T μ; ð544Þ

or more explicitly,

DSμ

Dτ
¼ T μ − ðSβQβÞūμ; ð545Þ

where the second term in the right-hand side is due to the
fact that the Fermi-Walker transport is executed along the

accelerated worldlineZ of the center of mass of body B, the
torque T μ is a covariant generalizations of 3-torque (194),
and the center-of-mass condition (535) has been imple-
mented. We have

T μ ¼ −εμρσ
�
PρMσ þ 3ðPρ −QρÞQβMσβ

þ ð2β − γ − 1ÞP
X∞
l¼1

1

l!
Qρα1…αlM

σα1…αl

�

− εμρσ
X∞
l¼1

1

l!
Qρα1…αlM

σα1…αl

− εμρσ
X∞
l¼1

lþ 1

ðlþ 2Þl! Cρα1…αlS
σα1…αl ; ð546Þ

where the external multipole moments Qα1…αl and Cα1…αl
are expressed in terms of the Riemann tensor of the
background manifold in accordance with Eqs. (529) and
(530) respectively. Acceleration Qα ¼ −Fα=M, where the
force Fα is taken from (533), and Pα is defined in (537). It
should be noticed that the terms entering the first line of the
right-hand side of (546) are present only in the scalar-tensor
theory of gravity while the last two terms are the genuine
general-relativistic components of the torque caused by the
presence of the tidal gravitoelectric and gravitomagnetic
fields respectively.
Comparison of our Eq. (545) for evolution of spin of

body B with the corresponding Eq. (468) derived by Dixon
[11] will be done in Appendix D 3.
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APPENDIX A: AUXILIARY MATHEMATICAL
PROPERTIES OF STF TENSORS

The definition of the symmetric trace-free (STF)
Cartesian tensor was introduced by Pirani [299] and is
given in Eq. (2) of the present paper. Here, we provide the
reader with a number of auxiliary algebraic and differential
identities involving the STF tensors that were instrumental
for doing our computations.
Perhaps one of the most important algebraic identities

of the STF tensors is the index-peeling formula that
helps one to separate a single index from the rest of
other STF indices in the STF tensor. Let us demonstrate
how this formula is applied in the case of a product of
vector with a STF tensor. We denote two STF tensors
as TL ≡ ThLi and RL ≡ RhLi, and let Vi be an arbitrary
covector. The index-peeling formula reads [ [80],
Eq. (2.14)]

VhiTLi ¼
1

lþ 1
ViTL þ l

lþ 1
TihL−1Vili

−
2l

ðlþ 1Þð2lþ 1ÞVkTkhL−1δilii: ðA1Þ

The index-peeling formula can be applied to two or
more indices by successive iterations.
The index-peeling formula (A1) is directly extended

from covector Vi to tensors. For example, by replacing
Vi ↦ δij in (A1), and reducing similar terms we can get the
following identities [84]:

TihLδjij ¼
2lþ 3

2lþ 1
TiL; ðA2Þ

TjhLδjii ¼
1

ðlþ 1Þð2lþ 1ÞTiL: ðA3Þ

Replacing Vi ↦ RLi in (A1) yields [ [75], Eq. (4.26)]

RLhiTLi ¼
1

ðlþ 1Þð2lþ 1ÞRiLTL: ðA4Þ

Two other useful formulas are for a product of the unit
vectors ni ¼ xi=r, where r ¼ ðδijxixjÞ1=2. They are [ [50],
Eqs. (A22a) and (A23)]

nhiLi ¼ ninhLi −
l

2lþ 1
δihilnL−1i; ðA5Þ

ninhiLi ¼ lþ 1

2lþ 1
nhLi: ðA6Þ

Differential identities for the STF partial derivatives from
the radial distance r are [ [50], Eqs. (A32) and (A34)]

∂hLir−1 ¼ ∂Lr−1 ¼ ð−1Þlð2l − 1Þ!! n
hLi

rlþ1
; ðA7Þ

∂hLir ¼ ð−1Þlþ1ð2l − 3Þ!! n
hLi

rl−1
: ðA8Þ

A partial spatial derivative from an STF tensor nhLi is [ [50],
Eq. (A24)]

r∂inhLi ¼ ðlþ 1ÞninhLi − ð2lþ 1ÞnhiLi: ðA9Þ

Other useful algebraic and differential identities for STF
tensors are given in papers [50,75,80,82,84,300].

APPENDIX B: COMPARISON WITH THE
RACINE-VINES-FLANAGAN EQUATIONS

OF MOTION

Translational equations of motion for arbitrary structured
bodies have been derived by Racine and Flanagan [84] with
a corrigendum published in [85]. Definitions of the internal
multipoles of body B in those papers are the same as in the
present paper. The Racine-Vines-Flanagan (RVF) equa-
tions of motion are given in [ [84], Eqs. (6.11–6.16)] and,
besides directly computed terms, contain four terms
depending on the STF Cartesian tensor function P̂C

K ¼
P̂C
hKi [ [84], Eq. (6.16)] which is10

P̂K
C≡M̈K

Cþ2k _MhK−1
C vikiC þkðk−1ÞMhK−2

C vik−1C vikiC : ðB1Þ

Function P̂K
C enters Eqs. (6.13a), (6.13b), and (6.13g) in

[84]. The terms with P̂K
C must be developed explicitly in

order to combine it in similar terms in other parts of the
RVF equations of motion.
It is more convenient to develop the products of P̂K

C with
the STF combinations of a unit vector, niCB ¼ Ri

CB=RCB,
where Ri

CB ¼ xiC − xiB is the coordinate distance between
centers of mass of bodies B and C. The RVF equations of
motion depend on four such combinations which have not
been shown in [84,85] so that we present them explicitly.

