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We investigate the production of gravitational waves during the inspiral of compact binaries close to their
merger in the context of a conformal gravity model. The model incorporates five massive polarisation
degrees of freedom, besides the two massless gravitational wave polarizations of general relativity. For
small graviton mass, we find that the amplitude of the gravitational waves is strongly suppressed as
compared to general relativity and decreases as coalescence is approached, which contradicts the
observational fact. We conclude that this model with small graviton mass, including a regime that can
explain galaxy rotation curves without dark matter, cannot describe the observed gravitational wave events.
For a large graviton mass, the modifications to the waveform, compared to the one from general relativity,
are negligible on the relevant distance scales and hence a conformal gravity model with a large graviton
mass is in agreement with LIGO/VIRGO observations and leads to chirp mass and distance estimates that
agree with those from general relativity.
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I. INTRODUCTION

With the detection of gravitational waves (GW) by the
aLIGO and VIRGO observatories the era of GWastronomy
started. Several binary black hole mergers were detected
[1–6]. The analysis of these events shows that the pre-
dictions of general relativity (GR) are in very accurate
agreement with these observations, which at the same time
open a fantastic window of opportunity to test the physics
of gravity beyond GR. Recently also the first binary
neutron star merger (GW170817) has been detected with
electromagnetic follow-up measurements in nearly the
whole electromagnetic spectrum coming from GRB
170817A [7–9]. From the measured difference in the
arrival time of the gravitational and electromagnetic signal
strong constraints on the speed of the GWs are given. This
rules out several theories of modified gravity [10–17],
especially when the graviton has a small mass.
In this work we investigate the wave form of GWs in

conformal gravity (CG) to investigate if the GW detections
of aLIGO and VIRGO can be explained within these
theories. This theory is special because it is based on a
Weyl invariant action, which is unique up to the choice of
the matter content, the coupling constants and their signs.
Explicit mass scales are forbidden by this symmetry, and
become manifest only after fixing Weyl symmetry. The
Einstein-Hilbert term and the cosmological constant appear
then together with all other masses and the CG models
exhibit two gravitational modes, a massless and a massive

one. Thus these models cannot be constrained based on the
signal travel time alone, as the massless mode behaves as in
GR and a more detailed analysis of the wave forms is
required.
A special case is Mannheim’s CG model for which an

exact solution for the gravitational potential for a static,
spherically symmetric system was found [18]. In addition
to the 1=r-term in the Schwarzschild solution it contains a
term linear in r, which can be used to fit a large number of
galaxy rotation curves without the need for dark matter
[19–21]. However, cosmic structure formation has not been
analyzed yet.
The model of CG studied in this work is a fourth-order

derivative theory. This makes them power-counting renor-
malizable [22,23], which means that they are candidates for
a theory of quantum gravity. But CG models with higher
derivatives suffer from the Weyl ghost, although it is
claimed that the ghost issue can be solved [24–31].
In [32] the authors have analyzed the gravitational

radiation of stellar binary systems in a CG model
(CGM) that inlcudes Mannheim’s CG as a special case.
A neutron star-white dwarf system in slow stationary
inspiral on circular orbits in the Newtonian limit was
studied and two parameter regimes, corresponding to a
small and a large graviton mass, were identified. It was
shown that for the case of a small graviton mass the radiated
power cannot explain the decrease of the orbital period.
However, it turned out there is a parameter regime with a
large graviton mass which is in agreement with the
observations and which contains a GR limit.
For a small graviton mass the energy lost by the

binary system could be stored in the near field by some
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mechanism, which means that this parameter regime is not
necessarily ruled out. In the present work we use the
measurements of GWs in the late phase of the evolution of
a binary system. aLIGO and VIRGO measured GW signals
consistent with the predictions of GR. Hence, we inves-
tigate if it is possible to also fit the observed GW signal
with wave forms predicted in the CGM. As we show below,
this turns out to be impossible and we can thus rule out
small graviton masses and therefore also Mannheim’s
model of CG.
In Sec. II we give an introduction to the CGM. In Sec. III

we recap the results from [32], where the linearized
equations of motion and their GW solutions for a binary
system on circular orbits and in the Newtonian limit were
worked out. We discuss the modifications to Kepler’s third
law in Sec. IV and calculate the wave form in the late
inspiral phase and compare it to GR. Lastly, we discuss our
findings and conclude.
In the first two sections and in the beginning of Sec. III

we use natural units, hence c ¼ ℏ ¼ 1. Greek indices take
values 0 to 3, whereas latin indices run from 1 to 3. Other
conventions are specified in the Appendix.

