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We investigate the behavior of massless scalar, electromagnetic, and linearized gravitational perturba-
tions near null infinity in d ≥ 4 dimensional Minkowski spacetime (of both even and odd dimension) under
the assumption that these fields admit a suitable expansion in 1=r. For even d with d > 4, our 1=r
expansion ansatz is equivalent to smoothness at Iþ, whereas for d ¼ 4 it is slightly weaker, so all solutions
that are smooth at Iþ are encompassed by our analysis. We also analyze the solutions to the full nonlinear
Einstein equation in d ≥ 4 dimensions near null infinity, assuming a similar 1=r expansion. We show that
for d > 4 the Lorenz gauge condition can be imposed for electromagnetic and gravitational perturbations in
a manner compatible with our assumed 1=r expansion. However, for d ¼ 4 the Lorenz gauge can be
imposed if and only if there is no flux of charge-current (in the electromagnetic case) or stress-energy (in
the linearized gravitational case) to null infinity. Similarly, in the nonlinear gravitational case, the harmonic
gauge condition can be imposed for d > 4 but cannot be imposed for d ¼ 4 if there either is a flux of stress-
energy at null infinity or if the Bondi news is nonvanishing. We explicitly obtain the recursion relations on
the coefficients of the 1=r expansion implied by the wave equation as well as the “constraints” in the
electromagnetic and gravitational cases arising from the Lorenz/harmonic gauge condition. We also
characterize the “free data” needed to determine a solution. We then consider the memory effect in fully
nonlinear general relativity, i.e., the permanent displacement of test particles near null infinity following a
burst of gravitational radiation. We show that in even dimensions, the memory effect first arises at
Coulombic order—i.e., order 1=rd−3—and can naturally be decomposed into “null memory” and “ordinary
memory.” Null memory is associated with an energy flux to null infinity. We show that ordinary memory is
associated with the metric failing to be stationary at one order faster fall-off than Coulombic in the past
and/or future, as will typically be the case if matter (on timelike inertial trajectories) comes in or goes out to
infinity. In odd dimensions, we show that the total memory effect at Coulombic order and slower fall-off
always vanishes. It is easily seen that null memory is always of “scalar type” with regard to its behavior on
spheres, but the ordinary memory can be of any (i.e., scalar, vector, or tensor) type. In 4-spacetime
dimensions, we give an explicit example in linearized gravity of an expanding shell with vector stresses
which gives rise to a nontrivial vector (i.e., magnetic parity) ordinary memory effect at order 1=r. We show
that scalar memory is described by a diffeomorphism, which is an asymptotic symmetry (a super-
translation) in d ¼ 4 and a gauge transformation for d > 4. Vector and tensor memory cannot be described
by diffeomorphisms. In d ¼ 4 dimensions, we show that there is a close relationship between memory and
the charge and flux expressions associated with supertranslations. Similar formulas are given in higher
dimensions. We analyze the behavior of solutions that are stationary at Coulombic order and show how
these suggest “antipodal matching” between future and past null infinity, which gives rise to conservation
laws. The relationship between memory and infrared divergences of the “out” state in quantum gravity is
analyzed, and the nature of the “soft theorems” is explained.
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I. INTRODUCTION

In the early 1960s, Bondi and collaborators [1–3]
performed a general analysis of the asymptotic behavior
of the metric near “null infinity” (r → ∞ at fixed retarded

time u) for asymptotically flat spacetimes. They assumed
an expansion of the metric in powers of 1=r and obtained a
recursive algorithm for solving the Einstein equations near
null infinity. Several years later, Penrose [4] gave an
elegant, geometric reformulation of the Bondi ansatz via
conformal compactification. A similar analysis of higher
even-dimensional, asymptotically flat spacetimes can be
given using conformal compactification [5]. However, such
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a conformal compactification is not possible for odd
dimensional spacetimes with gravitational radiation [6].
In Sec. II of this paper, we will analyze the asymptotic

behavior of massless scalar, electromagnetic, and linearized
gravitational fields near null infinity in Minkowski space-
times with d ≥ 4. We will then analyze asymptotically
flat, nonlinear general relativity near null infinity. Since we
wish to treat odd dimensions as well as even dimensions,
we will not use conformal compactification but, instead,
will assume an expansion in powers of 1=r as an ansatz. For
d even with d > 4, our ansatz is precisely equivalent to
smoothness1 at Iþ in the conformally compactified space-
time, whereas we will see in Appendix A that for d ¼ 4 it is
slightly weaker, i.e., we allow a small class of additional
solutions that would not be allowed by smoothness at Iþ.
Our fields will be allowed to have arbitrary interior sources,
i.e., only the field equations near null infinity will be used.
Near null infinity the fall-off of the sources is required to be
rapid enough to ensure that there is a finite flux through
spheres near null infinity.
In Sec. III of this paper, we will give a thorough analysis

of the memory effect in nonlinear general relativity in
all dimensions d ≥ 4. An important aim of our analysis
is to extend and clarify the work of Strominger and
collaborators [7–12].
We begin our analysis in Sec. II A by considering a

massless scalar field, ϕ, in d-dimensional Minkowski
spacetime. We show that the wave equation gives a
recursion relation that relates different coefficients in an
expansion of the field in powers of 1=r. This recursion
relation motivates an expansion in integer steps, with the
slowest fall-off being 1=rd=2−1 (“radiative order”). In odd
dimensions, integer powers starting at 1=rd−3 (“Coulombic
order”) must also be allowed. The “free data” needed to
specify a solution is characterized in Sec. II B.
We then consider an electromagnetic field, Aa, in

Sec. II C. It is very convenient to put Aa in Lorenz gauge,
∂aAa ¼ 0, since then many of the results for the scalar field
can be directly taken over. In order to put the electromag-
netic field in Lorenz gauge, we need to solve the scalar
wave equation with a source. We show that when d > 4,
this can be done in a manner compatible with our 1=r
expansion ansatz. However, when d ¼ 4 we cannot do this
if there is a nonvanishing flux of charge to null infinity. In
Lorenz gauge, each Cartesian component of Aa satisfies the
same recursion relations as the scalar wave equation, but
there also are additional conditions (“constraints”) arising
from the Lorenz gauge condition itself. It is convenient to
write the recursion relations and constraints in terms of the
components Au, Ar, AA in coordinates ðu; r; xAÞ where u is

the retarded time and xA denotes coordinates on the
(d − 2)-sphere. We do this explicitly in Sec. II C. The
“free data” is then characterized.
Gravitational perturbations, hab, are considered in

Sec. II D. In order to put hab in Lorenz gauge, ∂ah̄ab ¼
0 (with h̄ab ≡ hab − 1=2ηabh and h≡ ηabhab), we need to
solve the vector wave equation with a source. Again, we
find that when d > 4, this can be done in a manner
compatible with our 1=r expansion ansatz. However, when
d ¼ 4 we cannot do this if there is a nonvanishing flux
of matter stress-energy to null infinity. We give the
recursion relations and constraints explicitly in terms of
the components huu; hur; hrr; huA; hrA; hAB and identify the
“free data.”
It might be thought that the full, nonlinear Einstein

equation would be much more difficult to analyze.
However, as we shall see in Sec. II E, the nonlinear terms
first enter Einstein’s equation at order 1=rd−2 and they first
affect the behavior of the metric at Coulombic order 1=rd−3.
Similarly, the nonlinear terms in the harmonic gauge
condition first affect the metric at Coulombic order.
Thus, under our ansatz concerning the expansion of the
metric in powers of 1=r, the analysis of the nonlinear
Einstein equation coincides with the linearized analysis
until Coulombic order, and the differences at Coulombic
order can be taken into account in a relatively straightfor-
ward manner.
In Sec. III, we turn our attention to the memory effect,

i.e., the permanent relative displacement of an arrangement
of test particles near null infinity that are initially at rest.
We assume that the metric initially is stationary to
Coulombic order, goes through a nonstationary epoch,
and again becomes stationary to Coulombic order. The
precise stationarity assumptions and the motivation for
them are spelled out in Sec. III A. We obtain general
properties of the memory tensor in Sec. III B. In Sec. III C,
we calculate the memory tensor for all d ≥ 4. We show that
the memory tensor vanishes at all fall-off slower than
Coulombic, i.e., it vanishes at order 1=rn for all n < d − 3.
In even dimensions, the memory tensor at Coulombic order
can be nonvanishing [12,13] and we also show that it
naturally decomposes into “null memory” and “ordinary
memory,” in a manner similar to the known decomposition
in 4-dimensions [14]. “Null memory” is associated with a
flux of energy to null infinity, whereas we show that
“ordinary memory” is associated with the metric being
nonstationary at one order faster fall-off than Coulombic, as
will generically occur if there is a flux of matter stress-
energy moving inertially in from infinity or out to infinity at
less than the speed of light. In odd dimensions, we show
that the total memory effect vanishes near null infinity at
Coulombic order.
As discussed in Sec. III D, in all dimensions, the memory

effect can be decomposed into scalar, vector and tensor
parts on the (d − 2)-sphere. Null memory is always of

1It should be noted that our analysis will be primarily
concerned with behavior of fields at 1=rd−3 and slower fall
off, so for our main results, “smoothness” can be replaced by
differentiability to the corresponding order.
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scalar type, but ordinary memory can be of any type. We
give an explicit example in linearized gravity in d ¼ 4
dimensions involving a shell of matter with vector stresses
that gives rise to vector (i.e., “magnetic parity”) ordinary
memory at order 1=r. In Sec. III E, we show that scalar
memory can be characterized by a diffeomorphism. This
diffeomorphism is an asymptotic symmetry in d ¼ 4
dimensions, but it is gauge for d > 4. Vector and tensor
memory cannot be described by a diffeomorphism.
We then consider the relationship of memory to charges

and conservation laws in Sec. III F. In d ¼ 4 dimensions,
we show in Sec. III F 1 how the charges and fluxes
associated with supertranslations can be used to derive
the formula for scalar memory. Although memory cannot
be associated with an asymptotic symmetry when d > 4,
similar expressions are obtained from our general formulas
for memory in Sec. III C. In Sec. III F 2 we provide some
arguments in favor of “antipodal matching” of solutions
between future and past null infinity, and show that under
the assumption of antipodal matching, we obtain expres-
sions that can be interpreted as representing conservation
laws relating charges and fluxes at past and future null
infinity.
Finally, in Sec. III G we show that in d ¼ 4 dimensions,

the presence of a nontrivial memory effect at future null
infinity is intimately related to infrared divergences in the
“out” state in quantum field theory. The factorization of the
“out” state vector into a product of “hard” and “soft” parts
is shown for the case of quantum linearized gravity with a
classical source, and is argued to hold generally.
We work in geometrized units ðG ¼ c ¼ 1Þ and will use

the notation and sign conventions of [15]. In particular, our
metric signature is “mostly positive” and our sign con-
vention for curvature is such that the scalar curvature of a
round sphere is positive. Latin indices from the early
alphabet ða; b; c;…Þ denote abstract spacetime indices.
Greek indices ðμ; ν;…Þ denote spacetime components of
tensors. Throughout the paper, Latin and Greek indices are
raised and lowered with respect to the “background”
Minkowski metric ηab. Capital latin indices ðA;B;C;…Þ
will be used to denote tensors on the ðd − 2Þ-sphere. We
will also use capital latin indices to denote coordinates, xA,
on the sphere and components in this coordinate basis.
(We do not feel that the potential confusion resulting from
using the same notation for a tensor on a sphere and its
components in a coordinate basis is sufficient to justify
introducing another alphabet into our notation.) When we
expand a scalar field ϕ in powers of 1=r, ϕðnÞ will denote
the coefficient of 1=rn. When we expand a tensor field

ta1…ak in powers of 1=r, the quantity tðnÞa1…ak will denote the
coefficient of 1=rn in a normalized basis. In particular, for a

covector field, ta, the quantity tðnÞA is such that its action on
the normalized basis element 1r

∂
∂xA falls as 1=r

n. This differs
from a much more common convention [12,14,16] where

tðnÞA would be such that its action on ∂
∂xA falls as 1=r

n. Our
conventions thereby avoid a spurious mixing of orders, and
the orders we assign to components do not depend on
whether we are using Cartesian or spherical coordinates.

II. THE GENERAL BEHAVIOR OF FIELDS
NEAR NEAR NULL INFINITY

Consider d-dimensional Minkowski spacetime with
d ≥ 4. In terms of global inertial coordinates ðt; x1;…;
xd−1Þ, the metric takes the form

η ¼ −dt2 þ
Xd−1
μ¼1

ðdxμÞ2: ð1Þ

Let r ¼ ðPðxμÞ2Þ1=2, let u≡ t − r, and let xA be arbitrary
coordinates on the spheres of constant r and u. In the
coordinates ðu; r; xAÞ, the Minkowski metric η takes the
form

η ¼ −du2 − 2dudrþ r2qABdxAdxB ð2Þ

where qAB is the metric on the round unit (d − 2)-sphere.
Let

Ka ¼ ð∂=∂rÞa ð3Þ

la ¼ ð∂=∂uÞa − 1

2
ð∂=∂rÞa ð4Þ

so that Ka and la are the future-directed, radially outgoing
and ingoing null vector fields, which satisfy

Kala ¼ −1: ð5Þ

Let qab denote the spacetime tensor field whose pullback to
spheres of constant u and r is qAB and Kaqab ¼ 0 ¼ laqab.
The metric can be written as

ηab ¼ −2KðalbÞ þ r2qab: ð6Þ

We will be concerned in the following with the behavior
of fields near “null infinity” in this spacetime, i.e., the limit
as r → ∞ at fixed ðu; xAÞ.

A. Ansatz for the massless scalar field

Consider a massless Klein-Gordon field ϕ satisfying

□ϕ ¼ 0 ð7Þ

where □≡ ηab∂a∂b. (In the next subsection, we will allow
a source term S, i.e., we will consider □ϕ ¼ S.) We
assume, as a preliminary ansatz, that near null infinity,
ϕ can be expanded as a series in 1=r as follows:
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ϕ ∼
X∞
j¼0

1

rαþj ϕ
ðjÞðu; xAÞ ð8Þ

where α ∈ ð0; 1�. Here, the meaning of the “∼” in Eq. (8) is
as follows: We do not require that the series on the right
side of this equation converges (even for large r) but require
that for any N ≥ 0 we have

ϕ −
XN
j¼0

1

rαþj ϕ
ðjÞðu; xAÞ ¼ Oð1=rαþNþ1Þ ð9Þ

as r → ∞, i.e., we require this series to be asymptotic. We
further require that all partial derivatives of the left side of
(9) with respect to u and xA are alsoOð1=rαþNþ1Þ, whereas
k partial derivatives with respect to r are Oð1=rαþNþ1þkÞ.
For convenience, we have taken the upper limit in the sum
in Eq. (8) to be∞, but all of our results will require Eq. (9)
to hold only for finiteN (with the precise value ofN needed
depending on the result).
We now substitute Eq. (8) into Eq. (7) and collect the

terms that fall off as 1=rαþjþ1. We thereby obtain the
following recursion relations for the coefficients appearing
in Eq. (8)

½D2 þ ðαþ j − 1Þðαþ j − dþ 2Þ�ϕðj−1Þ

þ ð2αþ 2j − dþ 2Þ∂uϕ
ðjÞ ¼ 0: ð10Þ

Here, D2 ¼ DADA is the Laplacian on the unit sphere,
whereDA is the derivative operator associated with qAB and
sphere indices are lowered and raised with qAB and qAB.
It follows immediately from Eq. (10) that if, for some

i ≥ 0, ϕðiÞ has nonpolynomial dependence on u, then for
even d, no solution of the form Eq. (8) exists unless α ¼ 1,
whereas for odd d, no solution of the form Eq. (8) exists
unless α ¼ 1=2. To see this, we note that unless the
coefficient of the ∂uϕ

ðjÞ term vanishes for some j, the
nonpolynomial dependence of ϕðiÞ will propagate to ϕði−1Þ

and thence to ϕði−2Þ, etc. This will result in an inconsistency
in Eq. (10) at the lowest nontrivial order, j ¼ 0, since the
first term in that equation is then absent. Thus, the
coefficient of ∂uϕ

ðjÞ in Eq. (10) must vanish for some j.
For d even, this requires α ¼ 1, in which case the
coefficient vanishes for j ¼ d=2 − 2. For d odd, this
requires α ¼ 1=2, in which case the coefficient vanishes
for j ¼ ðd − 3Þ=2.
However, in the odd dimensional case, Eq. (8) with α ¼

1=2 is not adequate for several reasons. First, Eq. (8) with
α ¼ 1=2 does not admit static solutions, since static
solutions satisfy Laplace’s equation and fall off as integral
powers of 1=r, starting at order, 1=rd−3. Second, when a
source term S is considered in Eq. (7), it is natural to allow
S to fall off with integral powers of 1=r. In particular, in
order to have a nonvanishing, finite source flux at null

infinity, it will be necessary to have S fall off as 1=rd−2.
Such source terms will generate terms in ϕ that fall off as
integral powers of 1=r, again starting at order 1=rd−3.
Third, even if one does not consider sources, for nonlinear
equations such as Einstein’s equation, quadratic and higher
order even powers of the field will generate terms that fall
off as integral powers of 1=r. This will lead to incon-
sistencies unless one also includes integral powers of 1=r in
the fall-off of the field, again starting at order 1=rd−3.
Thus, in odd dimensions, we must allow integral powers

of 1=r starting at least at order 1=rd−3. However, in odd
dimensions, the coefficient of a term that falls as 1=rp for
integer p < d − 3 must have polynomial dependence in u
of degree < p in order for the recursion relations to
terminate. (Source terms and nonlinear terms will not enter
the recursion relations at these orders.) Such solutions do
not appear to be of any physical interest, and we will
exclude them from our ansatz.
Thus, we adopt the following as the final form of our

ansatz:

ϕ ∼
X∞

n¼d=2−1

1

rn
ϕðnÞðu; xAÞ d even ð11Þ

ϕ ∼
X∞

n¼d=2−1

1

rn
ϕðnÞðu; xAÞ þ

X∞
p¼d−3

1

rp
ϕ̃ðpÞðu; xAÞ d odd

ð12Þ

where the meaning of “∼” is as explained below Eq. (8).
Note that in Eq. (12), n runs over half-integer values
rather than integer values [as in Eq. (11)]. We have done
this (rather than insert α ¼ 1=2 and keep integer values) so
that the superscript “(n)” is always associated with 1=rn

fall-off and so that we can write the recursion in the
same form

½D2 þ ðn− 1Þðn− dþ 2Þ�ϕðn−1Þ þ ð2n− dþ 2Þ∂uϕ
ðnÞ ¼ 0

ð13Þ

in both even and odd dimensions. In both even and odd
dimensions, we refer to the leading (slowest fall-off) term
n ¼ d=2 − 1 as radiative order, and we refer to the term
with 1=rd−3 fall-off as Coulombic order. In odd dimen-
sions, the ϕ̃ðpÞ satisfy separate recursion relations of the
same form

½D2 þ ðp − 1Þðp − dþ 2Þ�ϕ̃ðp−1Þ

þ ð2p − dþ 2Þ∂uϕ̃
ðpÞ ¼ 0: ð14Þ

In the source free case, ϕ̃ðpÞ must have polynomial
dependence in u with degree no higher than p − dþ 3
in order for the expansion to terminate at order d − 3.

GAUTAM SATISHCHANDRAN and ROBERT M. WALD PHYS. REV. D 99, 084007 (2019)

084007-4



However, this restriction will not apply when source terms
or nonlinear terms are present.
Remark 1. Note that the lower limit of the sum in (11)

was taken to be radiative order, n ¼ d=2 − 1. However, the
ansatz would not be changed if we allowed the lower limit
of the sum to extend to n ¼ 1 for d > 4 because the
recursion relation Eq. (13) at n ¼ d=2 − 1 yields

½D2 − ðd=2 − 2Þðd=2 − 1Þ�ϕðd=2−2Þ ¼ 0 ð15Þ

which implies ϕðd=2−2Þ ¼ 0. The recursion relations at
smaller n then successively yield ϕðnÞ ¼ 0 for all n <
d=2 − 1. Similarly, the lower limit of the first sum in (12)
could be taken to be n ¼ 1=2 without affecting the ansatz.
The upper limit of the sums appearing in (11) and (12) were
taken to be ∞ for convenience. Most of our analysis will
concern the behavior of fields at Coulombic order and
slower fall-off and only a small number of derivatives will
be taken, so the asymptotic expansion need hold only to the
corresponding order.
Finally, we address the issue of the reasonableness of

our ansatz, i.e., what classes of solutions to Eq. (7)
satisfy our ansatz. In Minkowski spacetime of both even
and odd2 dimensions, there is an alternative criterion of
smoothness of the conformally rescaled field ϕ̄ ¼
Ω−ðd=2−1Þϕ at future null infinity, Iþ, in the conformally
completed spacetime. Since Ω ¼ 1=r is a suitable con-
formal factor for Minkowski spacetime, it is easily seen
that smoothness of ϕ̄ at Ω ¼ 0 is equivalent to our
asymptotic expansion Eq. (11) in even dimensions and
our asymptotic expansion Eq. (12) without the integer
power terms in odd dimensions. By the argument3 of
Prop. 11. 1. 1 of [15], smoothness at Iþ holds for all
solutions to Eq. (7) with smooth initial data of compact
support. Thus, all solutions with initial data of compact
support satisfy our ansatz. Furthermore, static, asymp-
totically flat solutions satisfy the asymptotic expansion
Eq. (11) in even dimensions and the asymptotic expan-
sion Eq. (12) with only the integer power terms in odd
dimensions. It follows that in both even and odd
dimensions, all solutions to Eq. (7) with smooth initial
that corresponds to a static asymptotically flat solution
outside of a compact region satisfy our ansatz.

B. Solutions to the scalar wave
recursion relations

We now consider the scalar wave equation with smooth
source S

□ϕ ¼ S: ð16Þ

We assume that S also has an expansion in powers of 1=r.
In order that the flux of S through a sphere near null infinity
be finite in the limit as r → ∞, we must have
S ¼ Oð1=rd−2Þ. We take as our ansatz for S

S ∼
X∞
n¼d−2

1

rn
SðnÞðu; xAÞ: ð17Þ

In even dimensions, the sum ranges over integer n. In
odd dimensions, we could also allow half-integral powers
of 1=r in the expansion of S, beginning at order 1=rd−5=2.
Indeed, for nonlinear equations, half-integral powers
would appear as an effective source generated by cubic
and higher order terms in the field, although these terms
would first enter only at order 1=r3ðd=2−1Þ. However, we
will be primarily interested in the behavior of solutions ϕ
at fall-off ranging from radiative (1=rd=2−1) to Coulombic
(1=rd−3) orders. In odd dimensions, only the leading
order source term Sðd−2Þ=rd−2 will enter our analysis.
Therefore, for notational simplicity, we will take the sum
in Eq. (17) to range only over integer values of n in both
even and odd dimensions. Note that our asymptotic
expansion takes account only of sources “near null
infinity.” Sources that go out to infinity along, e.g.,
timelike inertial trajectories do not contribute at all to
the asymptotic expansion of S.
In even dimensions, under the ansatz Eq. (11), the

recursion relations Eq. (13) are modified by the source
term to become

½D2 þ ðn − 1Þðn − dþ 2Þ�ϕðn−1Þ

þ ð2n − dþ 2Þ∂uϕ
ðnÞ ¼ Sðnþ1Þ: ð18Þ

In odd dimensions, under the ansatz Eq. (12), Eq. (13) is
unmodified, but Eq. (14) is modified to become

½D2 þ ðp − 1Þðp − dþ 2Þ�ϕ̃ðp−1Þ

þ ð2p − dþ 2Þ∂uϕ̃
ðpÞ ¼ Sðpþ1Þ: ð19Þ

It should be noted that when d ¼ 4, Eq. (18) for n ¼ 1

yields Sð2Þ ¼ 0. Thus, for d ¼ 4 there is an inconsistency
with our ansatz Eq. (11) when Sð2Þ ≠ 0, i.e., when there is
nonvanishing flux of the source through spheres near null
infinity. This could be accommodated by modifying the
ansatz in d ¼ 4 to allow an additional series of terms
that fall as ln r=rn. This issue will arise in the next
subsections when we consider whether the Lorenz gauge
condition can be imposed on electromagnetic fields and
linearized gravitational perturbations, and we will see that a
nonvanishing flux of charge current or stress energy will
provide an obstruction to imposing the Lorenz gauge in

2Future null infinity does not exist for an odd dimensional
radiating spacetime [6], but it exists for odd dimensional
Minkowski spacetime.