Two of them are products, nhiKLi
CB MjL

B P̂jK
C and nhkLiCB ML

BP̂
iK
C ,

which appear in the first and second terms in the right-hand
side of equation (6.12a) in [84]. In order to compute these
terms we successively apply the index-peeling formula (A1)
two times to separate the index of velocity of body B in P̂iK

C
from the STF multi-indices and, then, render contraction of
the multi-indices. It yields

10Notice that we use indices B and C to label the bodies of an
N-body system while Racine and Flanagan [84] use an index B
instead of C, and an index A instead of B. We prefer to use our
index notations to facilitate the comparison of the equations of
motion. Relabeling the RVF equations is achieved with the
simple replacements of the body’s indices: B → C and A → B.
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nhiKLiCB MjL
B P̂jK

C ¼ nhiKLi
CB MjL

B ðM̈jK
C þ2vjC _MK

CÞþ2knhijLK−1iCB

×

�
vjCM

pL
B ð _MpK−1

C þvpCM
K−1
C Þ− 1

2kþ1
ð2vpC _MpK−1

C þv2CM
K−1
C ÞMjL

B

�

þkðk−1ÞnhijpLK−2i
CB vpCM

qK−2
C

�
vjCM

qL
B −

4

2kþ1
vqCM

jL
B

�
; ðB2Þ

nhkLiCB ML
BP̂

iK
C ¼ nhkLiCB ML

BðM̈iK
C þ 2viC _MK

CÞ þ 2kML
B

×

�
nhjLK−1iCB vjCð _MpK−1

C þ viCM
K−1
C Þ − 1

2kþ 1
nhiLK−1iCB ð2vpC _MpK−1

C þ v2CM
K−1
C Þ

�

þ kðk − 1ÞvjCvpCML
B

�
nhjpLK−2iCB MiK−2

C −
4

2kþ 1
nhijLK−2iCB MpK−2

C

�
: ðB3Þ

There are two other terms in the RVF equations of motion which contain combinations, nhkLiCB MiL
B P̂K

C and nhiKLi
CB ML

BP̂
K
C, in

the second and seventh terms of the right-hand side of Eq. (6.12a) in [84]. These terms are easy to deal with. Straightforward
application of (B1) and contraction of multi-indices yield

nhkLiCB MiL
B P̂K

C ¼ MiL
B ½nhkLiCB M̈K

C þ 2knhjLK−1i
CB

_MK−1
C vjC þ kðk − 1ÞnhjpLK−2i

CB MK−2
C vjCv

p
C�; ðB4Þ

nhiKLi
CB ML

BP̂
K
C ¼ ML

B½nhiKLi
CB M̈K

C þ 2knhijLK−1iCB
_MK−1

C vjC þ kðk − 1ÞnhijpLK−2iCB MK−2
C vjCv

p
C�: ðB5Þ

Substituting (B2)–(B5) to Eqs. (6.13a), (6.13b), (6.13g) of the paper [84], and making use of (293), (294) from the
present paper in the inverse order, allow us to write down the RVF equations of motion given in [ [84], Eq. (6.11)] with typos
fixed in [85], as follows:

MBaiB ¼ Fi
N þFi

pN; ðB6Þ

where MB is the inertial (relativistic mass) of body B, aiB ¼ d2xiB=dt
2 is acceleration of the center of mass of body B,

Fi
N is the Newtonian force, and Fi

pN is the post-Newtonian force. After taking into account our Eqs. (B2)–(B5) the
RVF forces can be written down similar to our equations (295) and (301) in the form of the partial derivative
operator,

Fi
N ¼

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
BðτBÞMN

CðτCÞ∂iLNR−1
BC; ðB7Þ

Fi
pN ¼ 1

2

X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
B½M̈N

C∂hiLNi − ð2 _MN
Cv

p
C þMN

Ca
p
CÞ∂hipLNi þMN

Cv
p
Cv

q
C∂hipqLNi�RBC

þ
X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

½ðαiLNRVF þ βiLNRVFÞ∂hLNi þ ðαipLNRVF þ βipLNRVF Þ∂hpLNi þ αipqLNRVF ∂hpqLNi

þ ðαLNRVF þ βLNRVF þ γLNRVFÞ∂hiLNi þ ðμpLNRVF þ νpLNRVF þ ρpLNRVFÞ∂hipLNi þ σpqLNRVF ∂hipqLNi�R−1
BC

þ 3ðakBM̈ik
B þ 2_akB _Mik

B þ äkBM
ik
B Þ; ðB8Þ

where all partial derivatives are understood in the sense of Eqs. (293), (294). We have explicitly indicated the time
arguments of the multipoles in the expression for the Newtonian force (B7) which, according to [ [84], Eq. (5.9)], are
the proper times of the bodies taken on their worldlines at the points of intersection with hypersurface Ht of constant
coordinate time t of the global coordinate chart [cf. (297)–(298)],
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τB ¼ uBjx¼xB ¼ tþ 1

c2
ABðtÞ þO

�
1

c4

�
; ðB9Þ

τC ¼ uCjx¼xC ¼ tþ 1

c2
ACðtÞ þO

�
1

c4

�
; ðB10Þ

where time dilation functions AB and AC are defined by
solutions of the ordinary differential equations (299)
and (300).
The coefficients in the RVF post-Newtonian force (B8)

can be directly compared to those in our Eq. (301) where
we have to take β ¼ γ ¼ 1 in order to bring it to general-
relativistic form. The comparison is tedious but rather
straightforward. It results in