II. CONFORMAL GRAVITY MODELS

The action of models of CG is given by

I ¼ −αg
Z

d4x
ffiffiffiffiffiffi
−g

p
CλμνκCλμνκ þ IM ð1Þ

where αg is a dimensionless coupling constant, x denotes
the spacetime coordinates, g is the determinant of the metric
tensor gμν, Cλμνκ is the Weyl tensor and IM denotes the
matter action. Using the Gauss-Bonnet term, which is a
total derivative in four space-time dimensions and hence
does not contribute to the field equations for the metric, we
can rewrite (1) as

I ¼ −2αg
Z

d4x
ffiffiffiffiffiffi
−g

p �
RμκRμκ −

1

3
R2

�
þ IM; ð2Þ

where Rμκ and R are the Ricci tensor and scalar. The
gravitational action is invariant under Weyl transformations
of the metric,

gμνðxÞ → Ω2ðxÞ gμνðxÞ; ð3Þ

where the conformal factor Ω is real, positive and smooth.
Variation of the action (2) with respect to gμν leads to the

equations of motion for the gravitational field [33]

4αgWμν ¼ 4αg½2Cμλνκ
;λ;κ − CμλνκRλκ� ¼ Tμν

M; ð4Þ

where Wμν is the Bach tensor and

Tμν
M ≡ 2

ð−gÞ1=2
δIM
δgμν

ð5Þ

is the matter energy-momentum tensor.
The matter energy-momentum tensor should also be

Weyl invariant. Hence, the most general local matter action
for a generic scalar and a spinor field coupled conformally
to gravity is [34]

IM ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϵ

�
−
S;μS;μ
2

þ S2R
12

�
þ λS4

þ iψ̄γμðxÞ½∂μ þ ΓμðxÞ�ψ − ξSψ̄ψ

�
: ð6Þ

SðxÞ represents a self-interacting real scalar field and
ψðxÞ is a generic spin-1=2 fermion field. ξ and λ are
dimensionless coupling constants, γμðxÞ are the vierbein-
dependent Dirac-gamma matrices, ψ̄ ¼ ψ†γ0 and ΓμðxÞ is
the fermion spin connection [35]. To be invariant under
local Weyl transformations the several fields have to
transform as SðxÞ → Ω−1ðxÞSðxÞ, ψðxÞ → Ω−3=2ðxÞψðxÞ
and gμνðxÞ → Ω2ðxÞgμνðxÞ. The exponent of the conformal
factor is called conformal weight.
In the action (6) only the combination of the two terms in

round brackets is Weyl invariant. Hence, we introduce the
parameter ϵ, which can take the values −1 orþ1. In the first
case, the theory corresponds to the model advocated by
Mannheim and Kazanas [18]. The case ϵ ¼ þ1 was called
massive conformal gravity in our previous work [32], but it
was pointed out in [36] that this naming is in conflict with
previous terminology. In order to avoid any further con-
fusion, we refer to both cases as the same conformal gravity
model (referred to as CGM below) which has two distinct
regimes specified by ϵ ¼ �1.
Since the action I is Weyl invariant, it is always possible

to choose a frame in which the scalar field is constant

SðxÞ → S0ðxÞ ¼ Ω−1ðxÞSðxÞ ¼ S0 ¼ const; ð7Þ

with ΩðxÞ ¼ SðxÞ=S0. This is called the Higgs or unitary
gauge [37,38]. In order to make connection to GR, one
chooses

8πG≡ 6

S20
; ð8aÞ

Λ≡ 6λS20; ð8bÞ

where G denotes Newton’s constant and Λ is interpreted as
the cosmological constant. This is a reasonable choice
because for ϵ ¼ þ1 and in the limit αg → 0, the action I
becomes the Einstein-Hilbert action with minimally
coupled matter.
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Variation of the action (6) with respect to gμν leads to the
matter energy-momentum tensor