3Prop. 11. 1. 1 of [15] is stated for d ¼ 4 but is easily
generalized to Minkowski spacetime of arbitrary dimension.
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d ¼ 4 in a manner compatible with our ansatz. Similarly,
in full, nonlinear general relativity, we will find that a
nonvanishing flux of stress energy or Bondi news will
provide an obstruction to imposing the harmonic gauge in
d ¼ 4 in a manner compatible with our ansatz. Rather than
include any such additional ln r terms in these cases, we
will simply not impose the Lorenz and harmonic gauges in
d ¼ 4when these obstructions exist. For the analysis of this
subsection, we will simply restrict consideration to the
case that Sð2Þ ¼ 0 when d ¼ 4, so that our ansatz can be
imposed.
We now consider two procedures for solving the above

recursion relations. The first procedure is as follows:
Consider, first, the even dimensional case, where we must
solve Eq. (18) with integral n. By our ansatz for ϕ and S,
this equation automatically holds for n ¼ d=2 − 1, since
ϕðd=2−2Þ ¼ Sðd=2Þ ¼ 0 and the coefficient of ∂uϕ

ðd=2−1Þ
vanishes. (Here, when d ¼ 4, we have assumed that
Sð2Þ ¼ 0.) Thus, we may specify ϕðd=2−1Þðu; xAÞ arbitrarily.
The n ¼ d=2 equation then yields

2∂uϕ
ðd=2Þ ¼ Sðd=2þ1Þ − ½D2 þ ðn − 1Þðn − dþ 2Þ�ϕðd=2−1Þ:

ð20Þ

The right side is “known,” so this equation can be
straightforwardly integrated to obtain ϕðd=2Þ. The solution

is unique up to the arbitrary specification of ϕðd=2Þ
0 ðxAÞ ¼

ϕðd=2Þðu0; xAÞ at the retarded time u ¼ u0. This pro-
cedure can then be iterated indefinitely to solve for
ϕðnÞ for all n > d=2 − 1 up to the arbitrary specification

of ϕðnÞ
0 ðxAÞ ¼ ϕðnÞðu0; xAÞ.

In odd dimensions, we must solve Eq. (13) with half-
integral n as well as Eq. (19). To solve Eq. (13), we may
again, specify ϕðd=2−1Þðu; xAÞ arbitrarily. We may then
again uniquely solve for ϕðnÞ for all n > d=2 − 1 up to

the arbitrary specification of ϕðnÞ
0 ðxAÞ ¼ ϕðnÞðu0; xAÞ. Simi-

larly, we can uniquely solve Eq. (19) with p ¼ d − 3 for

ϕ̃ðd−3Þ, up to the arbitrary specification of ϕ̃ðd−3Þ
0 ðxAÞ ¼

ϕ̃ðd−3Þðu0; xAÞ. We can then perform a similar iteration to
obtain ϕ̃ðpÞ for all p > d − 3, up to the arbitrary specifi-

cation of ϕ̃ðpÞ
0 ðxAÞ ¼ ϕ̃ðpÞðu0; xAÞ.

We summarize these results in the following
proposition.
Proposition 1. Let ϕ be given by the asymptotic

expansion Eqs. (11)–(12) and let S be given by the
asymptotic expansion Eq. (17). Assume further that for
d ¼ 4 we have Sð2Þ ¼ 0. Then, in even dimensions, a
unique solution to the recursion relations Eq. (18) is
obtained by arbitrarily specifying ϕðd=2−1Þðu; xAÞ (i.e.,
specifying ϕ at “radiative order”) and arbitrarily specifying
ϕðnÞðu0; xAÞ for all n > d=2 − 1 at some initial time u0.
Similarly, in odd dimensions, a unique solution to the

recursion relations Eq. (13) and Eq. (19) is obtained by
arbitrarily specifying ϕðd=2−1Þðu; xAÞ (i.e., specifying ϕ
at “radiative order”) and arbitrarily specifying both
ϕðnÞðu0; xAÞ for all n > d=2 − 1 and ϕ̃ðpÞðu0; xAÞ for all
p ≥ d − 3 at some initial time u0.
The second procedure involves solving the recursion

relations in the reverse order. Suppose that, for some
n > d=2 − 1, we specify ϕðnÞðu; xAÞ arbitrarily. We can
then try to solve Eq. (18) for ϕðn−1Þ. In order to do so, we
must invert the angular operator D2 þ ðn − 1Þðn − dþ 2Þ.
A unique inverse of this operator exists whenever
−ðn − 1Þðn − dþ 2Þ is not an eigenvalue of the
Laplacian, D2. Since the eigenvalues of D2 are −lðlþ d −
3Þ for l ¼ 0; 1;…, it can be seen that this operator is
invertible at every order in odd dimensions, where n is
half-integer. On the other hand in even dimensions, this
operator is invertible when n ≤ d − 3, but it is not inverti-
ble when n > d − 3. Thus, in even dimensions, we can
specify ϕðd−3Þðu; xAÞ arbitrarily and then uniquely solve for
ϕðd−4Þðu; xAÞ by inverting the angular operator in Eq. (18).
Iterating this process, we uniquely obtain ϕðnÞðu; xAÞ for all
n < d − 3. We then can solve for ϕðnÞðu; xAÞ for all n >
d − 3 as before, with the freedom to arbitrarily specify
ϕðnÞðu0; xAÞ. In odd dimensions, we can similarly arbitrarily
specify ϕðn0Þðu; xAÞ for any half-integer n0 ≥ d=2 − 1. We
can then uniquely solve for ϕðnÞðu; xAÞ for all n < n0 by
inversion of the angular operators, and then solve for
ϕðnÞðu; xAÞ for all n > n0 as before, with the freedom to
arbitrarily specify ϕðnÞðu0; xAÞ. This can be summarized as
follows:
Proposition 2. Let ϕ be given by the asymptotic expan-

sion Eqs. (11)–(12) and let S be given by the asymptotic
expansion Eq. (17). Assume further that for d ¼ 4 we have
Sð2Þ ¼ 0. Then, in even dimensions, a unique solution to the
recursion relations Eq. (18) is obtained by arbitrarily
specifying ϕðd−3Þðu; xAÞ (i.e., specifying ϕ at “Coulombic
order”) and arbitrarily specifying ϕðnÞðu0; xAÞ for all n >
d − 3 at some initial time u0. Similarly, in odd dimensions, a
unique solution to the recursion relations Eq. (13) and
Eq. (19) is obtained by arbitrarily specifying ϕðn0Þðu; xAÞ
for any half-integral n0, and, for some initial time u0,
arbitrarily specifying ϕðnÞðu0; xAÞ for all n > n0 and
ϕ̃ðpÞðu0; xAÞ for all p ≥ d − 3.
An important corollary of the argument leading to

Proposition 2 is the following:
Corollary 1. Suppose for d even we have ∂uϕ

ðn0Þ ¼ 0

for some n0 < d − 3. Then ϕðnÞ ¼ 0 for all n < n0.
Similarly, if ∂uϕ

ðd−3Þ ¼ 0 and Sðd−2Þ ¼ 0, then ϕðnÞ ¼ 0

for all n < d − 3. For d odd, if ∂uϕ
ðn0Þ ¼ 0 for some

half-integral n0 (without restriction), then ϕðnÞ ¼ 0 for
all n < n0.
Finally, it is worth noting that for n > d − 3, the

spherical harmonic Yn−dþ2;m is in the kernel of
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D2 þ ðn − 1Þðn − dþ 2Þ. It follows immediately that in
the source-free case, for d even we have that

αdnm ≡
Z

Yn−dþ2;mϕ
ðnÞdΩ ð21Þ

is a constant of motion for all n > d − 3 [17,18], i.e.,
∂uα

d
nm ¼ 0, where dΩ is the measure on the ðd − 2Þ-sphere.

Similarly, in the source free case, for d odd we have that

α̃dpm ≡
Z

Yp−dþ2;mϕ̃
ðpÞdΩ ð22Þ

is a constant of motion for all p > d − 3.

C. Maxwell’s equations

Consider Maxwell’s equations with vector potential
Aa and charge-current ja on d-dimensional Minkowski
spacetime

□Aa − ∂a∂bAb ¼ −4πja ð23Þ
where ∂aja ¼ 0. In analogy with the scalar field ansatz (11)
and (12), we assume as an ansatz that there exists a choice
of gauge for Aa such that it admits an asymptotic expansion
of the form

Aa ∼
X∞

n¼d=2−1

1

rn
AðnÞ
a ðu; xAÞ d even ð24Þ

Aa ∼
X∞

n¼d=2−1

1

rn
AðnÞ
a ðu; xAÞ þ

X∞
p¼d−3

1

rp
ÃðpÞ
a ðu; xAÞ d odd:

ð25Þ

We further assume, in analogy with Eq. (17) that ja
admits an asymptotic expansion of the form

ja ∼
X∞
n¼d−2

1

rn
jðnÞa ðu; xAÞ: ð26Þ

In addition, we require that jðd−2Þa ðu; xAÞ → 0 as u → −∞,
i.e., there is no current flux to future null infinity at
asymptotically early times. Here, as already mentioned

at the end of the Introduction, AðnÞ
a , ÃðnÞ

a , and jðnÞa are
defined so that their normalized basis components are
independent of r—in contrast to a more common con-
vention where the orders of the expansion would denote the
powers of 1=r occurring in the expansion of coordinate
basis components of Aa in the coordinates of Eq. (2). Thus,

in our convention, AðnÞ
r , AðnÞ

u , and AðnÞ
A all contribute to the

physical fall off rate of 1=rn, i.e., AðnÞ
A is the 1=rn part of

1=rð∂=∂xAÞaAa, not the 1=rn part of ð∂=∂xAÞaAa. Our
convention avoids a spurious “mixing of orders” in

equations due to the different behavior of the coordinate
basis elements. Again, our assumption that upper limits in
the above asymptotic expansions run to ∞ is for conven-
ience, as only finitely many orders will be needed for our
main results.
In even4 dimensions, we now compare our ansatz

Eq. (24) to what would be obtained by requiring that Aa
(with no conformal weight) be smooth at Iþ. Since
Ω ¼ 1=r is a suitable conformal factor for Minkowski
spacetime, the necessary and sufficient condition for
smoothness of Aa at Iþ is that its components,
ðAu; AΩ; AAÞ, defined by

A ¼ Auduþ AΩdΩþ AAdxA ð27Þ

be smooth functions of ðu;Ω; xAÞ at Ω ¼ 0. For d ¼ 4, it is
easily seen that this smoothness criterion differs from the
asymptotic expansion Eq. (24) only in that the smoothness

criterion (i) allows a 0th order term, Að0Þ
u , in Au and

(ii) requires Að1Þ
r ¼ 0. It is easily seen that Að0Þ

u can be
set to zero by a gauge transformation, so smoothness at Iþ
implies that our ansatz Eq. (24) holds. Conversely, we show
in Appendix A 1 that starting from our ansatz Eq. (24), one

can set Að1Þ
r ¼ 0 by a gauge transformation if and only if5

jð3Þr ¼ 0. Thus, for d ¼ 4 our ansatz Eq. (24) is slightly
weaker than smoothness at Iþ in that it admits additional

solutions with jð3Þr ≠ 0.
In higher even dimensional spacetimes, Eq. (24) requires

strictly faster fall-off than needed for smoothness of Aa
(with no conformal weighting) at Iþ. Thus, Eq. (24) is
nominally stronger than the condition of smoothness of Aa
at Iþ. However, we show in Appendix B 1 that the Lorenz
gauge condition can be imposed when d > 4 within a
slower fall-off ansatz. As explained in Remark 2, the slower
fall-off solutions excluded by Eq. (24) are therefore pure
gauge. Thus, in even dimensional spacetimes with d > 4,
our ansatz is exactly equivalent to smoothness of Aa (in
some gauge) at Iþ.
In the following, we will focus on the even dimensional

case, and then indicate how the arguments can be modified
to accommodate the odd dimensional case. Just as in the
scalar case, Maxwell’s equations give rise to recursion
relations for the coefficients of the asymptotic expansions
Eq. (24) and Eq. (26). In the even dimensional case, these
recursion relations are explicitly

4We are not aware of any smoothness at Iþ criterion for Aa
that can be formulated in odd dimensions, since Aa itself
cannot be smooth at Iþ for radiating solutions and giving
Aa a conformal weight would not appear to be of any use
since Maxwell’s equations are not conformally invariant
when d ≠ 4.

5jð3Þr must be independent of u by conservation of current. A
nonvanishing jð3Þr would correspond to having an ingoing null
current near Iþ.
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½D2 þ ðn − 1Þðn − dþ 2Þ�Aðn−1Þ
u þ ð2n − dþ 2Þ∂uA

ðnÞ
u − ∂uψ

ðnþ1Þ ¼ −4πjðnþ1Þ
u ð28Þ

½D2 þ nðn − dþ 1Þ�Aðn−1Þ
r þ ðd − 2ÞAðn−1Þ

u þ ð2n − dþ 2Þ∂uA
ðnÞ
r − 2DAAðn−1Þ

A þ nψ ðnÞ ¼ −4πjðnþ1Þ
r ð29Þ

½D2 þ ðn − 1Þðn − dþ 2Þ − 1�Aðn−1Þ
A − 2DAðAðn−1Þ

u − Aðn−1Þ
r Þ þ ð2n − dþ 2Þ∂uA

ðnÞ
A −DAψ

ðnÞ ¼ −4πjðnþ1Þ
A ð30Þ

where n takes integer values. Here, we have defined

ψ ≡ ∂aAa ð31Þ

so

ψ ðnÞ ¼ DAAðn−1Þ
A þ ðd − n − 1ÞðAðn−1Þ

r − Aðn−1Þ
u Þ − ∂uA

ðnÞ
r :

ð32Þ

It would be very convenient to put Aa in Lorenz gauge,
ψ ¼ 0. On general grounds, we know that Aa can always be
put in the Lorenz gauge, but it is not obvious a priori
whether it can be put in Lorenz gauge in such a way that the
form of the asymptotic expansions, Eq. (24) is maintained.
We now investigate this issue.
Under a gauge transformation, we have

Aa → Aa − ∂aϕ: ð33Þ

Thus, in order to put Aa in Lorenz gauge, we must solve

□ϕ ¼ ψ : ð34Þ

Thus, the equation that we must solve is of the same form as
Eq. (16), which we analyzed in the previous section.
However, there are two key differences: (i) From its
definition, a priori, ψ may fall off as slowly as 1=rd=2−1

rather than 1=rd−2. (ii) We do not require that ϕ satisfy the
ansatz Eq. (11) but rather that ∂aϕ satisfy the ansatz
Eq. (24). Therefore, we may take the ansatz for ϕ to be

ϕ ∼
X∞

n¼d=2−2

1

rn
ϕðnÞðu; xAÞ ð35Þ

where ∂uϕ
ðd=2−2Þ ¼ 0. In d ¼ 4 dimensions, we may also

add the term c ln r to the ansatz for ϕ, where c is a constant.
We first note that it follows immediately from ∂aja ¼ 0

that ∂uj
ðd−2Þ
r ¼ 0. Hence, if jðd−2Þa → 0 as u → −∞ as we

have assumed in our ansatz above, we have

jðd−2Þr ¼ 0: ð36Þ

Thus, the r-component of ja falls off at least one power of
1=r faster than required by the ansatz Eq. (26). Since d=2 ≤
d − 2 for all d ≥ 4, it follows immediately from Eq. (29)
with n ¼ d=2 − 1 that

ψ ðd=2−1Þ ¼ 0; ð37Þ

i.e., Maxwell’s equations require ψ to fall off at least one
power of 1=r faster than implied by the ansatz (24). To
proceed further, we must separately consider the cases
d > 4 and d ¼ 4.
When d > 4 all components of ja vanish at order

n ¼ d=2. It follows from Eq. (28) with n ¼ d=2 − 1 that

∂uψ
ðd=2Þ ¼ 0: ð38Þ

We now can solve the scalar recursion relation Eq. (18) at
order n ¼ d=2 − 1 by allowing a nonvanishing ϕðd=2−2Þ
given by

ϕðd=2−2Þ ¼ ½D2 − ðd=2 − 2Þ2�−1ψ ðd=2Þ: ð39Þ

Although ϕðd=2−2Þ falls off more slowly than allowed by
the ansatz Eq. (11), since ∂uϕ

ðd=2−2Þ ¼ 0 the gradient of
ϕðd=2−2Þ=rd=2−2 will be compatible with the ansatz Eq. (24).
Furthermore, since ∂uϕ

ðd=2−2Þ ¼ 0, the scalar recursion
relations imply that all slower fall-off terms vanish. We
may now specify ϕðd=2−1Þ arbitrarily and solve the recursion
relations for the faster fall-off terms in the same manner as
in Proposition 1. Thus, when d > 4, there is no difficulty in
putting Aa in the Lorenz gauge in a manner compatible with
the ansatz Eq. (24).
When d ¼ 4, we still have ψ ð1Þ ¼ 0 but we now have

∂uψ
ð2Þ ¼ 4πjð2Þu : ð40Þ

The scalar recursion relation Eq. (18) at order n ¼ 1 (with
the term c ln r added to the ansatz for ϕ) yields

cþD2ϕð0Þ ¼ ψ ð2Þ: ð41Þ

However, ϕð0Þ has to be u-independent in order that ∂aϕ
satisfy the ansatz Eq. (24). This requires ∂uψ

ð2Þ to vanish

and hence jð2Þu ¼ 0, i.e., there can be no flux of charge to

infinity.6 Conversely, if jð2Þu ¼ 0, then ψ ð2Þ is u-indepen-
dent. We can choose c to cancel the l ¼ 0 part of ψ ð2Þ. We
can then invertD2 to solve for ϕð0Þ. Thus, for d ¼ 4, we can

6The Lorenz gauge can be imposed with jð2Þu ≠ 0 by adding a
series with terms of the form ln r=rn [19].
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solve Eq. (41) if and only if jð2Þu ¼ 0. We may then choose
ϕð1Þ arbitrarily and solve the remaining recursion relations
for the faster fall-off terms in the same manner as in
Proposition 1. Thus, for d ¼ 4, Aa can be put in the Lorenz
gauge in a manner compatible with the ansatz Eq. (24) if

and only if jð2Þu ¼ 0.
We now describe the modifications to the above results

for odd dimensions. The recursion relations for AðnÞ
a take

the form Eqs. (28)–(30) with n half-integral and with the
current source terms absent, whereas the recursion relations

for ÃðpÞ
a take the same form as Eqs. (28)–(30) with n

replaced by p, with p an integer. The ansatz for ϕ is taken
to be

ϕ ∼
X∞

n¼d=2−2

1

rn
ϕðnÞðu; xAÞ þ

X∞
p¼d−3

1

rp
ϕ̃ðpÞðu; xAÞ ð42Þ

with ∂uϕ
ðd=2−2Þ ¼ 0. The analysis of imposing the Lorenz

gauge then proceeds in close parallel to the even dimen-
sional case for d > 4. We find that the Lorenz gauge can
always be imposed in a manner compatible with the
ansatz Eq. (25).
We summarize our above results on the imposition of the

Lorenz gauge in the following proposition:
Proposition 3. In Minkowski spacetime of dimension

d ≥ 4, suppose that in some gauge the vector potential Aa
satisfies our ansatz Eq. (24) (for d even) or our ansatz
Eq. (25) (for d odd). Suppose further that the charge-current

ja satisfies Eq. (26) and that j
ðd−2Þ
a ðu; xAÞ → 0 as u → −∞.

Then for all d > 4, Aa can be put in the Lorenz gauge in
such a way that it continues to satisfy our ansatz. In d ¼ 4
the Lorenz gauge condition can be imposed within the

ansatz Eq. (24) if and only if jð2Þu ¼ 0, i.e., if and only if the
flux of charge to null infinity vanishes.
Remark 2. We show in Appendix B 1 that if, for d > 4,

we had allowed the sum in Eq. (24) to extend to n ¼ 1 and
the sum in Eq. (25) to extend to n ¼ 1=2, our proof that the
Lorenz gauge condition can be imposed within the revised
ansatz would still go through. Since □Aa ¼ −4πja in the

Lorenz gauge and jðnÞa ¼ 0 for n < d − 2, it follows from

Remark 1 in that in Lorenz gauge, we have AðnÞ
a ¼ 0 for all

n < d=2 − 1. Thus, the only solutions excluded by starting
the sums at n ¼ d=2 − 1 in Eqs. (24) and (25) (rather than
at n ¼ 1 and n ¼ 1=2) are pure gauge.
Remark 3. Suppose that Aa satisfies the ansatz Eq. (24)

and is stationary at all orders n ≤ m where m ≤ d − 2.