αiLNRVF ¼ αiLNF −
2

2lþ 2nþ 3
viCM

L
B
_MN

C ; ðB11Þ

αipLNRVF ¼ αipLNF þ 2

2lþ 2nþ 5
vpCM

L
B
_MiN

C

þ
�

2

2lþ 3
−

2

2lþ 2nþ 5

�
vpCM

iL
B

_MN
C ; ðB12Þ

αLNRVF ¼ αLNF −
2

2lþ 2nþ 5
vkCM

kL
B

_MN
C

−
2lþ 2nþ 3

2lþ 2nþ 5
vkCM

L
B
_MkN

C ; ðB13Þ

μpLNRVF ¼ μpLNF þ 2

2lþ 2nþ 7
vpCM

kL
B

_MkN
C ; ðB14Þ

and all other remaining coefficients in (B8) and (301) are
identical for β ¼ γ ¼ 1, except for ρpLNRVF ¼ 0. The reason for
vanishing ρpLNRVF is that the local coordinate system adapted to
body B has been chosen by Racine and Flanagan [84] as
kinematically nonrotating with respect to the spatial axes of
the global coordinates while we operate with dynamically
nonrotating local frame of body B. A kinematically non-
rotating local frame is not carried out along the worldline of
the body’s center of mass in accordance with the Fermi-
Walker transportation rule. It means that particles of matter
moving with respect to the body must experience the
centrifugal and Coriolis forces in this frame. These forces
become sufficiently large at the latest stages of evolution of
inspiralling compact binaries and affect computation of
templates of gravitational waveforms. This effect is, however,
purely coordinate dependent and can be removed by choosing
a dynamically nonrotating local frame adapted to body B
which is our choice.
Now, we notice a useful formula

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
B
_MN

Cv
p
CR

p
C∂iLN

�
1

RC

�
¼

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
B

�
_MN

Cv
p
C∂hiLipNRC þ vpC _MpN

C ∂iLN

�
1

RC

��
; ðB15Þ

whose expansion in terms of the STF derivatives is as follows:

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
B
_MN

Cv
p
CR

p
C∂iLN

�
1

RC

�

¼
X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

�
ML

B
_MN

Cv
p
C∂hipLNiRC þ 2

2lþ 2nþ 3
viCM

L
B
_MN

C∂hLNi

�
1

RC

�

þ
�

2

2lþ 2nþ 5
−

2

2lþ 3

�
MiL

B
_MN

Cv
p
C∂hpLNi

�
1

RC

�
−

2

2lþ 2nþ 5
ML

B
_MiN

C vpC∂hpLNi

�
1

RC

�

þ
�

2

2lþ 2nþ 5
vpCM

pL
B

_MN
C þ vpC _MpN

C

�
∂hiLNi

�
1

RC

�
−

2

2lþ 2nþ 5
vpC _MpN

C ML
B∂hiLNi

�
1

RC

�

−
2

2lþ 2nþ 7
MqL

B
_MqN

C vpC∂hipLNi

�
1

RC

��
: ðB16Þ

Derivation of (B16) is based on application of (259) and transformation (273) where replacements, aiC → viC and ML
C →

_ML
C must be done in all terms. Employing (B16) in (B8) we find out that the RVF post-Newtonian force Fi

pN relates to our
post-Newtonian force (301) in a fairly simple way,

Fi
pN ¼ Fi

pN þ 3ðakBM̈ik
B þ 2_akB _Mik

B þ äkBM
ik
B Þ −

X∞
n¼0

ð−1Þn
l!n!

ρpLNF ∂ipLN

�
1

RBC

�

−
X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
B
_MN

Cv
p
CR

p
BC∂iLN

�
1

RBC

�
: ðB17Þ
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The first three acceleration-dependent terms in the right-
hand side of (B17) following Fi

pN are identical to those in
our Eq. (285). Hence, these terms are due to the different
choice of the center of mass of body B in [84] correspond-
ing to the complementary function, I i

c ¼ 0, in the defi-
nition of the center of mass of body B as compared to the
choice adopted for this function in Eq. (289) of the present
paper. The next term in the right-hand side of (B17) depends
on coefficient ρpLNF given in (312). This coefficient defines
the relativistic transport of themultipoles adapted to bodyB,
along the worldline of the body’s center of mass. Our
convention is that the local frame is carried out in accordance
with the Fermi-Walker transportation law while Racine and
Flanagan [ [84], Sec. 5F] decided to make the local frame
nonrotating with respect to the spatial axes of the global
coordinates. This difference is a matter of choosing either
kinematical or dynamical definition of the rotation of the
body-adapted local frame and is easy to reconcile.
The very last term in the right-hand side of (B17) is due

to the different time arguments of the multipolesMC taken
at slightly different points on the worldline of body C.
Indeed, by comparing (297) with (B9) and (298) with
(B10), we conclude that the time arguments of the multi-
polesMB of body B are identical, τB ¼ u�B, while the time
arguments of multipoles of body C are shifted one with
respect to another, τC ¼ u�C þ vkCðtÞRk

BC. Looking back to
Fig. 1 we can say that the multipoles MB of body B are
taken at point P while the multipoles MC of body C are
taken at point R in our approach and at the point Q in the
paper by Racine and Flanagan [84]. This observation
allows us to connect the RVF Newtonian force (B7) with
our Newtonian force (295) by taking the Taylor expansion
of the multipoles MC. It yields

Fi
N ¼Fi

Nþ
X
C≠B

X∞
l¼0

X∞
n¼0

ð−1Þn
l!n!