TM
μν ¼ Tμν þ

ϵ

8πG

�
Rμν −

1

2
gμνR

�
− gμν

Λ
8πG

; ð9Þ

where

Tμν ¼
1

2
½iψ̄γμðxÞ½∂ν þ ΓνðxÞ�ψ þ ðμ ↔ νÞ� ð10Þ

is the fermionic energy-momentum tensor.
The equation for the gravitational field now becomes

[39,40],

4αgWμν ¼ Tμν þ
1

8πG
½ϵGμν − gμνΛ�; ð11Þ

where Gμν denotes the Einstein tensor. From the trace of
(11) we get

ϵRþ 4Λ ¼ 8πGT; ð12Þ

where T is the trace of the fermionic matter energy-
momentum tensor. Note that the fermion energy-
momentum tensor is covariantly conserved,

Tμν
;ν ¼ 0; ð13Þ

due to the Bianchi identities for the Bach and Einstein
tensors.
We observe that it is convenient to introduce a new

parameter mg with the dimensions of a mass,

m2
g ≡ 1

32πGαg
: ð14Þ

We can then write

−ϵGμν þ gμνΛþ 1

m2
g
Wμν ¼ 8πGTμν; ð15Þ

and observe that in the limit mg → ∞, the Einstein
equations are recovered for ϵ ¼ þ1. Mannheim’s case
(ϵ ¼ −1) does not contain general relativity as a limit.

III. GRAVITATIONAL WAVES

In [32] we linearized the equations of motion for the
metric and derived the gravitational wave solutions for
conformal gravity with both signs of ϵ and for different
parameter regions. In a flat Minkowski background we
found a massless and a massive mode of the metric
perturbation given by

hμν ¼ ϵðHμν þΨμνÞ; ð16Þ

where

Ψμν ¼
1

m2
g

�
□hμν −

1

3
ημνR

�
ð17Þ

represents the massive mode andHμν is the massless mode.
Using (16) and (17) in the linearized version of (15) leads to

□H̄μν ¼ −16πGTμν; ∂μH̄μν ¼ 0; ð18aÞ

ð□ − ϵm2
gÞΨ̂μν ¼ 16πGTμν; ∂ρ∂σΨ̂ρσ ¼ 0; ð18bÞ

where H̄μν ≡Hμν − 1=2ημνH and Ψ̂μν ≡ Ψμν − ημνΨ. This
result holds in the Teyssandier gauge

Zμ ¼ −m−2
g ½ð□ − ϵm2

gÞ∂ρh̄
ρ
μ þ ð1=3Þ∂μR� ¼ 0; ð19Þ

see [41,42]. It can be shown that there are two massless
polarization degrees of freedom (d.o.f.) encoded inHμν and
five massive ones encoded in Ψμν. The solutions for the
massless modes are identical to the case of general
relativity. For the massive modes we found that binary
systems can excite only two of the five modes and, as in
general relativity, the gravitational waves are sourced by
time varying quadrupole moments of the mass distribution.
The solutions for the metric perturbation for a binary

system of two compact objects of mass m1 and m2 in
circular motion in the Newtonian limit and in the center of
mass frame were derived in [32]. The dynamics of the
system can be reduced to a one-body problem with reduced
mass μ ¼ m1m2=ðm1 þm2Þ. The relative coordinates for a
circular path in the xy-plane are given by

xðtÞ ¼ −R sin ðωstÞ; ð20aÞ

yðtÞ ¼ R cos ðωstÞ; ð20bÞ

where R is the distance between the two compact objects
and ωs is the orbital frequency. The corresponding circular
frequency of the emitted gravitational waves is ωgw ¼ 2ωs.
To find an approximate analytic solutions to Eq. (18b) we
distinguish two cases. The relation between the graviton
mass mg and the frequency ωs determines the physical
behavior of the massive mode.
For a small graviton mass, mgc2 < ℏωgw, in [32] we

found

h11ðt; rÞ ¼ −h22ðt; rÞ

¼ ϵ

r

GμR2ω2
gw

c4
½cosðωgwt0Þ − cosðωgwtmÞ�; ð21aÞ

h12ðt; rÞ ¼ h21ðt; rÞ

¼ ϵ

r

GμR2ω2
gw

c4
½sinðωgwt0Þ − sinðωgwtmÞ�; ð21bÞ
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where now t denotes the time of an observer at distance r to
the source, t0 ¼ t − r=c is the retarded time for the
massless mode and tm ¼ t − vg;ϵr=c2 is the retarded time
for the massive mode. vg;ϵ ¼ c½1 − ϵm2

gc4=ℏ2ω2
gw�1=2 is the

group velocity of the massive gravitational wave.
For ϵ ¼ þ1 and mgc2 > ℏωgw, in [32] we found

h11ðt; rÞ ¼ −h22ðt; rÞ

¼ 1

r

GμR2ω2
gw

c4
½cosðωgwt0Þ − e−kωr cosðωgwtÞ�;