Suppose further that jðnÞa ¼ 0 for all n ≤ mþ 1. By con-

servation of ja, we obtain ∂uj
ðnÞ
r ¼ 0 for all n ≤ mþ 2. It

follows directly from its definition, Eq. (32), that ψ ðnÞ must
be stationary for all n ≤ m. However, using Eq. (29) and

the stationarity of jðnÞr for all n ≤ mþ 2, we obtain the
stronger result that ψ ðnÞ actually must be stationary for all

n ≤ mþ 1. We then may solve the recursion relation
Eq. (18) for all n ≤ m − 1 by setting

ϕðn−1Þ ¼ ½D2 þ ðn − 1Þðn − dþ 2Þ�−1ψ ðnþ1Þ: ð43Þ

We may then set ϕðm−1Þ ¼ 0 and solve the recursion
relations for ϕðnÞ ¼ 0 for n ≥ m as in Proposition 1. The
resulting gauge transformation will put Aa in the Lorenz
gauge satisfying the ansatz Eq. (24) and maintaining
stationarity at all orders n ≤ m. In particular, if a solution
with ja ¼ 0 is stationary in some gauge to orderm ≤ d − 2,
then it is stationary in a Lorenz gauge to the same order.
Remark 4. Let d ¼ 4 and suppose jð2Þu ¼ 0. Suppose,

further, that jð3Þr ¼ 0 so that, as shown in Appendix A 1, our
ansatz is equivalent to smoothness of Aa at Iþ in some
gauge. Although, by Proposition 3, the Lorenz gauge can
be imposed within our ansatz Eq. (24), it need not be the

case that Að1Þ
r ¼ 0 in the Lorenz gauge, in which case Aa in

the Lorenz gauge will not be smooth at Iþ. In other words,
in d ¼ 4 when jð2Þu ¼ 0, the Lorenz gauge is compatible
with our ansatz but it need not be compatible with
smoothness of Aa at Iþ.
When Aa is in Lorenz gauge—as, by Proposition 3 we

may assume for d > 4 and for d ¼ 4 when jð2Þu ¼ 0—it
satisfies

□Aa ¼ −4πja ð44Þ

∂aAa ¼ 0: ð45Þ

The recursion relations arising from □Aa ¼ −4πja are
just Eqs. (28)–(30) with ψ ¼ 0 in even dimensions.
(They are modified as described above in odd dimensions.)
The recursion relations arising from ∂aAa ¼ 0 are just
ψ ðnÞ ¼ 0 where ψ ðnÞ is given by Eq. (32). However, it is
more convenient to work with a linear combination of this
equation and the other equations so as to eliminate all
u-derivatives. This can be achieved by defining

ω ¼ Ka½□Aa þ 4πja� − 2Ka∂aψ − ðd − 2Þψ=r ð46Þ

where Ka ¼ ð∂=∂rÞa. When Eq. (44) holds, the vanishing
of ω is equivalent to the vanishing of ψ . The relation
ωðnþ2Þ ¼ 0 yields

½D2 − ðn − dþ 2Þðn − dþ 3Þ�AðnÞ
r

þ ð2n − dþ 2Þðn − dþ 3ÞAðnÞ
u

þ ð2n − dþ 2ÞDAAðnÞ
A ¼ −4πjðnþ2Þ

r ð47Þ

which contains no u-derivatives (and therefore also does
not mix different orders).
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We now consider the analogs of Propositions 1 and 2
for Maxwell’s equations in Lorenz gauge. By Eq. (44)
each Cartesian component of Aa satisfies the scalar wave
equation. Therefore, we may directly apply Propositions 1
and 2 to determine the data needed to uniquely determine a
solution to Eq. (44) alone. Thus, the remaining task is to
specify this data in such a way that Eq. (45) holds.
However, if Eq. (44) holds we have

□ψ ¼ □∂aAa ¼ ∂a
□Aa ¼ −4π∂aja ¼ 0: ð48Þ

Thus, ψ satisfies the homogeneous scalar wave equation,
and we can ensure that ψ ¼ 0 by choosing data for Aa so as
to ensure that the corresponding data for ψ yields the
solution ψ ¼ 0. Again, we can determine this using
Propositions 1 and 2, and also using the fact that when
Eq. (44) holds, the vanishing of ψ ðnÞ is equivalent to the
vanishing of ωðnþ1Þ. Putting all of the above statements
together, it follows using Proposition 1 that a unique
solution to Maxwell’s equations in Lorenz gauge can be

determined by specifying Aðd=2−1Þ
a subject to Eq. (47) for

n ¼ d=2 − 1, and then specifying AðnÞ
a ðu0Þ for all n >

d=2 − 1 subject to Eq. (47) holding at u ¼ u0 (see exercise
2 of [11] for the case d ¼ 4 with ja ¼ 0). In odd

dimensions, we also must similarly specify data for ÃðpÞ
a

at u ¼ u0 subject to the constraint for all p.
Alternatively, in even dimensions, using Proposition 2, a

solution can be uniquely determined by specifying data at

Coulombic order, Aðd−3Þ
a . However, in this case, the con-

straint Eq. (47) at n ¼ d − 3 ensures that ψ ðd−2Þ ¼ 0 but
this does not quite suffice to ensure that ψ vanishes at all
slower fall-off. This is because the recursion relation
Eq. (13) for n ¼ d − 2 yields

D2ψ ðd−3Þ ¼ −ðd − 4Þ∂uψ
ðd−2Þ ¼ 0 ð49Þ

which does not imply that the l ¼ 0 part of ψ ðd−3Þ must
vanish. Hence, the condition

½ψ ðd−3Þ�jl¼0 ¼ 0 ð50Þ

must be imposed separately. Using Eq. (44), we may write
this condition purely in terms of the Coulombic order
data as

∂uQðuÞ ¼ −Adj
ðd−2Þ
u jl¼0 ð51Þ

where

QðuÞ ¼ Ad

4π
½Aðd−3Þ

r þ ðd − 4ÞAðd−3Þ
u �jl¼0

d even ðin Lorenz gaugeÞ ð52Þ

and Ad is the area of a unit ðd − 2Þ-sphere

Ad ¼
2π

d−1
2

Γðd−1
2
Þ : ð53Þ

Using the Lorenz gauge condition, it can be verified that
QðuÞ is the total electric charge at time u, defined by

QðuÞ≡ 1

4π

Z
Fðd−2Þ
ur dΩ ð54Þ

with Fab ¼ 2∂ ½aAb�. Thus, Eq. (51) expresses conservation
of charge. Note that the formula Eq. (52) for QðuÞ holds
only in the Lorenz gauge and thus cannot be used in d ¼ 4

when jð2Þu ≠ 0. In odd dimensions, we do not obtain a
similar additional constraint, but Eq. (51) follows directly

from the recursion relation for Ãðd−3Þ
a corresponding to

Eq. (28) with p ¼ d − 3 as well as the Lorenz gauge
condition given by Eq. (32) with p ¼ d − 3, where the
charge is now given by

QðuÞ ¼ Ad

4π
½Ãðd−3Þ

r þ ðd − 4ÞÃðd−3Þ
u �jl¼0

d odd ðin Lorenz gaugeÞ: ð55Þ
We summarize our results as follows:
Theorem 1. Suppose d > 4 or d ¼ 4 and jð2Þu ¼ 0, so

that the Lorenz gauge condition can be imposed. Then a
unique solution to the recursion relations and constraints
for Maxwell’s equations in the Lorenz gauge is obtained by
specifying data in either of the following two ways:

(1) Radiative Order Data: Specify Aðd=2−1Þ
a ðu; xAÞ sub-

ject to the constraint Eq. (47) at n ¼ d=2 − 1.

Specify AðnÞ
a ðu ¼ u0; xAÞ for all n > d=2 − 1 subject

to the constraint Eq. (47) at u ¼ u0. In odd dimen-

sions, also specify ÃðpÞ
a ðu ¼ u0; xAÞ for all p ≥

d − 3, subject to the constraint Eq. (47) at u ¼ u0.
(2) Coulombic Order Data: In even dimensions, specify

Aðd−3Þ
a ðu; xAÞ subject to the constraint Eq. (47) at

n ¼ d − 3 and the additional constraint Eq. (51);

specify AðnÞ
a ðu ¼ u0; xAÞ for all n > d − 3 subject to

the constraint Eq. (47) at u ¼ u0. In odd dimensions,

specify AðmÞ
a ðu; xAÞ for any half-integer m≥d=2−1,

subject to the constraint Eq. (47) at n ¼ m, specify

AðnÞ
a ðu ¼ u0; xAÞ for all n > m subject to the con-

straint Eq. (47) at u ¼ u0; specify ÃðpÞ
a ðu ¼ u0; xAÞ

for all p ≥ d − 3, subject to the constraint Eq. (47)
at u ¼ u0.

D. Linearized Einstein equation

We consider the linearized Einstein equation on
d-dimensional Minkowski spacetime for a metric pertur-
bation hab with stress-energy source Tab
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−2δGab ≡□h̄ab − 2∂ða∂ch̄bÞc þ ηab∂c∂dh̄cd ¼ −16πTab

ð56Þ

where δGab is the linearized Einstein tensor and

h̄ab ≡ hab −
1

2
hηab ð57Þ

with h≡ ηabhab. Our ansatz for hab is

hab ∼
X∞

n¼d=2−1

1

rn
hðnÞab ðu; xAÞ d even ð58Þ

hab ∼
X∞

n¼d=2−1

1

rn
hðnÞab ðu; xAÞ þ

X∞
p¼d−3

1

rp
h̃ðpÞab ðu; xAÞ d odd

ð59Þ
where our conventions for labeling the orders in this
expansion is as in the electromagnetic case. Our ansatz
for Tab is

Tab ∼
X∞
n¼d−2

1

rn
TðnÞ
ab ðu; xAÞ: ð60Þ

In addition, we require that Tab satisfy the dominant

energy condition and that Tðd−2Þ
ab ðu; xAÞ → 0 as u → −∞,

i.e., there is no stress energy flux to future null infinity at
asymptotically early times. In odd dimensions, it would be
reasonable to also allow terms in the expansion of Tab that
fall as half-integral powers of 1=r—and when we consider
the full Einstein’s equation, nonlinearities will effectively
generate such terms in the equations. However, our analysis

will mainly be concerned with the terms in hab with fall-off
ranging from radiative (1=rd=2−1) to Coulombic (1=rd−3)
orders, for which only the leading order terms in the
expansion of Tab will contribute, so for simplicity, we do
not include half-integral powers of 1=r in the ansatz for Tab
in odd dimensions.
In even dimensions, we can compare our ansatz Eq. (58)

to what would be obtained by requiring that Ω2hab with
Ω ¼ 1=r be smooth at Iþ, i.e., at Ω ¼ 0. For d ¼ 4, if one
assumes smoothness at Iþ in some gauge, then, by a
further choice of gauge (see [20] or p. 280 of [15]), one can
ensure that hab satisfies our ansatz Eq. (58). Conversely, if
hab satisfies our ansatz, then Ω2hab will be smooth at Iþ if

and only if hð1Þrr vanishes. In Appendix A 2, we show that

we can set hð1Þrr ¼ 0 by a gauge transformation provided

that7 Tð3Þ
ur ¼ Tð3Þ

rr ¼ Tð3Þ
rA ¼ 0. Thus, for d ¼ 4, our ansatz is

slightly weaker than smoothness of Ω2hab at Iþ in that we

allow additional solutions with Tð3Þ
ra ≠ 0.

For even dimensional spacetimes with d > 4, our ansatz
Eq. (58) requires faster fall-off than what is needed for
smoothness of Ω2hab at Iþ. However, starting with
smoothness at Iþ and choosing the conformal Gaussian
null gauge, it was shown in [20] that the fall-off given by
our ansatz holds; we also will show in Appendix B 2 that,
starting with smoothness of Ω2hab at Iþ, the Lorenz gauge
condition can be imposed, which also implies the faster
fall-off given by our ansatz. Thus, in even dimensional
spacetimes with d > 4, our ansatz is precisely equivalent to
smoothness of Ω2hab at Iþ in some gauge.
In even dimensions, where n is integer, Einstein’s

equation gives rise to the following system of recursion
relations:

½D2 þ ðn − 1Þðn − dþ 2Þ�h̄ðn−1Þuu þ ð2n − dþ 2Þ∂uh̄
ðnÞ
uu − 2∂uχ

ðnþ1Þ
u −DAχðnÞA − ðd − n − 2ÞðχðnÞr − χðnÞu Þ

þ ∂uχ
ðnþ1Þ
r ¼ −16πTðnþ1Þ

uu ð61Þ
½D2 þ nðn − dþ 1Þ�h̄ðn−1Þur þ ðd − 2Þh̄ðn−1Þuu þ ð2n − dþ 2Þ∂uh̄

ðnÞ
ur − 2DAh̄ðn−1ÞuA −DAχðnÞA

− ðd − n − 2ÞχðnÞr þ ðd − 2ÞχðnÞu ¼ −16πTðnþ1Þ
ur ð62Þ

½D2 þ ðn − 1Þðn − dþ 2Þ − 1�h̄ðn−1ÞuA − 2DAðh̄ðn−1Þuu − h̄ðn−1Þur Þ þ ð2n − dþ 2Þ∂uh̄
ðnÞ
uA −DAχ

ðnÞ
u − ∂uχ

ðnþ1Þ
A ¼ −16πTðnþ1Þ

uA

ð63Þ
½D2 þ ðn − 1Þðn − dþ 2Þ − 2ðd − 2Þ�h̄ðn−1Þrr þ 2ðd − 2Þh̄ðn−1Þur þ 2qABh̄ðn−1ÞAB þ ð2n − dþ 2Þ∂uh̄

ðnÞ
rr

− 4DAh̄ðn−1ÞAr þ 2nχðnÞr ¼ −16πTðnþ1Þ
rr ð64Þ

½D2 þ ðn − 1Þðn − dþ 2Þ − d − 1�h̄ðn−1ÞrA þ dh̄ðn−1ÞuA − 2DAh̄
ðn−1Þ
ur þ 2DAh̄

ðn−1Þ
rr þ ð2n − dþ 2Þ∂uh̄

ðnÞ
rA

− 2DBh̄ðn−1ÞBA −DAχ
ðnÞ
r þ ðnþ 1ÞχðnÞA ¼ −16πTðnþ1Þ

rA ð65Þ

7Tð3Þ
ur , T

ð3Þ
rr , and Tð3Þ

rA are independent of u by conservation and the dominant energy condition. These quantities vanish identically if
the stress-energy is produced by a scalar or electromagnetic field satisfying our ansatz for those fields.
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½D2 þ ðn − 1Þðn − dþ 2Þ − 2�h̄ðn−1ÞAB − 4DðAh̄
ðn−1Þ
BÞu þ 4DðAh̄

ðn−1Þ
BÞr þ 2ðh̄ðn−1Þrr − 2h̄ðn−1Þur þ h̄ðn−1Þuu ÞqAB

þ ð2n − dþ 2Þ∂uh̄
ðnÞ
AB − 2

�
DðAχ

ðnÞ
BÞ −

qAB
2

DCχðnÞC

�
þ ðd − n − 4ÞðχðnÞr − χðnÞu ÞqAB − qAB∂uχ

ðnþ1Þ
r

¼ −16πTðnþ1Þ
AB : ð66Þ

Here we have defined

χa ¼ ∂bh̄ab ð67Þ

so that

χðnÞu ¼ DAh̄ðn−1ÞAu þ ðd − n − 1Þðh̄ðn−1Þur − h̄ðn−1Þuu Þ − ∂uh̄
ðnÞ
ur ð68Þ

χðnÞr ¼ DAh̄ðn−1ÞAr þ ðd − n − 1Þðh̄ðn−1Þrr − h̄ðn−1Þur Þ − qABh̄ðn−1ÞAB − ∂uh̄
ðnÞ
rr ð69Þ

χðnÞA ¼ DBh̄ðn−1ÞAB þ ðd − nÞðh̄ðn−1ÞrA − h̄ðn−1ÞuA Þ − ∂uh̄
ðnÞ
rA : ð70Þ

In odd dimensions, where n is half-integral, Eqs. (61)–(66)
hold with Tab ¼ 0, whereas the recursion relations for h̃ðpÞab
are the same as Eqs. (61)–(66).
In the electromagnetic case, the current ja is subject

only to the conservation law ∂aja ¼ 0. This gave rise to

the condition Kajðd−2Þa ¼ 0, where Ka ¼ ð∂=∂rÞa. The
stress-energy tensor Tab is also subject to the conserva-
tion law ∂aTab ¼ 0. This gives rise to the condition

KaTðd−2Þ
ab ¼ 0: ð71Þ

However, in the gravitational case, we have the further
requirement that the stress-energy tensor satisfy the dom-
inant energy condition. The only way Eq. (71) can be
compatible with the dominant energy condition is if

Tðd−2Þ
ab ¼ αKaKb ð72Þ

for some function αðu; xAÞ. Thus, all components of Tðd−2Þ
ab

must vanish except for Tðd−2Þ
uu .

It is of interest to examine the gauge dependence of the

radiative order metric hðd=2−1Þab and the gauge invariant

quantities that can be constructed from hðd=2−1Þab . Under a
gauge transformation, we have

hab → hab − ∂ðaξbÞ ð73Þ

so

hðd=2−1Þab → hðd=2−1Þab − ½∂ðaξbÞ�ðd=2−1Þ ð74Þ

where

½∂ðaξbÞ�ðd=2−1Þ ¼ DðAξ
ðd=2−2Þ
BÞ − KðaDBÞξ

ðd=2−2Þ
u þ rðaDBÞξ

ðd=2−2Þ
r − rðaξ

ðd=2−2Þ
BÞ þ ðξðd=2−2Þr − ξðd=2−2Þu ÞqAB

−
�
d
2
− 2

�
rðaξ

ðd=2−2Þ
bÞ − Kða∂uξ

ðd=2−1Þ
bÞ : ð75Þ

Here ξðd=2−2Þa must be stationary in order to maintain our
ansatz Eqs. (58) and (59). It is clear from Eq. (75) that

ξðd=2−1Þa can always be used to set hðd=2−1Þuu ; hðd=2−1Þur and

hðd=2−1ÞuA to zero. It also is clear from Eq. (75) that the
remaining components can be changed only by a stationary

transformation. It follows immediately that ∂uh
ðd=2−1Þ
μν is

gauge invariant for all μ; ν ≠ u. However, using the

linearized Einstein equation, it can be shown8 that

∂uh
ðd=2−1Þ
rr ¼∂uh

ðd=2−1Þ
rA ¼∂uðqABhðd=2−1ÞAB Þ¼0. Therefore,

the only nontrivial gauge invariant quantity that can
be constructed from ∂uh

ðd=2−1Þ
ab is

8The vanishing of ∂uh
ðd=2−1Þ
rr , ∂uh

ðd=2−1Þ
rA and ∂uðqABhðd=2−1ÞAB Þ

follows from Eq. (84) below, together with Eqs. (68)–(70) for
n ¼ d=2 − 1.
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Nab ≡
�
qacqbd −

1

d − 2
qabqcd

�
∂uh

ðd=2−1Þ
ab : ð76Þ

We may view Nab as a tensor on the sphere, denoted NAB.
NAB is called the Bondi news tensor.
We now seek to put hab in Lorenz gauge,

∂bh̄ab ¼ 0 ð77Þ

while preserving the form of the ansatz Eqs. (58) or (59).
Under a gauge transformation, hab changes by Eq. (73).
Thus, we can put hab into Lorenz gauge if and only if we
can solve

□ξa ¼ 2χa: ð78Þ

Thus, the equations we must solve take the same basic form
as the scalar wave equation, and we can analyze them in
close parallel to the electromagnetic case. We take our
ansatz for ξa to be

ξa ∼
X∞

n¼d=2−2

1

rn
ξðnÞa ðu; xAÞ d even ð79Þ

ξa ∼
X∞

n¼d=2−2

1

rn
ξðnÞa ðu; xAÞ þ

X∞
p¼d−3

1

rp
ξ̃ðpÞa ðu; xAÞ d odd

ð80Þ

where it is required in both of these expressions that

∂uξ
ðd=2−2Þ
a ¼ 0. When d ¼ 4, we may also add a term

cð∂=∂uÞa ln r to ξa, where c is a constant.
When d > 4, the stress-energy terms in Eqs. (61)–(66)

do not enter at radiative order n ¼ d=2 − 1. The ur,rr
and rA components of these equations yield, respectively

−ðd=2 − 1Þχðd=2−1Þr þ 2ðd=2 − 1ÞχðnÞu −DAχðd=2−1ÞA ¼ 0

ð81Þ

ðd − 2Þχðd=2−1Þr ¼ 0 ð82Þ

ðd=2Þχðd=2−1ÞA −DAχ
ðd=2−1Þ
r ¼ 0: ð83Þ

Thus, we have

χðd=2−1Þa ¼ 0: ð84Þ

The uu, uA and AB components yield, respectively

−2∂uχ
ðd=2Þ
u þ ∂uχ

ðd=2Þ
r ¼ 0 ð85Þ

∂uχ
ðd=2Þ
A ¼ 0 ð86Þ

qAB∂uχ
ðd=2Þ
r ¼ 0 ð87Þ

which implies

∂uχ
ðd=2Þ
a ¼ 0: ð88Þ

As in the electromagnetic case, Eqs. (84) and (88) ensure
that we can solve Eq. (78) within the ansatz.
However, when d ¼ 4, we still have that χð1Þa vanishes

but Eq. (61) for n ¼ 1 yields

∂uχ
ð2Þ
u ¼ 8πTð2Þ

uu : ð89Þ

As in the electromagnetic case, this will give rise to an
obstruction to solving Eq. (78) within the ansatz if and only

if Tð2Þ
uu is nonvanishing. Thus, for d ¼ 4, the necessary and

sufficient condition for imposing the Lorenz gauge within

our ansatz is that Tð2Þ
uu vanish identically.

We summarize these results in the following
proposition:
Proposition 4. For all d > 4, any hab that satisfies our

ansatz Eq. (58) (for d even) or ansatz Eq. (59) (for d odd)
can be put in the Lorenz gauge in such a way that it
continues to satisfy our ansatz. In d ¼ 4 the Lorenz gauge
condition can be imposed within the ansatz if and only

if Tð2Þ
uu ¼ 0.

Remark 5. As in the electromagnetic case, for d > 4
we show in Appendix B 2 that the Lorenz gauge
condition could still be imposed if we weakened the
fall-off conditions to 1=r fall-off in even dimensions and
1=

ffiffiffi
r

p
fall-off in odd dimensions. As in remark 2, this

justifies our taking the lower limit of the sum in Eq. (58)
and Eq. (59) to start at n ¼ d=2 − 1. Also, as in the
electromagnetic case, it follows that if a solution is
stationary in some gauge for all n ≤ m with m ≤ d − 2

and if TðnÞ
ab ¼ 0 for all n ≤ mþ 1, then it is stationary in

a Lorenz gauge for all n ≤ m.
Remark 6. Let d ¼ 4 and Tð2Þ

uu ¼ 0. Suppose further

that Tð3Þ
ra ¼ 0 so that our ansatz is equivalent to smoothness

of Ω2hab at Iþ in some gauge. Although, by proposition 4,
the Lorenz gauge can be imposed within our ansatz

Eq. (58), it need not be the case that hð1Þrr ¼ 0 in the
Lorenz gauge, in which case Ω2hab in the Lorenz gauge
will not be smooth at Iþ, i.e., the Lorenz gauge need not be
compatible with smoothness at Iþ.
When hab is in Lorenz gauge—as, by Proposition 4 we

may assume for d > 4 and for d ¼ 4 when Tð2Þ
uu ¼ 0—it

satisfies

□h̄ab ¼ −16πTab ð90Þ

∂ah̄ab ¼ 0: ð91Þ
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The recursion relations for Eq. (90) are Eqs. (61)–(66)
with χa ¼ 0. The recursion relations arising from Eq. (91)
are just Eqs. (68)–(70) with χa ¼ 0. Again, it is useful
to eliminate the terms in Eqs. (68)–(70) with u-derivatives
using Eqs. (61)–(66). This can be achieved by defining

τa ¼ Kb½□h̄ab þ 16πTab� − 2Kb∂bχa − ðd − 2Þχa=r: ð92Þ

When Eq. (90) holds, the vanishing of τa is equivalent to

the vanishing of χa. The relation τðnþ2Þ
a ¼ 0 yields

½D2 − ðn − dþ 2Þðn − dþ 3Þ�h̄ðnÞru þ ðn − dþ 3Þð2n − dþ 2Þh̄ðnÞuu − ð2n − dþ 2ÞDAh̄ðnÞuA ¼ −16πTðnþ2Þ
ru ð93Þ

½D2 − ððn − dþ 2Þ2 þ nÞ�h̄ðnÞrr þ ðd − 2þ ðn − dþ 3Þð2n − dþ 2ÞÞh̄ðnÞur − ð2n − dþ 2ÞqABh̄ðnÞAB

þ ð2n − dÞDAh̄ðnÞAr ¼ −16πTðnþ2Þ
rr ð94Þ

½D2 − ðn − dþ 3Þðn − dþ 2Þ þ ð2n − dþ 1Þ�h̄ðnÞrA þ ð2n − dþ 2Þðn − dþ 2Þh̄ðnÞuA

þ 2DAðh̄ðnÞrr − h̄ðnÞur Þ þ ð2n − dþ 2ÞDBh̄ðnÞAB ¼ −16πTðnþ2Þ
rA : ð95Þ

Equations (93) to (95) reduce to the “constraint equations”
given by [12] if one applies the additional gauge conditions
that they impose.
The analysis of the appropriate data for solutions to

Eq. (90) and (91) follows in exact parallel with the
electromagnetic case. We solve the wave equation given
by Eqs. (61)–(66) with χa ¼ 0, subject to the constraints
Eqs. (93)–(95). We can specify data at radiative order
subject to the constraints and solve for the faster fall-off
terms exactly as in the electromagnetic case. We also can
specify data at Coulombic order and solve for slower fall-
off terms. In exact parallel with the electromagnetic case, in
even dimensions, in addition to the Coulombic order
constraints, the Coulombic order data must satisfy

∂uM ¼ −AdT
ðd−2Þ
uu jl¼0 ð96Þ

where

M ¼ 1

16π
Ad½h̄ðd−3Þur þ ðd − 4Þh̄ðd−3Þuu �jl¼0

d even ð in Lorenz gaugeÞ ð97Þ

withAd given by Eq. (53). Thus,M satisfies the same flux
relation as the linearized Bondi mass in linearized gravity,
and thus it can differ from the linearized Bondi mass only
by a constant. To show that M is, indeed, the linearized
Bondi mass, it suffices to show that it agrees with the Bondi
mass in the stationary case, where ta ¼ ð∂=∂uÞa, is a
Killing field. In the stationary case, it can be verified that
M agrees with the Komar mass formula

M ¼ −
1

16π

ðd − 2Þ
ðd − 3Þ

Z
∞
ϵabcd∇atb ð98Þ

where ϵabcd is the volume form and the integral is taken
over a sphere near infinity. Since the Komar mass agrees

with the Bondi mass in the stationary case [21], it follows
that M is, indeed, the linearized Bondi mass.9 In odd
dimensions, we do not obtain a similar additional con-
straint, but the recursion relation Eq. (61) with p ¼ d − 3 as
well as the Lorentz gauge constraint Eq. (68) with p ¼
d − 3 implies that Eq. (96) holds where the linearized
Bondi mass is given by

M ¼ 1

16π
Ad½ ¯̃hðd−3Þur þ ðd − 4Þ ¯̃hðd−3Þuu �jl¼0

d odd ðin Lorenz gaugeÞ: ð99Þ
We summarize our results on solutions to the linearized

Einstein equation in Lorenz gauge with the following
theorem:
Theorem 2. Suppose d > 4 or d ¼ 4 and Tð2Þ

uu ¼ 0, so
that the Lorenz gauge condition can be imposed. Then a
unique solution to the recursion relations and constraints
for the linearized Einstein equation in Lorenz gauge is
obtained by specifying data in either of the following
two ways:
(1) Radiative Order Data: Specify hðd=2−1Þab ðu; xAÞ sub-

ject to the constraints Eqs. (93)–(95) at n ¼ d=2 − 1.