ML
B
_MN

Cv
p
CR

p
BC∂iLN

�
1

RBC

�
:

ðB18Þ

The last term in the right-hand side of (B18) exactly cancels
the very last term in (B17) after substituting (B17) and
(B18) to the total force in the right-hand side of (B6). This
makes it clear that our translational equations of motion are
essentially the same as those derived by Racine and
Flanagan [84] and Racine et al. [85] except of several
terms which are a matter of slightly different conventions
adopted to define the center of mass of the bodies
and rotation of the spatial axes of the body-adapted local
frame. It is remarkable that the agreement is achieved in
spite of using a different mathematical technique
based on the Fock-Papapetrou-Chandrasekhar approach
[126,134,209,249,301] to the derivation of equations of
motion of extended bodies in an N-body system made of
matter with continuous stress-energy tensor. Finally, we
bring to the attention of the reader the fact that our equations

of translational motion are more economic than that given
in [84,85] in the sense that the post-Newtonian forceFi

pN in
our approach has been reduced to the form (314) containing
lesser number of terms than the corresponding forceFi

pN in
[84,85]. It might bemore effective to implement our formof
the equations of motion with quadrupole and higher-order
multipoles to the numerical integration of the orbital
evolution of tidally deformed neutron star binaries and
prediction of gravitational wave signals from the mergers;
see, for example, [33–35].

APPENDIX C: THE DIXON MULTIPOLE
MOMENTS

Dixon [11] has defined internal multipoles of an
extended body B in the normal Riemann coordinates,
Xα, by means of a tensor integral (458)

Iα1…αlμνðzÞ¼
Z

Xα1…Xαl T̂μνðz;XÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðzÞ

p
DX ðl≥ 2Þ

ðC1Þ

where T̂μν is the stress-energy skeleton of the body, the
integration is performed over the tangent 4-dimensional
space to background manifold M̄ at point z taken on a
reference worldline Z, and the volume element of integra-
tion DX ¼ dX0 ∧ dX1 ∧ dX2 ∧ dX3. The reason for the
appearance of the skeleton T̂μν in (C1) instead of the regular
stress-energy tensor Tμν was to incorporate the self-field
effects of a gravitational field of the body to the definition
of the higher-order multipoles.11 According to [11], the
skeleton T̂μνðz; xÞ is a distribution [212] defined on the
worldline Z in such a way that it contains complete
information about the body but is entirely independent
of the geometry of the surrounding spacetime to which the
body is embedded. The skeleton is lying on the hyperplane
made out of vectors Xα which are orthogonal to the vector
of dynamic velocity nα. It gives the following constraint:

ðnαXαÞX½λT̂μ�½νXσ� ¼ 0; ðC2Þ

which points out that the skeleton distribution is concen-
trated on the hyperplane nαXα ¼ 0.
Definition (C1) suggests that the Dixon multipole

moments have the following symmetries:

Iα1…αlμν ¼ Iðα1…αlÞðμνÞ; ðC3Þ

where the round parentheses around the tensor
indices denote a full symmetrization. In addition to (C3)
there are more symmetries of the Dixon multipoles due to

11The influence of the self-field effects on multipoles was
studied by Thorne [82], Blanchet and Damour [78], and Damour
and Iyer [79] with different techniques.

SERGEI M. KOPEIKIN PHYS. REV. D 99, 084008 (2019)

084008-96



the one-to-one mapping of the microscopic equation of
motion (449) to a similar equation for the stress-energy
skeleton [11]

∇̄νT̂
μνðz; XÞ ¼ 0: ðC4Þ

Multiplying (C4) with Xα1…XαlXαlþ1 , integrating over 4-
dimensional volume and taking into account that T̂μν

vanishes outside hyperplane nαXα ¼ 0, yields [[11],
Eq. (143)],

Iðα1…αlμÞν ¼ 0; ðC5Þ

and a similar relation holds after exchanging indices μ and ν
due to symmetry (C3). The number of algebraically
independent components of Iα1…αlμν obeying (C3) is
N1ðlÞ ¼ Clþ3

3 × C5
3 where Cp

q ¼ p!
q!ðp−qÞ! is a binomial

coefficient. Constraints (C5) reduce the number of the
algebraically independent components of the multipoles
Iα1…αlμν by N2ðlÞ ¼ Clþ4

3 × C4
3 making the number of

linearly independent components of Iα1…αlμν equal
to N3ðlÞ ¼ N1ðlÞ − N2ðlÞ ¼ ðlþ 3Þðlþ 2Þðl − 1Þ.
The multipoles Iα1…αlμν are coupled to the Riemann

tensor R̄α
μβν characterizing the curvature of the effective

background spacetime. Therefore, they can be replaced
with a more suitable set of reduced moments Jα1…αlλμνρ

which are defined by the following formulas [9,11]:

Jα1…αpλμσν ≡ Iα1…αp½λ½σμ�ν�; ðC6Þ
where the square parentheses around the tensor indices
denote a full antisymmetrization, and the nested square
brackets in (C6) denote the antisimmetrization on pairs of
indices ½λ; μ� and ½ν; ρ� independently. Definition (C6) tells
us that tensor Jα1…αpλμσν is fully symmetric with respect to
the first p indices and is skew symmetric with respect to the
pairs of indices λ, μ and σ, ν,

Jα1…αpλμσν ¼ Jðα1…αpÞ½λμ�½σν�: ðC7Þ

Among other properties of Jα1…αpλμσν we have

Jα1…αpλ½μσν� ¼ 0; Jα1…½αpλμ�σν ¼ 0; ðC8Þ

which are consequences of the definition (C6), and

nα1J
α1…αpλμσν ¼ 0; ðC9Þ

that is the condition of orthogonality following from the
constraint (C2).
Equation (C6) can be transformed to another form. For

this we write down the antisymmetric part of (C6) explicitly
as a combination of four terms, change notations of indices
fα1…αpμνg → fα1…αl−2αl−1αlg, and make a full sym-
metrization with respect to the set of indices fα1…αlg. It

gives

Jðα1…αl−1jμjαlÞν ¼ 1

4
½Iðα1…αl−1αlÞμν − Iðα1…αl−2jμjαl−1αlÞν

− Iðα1…αl−2αl−1jνμjαlÞ þ Iðα1…αl−2jμνjαl−1αlÞ�;
ðC10Þ

where the indices enclosed in vertical bars are excluded
from symmetrization. Remembering that each of the I
moments is separately symmetric with respect to the first l
and the last two indices we can recast (C10) to the
following form:

Jðα1…αl−1jμjαlÞν¼ 1

4
½Iðα1…αl−1αlÞμν− Iðμðα1…αl−1ÞαlÞν

− Iðνðα1…αl−1αlÞμþ Iðμνðα1…αl−2Þαl−1αlÞ�: ðC11Þ

We now use the constraint (C5) and notice that

Iðα1…αl−1αlμÞν ¼ 1

lþ1
½Iα1…αl−1αlμνþ lIðμðα1…αl−1ÞαlÞν� ¼ 0;

ðC12Þ

which gives

Iðμðα1…αl−1ÞαlÞν ¼ −
1

l
Iα1…αl−1αlμν; ðC13Þ

and, because of the symmetry with respect to indices
μ and ν,

Iðνðα1…αl−1ÞαlÞμ ¼ −
1

l
Iα1…αl−1αlμν: ðC14Þ

We also have

Iðα1…αl−1αlμνÞ ¼ 2!l!
ðlþ2Þ!

�
Iα1…αl−1αlμνþ lIðμðα1…αl−1ÞαlÞν

þ lIðνðα1…αl−1ÞαlÞμþ lðl−1Þ
2

Iðμνðα1…αl−2Þαl−1αlÞ
�

¼ 0; ðC15Þ

which yields

Iðμνðα1…αl−2Þαl−1αlÞ ¼ 2

lðl − 1Þ I
α1…αl−1αlμν: ðC16Þ

Replacing (C13), (C14), and (C16) to (C10) yields

Jðα1…αl−1jμjαlÞν ¼ 1

4

lþ 1

l − 1
Iα1…αlμν; ðC17Þ

that shows the algebraic equivalence between the sym-
metrized Jðα1…αl−1jμjαlÞν and Iα1…αlμν multipole moments for
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l ≥ 2. Due to the orthogonality condition (C9) we conclude
that

nα1I
α1…αlμν ¼ 0 ðC18Þ

for the first l indices of Iα1…αlμν. The number of these
conditions is the same as the number of components of
tensor Iα1…αl−1μν that is N3ðl − 1Þ ¼ ðlþ 2Þðlþ 1Þðl − 2Þ.
It reduces the number of linearly independent components
of Iα1…αlμν to N¼N3ðlÞ−N3ðl−1Þ¼ ðlþ2Þð3l−1Þ
[11,136].

APPENDIX D: COMPARISON WITH
MATHISSON-PAPAPETROU-DIXON

EQUATIONS OF MOTION

1. Comparison of Dixon’s and Blanchet-Damour
multipole moments

Before comparing our covariant equations of motion
(532) and (545) with analogous equations (467) and (468)
derived by Dixon [11] in the MPD formalism, we need to
establish the correspondence between the Dixon multipole
moments Iα1…αlμν and the STF mass and spin multipoles
Mα1…αl and Sα1…αl that are used in the present paper. To
this end we notice that the original definition (C1) of
multipoles Iα1…αlμν contains the time components, X0, of
vectorXαwhich are nonphysical as they cannot bemeasured
by a local observerwith dynamic velocitynα at point z on the
reference worldline Z. Only those components of Iα1…αlμν

which are orthogonal to nα can be measured. This explains
the physical meaning of the orthogonality condition (C18).
It is reasonable to introduce a new notation for the

physically meaningful components of Dixon’s multipoles,

J α1…αlμν

¼Pα1
β1
…Pαl

βl

Z
Σ
Xβ1…Xβl T̂μνðz;XÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðzÞ

p
dΣ ðl≥ 2Þ;

ðD1Þ
where the integration is performed in 4-dimensional space-
time over the hypersurface Σ passing through the point z
with the element of integration dΣ ¼ nαdΣα, and