ð22aÞ

h12ðt; rÞ ¼ h21ðt; rÞ

¼ 1

r

GμR2ω2
gw

c4
½sinðωgwt0Þ − e−kωr sinðωgwtÞ�;

ð22bÞ

where kω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmgc=ℏÞ2 − ðωgw=cÞ2

q
. This is the GR sol-

ution modified by an exponentially damped term. We do
not consider the case of a large graviton mass for ϵ ¼ −1,
because in the Newtonian limit this model leads to
repulsive gravity.

IV. KEPLER’S THIRD LAW AND THE WAVE
FORM OF INSPIRALLING BINARIES

To investigate how gravitational radiation influences the
orbits of the binary system, we have to find Kepler’s third
law in the CGM. For the analysis we consider an idealized
system of two compact objects of mass m1 and m2 in the
Newtonian limit and in the center of mass frame with
reduced mass μ and total mass M ¼ m1 þm2. Assuming
that the Newtonian approximation is applicable in the
stationary and quasicircular phase of the merger, we can
use the Newtonian potential energy. To find Kepler’s third
law it is necessary to discuss on which scales the mod-
ifications to the 1=R-potential become important.
For the following estimates we consider the typical

gravitational waves as observed with the LIGO/VIRGO
detectors. These gravitational waves are in the audio band,
thus have a typical frequency of 1 kHz and a typical
wavelength of 300 km.
Let us first consider ϵ ¼ þ1, for which the Newtonian

potential is modified by a Yukawa potential. From the
analysis of the GWs we found that we have to distinguish
two regimes. The case of a large graviton mass mg ≫
ℏωgw=c2 applies for the reduced Compton wavelength
ƛg ≡ ℏ=mgc ≪ c=ωgw ≈ 50 km. The Newtonian potential
of conformal gravity is then given as

Epot;ϵ¼þ1 ¼ −
GμM
R

�
1 −

4

3
e−R=ƛg

�
: ð23Þ

Tests of the inverse square law from terrestrial to sub-mm
distances lead to the constraint ƛg < 10−5 m [43]
(corresponding to mg > 10−38 kg and frequencies fg >
4.8 × 1012 Hz).
For small graviton mass mg ≪ ℏωgw=c2, the reduced

Compton wavelengths are much longer than 50 km and the
modified Newtonian potential must read

Epot;ϵ¼þ1 ¼ −
4GμM

R

�
e−R=ƛg −

3

4

�
: ð24Þ

Modifications on large length scales are constrained by
terrestrial and Solar System tests of the inverse square law,
which lead to ƛg > 1016 m ≈ 0.3 pc [43] (corresponding to
mg < 10−58 kg and fg < 4.8 × 10−9 Hz).
For ϵ ¼ −1,

Epot;ϵ¼−1 ¼ −
GμM
R

þ γ⊙μM
2

c2R; ð25Þ

where γ⊙ is an integration constant with dimension of
inverse mass times inverse distance.
The term linear in R in Eq. (25) was used to fit galaxy

rotation curves without dark matter leading to γ⊙ ¼ 2.4 ×
10−69 kg−1 m−1 [21]. This corresponds to typical length
scale ƛ ¼ ð4G=γ⊙c2Þ1=2 ≈ 36 kpc and therefore contributes
noticeably to the potential energy on galactic distance scales
ðR > 1 kpcÞ, but is negligible on Solar System scales.
Assuming that the semimajor axis of the binary systems

is well below galactic distance scales (much smaller than
the parsec scale) and well above the sub-mm scale, the
modifications in (23)–(25) to the 1=R-term are negligible.
Hence, Kepler’s third law for circular orbits is approx-
imately given by