Specify hðnÞab ðu ¼ u0; xAÞ for all n > d=2 − 1 subject
to the constraints Eqs. (93)–(95) at u ¼ u0. In odd

dimensions, also specify h̃ðpÞab ðu ¼ u0; xAÞ for all
p ≥ d − 3, subject to the constraint Eqs. (93)–(95)
at u ¼ u0.

(2) Coulombic Order Data: In even dimensions, specify

hðd−3Þab ðu; xAÞ subject to the constraints Eqs. (93)–
(95) at n ¼ d − 3 and the additional constraint

Eq. (96); specify hðnÞab ðu ¼ u0; xAÞ for all n>d−3

subject to the constraints Eqs. (93)–(95) at u ¼ u0.

9We caution the reader that Eq. (97) holds only in the Lorenz
gauge, which cannot be imposed for d ¼ 4 when Tð2Þ

uu ≠ 0.
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In odd dimensions, specify hðmÞ
ab ðu; xAÞ for any

m ≥ d=2 − 1, subject to the constraints Eqs. (93)–
(95) at n ¼ m, specify hðnÞab ðu ¼ u0; xAÞ for all n >
m subject to the constraints Eqs. (93)–(95) at

u ¼ u0; specify h̃ðpÞab ðu ¼ u0; xAÞ for all p ≥ d − 3,
subject to the constraints Eqs. (93)–(95) at u ¼ u0.

E. Nonlinear Einstein equation

For the nonlinear Einstein equation, we write gab ¼
ηab þ hab and we assume the same ansatz for hab as in
linearized gravity (see Sec. II D). For d even with d > 4,
our ansatz Eq. (58) is equivalent to smoothness of Ω2hab
(and, therefore, smoothness of Ω2gab ¼ Ω2ηab þ Ω2hab) at
Iþ by the same arguments as for the linearized case. For
d ¼ 4 our ansatz Eq. (58) in linearized gravity was slighter
weaker than smoothness of Ω2hab at Iþ in that it admitted

additional solutions for which hð1Þrr cannot be set to zero by a
gauge transformation within our ansatz. However, we show
in Appendix A 3 that, if the Bondi news is nonvanishing at
all angles at any time, such additional solutions do not exist
in the nonlinear theory. Thus, for d ¼ 4 our ansatz Eq. (58)
is also equivalent to smoothness at Iþ for spacetimes in
which NAB is nonvanishing everywhere on some cross
section.
The nonlinear Einstein equation is far more complex

than the linearized Einstein equation. However, since the
slowest fall-off of hab is 1=rd=2−1, the nonlinear terms first
enter at order ð1=rd=2−1Þ2 ¼ 1=rd−2. Consequently, for
n < d − 3, the recursion relations for the full Einstein
equation are identical to Eqs. (61)–(66) in the linearized
case. For n ¼ d − 3, the equations are modified by terms of

the form ð∂uh
ðd=2−1Þ
ab Þ2 and hðd=2−1Þab ∂2

uh
ðd=2−1Þ
cd , which are the

only types of nonlinear terms that can contribute at this
order. At higher orders, the nonlinear correction terms are
far more complicated, but they always involve adding terms
arising from metric components of slower fall-off.
We define the nonlinear part of the Einstein tensor Gab as

Gab ≡Gab − δGab ð100Þ

where Gab is the Einstein tensor and δGab is the linearized
Einstein tensor defined in Eq. (56). Our ansatz then implies
an asymptotic expansion of Gab in integer powers of 1=r in
even dimensions and both integer and half-integer powers
in odd dimensions. In both even and odd dimensions, the
expansion starts at order 1=rd−2. In all dimensions,
Einstein’s equations give rise to the same set of recursion
relations as in the linearized case with the replacement

8πTðnÞ
ab → 8πTðnÞ

ab − GðnÞ
ab for n ≥ d − 2 ð101Þ

where n is an integer in even dimensions and takes on both
integer and half integer values in odd dimensions. By a

direct calculation, we find that the leading order contribu-
tion to Gab is given by

Gðd−2Þ
ab ¼ −

1

4
NcdNcdKaKb þ

1

2
∂uðqcdqefcceNdfKaKb

þ qcdcrcNdðaKbÞ þ crrNabÞ ð102Þ

where cab ≡ hðd=2−1Þab and Nab is the Bondi news tensor
as defined in Eq. (76). In writing Eq. (102), we have
used the fact that, as in the linearized case [see Eq. (84)],

the recursion relations imply that χðd=2−1Þa ¼ 0, where
χa ≡ ∂bh̄ab.
We wish to determine whether the metric gab can be put

in the harmonic gauge while maintaining our 1=r expan-
sion ansatz. To put the metric in harmonic gauge, we must
find coordinate functions xμ such that

□gxμ ¼ 0 ð103Þ

where □g ≡ gab∇a∇b and ∇a is the derivative operator
compatible with gab. Let

xμ ¼ x
∘μ þ ξμ ð104Þ

where x
∘μ are global inertial coordinates of ηab, satisfying

∂αx
∘μ ¼ δα

μ. Applying □g to Eq. (104) we obtain

□ξμ ¼ −
1ffiffiffiffiffiffi−gp ∂αð

ffiffiffiffiffiffi
−g

p
gαμÞ −Hαβ∂α∂βξ

μ

−
1ffiffiffiffiffiffi−gp ∂αð

ffiffiffiffiffiffi
−g

p
gαβÞ∂βξ

μ ð105Þ

where, again, □≡ ηab∂a∂b, and

Hαβ ≡ gαβ − ηαβ: ð106Þ

Here we have used the fact that, for any function f,

□gf ¼ 1ffiffiffiffiffiffi−gp ∂αð
ffiffiffiffiffiffi
−g

p
gαβ∂βfÞ: ð107Þ

In parallel with the analysis of imposition of the Lorenz
gauge condition in linearized gravity, we will be able to put
the metric in harmonic gauge in nonlinear gravity while
maintaining our expansion ansatz if we can solve Eq. (105)
via the ansatz

ξμ ∼
X∞

n¼d=2−2

1

rn
ξμðnÞðu; xAÞ; ð108Þ

with ∂uξ
μðd=2−2Þ ¼ 0. In odd dimensions, the sum in

Eq. (108) is allowed to run over integer values (starting
at d − 3) as well as half-integer values. For d ¼ 4, in the
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case of a stationary spacetime with Killing field ∂=∂u, we
may also add a term cð∂=∂uÞμ ln r to ξμ, where c is a
constant.
To analyze existence of solutions to Eq. (105) of the form

Eq. (108), we note that Eq. (105) is of the form

□ξμ ¼ χμ þ Lμðh; ξÞ ð109Þ

where, again, χμ ≡ ∂αh̄αμ, and where Lμ is composed of
terms that are (i) quadratic and higher order in hμν
or (ii) linear in ξμ and linear or higher order in hμν. The
leading order contribution of Lμ to this equation arises at
order 1=rd−2.
Consider, first, the case d > 4. As noted previously, the

nonlinear contributions to Einstein’s equation enter at order
1=rd−2, so the recursion relations derived for the linearized
Einstein’s equation given by Eqs. (61)–(66) are equivalent
to the recursion relations for the full, nonlinear Einstein’s
equation for n ≤ d − 3. As already noted above, these

equations imply that χðd=2−1Þa must vanish. It also follows

that χðd=2Þa is stationary. It then follows that we can solve
Eq. (109) at order 1=rd=2 by a choice of ξμðd=2−2Þ that is
stationary. We may then specify ξðd=2−1Þμ arbitrarily and
recursively solve Eq. (105) with the ansatz Eq. (108) for all
of the faster fall-off terms, in the same manner as in
Proposition 1. The source Lμ plays an innocuous role in this
procedure since it is obtained from ξμ at orders that have
already been solved for and thus is a “known” source term.

For the case d ¼ 4, we still have that χð1Þa ¼ 0. In

addition, since ∂uh
ð1Þ
rA ¼ 0 [as follows from Eqs. (84)

and (70)], we may perform a gauge transformation of

the form Eq. (75) to set hð1ÞrA ¼ 0. We then find that χð2Þr and

χð2ÞA are stationary. However, χð2Þu now satisfies

∂uχ
ð2Þ
u ¼ 8πTð2Þ

uu − Gð2Þ
uu : ð110Þ

Using Eq. (102) together with hð1ÞrA ¼ 0, we obtain

Gð2Þ
uu ¼ −

1

4
NCDNCD þ 1

2
∂uðCCDNCDÞ ð111Þ

where CAB is the trace free part of the projection

of hð1Þab onto the sphere. However, Eq. (109) implies the
u-component of the leading order term ξμð0Þ satisfies

D2ξð0Þu ¼ χð2Þu þ NABCAB ð112Þ

and hence

D2ð∂uξ
ð0Þ
u Þ ¼ 8πTð2Þ

uu þ 1

4
NCDNCD þ 1

2
∂uðNABCABÞ:

ð113Þ

Since Tð2Þ
uu ≥ 0, if we assume that NAB vanishes as

u → �∞, it is easily seen that we cannot have ∂uξ
ð0Þ
u ¼

0 at all u as required unless both Tð2Þ
uu and NAB vanish

identically. Thus, we cannot impose the harmonic gauge

condition within our ansatz10 if Tð2Þ
uu ≠ 0 orNAB ≠ 0. On the

other hand, if the spacetime is stationary—i.e., if it admits a

timelike Killing field ta—then Tð2Þ
uu ¼ 0 and NAB ¼ 0.

Using the fact that the equations for ξð0Þr and ξð0ÞA contain
only “source terms” that are stationary—it can be seen that
we can solve Eq. (112) by choosing ξμð0Þ to be stationary
[provided that we again add the term cgabtb lnðrÞ to our
ansatz to solve the l ¼ 0 part of Eq. (112)]. The recursion
relations for all faster fall-off can then be solved as in the
case d > 4 so the harmonic gauge condition can be
imposed.11

We summarize these results in the following proposition:
Proposition 5. For all d > 4, any gab ¼ ηab þ hab that

satisfies our ansatz Eq. (58) (for d even) or our ansatz
Eq. (59) (for d odd) can be put in the harmonic gauge in
such a way that it continues to satisfy our ansatz. In d ¼ 4
the harmonic gauge condition cannot be imposed within the

ansatz if Tð2Þ
uu ≠ 0 or NAB ≠ 0.

Remark 7. In linearized gravity, the restriction Tð2Þ
uu ¼ 0

in d ¼ 4 allows all vacuum solutions as well as all solutions
with a stress-energy source that has vanishing flux at null
infinity. Thus, the Lorenz gauge can be imposed in
linearized gravity within our ansatz in a wide variety of
circumstances of interest. However, in nonlinear general
relativity, the harmonic gauge cannot be imposed within

our ansatz in d ¼ 4 if—in addition to Tð2Þ
uu ≠ 0—the Bondi

news is also nonvanishing, i.e., in d ¼ 4 the harmonic
gauge cannot be imposed within our ansatz in any
spacetimewith gravitational radiation. In particular, for d ¼
4 we cannot use the harmonic gauge when considering the
memory effect in the next section, so we will have to treat
the case d ¼ 4 separately.
When gab is in the harmonic gauge, it satisfies

GH
ab ¼ 8πTab ð114Þ

Hb ≡ 1ffiffiffiffiffiffi−gp ∂b½
ffiffiffiffiffiffi
−g

p
gab� ¼ 0 ð115Þ

where GH
ab is the Einstein tensor in the harmonic gauge

10We could impose the harmonic gauge condition for
nonvanishing Tð2Þ

uu or NAB for d ¼ 4 if we modified our
ansatz to allow additional series involving terms of the form
ðln rÞk=rn [22].

11If the spacetime is nonstationary and Tð2Þ
uu ¼ 0 ¼ NAB then

we do not believe that the metric can be put in harmonic gauge
within our ansatz, but we have not proven this.
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GH
ab ¼ Gab þ gcða∂bÞHc −

1

2
gab∂cHc: ð116Þ

We now turn to the issue of whether these equations can be
solved recursively within our ansatz. We restrict consid-
eration to d > 4, since, as just remarked above, the
harmonic gauge can be imposed only in trivial cases when
d ¼ 4.
Taking the divergence of Eq. (116) with respect to ∇a

and using the Bianchi identity we find that when
GH

ab ¼ 8πTab, we have

□Ha ¼ Waðh;HÞ ð117Þ

where Wa is linear in Ha and its first derivative and is
quadratic and higher order in hab and its first derivative.

It follows that if Hðd=2−1Þ
a ¼ 0 for all u and HðnÞ

a ¼ 0 for
n > d=2 − 1 at some u ¼ u0, then Ha ¼ 0. Namely, if we

inductively assume that HðnÞ
a ¼ 0 for all n ≤ k, then the

source term arising from Wa that appears in the recursion

equation for Hðkþ1Þ
a will vanish. It then follows from

the same arguments as used to prove Proposition 1

that Hðkþ1Þ
a ¼ 0.

It is convenient to replace Ha by

τ0a ¼ Kb½−2GðHÞ
ab þ 16πTab� þ 2Kb∂bHa þ ðd − 2ÞHa=r

ð118Þ

where the form of τ0a has been chosen so that, for

n < d − 3, τ0ðnþ2Þ
a can be expressed purely in terms of

hðnÞab , with no u-derivatives of hab appearing. When

Eq. (114) holds, the vanishing of τ0ðnþ1Þ
a implies the

vanishing of HðnÞ
a . Thus we obtain a solution to

Eqs. (114) and (115) if we can solve Eq. (114) in such
a way that we also obtain τ0a ¼ 0.
The recursion relations for Eq. (114) for n < d − 3 are

identical to Eqs. (61)–(66) with χa ¼ 0. In addition, we

have τ0ðnþ2Þ
a ¼ τðnþ2Þ

a for n < d − 3, where τa is the
corresponding quantity in linearized gravity given by
Eq. (92). Thus, for n < d − 3, the recursion relations
and constraints are identical to the linearized case. It
follows that if one specifies data at radiative order, one

may solve the recursion relations for hðnÞab for all n < d − 3

exactly as in the linearized case. The recursion relations and

constraints needed to solve for hðnÞab for n ≥ d − 3 receive
nonlinear corrections relative to the linearized equations.
However, the nonlinear terms entering the equations will be
of the form of products of metric perturbations arising at
lower orders. Consequently, the nonlinear terms can be
effectively treated as source terms in our recursive analysis

and they pose no difficulties in solving for hðnÞab for
n ≥ d − 3. We thereby obtain the following theorem:

Theorem 3. Suppose d > 4 so that, by Proposition 5,
the harmonic gauge condition can be imposed. Then a
unique solution to the recursion relations and constraints
for the Einstein’s equation in the harmonic gauge is
obtained by the following specification of data: Specify

hðd=2−1Þab ðu; xAÞ subject to the constraints τ0ðd=2þ1Þ
a ¼ 0

(which are identical to Eqs. (93)–(95) at n ¼ d=2 − 1).

Specify hðnÞab ðu ¼ u0; xAÞ for all n > d=2 − 1 subject to the

constraints τ0ðnþ2Þ
a ¼ 0 at u ¼ u0. In odd dimensions, also

specify h̃ðpÞab ðu ¼ u0; xAÞ for all p ≥ d − 3 subject to the

constraint τ0ðpþ2Þ
a ¼ 0 at u ¼ u0.

Note that there is no analog of the “Coulombic order data
specification”method for getting a solution of the recursion
relations in nonlinear general relativity, since the Bondi
news enters the equations for the metric at Coulombic
order. Thus, we need to know the solution at radiative order
before we can determine whether hðd−3Þab ðu; xAÞ is a solution
to the recursion relations and constraints.
Finally, it is worth noting that the analog of Eq. (96) in

nonlinear general relativity for d > 4 is

∂uM ¼ −AdT
ðd−2Þ
uu jl¼0 −

1

32π
AdNABNABjl¼0 ð119Þ

where in even dimensions

M ¼ 1

16π
Ad½h̄ðd−3Þur þ ðd − 4Þh̄ðd−3Þuu − CABNAB�jl¼0

d even ðin harmonic gaugeÞ; ð120Þ

and in odd dimensions

M ¼ 1

16π
Ad½ ¯̃hðd−3Þur þ ðd − 4Þ ¯̃hðd−3Þuu − CABNAB�jl¼0

d odd ðin harmonic gaugeÞ ð121Þ
where Ad is the area of a unit ðd − 2Þ-sphere given by
Eq. (53). By the same arguments as given in the linearized
case, M is the Bondi mass. Again, the above formulas for
M apply only in harmonic gauge and thus cannot be

applied when d ¼ 4 if Tð2Þ
uu ≠ 0 or NAB ≠ 0. A gauge

invariant expression for the Bondi mass in all even
dimensions d ≥ 4 was given in [5]. Positivity of the
Bondi mass in even dimensions was proven in [20].

III. THE MEMORY EFFECT

We now turn our attention to the analysis of the memory
effect in nonlinear general relativity in d ≥ 4 dimensions.
In physical terms, the memory effect can be described as
the permanent relative displacement resulting from the
passage of a “burst of gravitational radiation” of a system of
test particles that are initially at rest. The relative displace-
ment of test particles is governed by the geodesic deviation
equation
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ðva∇aÞ2ξb ¼ −Racd
bvavdξc ð122Þ

where va is the tangent the worldline of the test particle, ξa

is the deviation vector and Rabcd is the Riemann tensor. In
our case, we will be interested in test particles near future
null infinity and wish to determine the leading order
memory effect in a 1=r expansion.
We note that there are closely analogous “memory

effects” for electromagnetic and scalar fields [23–25].
For the electromagnetic field or the scalar field, the
memory effect would correspond to a charged particle
with electric or scalar charge, originally at rest, getting a
momentum kick after the passage of a burst of electro-
magnetic or scalar radiation. However, since we now
have fully developed the machinery for the gravitational
case, we will bypass the analysis of these other cases
and go directly to the analysis of the memory effect in
general relativity.

A. Stationarity conditions at early
and late retarded times

Our first task in analyzing the memory effect is to
define more precisely what we mean by a “burst of
gravitational radiation,” i.e., to specify the stationarity
conditions that we will assume hold at early and late
retarded times.
We wish to consider spacetimes where there is signifi-

cant gravitational radiation near future null infinity only
over some finite range of retarded time. We envision this
radiation as arising from “localized event” in the interior of
the spacetime involving the interaction of matter and/or
black holes and/or gravitational waves—although our
entire analysis will be done near future null infinity and
will not make any assumptions about the source of the
gravitational radiation. Thus, we wish to consider a
situation where the metric is (nearly) stationary at early
retarded times and again becomes (nearly) stationary at late
retarded times.
However, it would be much too strong a condition to

demand that the metric becomes stationary at early and late
retarded times at all orders in 1=r. This is because we wish
to allow for the presence of bodies of matter (or black
holes) that move inertially from/towards infinity at early/
late retarded times. To see the implications of this, we note
that a static multipole of angular order l will decay as
r → ∞ at fixed global inertial time t as 1=rlþd−3. However,
for inertially moving bodies, the lth multipole moment will
grow with time as tl. Thus, near future null infinity, there
will be contributions from the lth multipole solution that
result in hμν behaving as12

hμν ∼
tl

rlþd−3 ¼
ðuþ rÞl
rlþd−3 ¼ 1

rd−3
þ lu
rd−2

þ � � � ð123Þ

Thus, the leading order behavior of hμν is Coulombic—
but note that hμν is not spherically symmetric near null
infinity at Coulombic order. Although hμν is stationary at
Coulombic order, it is, in general, nonstationary for l ≥ 1

at order 1=rd−2. This nonstationarity can be removed for
l ¼ 1 by Lorentz boosting to a frame where the center of
mass of the matter is at rest, but hμν will, in general, be
genuinely nonstationary at order 1=rd−2 for l ≥ 2.
The late time behavior near null infinity in curved

spacetime with matter (or black holes) inertially moving
to infinity along timelike trajectories cannot be expected to
satisfy a stronger stationarity condition than would hold for
inertially moving bodies in Minkowski spacetime. Indeed,
as we shall see in the next subsection, if we were to require
stationarity at order 1=rd−2 at both late and early retarded
times, we would entirely exclude the “ordinary memory”
effect. On the other hand, we do not believe that we would
exclude any interesting phenomena by assuming that the
metric becomes stationary at Coulombic order at early and
late retarded times.
We will therefore adopt as our stationarity condition that,

in some gauge within our ansatz, the metric becomes
stationary at Coulombic order and slower fall-off at early
and late retarded times. More precisely, in even dimensions
we require that there exist a gauge in which

∂uh
ðnÞ
μν → 0 as u → �∞ for n ≤ d − 3; ð124Þ

and in odd dimensions we require that there exist a gauge in
which

∂uh
ðnÞ
μν → 0 as u → �∞ for n < d − 3 ð125Þ

∂uh̃
ðd−3Þ
μν → 0 as u → �∞: ð126Þ

It follows immediately from these conditions that in the
stationary eras, the nonlinear terms in Einstein’s equation
are Oð1=r2ðd−2ÞÞ and will not enter the equations to the
orders to which we will work. In addition, stationarity at
Coulombic order implies that the Bondi mass (which can
be defined in any gauge) is time independent, which

implies that Tðd−2Þ
uu jl¼0 vanish in the stationary eras.

However, positivity of Tðd−2Þ
uu then implies that Tðd−2Þ

uu ¼0
and the dominant energy condition then implies that

Tðd−2Þ
μν ¼ 0. We can then apply Remark 5 to conclude that,

for d > 4, without loss of generality, the fall-off conditions
Eq. (124) or Eqs. (125) and (126) can be assumed to hold in
a harmonic gauge, as we shall assume in the following. It
then follows from Corollary 1 that in even dimensions we

12The lth multipole solution with leading order time depend-
ence Eq. (123) will also have terms that behave as tl−2k=rl−2kþd−3

with k integer and 2k ≤ l, which also will contribute to the field at
future null infinity in the same manner as indicated in Eq. (123).
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have hðnÞμν ¼ 0 for all n < d − 3, and in odd dimensions,

hðnÞμν ¼ 0 for all n < d − 2.
Finally, we note Madler andWinicour [26] have imposed

a “weak stationarity condition” in their treatment of the
memory effect in linearized gravity in 4 dimensions. Their
condition effectively requires the metric to be stationary at
order 1=r2, i.e., one order faster fall-off than Coulombic.
Thus, their condition is stronger than ours. As we shall see
in the next subsection, this stronger condition rules out all
“ordinary memory” effects.