Pα
β ¼ δαβ þ nαnβ ðD2Þ

is the operator of projection on the hypersurface Σ making
all vectors Xα in (D1) orthogonal to nα. The multipoles
J α1…αlμν have the same symmetries (C3), (C5) as Iα1…αlμν,

J α1…αlμν ¼ J ðα1…αlÞðμνÞ; ðD3Þ

J ðα1…αlμÞν ¼ 0; ðD4Þ
while the orthogonality condition (C18) is identically satis-
fied and is no longer considered as an additional constraint.
The projection operator is idempotent [302] that is

Pα
γP

γ
β ¼ Pα

β; ðD5Þ

which makes only 3 out of 4 components of Xα linearly
independent in (D1). On the other hand, the indicesμ and ν in
J α1…αlμν still take values from the set f0; 1; 2; 3g. Thus,
Eq. (D3) tells us that the number of components ofJ α1…αlμν

is Clþ2
2 × C5

3 ¼ 5ðlþ 2Þðlþ 1Þ while the number of con-
straints (D4) is Clþ3

2 × C4
3 ¼ 2ðlþ 3Þðlþ 2Þ. It gives the

number of the algebraically independent components of
J α1…αlμν equal to N ¼ ðlþ 2Þð3l − 1Þ which exactly coin-
cides with the number of algebraically independent compo-
nents of Dixon’s multipoles Iα1…αlμν.
Picking up the local Riemann coordinates in such a way

that the X0 component of vector Xα is directed along the
dynamic velocity nα and three other components Xi ¼
fX1; X2; X3g are lying in the hypersurface Σ yields the
skeleton’s structure,

T̂μνðz; XÞ ¼
Z þ∞

−∞
δðX0ÞT̂μν

⊥ ðXiÞdX0; ðD6Þ

where δðX0Þ is Dirac’s delta function and the distribution
T̂μν
⊥ ∈ Σ. Substituting (D6) to (D1) and taking into account

that in these coordinates DX ¼ dX0dΣ, we obtain that
Dixon’s multipoles Iα1…αlμν ¼ J α1…αlμν and, due to the
tensor nature of the multipoles, this equality is retained in
arbitrary coordinates.
The exact nature of the distribution T̂μν

⊥ ðXiÞ in full
general relativity is not yet known due to the nonlinearity
of the Einstein equations. Nonetheless, the Dirac delta
function is a reasonable candidate being sufficient to work
in the post-Newtonian approximation with corresponding
regularization techniques [51]. For the purpose of the
present paper it is sufficient to assume that in arbitrary
coordinates the stress-energy skeleton (D6) has the follow-
ing structure [12,13,247]:

T̂μνðz; xÞ ¼
X∞
l¼0

Z þ∞

−∞
∇̄α1…αl

�
tα1…αlμνðzÞ δ4ðx − zÞffiffiffiffiffiffiffiffiffiffiffiffi

−ḡðzÞp �

×
dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ḡμνðzÞnμnν
p ; ðD7Þ

where s is an affine parameter along the geodesic in
direction of the dynamic velocity nα, δ4ðx − zÞ≡
δ4½xα − zαðsÞ� is 4-dimensional Dirac’s delta function,
tα1…αlμν are generalized multipole moments defined on
the worldline Z that are orthogonal to nα in the first l
indices (nα1 t

α1…αlμν ¼ 0), and ∇̄α1…αl ≡ ∇̄α1…∇̄αl is a
covariant derivative of the order l taken with respect to
the argument x≡ xα of the Dirac delta function on the
background manifold. Notice that expression (D7) is a
simplification of the original Mathisson theory [4] pro-
posed by Tulczyjew [207]. Dixon [11] did not specify the
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nature of the singularity entering definition (D7) assuming
that Dirac’s delta function is solely valid in the pole-dipole
approximation while a more general type of distribution is
required in the definition of the stress-energy skeleton for
higher-order multipoles. The Dirac delta function is widely
adopted in computations of equations of motion of rela-
tivistic binary systems [29,31,65] amended with corre-
sponding regularization techniques to deal with the
singularities in the nonlinear approximations of general
relativity [52,53,154,300].
The generalized multipoles tα1…αlμν are used to derive

the explicit form of the MPD equations of motion in
terms of the linear momentum pα, angular momentum
Sαβ, and Dixon’s multipole moments Iα1…αlμν as dem-
onstrated by Mathisson [4,5], Papapetrou [134,209],
Dixon [11], and other researchers [12,13,145,210,258].
It turns out that the generalized multipoles tα1…αlμν are
effectively equivalent to the body multipoles, J α1…αlμν.
Indeed, replacing the stress-energy skeleton (D7) to
(C1), transforming the most general coordinates xα in
(D7) to the local Riemannian coordinates Xα, and taking
the covariant derivatives yield

J α1…αlμν ¼ Pα1
β1
…Pαl

βl

X∞
n¼0

tγ1…γpμν

×
Z

Xβ1…Xβl
∂nδ4ðXÞ

∂Xγ1…∂Xγn
DX: ðD8Þ

Integrating by parts, taking the partial derivatives from
Xα, and accounting for the integral properties of the delta
function [212], we conclude

J α1…αlμν ¼ ð−1Þll!tα1…αlμν: ðD9Þ

To proceed further on, we shall assume that the
dynamic velocity nα is equal to the kinematic velocity
ūα. This assumption is consistent with Dixon’s math-
ematical development and agrees with our covariant
definition (493) of the linear momentum of an extended
body moving on the background spacetime manifold. It
also allows us to employ the results obtained previously
by Ohashi [12], to retrieve a covariant expression for the
generalized multipoles tα1…αlμν of the gravitational skel-
eton T̂μν from the multipolar expansion of the metric
tensor of a single body. We have derived the generalized
multipoles of the stress-energy skeleton from [ [12],
Eq. (3.1)] after reconciling the sign conventions of the
metric tensor perturbation and the normalization coef-
ficients of multipoles adopted in [12] with those adopted
by Blanchet and Damour [ [50], Eq. (2.32)] which we
also use in the present paper. The generalized moments
of the stress-energy skeleton read

tα1…αlμν ¼ ð−1Þl
l!