B. The memory tensor and its properties
at Coulombic order and slower fall-off

As discussed in the previous subsection, we wish to
consider a spacetime where the metric near future null
infinity is stationary at Coulombic order, 1=rd−3, at early
and late retarded times. We consider an array of test
particles near null infinity whose tangents va initially point
in the ð∂=∂uÞa direction. We wish to compute the memory
effect for such test particles at all orders n ≤ d − 3. Since
the metric differs from the Minkowski metric only at order
1=rd=2−1, the geodesic determined by va will differ from the
corresponding integral curve of ð∂=∂uÞa beginning only at
order 1=rd=2−1, and u will differ from an affine para-
metrization also beginning only at this order. Since the
curvature also falls off as rd=2−1, it can be seen that the
deviations of va from ð∂=∂uÞa in Eq. (122) can affect ξμ

only at order rd−2 and faster fall-off. Since we consider only
the memory effect at orders n ≤ d − 3, we may therefore
replace va in Eq. (122) with ð∂=∂uÞa, i.e., we may replace
Eq. (122) with

∂2

∂u2 ξ
μ ¼ −Ruνu

μξν: ð127Þ

Since, by our ansatz, Tab ¼ Oð1=rd−2Þ, it follows immedi-
ately from Einstein’s equation that the Ricci tensor vanishes
at Coulombic order and slower fall-off. Consequently, we
may replace the Riemann tensor in Eq. (127) with the Weyl
tensor. We also may replace ξν on the right side of Eq. (127)
with its initial value, ξν0, since ξν − ξν0 ¼ Oð1=rd=2−1Þ, so
this difference cannot contribute to the right side at
Coulombic and slower fall-off. Thus, at Coulombic and
slower fall-off, we have

∂2

∂u2 ξ
μ ¼ −Cuνu

μξν0: ð128Þ

Now suppose that the metric is stationary at Coulombic
order and slower fall-off for u → �∞, as discussed in the
previous subsection. Integrating Eq. (128) twice, we obtain

ξðnÞμju¼∞
u¼−∞ ¼ ΔðnÞμ

νξ
ν
0 for n ≤ d − 3 ð129Þ

where

ΔðnÞ
μν ≡ −

Z
∞

−∞
du0

Z
u0

−∞
du00CðnÞ

uνuμ: ð130Þ

We refer to ΔðnÞ
μν as the nth order memory tensor. It

characterizes the memory effect at order 1=rn. We note
that the Weyl tensor at these orders is equivalent to the
linearized Weyl tensor and is gauge invariant. Therefore,
the memory effect at these orders is manifestly gauge
invariant.
It follows immediately from its definition, Eq. (130), that

for all n ≤ d − 3 the memory tensor, ΔðnÞ
μν , is symmetric,

trace-free, and has vanishing u-components,

ΔðnÞ
μν ¼ ΔðnÞ

νμ ; ΔðnÞμ
μ ¼ 0; ΔðnÞ

uν ¼ 0 for all n ≤ d − 3:

ð131Þ

Obviously, from its definition, ΔðnÞ
μν does not depend on u,

so we also have ∂uΔ
ðnÞ
μν ¼ 0.

Additional properties of ΔðnÞ
μν follow from the Bianchi

identity. We remind the reader that the uncontracted
Bianchi identity is

∇½aRbc�de ¼ 0: ð132Þ

Contracting over a and d yields

gad∇aRbcde ¼ 2∇½bRc�e: ð133Þ

Applying gaf∇f to Eq. (132) we obtain

□gRbcde þ gfa∇f∇bRcade þ gfa∇f∇cRabde ¼ 0: ð134Þ

Commuting the derivatives in the second and third terms of
Eq. (134) and using Eq. (133) we obtain

□gRbcde ¼ 4∇½b∇j½dRe�jc� − 2gafgmnRf½bc�mRnade

− 2gmnRm½bRc�nde − 2gafgmnRdmf½bRc�ane

− 2gafgmnRmef½bRc�adn: ð135Þ

We also remind the reader that the Riemann tensor is
related to the Weyl tensor by

Rabcd ¼ Cabcd þ
4

d− 2
g½aj½cRd�jb� −

2

ðd− 1Þðd− 2ÞRga½cgd�b:

ð136Þ

In linearized gravity with Rab ¼ 0, the above relations
imply

∂aCabcd ¼ 0 ðlinearized gravityÞ ð137Þ
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and

□Cabcd ¼ 0 ðlinearized gravityÞ: ð138Þ

These relations, of course, do not hold in nonlinear general
relativity, and they also do not hold in linearized gravity
when Rab ≠ 0. However, let

Eμν ≡ Cuνuμ ð139Þ

so that Eμν is the “electric part” of the Weyl tensor. Define
T μ by

T μ ¼ Kν□Eμν − 2Kν∂ν∂αEαμ − ðd − 2Þ∂αEαμ=r ð140Þ

where Ka ¼ ð∂=∂rÞa. In linearized gravity with Rab ¼ 0,
we have T μ ¼ 0. Remarkably, we find13 that in nonlinear
general relativity with our ansatz for hab and Tab, we have

T ðnþ2Þ
μ ¼ 0 for all n ≤ d − 3. Now, the formula Eq. (140)

defining T μ is exactly the same as the formula Eq. (92)

defining τðnþ2Þ
μ under the substitution hμν → Eμν and

Tμν → 0. Thus, Eμν satisfies Eqs. (94) and (95) with
vanishing right side for all n ≤ d − 3. [Equation (93) is
trivial since the u-components of Eμν vanish.] Integrating
this equation twice with respect to u, we find that for

n ≤ d − 3, ΔðnÞ
μν satisfies

½D2 − ðn − dþ 1Þðn − dþ 2Þ�ΔðnÞ
rr þ ð2n − dÞDAΔðnÞ

Ar ¼ 0

for n ≤ d − 3 ð141Þ

½D2 − ðn − dþ 3Þðn − dþ 2Þ þ ð2n − dþ 1Þ�ΔðnÞ
rA

þ 2DAΔ
ðnÞ
rr þ ð2n − dþ 2ÞDBΔðnÞ

AB ¼ 0 for n ≤ d − 3

ð142Þ

where we used the fact that the trace of Δμν vanishes to
relate Δrr to qABΔAB. We note that Eqs. (141) and (142)
have nothing to do with the harmonic gauge condition and
hold for d ¼ 4 as well as d > 4.
These relations will be used in Sec. III D below. They

also have the following important consequence. The spheri-
cally symmetric (l ¼ 0) part of Δμν automatically has
ΔrA ¼ 0 and ΔAB ∝ qAB, since no vector on the sphere can
be spherically symmetric and qAB is the only tensor of this
index type that is spherically symmetric. Consequently,
Eq. (141) implies that the spherically symmetric part of

ΔðnÞ
μν vanishes for n ≤ d − 3. Similar arguments also show

that Eqs. (141) and (142) imply that the l ¼ 1 part of ΔðnÞ
μν

vanishes for all n ≤ d − 3. This implies that

½ΔðnÞ
μν �jl¼0;1 ¼ 0 for all n ≤ d − 3: ð143Þ

In addition, in d ¼ 4 dimensions, Eqs. (141) and (142)
imply

Δð1Þ
rν ¼ 0 ð144Þ

and, similarly, in d ¼ 6 dimensions, we obtain

Δð3Þ
rr ¼ 0: ð145Þ

However, in higher dimensions, all components of the
Coulombic order memory tensor (other than u components
and the trace) may be nonvanishing. These results in d ¼ 4
and d ¼ 6 dimensions also follow directly from the peeling
properties of the Weyl tensor in these dimensions [27].

C. Evaluation of the memory tensor at
Coulombic order and slower fall-off

We now evaluate ΔðnÞ
μν for all n ≤ d − 3. We separately

consider the cases (1) d > 4 and even, (2) d odd, and
(3) d ¼ 4. For d > 4, we impose the harmonic gauge
condition to greatly simplify the analysis.

1. d even, d > 4

For n ≤ d − 3, the relevant components of the nth order
Weyl tensor take the form

CðnÞ
uaub ¼ αðnÞ cdab hðn−2Þcd þ βðnÞ cdab ∂uh

ðn−1Þ
cd þ γðnÞ cdab ∂2

uh
ðnÞ
cd

ð146Þ

Here αðnÞ cdab ; βðnÞ cdab ; γðnÞ cdab are given by

αðnÞ cdab ¼ −
1

2
ðn − 1Þðn − 2Þrarbncnd þ ðn − 2ÞncndrðaDbÞ

−
1

2
ncndDaDb þ

1

2
ðn − 2Þqabncnd; ð147Þ

βðnÞ cdab ¼ −ðn − 1ÞrarbnðcKdÞ þ nðcKdÞrðaDbÞ

− nrðanðcqbÞdÞ þ ncqðbdDaÞ

þ 1

2
qabð2nðcKdÞ − ncndÞ; ð148Þ

γðnÞ cdab ¼ −
1

2
rarbKcKd − rðaKðcqbÞdÞ −

1

2
qacqbd ð149Þ

where Ka ¼ ð∂=∂rÞa, na ¼ ð∂=∂uÞa and ra ¼ ðdrÞa.
We now use the recursion relations to eliminate hðn−2Þab

and hðn−1Þab in favor of hðnÞab in Eq. (146). We consider, first,
the case n < d − 3; we will treat the case n ¼ d − 3 after
we have completed the analysis for n < d − 3.

13The peeling properties of the Weyl tensor [27] (which are a
consequence of our ansatz) were used to show this.
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For n < d − 3, the relevant recursion relations do not
contain any nonlinear terms in hab and are thus given by
Eqs. (61)–(70) with χa ¼ 0. In addition, the stress-energy
tensor does not appear in any equations at the orders
relevant to this analysis. It is clear from the arguments that

led to Theorem 2 that it must be possible to eliminate hðn−2Þab

and hðn−1Þab in favor of hðnÞab , but it is useful to have an explicit
construction, which we now give.
First, we can directly invert the angular operator appear-

ing in Eq. (61) to solve for h̄ðn−1Þuu in terms of h̄ðnÞuu .
Explicitly, we have

h̄ðn−1Þuu ¼ −ð2n− dþ 2Þ½D2 þ ðn− 1Þðn− dþ 2Þ�−1∂uh̄
ðnÞ
uu :

ð150Þ

Note that h̄ðnÞuu appears in this solution only in the form

∂uh̄
ðnÞ
uu . We then iterate this procedure to obtain h̄ðn−2Þuu in

terms of h̄ðn−1Þuu and thence h̄ðnÞuu , thereby expressing h̄
ðn−2Þ
uu in

terms of inverse angular operators applied to ∂2
uh̄

ðnÞ
uu .

Next, we eliminate DAh̄ðn−1ÞAu using Eq. (68) (with

χðnÞu ¼ 0) and substitute into Eq. (62). The resulting

equation can then be solved for h̄ðn−1Þur in terms of ∂uh̄
ðnÞ
ur

and ∂uh̄
ðnÞ
uu . Iterating, we obtain h̄ðn−2Þur in terms of ∂2

uh̄
ðnÞ
ur

and ∂2
uh̄

ðnÞ
uu . We then similarly invert Eq. (63) to solve for

h̄ðn−1ÞuA and then h̄ðn−2ÞuA .
Thus far, we have shown how to write the uu, ur, and uA

components of h̄ab at orders n − 2 and n − 1 in terms of
these components at nth order. To proceed further, we note
that h̄≡ h̄aa ¼ −2h̄ur þ h̄rr þ qABh̄AB satisfies the ordinary
scalar wave equation. Hence, we can recursively solve for
h̄ðn−1Þ and h̄ðn−2Þ in terms of ∂uh̄ðnÞ and ∂2

uh̄ðnÞ respectively.
Then one can use Eq. (64) and Eq. (69) to obtain

½D2 þ ðn − dþ 1Þðn − 2Þ�h̄ðn−1Þrr ¼ 2ðd − 2nþ 2Þh̄ðn−1Þur

þ 2h̄ðn−1Þ − ð2n − d − 2Þ∂uh̄
ðnÞ
rr : ð151Þ

This equation can be used to solve for h̄ðn−1Þrr and h̄ðn−2Þrr in
terms of nth order quantities. We can then use Eq. (70) and

Eq. (65) to solve for h̄ðn−1ÞrA and h̄ðn−2ÞrA in terms of nth order

quantities. Finally, we solve (66) to obtain h̄ðn−1ÞAB and h̄ðn−2ÞAB
in terms of nth order quantities.
The above results show explicitly that we can write

hðn−2Þμν as an operator (composed of inverses of angular

operators and angular derivatives) applied to ∂2
uh

ðnÞ
μν .

Similarly, we can write hðn−1Þμν as such an operator applied

to ∂uh
ðnÞ
μν . Substituting this result in Eq. (146), we see

that for all n < d − 3, the nth order Weyl tensor takes
the form

CðnÞ
uaub ¼ OðnÞ cd

ab ∂2
uh̄

ðnÞ
cd ð152Þ

where the operator O is constructed of inverses of angular
operators and angular derivatives. It follows immediately
from Eq. (130) that for n < d − 3 the memory tensor takes
the form

ΔðnÞ
μν ¼ PðnÞ

μν
ρσ½Δh̄ðnÞρσ � for n < d − 3 ð153Þ

where

Δh̄ðnÞμν ≡ h̄ðnÞμν ðu → ∞Þ − h̄ðnÞμν ðu → −∞Þ ð154Þ

and PðnÞ
μν

ρσ is a linear operator constructed from inverses
of angular operators and angular derivatives. However, as

already remarked below Eq. (126), we have hðnÞμν ¼ 0 for all
n < d − 3 when the metric is stationary at Coulombic
order. Thus, the memory tensor vanishes at slower than
Coulombic fall-off

ΔðnÞ
μν ¼ 0 for n < d − 3: ð155Þ

In particular, for d > 4 the memory tensor vanishes at
radiative order [28].
Now consider the case n ¼ d − 3. The calculation Δðd−3Þ

μν

differs from the above calculation for n < d − 3 only in that

(i) Δh̄ðd−3Þμν need not vanish and (ii) the recursion relations

Eqs. (61)–(66) used to solve for hðd−4Þμν will now contain the

additional terms Tðd−2Þ
μν and Gðd−2Þ

μν [see Eq. (101)]. With
regard to these additional terms the only nonvanishing

component of Tðd−2Þ
μν is Tðd−2Þ

uu . Similarly, it can be seen from

Eq. (102) that all of the components of Gðd−2Þ
μν except Gðd−2Þ

uu

are u-derivatives of quantities that vanish in stationary eras.
It is not difficult to show that the total u-derivative terms do

not contribute to Δðd−3Þ
μν under our stationarity conditions.

Thus, the terms involving Tðd−2Þ
μν and Gðd−2Þ

μν give rise to
additional terms in the memory tensor that are proportional
to the integral of the total flux, F, of matter and gravita-
tional energy to null infinity

F≡ Tðd−2Þ
uu þ 1

32π
NABNAB: ð156Þ

Carrying through the calculation of Δðd−3Þ
μν in the manner

described above, we obtain the final formula

Δðd−3Þ
μν ¼ Pμν½Δh̄ðd−3Þρσ �l>1 þ

Z
∞

−∞
duLμν½F�l>1 ð157Þ

where
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Pμν½Δh̄ðd−3Þρσ � ¼ 1

2
rμrν

�
ðd − 3Þðd − 4Þ2ðd − 6ÞD−2

5 D−2
4 Δh̄ðd−3Þuu − 2ðd − 4Þðd − 6ÞD−2

5 Δh̄ðd−3Þru

þ ðd − 4Þ2
d − 2

ððd − 5Þðd − 6ÞD−2
5 − 2ÞD−2

4 Δh̄ðd−3Þ þ Δh̄ðd−3Þrr

�

− ðd − 4Þ2ðd − 6ÞrðμDνÞD−2
5 D−2

4 Δh̄ðd−3Þuu − 2ðd − 3Þðd − 4ÞD−2
3 rðμDνÞD−2

4 Δh̄ðd−3Þuu

− 2ðd − 3Þðd − 4Þðd − 6ÞD−2
3 rðμDνÞD−2

5 D−2
4 Δh̄ðd−3Þuu − ðd − 3Þðd − 4ÞrðμqνÞρΔh̄ðd−3Þρu

−
d − 4

d − 2
rðμDνÞððd − 5Þðd − 6ÞD−2

5 − 1ÞD−2
4 Δh̄ðd−3Þ þ ðd − 6ÞrðμDνÞD−2

5 Δh̄ðd−3Þru

þ 2ðd − 6Þðd − 3ÞD−2
3 rðμDνÞD−2

5 Δh̄ðd−3Þru þ rðμqνÞρΔh̄
ðd−3Þ
ρr þ 1

2
ðd − 4Þð−ðd − 6ÞDμDνD−2

5

þ 4DðμD−2
3 DνÞD−2

4 − 4ðd − 6ÞDðμD−2
3 DνÞD−2

5 þ qμν þ ðd − 6Þðd − 7ÞqμνD−2
5 ÞD−2

4 Δh̄ðd−3Þuu

þ 1

2

d − 4

d − 2
ð−ðd − 6ÞDμDνD−2

5 − qμν þ ðd − 5Þðd − 6ÞqμνD−2
5 ÞD−2

4 Δh̄ðd−3Þ

−
�
2ðd − 6ÞDðμD−2

3 DνÞD−2
5 − ðd − 6ÞqμνD−2

5 −
1

d − 2
qμν

�
Δh̄ðd−3Þru −

qμν
d − 2

Δh̄ðd−3Þrr

þ ðd − 4ÞDðμqνÞρΔh̄
ðd−3Þ
ρu þ 1

2

�
qμρqνσ −

1

d − 2
qμνqρσ

�
Δh̄ðd−3Þρσ ð158Þ

and

Lμν ¼ 8π½rμrνðd − 3Þðd − 4Þðd − 6ÞD−2
5 D−2

4 − 2ððd − 4Þðd − 6ÞrðμDνÞD−2
5 − 2ðd − 3ÞD−2

3 rðμDνÞ
− 2ðd − 3Þðd − 6ÞD−2

3 rðμDνÞD−2
5 ÞD−2

4 þ ð−ðd − 6ÞDμDνD−2
5 þ 4DðμD−2

3 DνÞD−2
4

− 4ðd − 6ÞDðμD−2
3 DνÞD−2

5 þ qμν þ ðd − 6Þðd − 7ÞqμνD−2
5 ÞD−2

4 �F: ð159Þ

Here, in order to write these equations in a more compact
form, we have introduced the notation

D2
3 ≡ ½D2 − ðd − 3Þ� ð160Þ

D2
4 ≡ ½D2 − ðd − 4Þ� ð161Þ

D2
5 ≡ ½D2 − 2ðd − 5Þ�: ð162Þ

The notation ½·�l>1 in Eq. (157) means that only the
l > 1 part of the quantity is to be taken. The memory

tensor Δðd−3Þ
μν has only l > 1 spherical harmonic parts

[see Eq. (143)]. However, Δh̄ðd−3Þρσ and F have l ¼ 0, 1

parts. The l ¼ 0, 1 parts of Δh̄ðd−3Þρσ and F should be
excluded from Eqs. (158) and (159) for the computation of
ordinary and null memory.
Equation (157) naturally splits the memory tensor into a

“null memory” piece associated with the flux F of stress-
energy and/or Bondi news to null infinity, and an “ordinary
memory” piece associated with the change in the metric in
harmonic gauge at Coulombic order. The ordinary memory

piece can be rewritten in terms of ΔEðd−1Þ
μν ¼ ΔCðd−1Þ

μuνu as
follows:14

Pμν½Δh̄ðd−3Þρσ � ¼ −rμrνðd − 4Þðd − 6ÞD−2
5 D−2

4 ΔEðd−1Þ
rr þ 2ðd − 4ÞrðμDνÞðD2 − 2ÞD−2D−2

5 D−2
4 ΔEðd−1Þ

rr

− 2ðd − 2Þðd − 4ÞD−2
3 ðD2 − 1Þ−1rðμðqνÞλ −DνÞD−2DλÞΔEðd−1Þ

rλ

þ dðd − 2ÞqμρqνσðD2 − 2Þ−1D−2
−4ΔE

ðd−1Þ
ρσ − 2dðd − 2ÞðD2 − 2Þ−1D−2

−4DðμD−2
−3D

λΔEðd−1Þ
νÞλ

þ 2dðd − 2ÞðD2 − 2Þ−1D−2
−4DðμD−2

−3DνÞD−2DλDκΔEðd−1Þ
λκ

14It should be possible to derive Eqs. (159) and (163) directly from Eqs. (133) and (135), bypassing the need to introduce the
harmonic gauge. We have shown that such a derivation can be given in linearized gravity with sources.
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−
dðd − 2Þ2
d − 3

ðD2 − 2Þ−1D−2
−4

�
DμDν −

1

d − 2
qμνD2

�
D−2

−2D
−2DλDκΔEðd−1Þ

λκ

þ ðD2 − 2Þ−1D−2
−4

�
2dDðμD−2

−3DνÞ þ d

�
DμDν −

1

d − 2
qμνD2

�
D−2

−2 þ dqμν

�
ΔEðd−1Þ

rr

þ 2ðd − 2ÞDðμD−2
−3D

2
−5D

−2
3 ðD2 − 1Þ−1ðqνÞλ −DνÞD−2DλÞΔEðd−1Þ

rλ

þ 1

d − 3

�
DμDν −

1

d − 2
qμνD2

�
½ðd − 6Þ − 2ðd − 4ÞðD2 − 2ÞD−2�D−2

5 D−2
4 ΔEðd−1Þ

rr

þ ðd − 4Þðd − 6Þ
d − 2

qμνD−2
5 D−2

4 ΔEðd−1Þ
rr ð163Þ

where

D2
−4 ≡ ½D2 þ ðd − 4Þ� ð164Þ

D2
−5 ≡ ½D2 þ ðd − 5Þ� ð165Þ

D2
−3 ≡ ½D2 þ ðd − 3Þ� ð166Þ

D2
−2 ≡ ½D2 þ ðd − 2Þ�: ð167Þ

Again, the The l ¼ 0, 1 parts of ΔEðd−1Þ
ρσ should be

excluded from Eq. (163) for the computation of memory.
Since F is gauge invariant, null memory is manifestly

gauge invariant. Since Cðd−1Þ
αβγδ is gauge invariant in sta-

tionary eras, ordinary memory is also manifestly gauge
invariant when expressed in the form of Eq. (163). We shall
see in Sec. III C 3 that Eqs. (159) and (163) also hold
in d ¼ 4.
We now consider the effects on the memory tensor at

Coulombic order of placing stronger stationarity conditions
than those imposed by Eq. (124) on the metric at early and
late times in even dimensions. Specifically, suppose we
were to require that

∂uh
ðkÞ
μν → 0 as u → �∞ for k ≤ d − 2; ð168Þ

i.e., suppose that we require stationarity at one order faster
fall-off than Coulombic. Suppose that, in addition, we
require

Tðd−1Þ
μν → 0 as u → �∞: ð169Þ

In the stationary eras, the nonlinear terms in Einstein’s
equation are Oð1=r2ðd−2ÞÞ and will not enter our analysis to
the orders we consider. It then follows from Remark 5 that

h̄ðnÞμν can be put in harmonic gauge such that in the stationary

eras, we have ∂uh
ðnÞ
μν ¼ 0 for all n ≤ d − 2. It further

follows from Corollary 1 that, in the stationary eras,

h̄ðnÞμν ¼ 0 for all n < d − 3. Furthermore, hðd−3Þμν satisfies

Eqs. (61)–(66) for n ¼ d − 2 with all terms involviing χμ,
u-derivatives, and stress-energy put to zero. In addition,

hðd−3Þμν satisfies Eqs. (93)–(95) for n ¼ d − 3 with vanishing
stress-energy terms. It is not difficult to show that the
unique solution to these equations is

h̄ðd−3Þuu ¼ h̄ðd−3Þur ¼ h̄ðd−3Þrr ¼ const: ð170Þ

with all other components vanishing. This corresponds
to the Schwarzschild solution in harmonic gauge at
Coulombic order. Thus, with the stronger stationarity
conditions Eq. (168) and Eq. (169), the solution approaches
the Schwarzschild solution (possibly with different masses)

at early and late retarded times. Thus, Δhðd−3Þμν has only
an l ¼ 0 part, and cannot contribute to memory by
Eq. (143). Thus, if the stronger stationarity conditions
Eq. (168) and Eq. (169) hold at early and late retarded
times, then ordinary memory vanishes (but a nonvanishing
null memory effect may still occur).