�
ūμūνMα1…αl þ 2

lþ 1
ūðμ _MνÞα1…αl

þ 1

ðlþ 1Þðlþ 2ÞM̈
μνα1…αl

�

−
ð−1Þl
l!

�
2l

lþ 1
ūðμεβνÞhα1Sα2…αliβ

þ 2

lþ 2
εβ

hα1ðμ _SνÞα2…αliβ
�
; ðD10Þ

where the dot above functions denotes the Fermi-Walker
covariant derivative (542) and (543). Comparing (D10)
with (D9) we obtain the relationship between the Dixon
internal multipoles and the mass and spin multipoles
used in the present paper,

J α1…αlμν¼ ūμūνMα1…αl þ 2

lþ1
ūðμ _MνÞα1…αl

þ 1

ðlþ1Þðlþ2ÞM̈
μνα1…αl

−
2l

lþ1
ūðμεβνÞhα1Sα2…αliβ−

2

lþ2
εβ

hα1ðμ _SνÞα2…αliβ:

ðD11Þ

We still have to take into account the identity (D4) in
order to eliminate linearly dependent components of
J α1…αlμν. The most easy way is to take the double
skew-symmetric part with respect to the last four indices
as shown in Eq. (C6). It yields

Iα1…αlμν ≡ J α1…½al−1½αlμ�ν�

¼ 4

�
Mhα1…½αl−1½αliuμ�uν�

þ l
lþ 1

Sβhα1…½αl−1uðμ�εαliνÞβ

�
; ðD12Þ

where we have taken into account that in calculating the
skew-symmetric part of 4-velocity uμ with a purely spatial
tensor we have, for example,

Mα1…αl−1½αl ūμ� ¼ παlβlM
α1…αl−1½βl ūμ� ¼ 1

2
Mα1…αl−1αl ūμ;

ðD13Þ

and so on. Relation between Dixon’s J and I multipole
moments has been defined in (C17). Substituting expres-
sion (D12) for the Dixon multipoles I in the right-hand side
of (C17) provides a correspondence between the sym-
metrized Dixon multipoles J and the Blanchet-Damour
mass and spin multipoles in the following form:
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Jðα1…αl−1jμjαlÞν ¼ lþ 1

l − 1
½Mhα1…½αl−1½αliūμ�ūν�

þ l
lþ 1

Sβhα1…½αl−1 ūðμ�εαliνÞβ�; ðD14Þ

where the antisymmetrization goes over the pair of indices
½αl−1μ� and ½αlν�. Contracting both sides of (D14) with
4-velocity allows us to express the Blanchet-Damour mass
and spin multipoles in terms of projections of the Dixon
multipoles onto 4-velocity of the center of mass of the
body. More specifically, we have

Mα1…αl ¼ 4
l − 1

lþ 1
Jhα1…αl−1jμjαliνūμūν ðl ≥ 2Þ ðD15Þ

Sα1…αl ¼ 2
l − 1

l
Jhα1…αl−1jμνσjεαliμνūσ ðl ≥ 2Þ: ðD16Þ

It is worth emphasizing that in this section we work in
the framework of general relativity. Therefore, all internal
mass and spin multipoles, Mα1…αl and Sα1…αl , have only
general-relativistic value with vanishing scalar field con-
tribution. In particular, the mass dipole,Mi ¼ 0, due to the
choice of the origin of the local coordinates at the center of
mass of the body.

2. Comparison of translational equations of motion

In order to compare our translational equations of
motion (532) with Dixon’s equation (467) we need to
symmetrize the covariant derivatives in the right-hand side
of (467). It is achieved with the help of the following
algebraic transformation:

∇̄αðβ1…βl−2Rjμjβl−1βlÞνJ
β1…βl−1μβlν

¼ ∇̄ðαβ1…βl−2Rjμjβl−1βlÞνJ
β1…βl−1μβlν

þ 2

lþ1
∇̄νðβ1…βl−2Rjμjβl−1βlÞαJ

β1…βl−1μβlνþOðR2Þ; ðD17Þ

where the residual terms are proportional to the square of
the Riemann tensor, and have been discarded. These
quadratic-in-curvature terms are important for the post-
Newtonian equations of motion but complicate the equa-
tions which follow and, hence, will be omitted every time
when they appear. Substituting (D14) to the right-hand side
of (D17) yields

∇̄αðβ1…βl−2Rjμjβl−1βlÞνJ
β1…βl−1μβlν

¼ lþ 1

l − 1

�
Eαβ1…βlM

β1…βl þ l
lþ 1

Cαβ1…βlS
β1…βl

�
þOðR2Þ; ðD18Þ

where the external multipole moments Eα1…αl and Cα1…αl
have been defined in (528) and (530) respectively.