2. d odd

For d odd, the analysis of the memory effect for
n < d − 3—where n is now half-integral—follows the
even dimensional case exactly, and we find that

ΔðnÞ
μν ¼ 0 for n < d − 3: ð171Þ

Since h̃ðd−3Þab is the leading order term in the integer power
part of the expansion of hab [see Eq. (59)], the only

contribution to Cðd−3Þ
uaub is

Cðd−3Þ
uμuν ¼ γðd−3Þμνρσ∂2

uh̃
ðd−3Þ
ρσ ð172Þ

where the γðd−3Þμνρσ is given by Eq. (149) with n ¼ d − 3.
Einstein’s equation in harmonic gauge yields

ðd − 4Þ∂u
¯̃hðd−3Þμν ¼ −16πTðd−2Þ

μν þ 2Gðd−2Þ
μν : ð173Þ

However, we have
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Tðd−2Þ
μν ¼ Tðd−2Þ

uu KμKν ð174Þ

and

Gðd−2Þ
μν ¼ −

1

4
NABNABKμKν þ ∂uBμν ð175Þ

where Bμν vanishes in stationary eras. From Eq. (149), it is
easily seen that γðd−3ÞμνρσKρKσ ¼ 0. It can also be seen
immediately from Eq. (130) and Eq. (172) that Bμν cannot
contribute to Δμν. Thus, we find that for d odd,

Δðd−3Þ
μν ¼ 0 for d odd: ð176Þ

and thus the memory effect vanishes at Coulombic order (as
well as slower fall-off) in odd dimensions.
At first sight, it may seem paradoxical that there is a

major difference between odd and even dimensions in the
memory effect at Coulombic order: First, in odd dimen-
sions there is a flux of energy to null infinity at order 1=rd−2

in exact parallel with the even dimensional case, so why is
there not a null memory contribution at Coulombic order?
Second, if one considers, e.g., the scattering of timelike
particles, one would expect that the retarded solution at
early and late times should behave like Eq. (123) at late and
early times, potentially giving rise to a nonvanishing Δhμν
at Coulombic order in odd dimensions. Why does this not
give rise to an ordinary memory effect?
The answer to the first question is that the key difference

that occurs in odd dimensions—as compared with even
dimensions with d > 4—is that terms with integer power
fall-off slower than 1=rd−3 are not permitted. In even
dimensions with d > 4, the possible presence of a non-

vanishing hðd−4Þμν and hðd−5Þμν effectively makes the null and
ordinary memory independent. In odd dimensions, there
can, indeed, be a null memory effect, but it is always
exactly canceled by ordinary memory.
The answer to the second question is more subtle and has

to do with the manner in which the retarded solution
approaches a solution of the form Eq. (123) at late times for
particles moving on inertial trajectories. To see this, it is
illuminating to consider the concrete example of the
retarded solution, ϕ, to the scalar wave equation (16) with
source corresponding to the creation of a scalar particle
with scalar charge q at time t ¼ 0 at the origin in 5-
dimensional Minkowksi spacetime

S ¼ qθðtÞδð4Þðx⃗Þ: ð177Þ

The exact retarded solution for such a source is

ϕ ¼ q
θðuÞ
ð2πrÞ2

rþ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð2rþ uÞp : ð178Þ

For r ≫ u, Eq. (178) admits an expansion in half-integer
powers of 1=r fully consistent with our ansatz Eq. (12)

ϕ ¼ q

2
ffiffiffi
π

p ð2πrÞ3=2
θðuÞffiffiffi

u
p þ 3

ffiffiffi
π

p
q

4ð2πrÞ5=2 θðuÞ
ffiffiffi
u

p þOð1=r7=2Þ:

ð179Þ

No integer powers of 1=r occur. In particular, at all retarded
times, the scalar field vanishes at Coulombic order. In
addition, as u → ∞, we have ϕð3=2Þ → 0, so ϕ vanishes at
late retarded time at Coulombic and slower fall-off. On the
other hand, if we fix r and take the limit of the exact
solution Eq. (178) as u → ∞, we obtain the Coulomb
solution

lim
u→∞

ϕ ¼ q
4π2r2

: ð180Þ

In other words, ϕ approaches the Coulomb solution at
timelike infinity (u → ∞ at fixed r), but does not approach
the Coulomb solution at null infinity (r → ∞ at fixed u)
even if u is then taken to be arbitrarily large. In other words,
the Coulomb solution Eq. (180) will not be evident to an
observer unless he waits a time much longer than the light
travel time to the source.
Similarly, in the gravitational case in any odd dimension

d ≥ 5, consider classical particle scattering wherein the
particles move on timelike, inertial trajectories at early
and late times. Then at early retarded times, the retarded

solution at Coulombic order, h̃ðd−3Þμν , will have the multipolar
structure corresponding to the incoming particles, as in
Eq. (123). However, except for huu, this multipolar structure
will not change with u and will remain the same as u → ∞,

i.e., Δh̃ðd−3Þμν ¼ 0 except for μ ¼ ν ¼ u. The ordinary
memory effect that may result from a nonvanishing

Δh̃ðd−3Þuu will be exactly canceled by the null memory effect.
Thus, the total memory effect vanishes at Coulombic

order in odd dimensions. However, the above consider-
ations suggest that it may be possible to define a notion
of a memory effect at timelike infinity that would be
nonvanishing.

3. d = 4

In dimension d ¼ 4, radiative and Coulombic order
coincide, since d=2 − 1 ¼ d − 3 ¼ 1. Our analysis for
d > 4 was based upon the imposition of the harmonic
gauge, so it cannot be applied15 in nonlinear gravity when

d¼4 if Tð2Þ
μν ≠ 0 or NAB ≠ 0. Thus, we cannot impose the

harmonic gauge, i.e., we cannot set χa ¼ 0 in Eqs. (61)–
(70), nor can we use the corresponding simplifications in

15However, our harmonic gauge analysis can be applied in
linearized gravity to the casewhereTð2Þ

μν ¼ 0, inwhich case ordinary
memory is possible.
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calculating the nonlinear terms in Einstein’s equation.
Nevertheless, the properties of the metric perturbation at
radiative order described in the paragraph below Eq. (72)
still apply. In particular, the Bondi news tensor

NAB ¼
�
qACqBD −

1

2
qABqCD

�
∂uh

ð1Þ
CD ð181Þ

is gauge invariant. Furthermore, at radiative (¼ Coulombic)
order, the only components of the Weyl tensor that can
be nonvanishing are the uAuB components, which are
given by

Cð1Þ
uAuB ¼ −

1

2
∂uNAB ¼ −

1

2
∂2
uh

ð1Þ
AB: ð182Þ

Integrating this equation twice, we immediately obtain the
following extremely simple formula for the memory tensor:

Δð1Þ
AB ¼ 1

2
Δhð1ÞAB ð183Þ

where Δhð1ÞAB denotes the difference between hð1ÞAB in the
initial and final stationary eras. Equation (183) holds in any
gauge compatible with our ansatz.
To proceed further we use Einstein’s equations

Eqs. (61)–(70) with χa not put to zero and with Tð2Þ
ab

replaced by Tð2Þ
ab − Gð2Þ

ab =8π. These equations can be sim-
plified significantly by restricting consideration to the case

hð1Þrr ¼ 0 (see Appendix A 3), in which case we can impose
the Bondi gauge conditions hrr ¼ hrA ¼ 0 and
∂rðdetðhABÞÞ ¼ 0. Einstein’s equations do not directly

yield an equation for ∂uh
ð1Þ
AB, but they do yield an equation

for ∂uDBhð1ÞAB, which can be integrated to obtainD
BΔð1Þ

AB and

thenceΔð1Þ
AB. Wewill not carry out the analysis here, as it has

already been done by many authors16 [14,16,29,30]. The
final result is that the memory tensor in 4 dimensions can be
expressed as [14,16,30]

Δð1Þ
AB ¼ ½PAB�l>1 þ

Z
∞

−∞
duLAB½F�l>1: ð184Þ

Here the “ordinary memory” [the first term in Eq. (184)] is
given by

PAB ¼ −2
�
DADB −

1

2
qABD2

�
D−2ðD2 þ 2Þ−1ΔP

þ 2ϵðACDBÞDCD−2ðD2 þ 2Þ−1ΔQ ð185Þ

where

P≡ Cð3Þ
urur; ð186Þ

Q≡ 1

2
ϵμνCð3Þ

μνru; ð187Þ

and ΔP and ΔQ correspond to the difference in these
quantities at early and late retarded times. Only the l > 1
parts of ΔP and ΔQ enter the formula for memory. The
contributions to ordinary memory of ΔP and ΔQ are
usually referred to as its “electric parity” and “magnetic
parity” parts,17 respectively. The “null memory” [the
second term in Eq. (184)] is given by [14,16,30]

LAB½F� ¼ 16π

�
DADB −

1

2
qABD2

�
D−2ðD2 þ 2Þ−1F

ð188Þ

where F is the total flux of matter and gravitational energy
to null infinity—given by Eq. (156) with d ¼ 4—and only
the l > 1 part is taken. Equations (185) and (188) agree
with Eqs. (159) and (163) with d set equal to 4.
Finally, suppose that we were to impose the strong

stationarity conditions Eq. (168) and Eq. (169) at early
and late retarded times. Our analysis for d > 4 used the
harmonic gauge, which we cannot assume here. However,
the gauge freedom for the metric at order 1=r that preserves
strong stationarity is given by Eq. (75) with d ¼ 4, with the

requirement that ξð0Þa is stationary and ξð1Þa vanishes. We can

use up the full gauge freedom of hð1Þab by setting ηabhð1Þab ¼ 0

and hð1ÞAB ¼ 0. One then can show that Einstein’s equations
with these gauge conditions imply that when Eq. (168) and
Eq. (169) hold the metric at Coulombic order (i.e., order
1=r) must be Schwarzschild. The stronger stationarity
conditions together with the field equations also imply

that hð2Þμν and hð3Þμν do not contribute to P or Q as defined in

Eqs. (186) and (187). Since hð1Þμν is spherically symmetric it
follows that Q ¼ 0 and P is spherically symmetric. Hence,
as was the case for d > 4, we find that when d ¼ 4, the
ordinary memory vanishes if the stronger stationarity
conditions Eq. (168) and Eq. (169) are imposed.
We summarize the main results of this subsection in the

following theorem:
16References [14,29] worked in the context of linearized gravity

whereas [16,30] analyzed the memory effect in four dimensions in
full, nonlinear general relativity. References [14,16,30] considered
contributions to memory from null sources whereas [29] did not.
References [14,16,29,30] all considered ordinary memory effects
in which ΔQ ¼ 0 in Eq. (185).

17As we shall see in the next subsection, the “magnetic parity”
part is the same as the “vector part” in a spherical tensor
decomposition.
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Theorem 4. Suppose d ≥ 4 and the metric satisfies the
stationarity condition Eq. (124) (for even dimensions) or
Eqs. (125) and (126) (for odd dimensions) at early and late
retarded times. Then the memory tensor, defined by
Eq. (130), has the following properties:
(1) In odd dimensions, ΔðnÞ

ab ¼ 0 for all n ≤ d − 3.

(2) In even dimensions, ΔðnÞ
ab ¼ 0 for all n < d − 3. For

n ¼ d − 3, the memory tensor can be decomposed
into “ordinary memory” and ”null memory” as in
Eq. (157). For d > 4, the ordinary and null memory
are given, respectively, by Eq. (158) (or (163)) and
Eq. (159). For d ¼ 4, the ordinary and null memory
are given, respectively, by Eq. (185) and Eq. (188). If
one imposes the stronger stationarity conditions
Eq. (168) and Eq. (169) at early and late retarded
times, then the ordinary memory vanishes at
Coulombic order (but null memory may still be
nonvanishing at Coulombic order).

D. Nonscalar memory

As proven in [31] (see Propositions 2.1 and 2.2 of that
reference), any (co)-vector field, vA, on a sphere in (d − 2)-
dimensions can be decomposed into its vector and scalar
parts via

wA ¼ WA þDAW ð189Þ

where DAWA ¼ 0. Any symmetric tensor field, xAB on the
sphere can be decomposed into its tensor, vector, and scalar
parts via

xAB ¼ XAB þDðAXBÞ þ
�
DADB −

1

d − 2
qABD2

�
X

þ 1

d − 2
qABY ð190Þ

where DAXAB ¼ 0 ¼ qABXAB and DAXA ¼ 0. Any rota-
tionally invariant operator (such asD2) acting on wA or xAB
maps the scalar, vector, and tensor parts into themselves,
i.e., rotationally invariant operations cannot “mix” these
different parts.
Thus, the Coulombic order memory tensor Δðd−3Þ

μν may
be decomposed into its scalar, vector, and tensor parts via

Δðd−3Þ
rr ¼ −U ð191Þ

Δðd−3Þ
rA ¼ RA þDAR ð192Þ

Δðd−3Þ
AB ¼ SAB þDðASBÞ þ

�
DADB −

1

d − 2
qABD2

�
T

þ 1

d − 2
qABU ð193Þ

where DARA ¼ 0 ¼ DASA and DASAB ¼ 0 ¼ qABSAB.

Note that the fact that Δðd−3Þ
μν is traceless was used to relate

Δðd−3Þ
rr to the scalar function U appearing in Eq. (193). In

d ¼ 4 dimensions, the tensor part, SAB, in Eq. (193)
vanishes, since there are no divergence-free, trace-free,
symmetric, rank-2 tensors on S2. Furthermore, on S2, the
vector part SA can always be written as SA ¼ ϵABDBS.
Thus, in d ¼ 4 dimensions, the “vector part” can be
replaced by a “magnetic parity scalar” part. In addition,

since Δð1Þ
rμ ¼ 0 in 4 dimensions [see Eq. (144)], we also

have U ¼ RA ¼ R ¼ 0 when d ¼ 4. For d ¼ 6, we have
U ¼ 0 [see Eq. (145)].
We shall refer toU, R, and T as “scalar memory”, RA and

SA as “vector memory,” and SAB as “tensor memory”. The
scalar functions U, R, and T are not independent because

Δðd−3Þ
μν must satisfy the “constraint equations” Eq. (141) and

Eq. (142) with n ¼ d − 3. This yields

½D2 − 2�U − ðd − 6ÞD2R ¼ 0 ð194Þ

and

½D2 þ 2ðd − 4Þ�Rþ 1

2
ðd − 4Þ½D2 þ 2ðd − 3Þ�T

−
d

d − 2
U ¼ 0: ð195Þ

Note that for d ¼ 4, this implies that U ¼ R ¼ 0, so scalar
memory takes the form

½Δð1Þ
AB�scalar ¼

�
DADB −

1

2
qABD2

�
T for d ¼ 4: ð196Þ

The vector part of Eq. (141) vanishes, but Eq. (142) implies
that RA and SA must satisfy

½D2 þ ðd − 5Þ�RA þ 1

2
ðd − 4Þ½D2 þ ðd − 3Þ�SA ¼ 0:

ð197Þ

The constraint equations (141) and (142) do not give any
restrictions on SAB.
We can use Eqs. (194) and (195) to solve for U and R in

terms of T and we can use Eq. (197) to solve for RA in terms
of SA. Thus, the memory tensor is fully characterized by T,
SA, and SAB, i.e., the trace-free part of the angle-angle
components of the memory tensor.
No other obvious restrictions on Δðd−3Þ

μν arise from
Einstein’s equations near null infinity for d even—of

course, we have already shown that Δðd−3Þ
μν ¼ 0 for d

odd. This suggests that—in addition to scalar memory—
magnetic parity memory may be possible for d ¼ 4, and
vector and tensor memory may be possible for d > 4 (for d
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even). We now investigate whether this is possible for
physically reasonable solutions.
Consider, first, null memory. The null memory part of

Δðd−3Þ
μν is constructed from a rotationally invariant operator

Lμν [see Eq. (159) and Eq. (188)] acting on the integrated
flux F. Since F is a scalar function on the sphere, it follows
immediately that null memory is always of purely sca-
lar type.
The analysis of ordinary memory requires that we know

that the Coulombic order solution hðd−3Þμν at early and late
retarded times. This is not feasible in nonlinear general
relativity but can be analyzed in linearized gravity.
Consider, first, classical particle scattering, as treated in
[24]. For classical particle scattering, the solution at early
and late retarded times is a sum of boosted linearized
Schwarzschild solutions. It is easily checked that for

boosted, linearized Schwarzschild solutions, hðd−3Þμν is of
purely scalar type. Since ordinary memory is obtained by

applying a rotationally invariant operator to Δhðd−3Þμν , it
follows that ordinary memory is of purely scalar type for
particle scattering in linearized gravity.
However, it is not difficult to show that vector and tensor

ordinary memory can occur in linearized gravity for the
retarded solution arising from other kinds of ingoing or
outgoing matter stress-energy satisfying the dominant
energy condition. In particular, magnetic parity (i.e.,
vector) ordinary memory can be produced in d ¼ 4. To
see this, consider a stress-energy tensor (for t ¼ uþ r > 0)

Tab ¼
1

r2
½ρuaub þ lab�δðr − vtÞ ð198Þ

where ρ > 0 is a constant, ua corresponds to a radially
outward 4-velocity with velocity 1 > v > 0, and the
components of lab in a Cartesian basis (or normalized
spherical basis) are independent of t and r and, on the unit
sphere, are given by

lμν ¼ −ϵðμλ½uνÞðD2 þ 1Þ − γvDνÞ�Dλα: ð199Þ

Here α is a time independent, arbitrary function on the
sphere (containing multipoles l > 1) and γ ≡ ð1 − v2Þ−1=2.
For α ¼ 0, Eq. (198) would correspond to an outgoing
spherical dust shell and its stress-energy would be con-
served. The lab term has been constructed so that it is purely
of magnetic parity (i.e., vector) type and is conserved by
itself, so its addition to the stress-energy tensor does not
affect conservation. By choosing ρ sufficiently large, we
can ensure that Tab satisfies the dominant energy condition.
Thus, we see no principle that would imply that a stress-
energy tensor of the form Eq. (198) is not physically
possible.
Since we are considering linearized gravity and there is

no stress energy flux to null infinity, we may work in the

Lorenz gauge. In a Cartesian basis, each component of h̄μν
satisfies the ordinary scalar wave equation with source. At
radiative order, the contribution of lab to the retarded
solution for u > 0 is independent of u and is given by

h̄ð1Þμν ðxAÞ ¼ 8π

Z
dΩ0 lμνðx0AÞ

1 − vr̂ðxAÞ · r̂ðx0AÞ ð200Þ

where the integral is taken over a sphere and r̂ denotes the
unit radial vector (with parallel transport in Euclidean space
is understood in taking the dot product of vectors at

different points on the sphere). It can be seen that hð1ÞAB
is, in general, nonvanishing. It must be of purely vector type
since the source is of purely vector type and the retarded
Green’s function is rotationally invariant.
Now suppose one starts in the distant past with a static

laboratory and no incoming gravitational radiation. At
retarded time u ¼ 0, a laboratory assistant launches a shell
with stress energy of the form Eq. (198). This shell then
continues to move radially outward with velocity v forever.

Then, hð1ÞAB has no magnetic parity part at early retarded
times, but it has a nonvanishing magnetic parity part at late
times. By Eq. (183), this yields a nonvanishing magnetic
parity memory tensor.
We note that Madler and Winicour [26] have shown that

under the stronger stationarity condition that they impose,
magnetic parity memory cannot occur. This result is
consistent with our results because, as we have already
shown, their stronger stationarity condition rules out all
ordinary memory, and null memory is always of scalar
type. Bieri [32] has shown that magnetic parity memory
cannot occur for vacuum solutions with “small data” in
nonlinear general relativity. This result also is consistent
with our results.
Finally, we comment that examples with tensor ordinary

memory can be obtained for d > 4 by choosing a shell
stress-energy tensor18

Tab ¼
1

rd−2
½ρuaub þ Sab�δðr − vtÞ ð201Þ

where Sab has vanishing u and r components and its angle-
angle components are of purely tensor type.
In summary, null memory is always of scalar type in

linear and nonlinear general relativity. Ordinary memory
also is of scalar type for classical particle scattering in
linearized gravity. However, ordinary memory need not be
of scalar type in general. In particular, we have constructed
explicit examples with outgoing shells of matter in linear-
ized gravity that give rise to magnetic parity (¼ vector)
ordinary memory in 4 dimensions and tensor ordinary
memory in higher even dimensions.

18We can, of course, also construct sources with vector
memory for d > 4 in a similar manner to Eqs. (198) and (199).
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E. Memory as a diffeomorphism

In this subsection, we consider the issue of whether the
memory tensor up to Coulombic order can be written as an
infinitesimal diffeomorphism, i.e., whether there exists a
vector field ξa such that

ΔðnÞ
μν ¼ ½∇ðμξνÞ�ðnÞ ð202Þ

for all n ≤ d − 3. One reason why this question is of some
interest can be seen from the following considerations.
We introduce the following new gauge: For d > 4, start

in the harmonic gauge in the early time stationary era
u < u0. For d ¼ 4, start in an arbitrary gauge compatible
with our ansatz and stationarity assumption for u < u0.

Then, for u < u0, we have hðnÞμν ¼ 0 for all n < d − 3 and

∂uh
ðd−3Þ
μν ¼ 0. By a further gauge transformation of the

form ψa ¼ ufðxAÞ=rd−3ð∂=∂uÞa, we may, in addition, set

hðd−3Þuu ¼ 0 for u < u0. Now, define coordinates for u ≥ u0
by fixing the ðr; xAÞ coordinates along each geodesic
determined by the initial tangent ∂=∂u and taking the u
coordinate to be given by the affine parameter along each
geodesic. This agrees with proper time up to and including
order 1=rd−3. Thus, the new coordinates are essentially
Gaussian normal coordinates, except that the initial surface
u ¼ u0 is not orthogonal to ð∂=∂uÞa. By the same argument
as for Gaussian normal coordinates, we have ∂uguμ ¼ 0

(and, hence ∂uhuμ ¼ 0) at all times at Coulombic order and
slower fall-off. Note that the new coordinates will not, in
general, be harmonic in the radiative era or the final
stationary era.
For u ≥ u0, the coordinate vector fields ∂=∂r and ∂=∂xA

are deviation vectors for the timelike geodesic congruence
with tangent field ua ¼ ð∂=∂uÞa. We have

∂2hμν
∂u2 ¼ ∂2gμν

∂u2 ¼ ∂2

∂u2
�
gab

� ∂
∂xμ

�
a
� ∂
∂xν

�
b
�

¼ ud∇duc∇c

�
gab

� ∂
∂xμ

�
a
� ∂
∂xν

�
b
�

¼ gabud∇duc∇c

�� ∂
∂xμ

�
a
� ∂
∂xν

�
b
�
: ð203Þ

This equation holds to all orders in 1=r in our coordinates.
The derivatives of the term in brackets on the right side of
Eq. (203) yield terms where ud∇duc∇c acts on a single
coordinate vector field and terms where one derivative each
acts on each of the two coordinate vector fields. The terms
where two derivatives act on a single coordinate vector field
can be evaluated from the geodesic deviation equation. The
terms where one derivative acts on each of the coordinate
vector fields are Oð1=rd−2Þ. Thus, we obtain in our gauge

∂2hðnÞμν

∂u2 ¼ −2CðnÞ
uμuν ð204Þ

for all n ≤ d − 3. It follows immediately from the definition,
Eq. (130), of the memory tensor that in our gauge we have

ΔðnÞ
μν ¼ 1

2
ΔhðnÞμν ð205Þ

for all n ≤ d − 3. Note that the right side of Eq. (205) is the
full memory tensor, including null memory. This expression
is compatible with our previous expression Eq. (157) for
d > 4 because that expression held in harmonic gauge
whereas Eq. (205) is valid only in the gauge we have
defined above. Equation (205) also is compatible with
Eq. (183) for d ¼ 4.
Now, suppose we start with an array of geodesic test

particles that are initially “at rest” at early times and con-
sider their final configuration at late times. If Eq. (202)

holds, then ΔhðnÞμν is “pure gauge” for all n ≤ d − 3. This
means that if we displace the test particles by ξa at late
times, they will go back to their original relative configu-
ration at Coulombic and slower fall-off. In other words, at
Coulombic order, the final spacetime geometry is the same
as the initial geometry. On the other hand, if Eq. (202) does
not hold, then it is impossible to displace the particles so
that they go back to their original relative configuration. A
genuine change in the geometry at Coulombic order has
occurred.
We now turn to the analysis of whether one can find a ξa

so that Eq. (202) holds. It is clear that in order for ½∇ðμξνÞ�ðnÞ
to vanish for n < d − 3 and be u-independent at n ¼ d − 3,

we must choose ξa to be such that ξðnÞμ ¼ 0 for n < d − 4
whereas

ξðd−4Þμ ¼ JμðxAÞ; ξðd−3Þμ ¼ uBμðxAÞ: ð206Þ
Decomposing JμðxAÞ and BμðxAÞ into their scalar, vector,
and tensor parts, we see that we have 6 scalar functions on
the sphere, 2 divergence-free vector fields on the sphere,
and no transverse, traceless tensors. On the other hand, the
decomposition of a general symmetric tensor, tμν, on the
sphere yields 7 scalar functions, 3 divergence-free vector
fields, and 1 transverse, traceless tensor (for d > 4). Thus,
a priori, we are one free scalar, one free vector, and one free
tensor (for d > 4) short of being able to express a general
tensor on the sphere in the form we seek.
However, Δμν is not a general tensor on the sphere. It has

vanishing u-components, is trace-free, and its scalar and
vector parts satisfy the constraint Eqs. (194), (195) and
(197). The symmetrized derivative of ξa at order 1=rd−3 is

½∇ðμξνÞ�ðd−3Þ ¼ qðμσDνÞJσ þ ðJr − JuÞqμν þ rðμDνÞJr

− KðμDνÞJu − qðμσrνÞJσ

− ðd − 4ÞrðμJνÞ − KðμBνÞ: ð207Þ
It is clear from this equation that we may choose Bν such
that the u components of Eq. (207) vanish, so we need only
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consider whether Jμ can be chosen so as to make the non-u

components of the right side of Eq. (207) match Δðd−3Þ
μν . We

may separately consider the scalar, vector, and tensor parts.
The scalar parts of Jμ are Jr, Ju, and J, where J denotes the
scalar part of JA. Equating the scalar part of Eq. (207) to

the scalar part of Δðd−3Þ
μν [see Eqs. (191)–(193)], we obtain

the following equations

ðd − 4ÞJr ¼ U ð208Þ

Jr − ðd − 3ÞJ ¼ 2R ð209Þ

J ¼ T ð210Þ

D2J þ ðd − 2ÞðJr − JuÞ ¼ U: ð211Þ

This is an overdetermined system for Jr, Ju, and J. The
necessary and sufficient condition for a solution to exist is
that U, R, and T satisfy

U
ðd − 4Þ − ðd − 3ÞT ¼ 2R: ð212Þ

However, it can be shown that this equation is implied by
the constraint equations (194) and (195). Thus, the scalar
part of Δμν can always be written in the form Eq. (202)
for a ξa of the form Eq. (206). Thus, scalar memory at
Coulombic order is always given by a diffeomorphism [12].
In particular, as is well known, the scalar memory Eq. (196)
for d ¼ 4 is of the form of a supertranslation. However, a
similar calculation shows that no such miracles occur for
vector memory, and vector memory can never be written in
the form Eq. (202). Tensor memory, of course, also can
never be written in the form Eq. (202).
In summary, scalar memory at Coulombic order always

can be written as a diffeomorphism, but this never holds for
vector and tensor memory.

F. Charges and conservation laws

1. Charges and memory

In d ¼ 4 dimensions, it is well known [33] that all
asymptotic symmetries at future null infinity give rise to
associated charges and fluxes. In this sub-subsection, we
will show that the charges and fluxes associated with
supertranslations are intimately related to the memory
effect in 4 dimensions, and, indeed, we will derive the
formula for scalar memory in d ¼ 4 from the supertrans-
lation charges and fluxes. We will then obtain correspond-
ing results for d > 4. Since the derivations and formulas of
[33] apply only to the vacuum case, in the following two
paragraphs we will restrict to the case where Tab ¼ 0 in a
neighborhood of null infinity. We will then restore Tab in
our formulas.

Consider a supertranslation, i.e., a diffeomorphism
belonging to the gauge equivalence class of

ψa ¼ αðxAÞ
� ∂
∂u

�
a
− αðxAÞ

� ∂
∂r

�
a

− qBCDBαðxAÞ
1

r

� ∂
∂xC

�
a
þ � � � ð213Þ

where the � � � stand for a vector field that vanishes as
r → ∞ for fixed u and xA. From general considerations
[33] arising from the Lagrangian formulation of general
relativity, a charge Qþ

α , and flux, Fþ
α , can be associated

with ψa such that for any u0, u1, we have

Qþ
α ðu1Þ −Qþ

α ðu0Þ ¼
Z

u1

u0

du
Z

dΩFþ
α : ð214Þ

An explicit formula for Qþ
α (originally due to Geroch [34])

is given in Eq. (98) of [33], and an explicit formula for Fþ
α

is given in Eq. (82) of [33]. Here we have inserted a
superscript “þ” to distinguish these charges and fluxes
from similar quantities at past null infinity, which will be
considered later. The flux is evaluated to be

Fþ
α ¼ −

1

32π
ðαNABNAB − 2NABDADBαÞ: ð215Þ

The formula for the charge is considerably more compli-
cated, but this formula simplifies considerably in stationary
eras, when NAB ¼ 0. From Eq. (98) of [33], we find that in
stationary eras we have

Qþ
α jstationary ¼ −

1

8π

Z
dΩαCð3Þ

urur: ð216Þ

Thus, if we impose the stationarity conditions of
subsection III A and we let u0 → −∞ and u1 → þ∞ in
Eq. (214), we obtain

Qþ
α ðþ∞Þ −Qþ

α ð−∞Þ ¼
Z
Iþ

Fþ
α : ð217Þ

The flux integral can be rewritten as

Z
Iþ

Fþ
α ¼ −

Z
Iþ

αF þ 1

16π

Z
dΩDADBα

Z
∞

−∞
duNAB

¼ −
Z
Iþ

αF þ 1

8π

Z
dΩðDADBαÞΔð1Þ

AB

¼ −
Z
Iþ

αF þ 1

8π

Z
dΩαDADBΔð1Þ

AB ð218Þ

where F ¼ 1
32πN

ABNAB is the Bondi flux, and we used
Eq. (183) in the second line. The contribution to

R
Iþ Fþ

α

arising from the term αF is often referred to as the “hard”
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integrated flux (or “hard charge”) whereas the term

involving Δð1Þ
AB is called the “soft” integrated flux (or “soft

charge”). The termsQþ
α ð−∞Þ andQþ

α ðþ∞Þ can be viewed
as the contributions to “hard charge” coming from the
asymptotic past (spatial infinity) and future (timelike
infinity). From Eqs. (216)–(218), we obtain,Z

dΩαCð3Þ
ururjþ∞ −

Z
dΩαCð3Þ

ururj−∞ − 8π

Z
Iþ

αF

¼ −
Z

dΩαDADBΔð1Þ
AB ð219Þ

which relates the hard charges to the soft charge. Note that
if α is an l ¼ 0 or l ¼ 1 spherical harmonic (in which case

ψa is a translation), the term inΔð1Þ
AB does not contribute, and

this equation corresponds to the integrated conservation
law for Bondi 4-momentum.
Since Eq. (219) holds for all α, this equation must hold

pointwise on the sphere. Therefore, we obtain

−DADBΔð1Þ
AB ¼ Cð3Þ

ururjþ∞ − Cð3Þ
ururj−∞ − 8π

Z
∞

−∞
duF:

ð220Þ
It is easily seen that vector memory makes no contribution

to DADBΔð1Þ
AB. On the other hand, substituting the form

Eq. (196) of scalar memory, we obtain

−
1

2
D2ðD2 þ 2ÞT ¼ Cð3Þ

ururjþ∞ − Cð3Þ
ururj−∞ − 8π

Z
∞

−∞
duF:

ð221Þ
Solving for T and substituting back in Eq. (196), we obtain
a formula for scalar memory that agrees with the scalar part
of Eq. (184).
In the above two paragraphs, we have restricted to the

case where Tab ¼ 0 in a neighborhood of null infinity in
order to use the formulas given in [33]. However, Eq. (184)
holds when Tab ≠ 0. This shows that when Tab ≠ 0,
Eq. (219) is modified merely by the simple substitu-

tion F ¼ 1
32πN

ABNAB → 1
32πN

ABNAB þ Tð2Þ
uu .

We now consider the case d > 4. As we have seen in the
previous subsection, in d > 4 dimensions, scalar memory is
still given by a diffeomorphism. However, this diffeomor-
phism is now pure gauge, i.e., it has vanishing symplectic
product with all asymptotically flat perturbations. Thus,
nontrivial charges and fluxes cannot be associated with
these diffeomorphisms via the Lagrangian formalism.
Nevertheless, our general memory formula Eq. (157) can
be interpreted as a charge/flux formula. Namely, we may
write this formula in the form

Pμν½h̄ðd−3Þρσ �j∞ − Pμν½h̄ðd−3Þρσ �j−∞ þ
Z

∞

−∞
duLμν½F� ¼ Δðd−3Þ

μν :

ð222Þ

Now for arbitrary scalar field α on the sphere, define the
scalar charge, Qþ

α during a stationary era, by19

Qþ
α ¼

Z
dΩPAB½h̄ðd−3Þρσ �

�
DADB −

1

d − 2
qABD2

�
α:

ð223Þ

Using Eq. (163), we can rewrite the right side of Eq. (222)

in terms of ΔEðd−1Þ
rr . It then can be seen that Eq. (223)

corresponds to Eq. (5.21) of [12], but with different angular
weights, i.e., our α is related to their f by angular operators.
Multiplying Eq. (222) by ðDADB − 1

d−2 q
ABD2Þα and inte-

grating over a sphere, we obtain

Qþ
α j∞ −Qþ

α j−∞ þ
Z
Iþ

α

�
DADB −

1

d − 2
qABD2

�
LAB½F�

¼
Z

dΩα
�
DADB −

1

d − 2
qABD2

�
Δðd−3Þ

AB ð224Þ

which is closely analogous to Eq. (219) and can be given an
interpretation in terms of “hard” and “soft” charges.
Similarly, during stationary eras we can define the vector

charge, Qþ
βA
, associated with a divergence-free vector field

βA on the sphere by the formula

Qþ
βA

¼
Z

dΩβBDAPAB½h̄ðd−3Þρσ �: ð225Þ

We then obtain

Qþ
βA
j∞ −Qþ

βA
j−∞ ¼

Z
dΩβBDAΔðd−3Þ

AB : ð226Þ

No contribution from F appears in this equation since
LAB½F� cannot have a vector part. Finally, for any diver-
gence-free, trace-free tensor field γAB on the sphere, we can
define the tensor charge Qþ

γAB during a stationary era by

Qþ
γAB ¼

Z
dΩγABPAB½h̄ðd−3Þρσ � ð227Þ

and obtain

19An important difference between d > 4 and d ¼ 4 is that the
scalar charge for d > 4 is defined only during stationary eras,
whereas in d ¼ 4 a local, gauge invariant scalar charge can be
defined at all times (even though we gave the formula Eq. (216)
for scalar charge in d ¼ 4 only during a stationary era). The
existence of local, gauge invariant charge during radiative eras in
d ¼ 4 traces back, by the considerations of [33], to its association
with an asymptotic symmetry. Since there is no such association
in d > 4, we see no reason to believe that a local, gauge invariant
scalar charge corresponding to Eq. (223) can be defined during
radiative eras for d > 4.
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Qþ
γAB j∞ −Qþ

γAB j−∞ ¼
Z

dΩγABΔðd−3Þ
AB : ð228Þ

Of course, there is no information contained in Eq. (224),
Eq. (226), and Eq. (228) than that which already appeared
in Eq. (157).

2. Conservation laws

Thus far, the analysis of this paper has been concerned
solely with the behavior of fields near future null infinity.
Of course, the same analysis could be applied to past null
infinity. In this sub-subsection, we wish to consider the
relationship between quantities at past and future null
infinity. Under the assumptions specified below, we will
obtain a conservation law relating past and future null
infinity.
Consider, first, the case of a scalar field ϕ in Minkowski

spacetime with d even and d ≥ 4, with source S ¼ 0 in a
neighborhood of future null infinity. We restrict attention to
solutions, ϕlm, whose angular dependence is given by a
single spherical harmonic, Ylm. (A general solution, of
course, can be expressed as a superposition of such
solutions.) Suppose that at Coulombic order, ϕlm is sta-

tionary at early retarded times, ∂uϕ
ðd−3Þ
lm ¼ 0, so that at

early times,

ϕðd−3Þ
lm ¼ cYlmðxAÞ ð229Þ

where c is a constant. In the recursion relations Eq. (13), we
may replace D2 by −lðlþ d − 3Þ, so we have

ð2n − dþ 2Þ∂uϕ
ðnÞ
lm

¼ ½lðlþ d − 3Þ − ðn − 1Þðn − dþ 2Þ�ϕðn−1Þ
lm : ð230Þ

Thus, as usual, we obtain ϕðnÞ
lm ¼ 0 for n < d − 3. For

d − 3 ≤ n < lþ d − 2, we see that ϕðnÞ
lm is a polynomial,

PnðuÞ, in u of degree n − dþ 3, with the coefficients of
the polynomials at the different orders related by Eq. (230).

For n ¼ lþ d − 2, we obtain ∂uϕ
ðlþd−2Þ
lm ¼ 0, so we may

terminate the series by setting ϕðnÞ
lm ¼ 0 for n ≥ lþ d − 2.

We thereby obtain an exact solution of the form

ϕlm ¼
Xd−3

n¼lþd−3

PnðuÞ
rn

YlmðxAÞ: ð231Þ

This solution is of direct physical interest, since it corre-
sponds to the Ylm part of the retarded solution with source
corresponding to matter in inertial motion (e.g., classical
incoming particles on inertial timelike trajectories). The
general solution with Ylm angular dependence that is
stationary at Coulomb order is Eq. (231) plus a solution
with an asymptotic expansion whose slowest fall-off term is

at order 1=rlþd−2, and with the coefficients of the higher
powers of 1=rn being polynomials in u of degree
n − ðlþ d − 2Þ. This series cannot terminate.
We consider, now, the exact solution Eq. (231). The

highest power of u in Eq. (231) appears as the term
Cul=rlþd−3, where C is related to the coefficient of the
Coulombic order coefficient c by an l fold product of the
numerical factors arising from successively solving
Eq. (230). Now, consider the behavior of the solution
Eq. (231) near past null infinity. We can determine this
behavior by writing u ¼ v − 2r and reexpanding in 1=r. It
is immediately clear that the highest power of v occurring
in this solution will be the term C0vl=rlþd−3. The coef-
ficient C is related to the Coulombic order coefficient C0 at
past null infinity by a set of recursion relations. The
recursion relations at past null infinity are the same as
the recursion relations at future null infinity except for the
following important difference: ∂=∂r is now past directed,
which gives rise to a change in the sign of the ∂=∂u term in
each of the recursion relations. Thus, we end up with l sign
flips by the time we reach Coulombic order. We thereby
obtain C0 ¼ ð−1ÞlC, i.e., we have

ϕðd−3Þ
lm jI− ¼ ð−1ÞlCYlmðxAÞ: ð232Þ

Since ð−1ÞlYlmðxAÞ ¼ Ylmð−xAÞ, this means that the
solution Eq. (231) at Coulombic order has an “antipodal
matching” between Iþ and I− [11].
The antipodal matching Eq. (232) has been shown only

for the exact solutions Eq. (231) that terminate at order
1=rlþd−3. However, since the additional terms in the
asymptotic series of more general solutions behave no
worse than uk=rkþlþd−2 for k ≥ 0, these individual terms
would not contribute at Coulombic order at I−. Of course,
the series composed of these terms is merely an asymptotic
series near Iþ, and we clearly cannot determine the
behavior of solutions near I− from an asymptotic expan-
sion near Iþ. Nevertheless, it seems not implausible that
the antipodal matching may hold for a much more general
class of solutions than the exact solutions Eq. (231). In any
case, since the antipodal matching holds for Eq. (231) for
all l; m and the retarded solution corresponding to incom-
ing inertial particles is a sum of such solutions, the
antipodal matching holds for the retarded solution for
incoming inertial particles—as can be verified directly
from the explicit form of the solution [11].
Similar antipodal matching results hold for Maxwell’s

equations and for linearized gravity [7,8,11,35]. The
situation in nonlinear general relativity is less clear.
Even for a solution that is stationary at Coulombic order,
nonlinear terms will enter Einstein’s equation at order
2ðd − 2Þ. However, even in the linear case above, the
behavior at I− at Coulombic order depends on the form of
the solution at order n ¼ lþ d − 3 near Iþ. Thus, for large
l, the nonlinear terms in Einstein’s equation cannot be
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ignored. Nevertheless, it remains not implausible that the
antipodal matching may continue to hold in quite general
circumstances.
In any case, we will now assume that we have a solution

to Einstein’s equation for which the antipodal matching
holds at Coulombic order and consider the consequences.
The key point is that the matching of the Coulombic order
metrics implies a corresponding matching of the charges of
the previous subsection, since the charges are constructed
out of the Coulombic order metric. In particular, in d ¼ 4
dimensions, we have

Qþ
α ju¼−∞ ¼ Q−

α̃ jv¼þ∞ ð233Þ

where Q−
α̃ denotes the charge at I− associated to the

supertranslation ψ̃a with α̃ antipodally matched to α. Since,
in analogy to Eq. (217), we have

Q−
α̃ jv¼þ∞ −Q−

α̃ jv¼−∞ ¼
Z
I−

F−
α̃ ð234Þ

where

F−
α̃ ¼ 1

32π
ðα̃NABNAB þ 2NABDADBα̃Þ ð235Þ

we obtain the conservation law [7,8,11]

Qþ
α ju¼þ∞ þ

Z
Iþ

αF −
1

8π

Z
dΩαDADBΔð1Þ

ABjIþ

¼ Q−
α̃ jv¼−∞ þ

Z
I−

α̃F þ 1

8π

Z
dΩα̃DADBΔð1Þ

ABjI− :

ð236Þ

This may be interpreted as saying that the ingoing hard
charge plus the integrated hard and soft fluxes at I− are
equal to the corresponding quantities at Iþ.
Similarly, in d > 4 dimensions, we get a similar antipo-

dal matching of the scalar, vector, and tensor charges
defined by Eq. (223), Eq. (225), and Eq. (227), which leads
to similar conservation laws.

G. Memory and infrared divergences in quantum
field theory (“soft theorems”)

In d ¼ 4 dimensions, there is a very close relationship
between the memory effect and infrared divergences that
occur in quantum field theory. This follows directly from
the fact that, by Eq. (183), the memory tensor is just the

change in hð1ÞAB between late and early retarded times. Thus,

if Δð1Þ
AB ≠ 0, then hð1ÞABðu; xAÞ cannot vanish at future null

infinity at both u → −∞ and u → þ∞. It follows that the

Fourier transform of hð1ÞAB with respect to u will diverge at
small ω as 1=ω. As we shall now explain, this behavior
gives rise to infrared divergences in quantum field theory.

Exactly similar behavior occurs in the scalar and electro-
magnetic cases, but we will restrict our discussion here to
the gravitational case.
Let d ≥ 4, with d allowed to be odd as well as even. The

Lagrangian formulation of general relativity gives rise to a
conserved symplectic current density wa constructed out of
a background solution gab and two perturbations hab and
h0ab. Consider the symplectic flux ð∂=∂uÞawa ¼ wu near

future null infinity. Only the leading order term wðd−2Þ
u can

contribute to this flux. However, only the radiative order

parts of hab and h0ab can contribute to wðd−2Þ
u , and the

deviation of gab from the flat metric ηab cannot contribute at
all. We obtain

wðd−2Þ
u ðh0AB; hCDÞ ¼

1

32π
ðCABN0

AB − C0ABNABÞ ð237Þ

where NAB is the Bondi news tensor, Eq. (76) and CAB is

the trace-free part of the projection of hðd=2−1ÞAB onto the
sphere. In writing Eq. (237), we have imposed the gauge

conditions hð1ÞrA ¼ hð1Þuu ¼ ηabhð1Þab ¼ 0 in d ¼ 4 and we have
imposed the harmonic gauge for d > 4. The integrated
symplectic flux can be used to define a symplectic form
Ωðh0AB; hCDÞ at future null infinity

Ωðh0AB; hCDÞ ¼
Z

∞

−∞
du

Z
dΩwðd−2Þ

u ðh0AB; hCDÞ: ð238Þ

Equation (238) gives us the necessary structure to define
a Fock space of “outgoing graviton” states. We define the
“one-particle outgoing Hilbert space” Hout as the space of
radiative order trace-free ψAB that are purely positive
frequency with respect to u, with inner product given by

hψ 0
ABjψCDi ¼ −iΩðψ 0�

AB;ψCDÞ ð239Þ

where “�” denotes complex conjugation. More precisely,
we define Hout by starting with smooth positive frequency
ψAB with fast fall-off in u, defining the inner product
Eq. (239) on such ψAB, and taking the Cauchy completion.
The inner product Eq. (239) is positive definite, as can
be seen from the fact that in Fourier transform space, it is
given by

hψ 0
ABjψCDi ¼

1

16π

Z
dΩ

Z
∞

0

dωωψ̂ 0�
ABψ̂

AB ð240Þ

where the “hat” denotes the Fourier transform. A classical
solution hμν can be associated with a state in Hout via

hμν → hð1ÞþAB—where the subscript “þ” denotes the positive

frequency part—provided, of course, that hð1ÞþAB ∈ Hout.
Given Hout, one may then define the corresponding Fock
space F ðHoutÞ. A free field operator, hout

μν , on F ðHoutÞ can
then be defined in the usual manner in terms of annihilation
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and creation operators. Note that this construction is well
defined even if the quantum gravity theory has not been
defined in the interior spacetime [36].
However, this space, F ðHoutÞ, of outgoing graviton

states need not be adequate to describe all physically
relevant outgoing states. This is most easily seen by
considering the theory of linearized quantum gravity
(i.e., a massless, spin-2 field) with a classical stress energy
source, i.e., the stress-energy operator is taken to be TabI
where Tab is a classical stress energy and I is the identity
operator. This is a well defined, mathematically consistent
theory that can be solved exactly. After analyzing this
theory, we will discuss the implications for a full theory in
which the stress-energy is fully quantum and the nonlinear
effects of gravity are taken into account.
The Heisenberg equations of motion for the field

operator hμν for linearized gravity with a classical stress-
energy source are easily solved to yield

hμν ¼ hin
μν þ hretμνI ð241Þ

where hin
μν is the free field operator corresponding to the

“in” field and hretμν is the classical retarded solution with
classical source Tab. Suppose we consider the state j0ini,
corresponding to the vacuum state of hin

μν. If we assume that
this state corresponds to some state Ψ ∈ F ðHoutÞ, then it
follows from Eq. (241) that for any one particle state ψAB,
we have

aoutðψABÞΨ ¼ −hψABjhretþABiΨ: ð242Þ

The solution to this equation is the coherent state associated
with hretþAB, namely