Substituting (D18) to the right-hand side of (467) recasts
it to

Dpα
Dτ

¼ 1

2
ūβSμνR̄μνβα

þ
X∞
l¼2

1

l!

�
Eαβ1…βlM

β1…βl þ l
lþ 1

Cαβ1…βlS
β1…βl

�

þOðR2Þ: ðD19Þ

The very first term in the right-hand side depending on Sαβ

can be incorporated to the sum over the spin moments by
making use of the duality relation between the body’s
intrinsic spin Sα and spin-tensor12 Sαβ

Sμν ¼ −εμναSα; ðD20Þ

where the Levi-Civita tensor εαβγ has been defined above in
(531). It yields

ūβSμνR̄μνβα ¼ CαβSβ; ðD21Þ

where Cαβ is given by (530) for l ¼ 2. Making use of (D20)
allows us to rewrite (D19) in the final form

Dpα
Dτ

¼
X∞
l¼2

1

l!
Eαβ1…βlM

β1…βl

þ
X∞
l¼1

l
ðlþ 1Þ! Cαβ1…βlS

β1…βl þOðR2Þ: ðD22Þ

Thus, Dixon’s equation of translational motion (467)
given in terms of Dixon’s internal multipoles and Veblen’s
tensor extensions of the Riemann tensor are brought to the
form (D22) given in terms of the gravitoelectric, Eαβ1…βl ,
and gravitomagnetic, Cαβ1…βl , external multipoles as well as
mass, Mβ1…βl and spin, Sβ1…βl internal multipoles.
Comparing with the complete covariant form of the trans-
lational equations of motion (532)–(541) taken for the case
of general relativity one can see that Dixon’s equation
reproduces only two terms in the complete expression for
the post-Newtonian force, more specifically, the very first
term of the post-Newtonian force Fα

Q in (539) and that of
Fα
C in (540). The terms which are missed in the Dixon’s

translational equations of motion but are present in our
Eqs. (532)–(541) include the quadratic-in-curvature terms
through (529) and the terms which depend on the time
derivatives of multipoles, both external and internal ones.
The terms with the time derivatives of the multipoles must
be present in the equations of motion but they have been

12The minus sign in (D20) appears because Dixon’s definition
(451) of Sαβ has an opposite sign as compared to our definition
(182) of spin Sα.

SERGEI M. KOPEIKIN PHYS. REV. D 99, 084008 (2019)

084008-100



omitted by Dixon as he has taken into account only his J
multipoles while, in fact, all components of the Dixon’s I
multipoles must be taken into account. Independent deri-
vation of the translational equations ofmotion byRacine and
Flanagan [84] and Racine et al. [85] with different math-
ematical technique corroborates our conclusions about the
missing terms in Dixon’s translational equations of motion
(467). It does not mean that the MPD formalism is erro-
neous. Itmerely indicates thatmuchmorework is required to
take into account all the missing contributions to the post-
Newtonian translational equations of motion derived in the
framework of the Mathisson variational dynamics.

3. Comparison of rotational equations of motion

Dixon’s equations of rotational motion are given by
Eq. (468). The first term in the right-hand side of this
equationvanishes in our approach because the linearmomen-
tum of the body pα is chosen to be parallel to 4-velocity ūα of
the center ofmass of body B.We express the spin of the body
Sα in terms of the spin tensor Sλσ by inverting (D20),

Sα ¼ −
1

2
εαλσSλσ: ðD23Þ

Taking a covariant derivative from both sides of (D23) and
replacing the covariant derivative from Sβγ with the terms
from the right side of (468) yields

DSα

Dτ
¼ −εαλσ

X∞
l¼1

1

l!
∇ðβ1…βl−1R̄jμjρβlÞνg

ρλ

�
Mσβ1…βl−1βl ūμūν

þ lþ 1

lþ 2
Sσγβ1…βl−1 ūμεβlνγ

�
; ðD24Þ

where we have also used (D14) to replace the Dixon internal
multipolemomentswith theBlanchet-Damourmass and spin
multipoles. Now, we employ the covariant definitions (528)
and (530) of the gravitoelectric and gravitomagnetic external
multipoles in (D24) that takes on the following form:

DSα

Dτ
¼−εαλσ

X∞
l¼1

1

l!

�
Eλβ1…βlM

σβ1…βlþlþ1

lþ2
Cλβ1…βlS

σβ1…βl

�
:

ðD25Þ

Now, we can compare Dixon’s equation of rotational
motion (D25) with our Eq. (544) where only general-
relativistic terms in the torque (546) must be retained.
These terms are making up the third and fourth lines in
(546) and they are in a perfect agreement with Dixon’s
torque in the right-hand side of (D25). The difference
between (D25) and (545) is in the presence of the very last
term in the right-hand side of (545) as compared with
(D25). This term is associated with the Fermi-Walker
transport of spin along an accelerated worldline of the
body center of mass. The absence of this term in Dixon’s
rotational equation of motion (D25) tells us that the
reference worldline W of the origin of the normal
Riemann coordinates used by Dixon [11,136] for compu-
tation of his own results is a timelike geodesic which, in the
most general case, does not coincide with the worldline Z
of the body center of mass because of the gravitational
interaction of the internal moments of the body with the
external gravitoelectric and gravitomagnetic multipoles.
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