Ψ ∝ exp ½−a†outðhretþABÞ�j0outi ð243Þ

Equation (243) was derived under the assumption that
Ψ ∈ F ðHoutÞ. If hretþAB has finite norm in the inner product
Eq. (239), then the right side of Eq. (243) defines a state in
F ðHoutÞ, and this state corresponds to j0ini. However, if
hretþAB does not have finite norm in the inner product
Eq. (239), then the right side of Eq. (243) does not define
a state in F ðHoutÞ. It follows that j0ini cannot correspond to
a state in F ðHoutÞ. This should not be a cause of any
distress. The Heisenberg state j0ini is well defined every-
where as a state on the algebra of local field observables. It
is similarly well defined on the algebra of asymptotic field
observables near future null infinity. All of its correlation
functions are well defined at future null infinity. If we wish
to represent this state as a vector in a Hilbert space, F̃ out,
carrying a representation of the “out” field observables, we
may always do so via the GNS construction. However, if
hretþAB does not have finite Klein-Gordon norm, the repre-
sentation of the field observables on F̃ out cannot be

unitarily equivalent to its representation on F ðHoutÞ (see
[36], Sec. V. A of [37]).
Now let d ¼ 4 and consider the case where the classical

source Tab is such that the corresponding retarded solution

hretab has a nonvanishing memory tensor Δð1Þ
AB ≠ 0. Then, as

already noted in the first paragraph of this subsection, the

Fourier transform of hretð1ÞAB with respect to u will diverge at
small ω as 1=ω. But by Eq. (240), we then have

kĥretð1ÞþAB k2 ¼
1

16π

Z
dΩ

Z
∞

0

dωωjĥretð1ÞþAB j2 ¼ ∞ ð244Þ

on account of the “infrared divergence” asω → 0. Thus, the
“out” state corresponding to j0ini—or, for than matter, any
other state in F ðHinÞ—does not live in F ðHoutÞ, and one
would have to work with a different representation to
represent this state as a vector in a Hilbert space. Exactly
analogous results hold in the scalar and electromagnetic
cases for d ¼ 4.
We have just shown that in linearized gravity with a

classical source for which a nontrivial memory effect is
present in the classical retarded solution—as would occur
generically in classical particle scattering—the “out” state
Ψ is not a state in F ðHoutÞ. However, the infrared
divergence described in the previous paragraph is suffi-
ciently innocuous that one can, in effect, proceed as though
one were dealing with a state in F ðHoutÞ. To see this,
consider, first, the case where no infrared divergences occur
and hretþAB has finite Klein-Gordon norm, so Eq. (243)
defines a state in F ðHoutÞ. Choose a frequency ω0 > 0 and
decomposeHout into the direct sum of its “hard” and “soft”
graviton spaces

Hout ¼ HH
out ⊕ HS

out ð245Þ

where HH
out is spanned by trace-free ψAB composed of

frequencies ω ≥ ω0 and HS
out is spanned by trace-free ψAB

composed of frequencies ω0 > ω ≥ 0. The Fock space
F ðHoutÞ then factorizes as

F ðHoutÞ ¼ F ðHH
outÞ ⊗ F ðHS

outÞ: ð246Þ

Now decompose hretþAB into its “hard” and “soft” parts,

hretþAB ¼ ½hretþAB�H þ ½hretþAB�S: ð247Þ

The creation operator a†outðhretþABÞ appearing in Eq. (243)
and be written as the sum of creation operators for the hard
and soft parts of hretþAB. Since these operators commute, Ψ
factorizes as

Ψ ¼ ΨH ⊗ ΨS ð248Þ

where ΨH ∈ F ðHH
outÞ is the coherent state associated with

½hretþAB�H and ΨS ∈ F ðHS
outÞ is the coherent state associated
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with ½hretþAB�S. The factorization in Eq. (248) implies that if
we are interested solely in the “hard part” of the outgoing
state, we may effectively put in an “infrared cutoff” at ω ¼
ω0 and work with the state ΨH in the Fock space F ðHH

outÞ.
In particular, the probability that ΨH ∈ F ðHH

outÞ contains a
specified number of “hard gravitons” in specified modes is
the same as the sum of the probabilities that Ψ ∈ F ðHoutÞ
contains these “hard gravitons” and any number of “soft
gravitons.” This is the essential content of the “soft
theorems” [38]. In perturbation theory, the fact that
inclusion of the effects of “soft gravitons” does not affect
the calculation of “hard graviton” probabilities manifests
itself in a cancelation of the contributions of “real soft
gravitons” and “virtual soft gravitons.”
The above discussion assumed that hretð1ÞAB does not have

infrared divergences, in which case there is no need to
decompose the “out” state into “hard” and “soft” parts.
Now consider the case where a memory effect is present

and hretð1ÞAB does have an infrared divergence. Then, as
discussed above, Ψ ∉ F ðHoutÞ. Nevertheless, we may still
write

Ψ ¼ ΨH ⊗ Ψ̃S ð249Þ

where ΨH ∈ F ðHH
outÞ is the coherent state associated with

½hretþAB�H and Ψ̃S ∈ F̃ S
out is the “soft graviton” state written

as a vector in the Hilbert space F̃ S
out in the representation to

which it belongs. Although the “soft graviton” content ofΨ
near future null infinity is ill defined [sinceΨS ∉ F ðHS

outÞ],
the “hard graviton” content of Ψ is well defined [since
ΨH ∈ F ðHH

outÞ]. Thus, if we are interested only in the “hard
particle” content of Ψ near future null infinity, we may, in
effect, put in an infrared cutoff and treat Ψ as an ordinary
Fock space state ΨH ∈ F ðHH

outÞ [39].
All of the above discussion beginning with Eq. (241)

holds for the rather trivial theory of linearized gravity with a
classical stress-energy source. It is quite a leap to go from
this theory to the case of quantum, interacting matter and
quantum, nonlinear general relativity, especially since a
quantum theory of nonlinear general relativity is not in
hand. Nevertheless, let us consider a scattering situation
where, by assumption, we have noninteracting ingoing
“hard” particles at early times and noninteracting outgoing
“hard” particles late times. Consider the “soft” content of
the outgoing state, associated with ω < ω0, where ω0 is
much less than any inverse length or time scale associated
with the interaction. Then, it seems plausible that the
dominant contributions to this “soft” content will come
from asymptotically early and late times, where the “hard”
particles are noninteracting and effectively can be treated
classically. If so, then a factorization similar to Eq. (249)
should occur, but with the following important difference:
If we fix an “in” state consisting of “hard” particles in
momentum eigenstates, then the hard content of the “out”

state should have a nonvanishing amplitude for “hard”
particles in many different momentum eigenstates. (Of
course, total energy-momentum is conserved.) But this
means that there also should be nonvanishing amplitudes
for different memory tensors. Presumably, one must take
the “out” Hilbert space for the soft sector to be

F̃ S
out ¼ ⨁

Δ
F S

Δout ð250Þ

where F S
Δout describes Hilbert space of soft “out” states

with memory tensor Δð1Þ
AB and the direct sum is taken over

the (uncountably infinite) collection of all Δð1Þ
AB. Instead of

Eq. (249), the “out” state should be of the form

Ψ ¼
X
Δ
ΨH

Δ ⊗ ΨS
Δ ð251Þ

where ΨH
Δ ∈ F ðHH

outÞ (i.e., the “hard” factor lies in the

usual Fock space of for all Δð1Þ
ABÞ, but ΨS

Δ ∈ F S
Δout (i.e., the

“soft” factor lies in different Hilbert spaces for different

Δð1Þ
AB). Thus, the soft gravitons should produce a complete

decoherence [40,41] of the “hard” final states with different
memory, although they will not affect the probability of
producing any specified “hard” final state with particles in
momentum eigenstates. Further investigation of this issue is
well beyond the scope of this paper.
Finally, we note that essentially all of our discussion

above also applies to d > 4. For d even, the memory tensor
is first nonvanishing only at Coulombic order. However,

since Cðd=2−1Þ
uμuν can be expressed as inverse angular operators

acting on ∂d=2−2Cðd−3Þ
uμuν =∂ud=2−2, it can be seen that the

Fourier transform of hðd=2−1ÞAB ðu; xAÞ behaves as ωd=2−3 as
ω → 0. Thus, there are no infrared divergences for d > 4.
This result holds in odd dimensions as well. Thus, although
one can still factorize states into “hard” and “soft” parts,
there is no necessity to do so in order to describe the “out”
state as a Fock space state.20
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APPENDIX A: RELATIONSHIP OFOUR ANSATZ
TO SMOOTHNESS AT I + IN d = 4

As noted in the body of the paper, it is easily seen that in
d ¼ 4, smoothness of Aa at Iþ implies that our ansatz (24)
holds, and smoothness of Ω2hab at Iþ implies that our

20However, there may be other considerations that indicate the
utility of factorization of the out state into “hard” and “soft” parts
(see [42,43]).
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ansatz (58) holds. However, for d ¼ 4 the ansatz (24)
implies smoothness of Aa at Iþ only under the additional

condition that Að1Þ
r ¼ 0, and the ansatz (58) implies

smoothness of Ω2hab at Iþ only under the additional

condition that hð1Þrr ¼ 0. In this Appendix, we investigate
the conditions under which these additional restrictions can
be imposed as gauge conditions. We show that this is

possible in electromagnetism when jð3Þr ¼ 0 and in linear-

ized gravity when Tð3Þ
ur ¼ Tð3Þ

rr ¼ Tð3Þ
rA ¼ 0. However, when

these quantities are nonvanishing, there are solutions within
our ansatz that are not smooth at Iþ. Nevertheless, in
nonlinear gravity, we show that hð1Þrr ¼ 0 if the Bondi news
is nonvanishing everywhere on one cross-section, in which
case our ansatz in d ¼ 4 is equivalent to smoothness at Iþ.

1. Electromagnetism

The l ≠ 0 part of Að1Þ
r is gauge invariant within our

ansatz, so if it is nonvanishing, it cannot be set to zero by a
gauge transformation. By Eq. (37), we have ψ ð1Þ ¼ 0.

Equation (32) with n ¼ 1 then yields ∂uA
ð1Þ
r ¼ 0, so Að1Þ

r

is independent of u. The r-component of Maxwell’s
equations given by Eq. (29) in four dimensions with
n ¼ 3 gives that

D2Að1Þ
r ¼ −4πjð3Þr : ðA1Þ

This equation implies that the l ¼ 0 part of jð3Þr must

vanish. It also implies that ∂uj
ð3Þ
r ¼ 0, as also can be proven

directly from current conservation and ψ ð1Þ ¼ 0. However,

if the l ≠ 0 part of jð3Þr is nonvanishing, we will obtain

solutions within our ansatz such that Að1Þ
r ≠ 0. Such

solutions are not smooth at Iþ in any gauge.
Conversely, if jð3Þr ¼ 0, then the l ≠ 0 part of Að1Þ

r

vanishes by Eq. (A1). The l ¼ 0 part of Að1Þ
r can then

be set to zero within our ansatz by a gauge transformation

of the form ϕ ¼ c lnðrÞ. Thus, if jð3Þr ¼ 0, all solutions
within our ansatz are smooth at Iþ in some gauge.

2. Linearized gravity

The l > 1 part of hð1Þrr is gauge invariant within our
ansatz, so if it is nonvanishing, it cannot be set to zero by a

gauge transformation. From χð1Þr ¼ 0 and Eq. (69), we

obtain ∂uh
ð1Þ
rr ¼ 0. The ur and rr components of the

linearized Einstein’s equation given by Eqs. (62) and
(64) with n ¼ 2 yield, respectively,

D2h̄ð1Þur −DAχð2ÞA ¼ −16πTð3Þ
ur ðA2Þ

½D2 − 2�h̄ð1Þrr þ 2h̄ð1Þur − 2DAh̄ð1ÞAr þ 2χð2Þr ¼ −16πTð3Þ
rr : ðA3Þ

The angular divergence of the rA component, Eq. (65),
yields

D2DAh̄ð1ÞrA − 2D2h̄ð1Þur þ 2D2h̄ð1Þrr −D2χð2Þr þDAχð2ÞA

¼ −16πDATð3Þ
rA : ðA4Þ

ApplyingD2 to Eq. (A3) and taking a linear combination of
the above equations, we obtain

D2½D2 þ 2�hð1Þrr ¼ −16πðD2Tð3Þ
rr þ 2DATð3Þ

rA þ 2Tð3Þ
ur Þ

ðA5Þ

where we used the fact that h̄rr ¼ hrr. The l ¼ 0 and
l ¼ 1 parts of the right side must therefore vanish, and
the right side must be stationary. Indeed, using conser-
vation of stress energy and the dominant energy con-

dition it can be shown that Tð3Þ
ur ; T

ð3Þ
rr and Tð3Þ

rA are
stationary. However, the l > 1 part of the right side
can be nonvanishing, and, if it is, we obtain a solution

within our ansatz such that hð1Þrr ≠ 0. Such solutions are
not smooth at Iþ in any gauge.

Conversely, if Tð3Þ
ur ¼ Tð3Þ

rr ¼ Tð3Þ
rA ¼ 0, then Eq. (A5)

implies that hð1Þrr is a linear combination of an l ¼ 0 and an
l ¼ 1 spherical harmonic. Let

Xa ¼ c

� ∂
∂u

�
a
þ fðxAÞ

� ∂
∂u

�
a
− fðxAÞ

� ∂
∂r

�
a

− qBCDBfðxAÞ
1

r

� ∂
∂xC

�
a

ðA6Þ

where c is a constant and fðxAÞ is a linear combination of
l ¼ 1 spherical harmonics, so that Xa is a translational
Killing field of the background Minkowksi spacetime. By a
gauge transformation of the form

ξa ¼ Xa lnðrÞ ðA7Þ

we can set the l ¼ 0, 1 parts of hð1Þrr to zero within our

ansatz. Thus, we can set hð1Þrr ¼ 0 and the solution is smooth
at Iþ.

3. Nonlinear gravity

Again, we obtain ∂uh
ð1Þ
rr ¼ 0. But there now is a

new, nontrivial equation containing hð1Þrr ¼ 0. The AB-
components of the Einstein equation given by Eq. (66)
with n ¼ 1 where the right-hand side of Eq. (66) now picks

up an additional nonlinear contribution Gð2Þ
AB given by

Eq. (102) with d ¼ 4. We obtain

−qAB∂uχ
ð2Þ
r ¼ 2∂uðhð1Þrr NABÞ: ðA8Þ
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The right side is traceless whereas the left side is pure trace,
so the only way this equation can hold is if both sides

vanish. Thus, using ∂uh
ð1Þ
rr ¼ 0, we obtain

hð1Þrr ∂uNAB ¼ 0: ðA9Þ

This equation has no analog in the linearized theory. Since
NAB → 0 as u → �∞, it implies that if the Bondi news is

nonvanishing at angle xA at any u, then hð1Þrr ðxAÞ ¼ 0 at all u

(since hð1Þrr is independent of u). Thus, in particular, if the
Bondi news is nonvanishing everywhere on one cross

section of Iþ, then hð1Þrr ¼ 0, and our ansatz in d ¼ 4 is
equivalent to smoothness at Iþ.

APPENDIX B: APPLYING THE LORENZ
GAUGE WITH A SLOWER FALL-OFF

ANSATZ FOR d > 4

In our ansatz Eqs. (24)–(25) for Aa and our ansatz
Eqs. (58)–(59) for hab, the slowest fall-off term was assumed
to be at radiative order, n ¼ d=2 − 1. However, in even
dimensions with d > 4, the conditions of smoothness of Aa

andΩ2hab ¼ r−2hab at Iþ would, a priori, allow terms with
slower fall-off than permitted by our ansatz. This suggests a
danger that our ansatz might exclude some solutions of
physical interest. In this Appendix, we show that this is not
the case by weakening our ansatz to permit slower fall-off,
allowing the integer powers in even dimensions to start at
order 1=r and allowing the half-integer powers in odd di-
mensions to start at order 1=

ffiffiffi
r

p
for all d > 4. We will show

that the Lorenz gauge can still be imposed within the context
of this weaker ansatz. Since the Cartesian components of Aa
and hab satisfy the scalar wave equation in Lorenz gauge, it
follows from Remark 1 that the only additional solutions
allowed by our weaker fall-off ansatz vanish in Lorenz
gauge. Thus, the only new solutions allowed by the weaker
ansatz are pure gauge. This justifies our stronger choice of
ansatz Eqs. (24)–(25) and Eqs. (58)–(59).

1. Electromagnetism

We take our slower fall-off ansatz for the vector potential
Aa for d > 4 to be

Aa ∼
X∞
n¼1

1

rn
AðnÞ
a ðu; xAÞ d even ðB1Þ

Aa ∼
X∞
n¼1=2

1

rn
AðnÞ
a ðu; xAÞ þ

X∞
p¼d−3

1

rp
ÃðpÞ
a ðu; xAÞ d odd:

ðB2Þ
As discussed in Sec. II C, in order to impose the Lorenz
gauge we must solve the scalar wave equation (34) for a
gauge scalar field ϕ with source ψ .

Consider, first, the case of d even. We seek to solve
Eq. (34) with the ansatz

ϕ ∼ c ln rþ
X∞
n¼0

1

rn
ϕðnÞðu; xAÞ ðB3Þ

where c is a constant, and we require ∂uϕ
ð0Þ ¼ 0 in order

that ∂aϕ ¼ Oð1=rÞ. The recursion relations for ϕðnÞ are
given by Eq. (18) with ψ replacing S. Although
S ¼ Oð1=rd−2Þ, a priori we have ψ ¼ Oð1=rÞ. However,
an analysis similar to the proof of Proposition 3 shows that
ψ ð1Þ vanishes and

∂uψ
ð2Þ ¼ −ðd − 4Þ∂uA

ð1Þ
u ðB4Þ

To solve Eq. (18), we start with the radiative order
recursion relation [n ¼ d=2 − 1 in Eq. (18)], which yields

½D2 − ðd=2 − 2Þðd=2 − 1Þ�ϕðd=2−2Þ ¼ ψ ðd=2Þ: ðB5Þ

This angular operator is invertible, so we may uniquely
solve for ϕðd=2−2Þ. There is no difficulty in solving the
recursion relations at faster fall-off, since we may then
specify ϕðd=2−1Þ arbitrarily and solve for ϕðnÞ with n >
d=2 − 1 as in Proposition 1. To obtain ϕðnÞ with n <
d=2 − 2 we proceed iteratively by inverting the angular
operators in the slower fall-off recursion relations. This
works without any difficulty until we get to Eq. (18) with
n ¼ 1.

cþD2ϕð0Þ ¼ ψ ð2Þ þ ðd − 4Þ∂uϕ
ð1Þ ðB6Þ

If the right side of this equation were not stationary, ϕð0Þ
could not be stationary and the desired gauge transforma-
tion would not exist. However, we now shall show that the
right side of Eq. (B6) is indeed stationary.
To show this, let

γ ≡ Au − ∂uϕ: ðB7Þ

By Maxwell’s equations, when ja ¼ 0, we have

□Au ¼ ∂uψ : ðB8Þ

Thus, if ϕ satisfies Eq. (34) and if ja ¼ 0, then γ satisfies
□γ ¼ 0. Of course, ja need not be zero and we have not yet
obtained a solution, ϕ, to Eq. (34). However, we have

jðnÞa ¼ 0 for all n < d − 2, and we have constructed above a
solution to the recursion relations Eq. (18) to solve for ϕðnÞ

for all n > 0. Therefore, we obtain quantities γðnÞ that
satisfy the homogeneous recursion relations Eq. (13) for all
1 < n < d − 2. In parallel with the argument of the
previous paragraph, at radiative order, n ¼ d=2 − 1, these
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relations imply that γðd=2−2Þ ¼ 0. It then follows that
γðnÞ ¼ 0 for all 1 ≤ n ≤ d=2 − 2. For n ¼ 1, we obtain

∂uϕ
ð1Þ ¼ Að1Þ

u : ðB9Þ

But the Maxwell equation Eq. (B8) yields

ðd − 4Þ∂uA
ð1Þ
u ¼ −∂uψ

ð2Þ: ðB10Þ

Thus the right side of Eq. (B6) is indeed stationary, as we
desired to show. In parallel with solving Eq. (41) when
d ¼ 4, we can choose c so as to cancel the l ¼ 0 part of the
right side. We may then invert Eq. (B6) to obtain ϕð0Þ. Thus,
in even dimensions, the Lorenz gauge can be imposed
within the weakened ansatz (B1).
We now turn to the odd dimensional case. We take the

scalar field ϕ to have the following expansion in powers
of 1=r

ϕ ∼
X∞

n¼−1=2

1

rn
ϕðnÞðu; xAÞ þ

X∞
p¼d−3

1

rp
ϕ̃ðpÞðu; xAÞ: ðB11Þ

Note that we allow a term, ϕð−1=2Þ, that growswith r as r1=2.
In order that ∂aϕ be consistent with our ansatz (B2), it is
necessary and sufficient that ∂uϕ

ð−1=2Þ ¼ 0.
There is no difficulty in solving the recursion relations

for ϕ̃ðpÞ. There also is no difficulty in solving the recursion
relations for ϕðnÞ for n ≥ 1=2 in the manner specified in
Proposition 2. However, there is a potential difficulty that
arises when one attempts to solve the recursion relation
for ϕð−1=2Þ

�
D2 þ 1

4
ð2d − 5Þ

�
ϕð−1=2Þ ¼ ðd − 3Þ∂uϕ

ð1=2Þ þ ψ ð3=2Þ:

ðB12Þ

This equation can be uniquely solved for ϕð−1=2Þ, but
ϕð−1=2Þ will be stationary as required if and only if the
right side be stationary. However, the stationarity of the
right side can be proven in the same manner as done above
for the even dimensional case. Thus, in odd dimensions,
the Lorenz gauge can be imposed within the weakened
ansatz (B2).

2. Linearized gravity

We take the slower fall-off ansatz for the metric
perturbation hab to be

hab ∼
X∞
n¼1

1

rn
hðnÞab ðu; xAÞ d even ðB13Þ

hab ∼
X∞
n¼1=2

1

rn
hðnÞab ðu; xAÞ þ

X∞
p¼d−3

1

rp
h̃ðpÞab ðu; xAÞ d odd:

ðB14Þ

We seek a gauge vector field, ξa, satisfying Eq. (78). We
take our ansatz for ξa to be

ξa ∼ cð∂=∂uÞa ln rþ
X∞
n¼0

1

rn
ξðnÞa ðu; xAÞ d even ðB15Þ

ξa ∼
X∞

n¼−1=2

1

rn
ξðnÞa ðu; xAÞ þ

X∞
p¼d−3

1

rp
ξ̃ðpÞa ðu; xAÞ d odd

ðB16Þ

where, in even dimensions, ∂uξ
ð0Þ
a ¼ 0, and, in odd dimen-

sions, ∂uξ
ð−1=2Þ
a ¼ 0.

In even dimensions, we can solve the recursion relations
in parallel with the electromagnetic case. The only potential

difficulty arises showing that ∂uξ
ð0Þ
a ¼ 0. This requires

showing that in the recursion relation for ξð0Þu

cþD2ξð0Þu ¼ −2χð2Þu þ ðd − 4Þ∂uξ
ð1Þ
u ; ðB17Þ

the right side must be stationary. However, stationarity
can be proven in close parallel with the electromagnetic
case by defining

Γ≡ −h̄uu þ
1

d − 2
h̄ − ∂uξu ðB18Þ

and showing ΓðnÞ ¼ 0 for all 1 ≤ n ≤ d=2 − 2, from which
it can then can be shown that the right side of Eq. (B17) is
stationary. We then can solve Eq. (B17) to obtain a

stationary ξð0Þu . The equations for ξð0Þr and ξð0ÞA can then
be solved, and these quantities are stationary. Thus, in even
dimensions, the Lorenz gauge can be imposed within the
weakened ansatz (B13).
The odd dimensional case mirrors the analysis of the

electromagnetic case in odd dimensions, with the sub-
stitution of the argument of the previous paragraph to prove

stationarity of ξð−1=2Þa ¼ 0
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