ω2
s ≈

GM
R3

; ð26Þ

and for the orbital energy we find

Eorbit ¼ Ekin þ Epot ≈ −
GμM
2R

ð27Þ

as in the Newtonian approximation of GR. Inserting (26)
into (27) we get

Eorbit ≈ −
�
G2M5

cω
2
gw

32

�
1=3

; ð28Þ

where ωgw ¼ 2ωs and Mc ¼ μ3=5M2=5 is the chirp mass.
The energy loss of the system is given by

_Eorbit ≈ −
2

3

�
G2M5

c

32ωgw

�
1=3

_ωgw: ð29Þ
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A. Large graviton mass

In [44,45] it is pointed out that the CGM with a large
graviton mass cannot fit galaxy rotation curves without
dark matter, as can also be seen most easily from Eq. (23).
Nevertheless, the large graviton mass case is very interest-
ing because of its GR limit.
The massive part of the gravitational wave is damped and

effectively only the massless graviton, which is the same as
in GR, contributes. Nevertheless, there is a profound
difference to GR, since this theory is power-counting
renormalizable [22,23] and hence could provide a viable
theory of quantum gravity.
In this case the Newtonian potential is given by Eq. (23).

This means that the Yukawa term in (23) becomes
important only on sub-mm distance scales. For binary
systems in the inspiral phase the distance between the
objects is always macroscopic (at least larger than two
Schwarzschild radii) and hence we can neglect this term for
the analysis of gravitational radiation from macroscopic
binary systems.
The radiated power is given by [32]

P ¼ PGR ¼ 32c5

5G

�
GMcωgw

2c3

�
10=3

: ð30Þ

In the following we go beyond the quasistationary case that
we have considered before.
Equating _Eorbit ¼ −P and solving for _ωgw yields

_ωgw ¼ 12

5
21=3

�
GMc

c3

�
5=3

ω11=3
gw : ð31Þ

Integrating (31) we get

ωgwðτÞ ¼
1

4

�
5

τ

�
3=8

�
GMc

c3

�
−5=8

; ð32Þ

where τ ¼ ðtcoal − r=cÞ − ðt − r=cÞ ¼ tcoal − t is the time
to coalescence as measured by a signal that propagates with
the speed of light.
Figure 1 shows how the frequency of a gravitational

wave, fgw ¼ ωgw=2π, evolves over the last 100 seconds
before coalescence (in the approximation used in this work).
Our approximation breaks down at frequencies above the
LIGO/VIRGO frequency band (10 Hz to 10 kHz). To give
two examples for the CGM with a large graviton mass we
show the evolution of gravitational wave frequency for chirp
masses of 1.2 M⊙, corresponding to a systemof two neutron
stars with masses of 1.4 M⊙ each, and 30 M⊙, a value
typical for a pair of black holes.
We look at the wave form of the GWs produced by an

object in quasicircular motion which is on an orbit in the
xy-plane

xðτÞ ¼ RðτÞ sin
�
ΦðτÞ
2

�
; ð33aÞ

yðτÞ ¼ RðτÞ cos
�
ΦðτÞ
2

�
: ð33bÞ

Since the orbit is not stationary, we have to do the following
replacements: R → RðτÞ, which leads to terms proportional
to _R in the GW solutions when calculating the time
derivatives of the quadrupole moment, but as long as _ωs ≪
ω2
s we can neglect radial velocities. Using (31) this

condition translates to ωgw ≪ 0.51ðc3=GMcÞ. This means
we can neglect _R as long as fgw ≪ 16.6 kHzðM⊙=McÞ.
Additionally, we have to replace ωgw with ωgwðτÞ in the

amplitude of (22a)–(22b) and ωgwt0 becomes ΦðτÞ in the
argument of the trigonometric functions. The phase is
defined as the circular frequency of the GW integrated over
time

ΦðτÞ ¼
Z

τ

τi

dτ0ωgwðτ0Þ þΦi; ð34Þ

where Φi is the phase at some initial τi. This leads to

FIG. 1. Time evolution of the gravitational wave frequency fgw
of massless modes during the last 100 seconds before coales-
cence. The shaded region indicates the LIGO/VIRGO frequency
band. The grey lines show the GR prediction, which is identical to
the CGM prediction with a large graviton mass. The black lines
show three examples for the CGM with a small graviton mass.
Solar system tests of gravity imply that mg < 10−58 kg.
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ΦðτÞ ¼ Φi − 2

�
GMc

c3

�
−5=8

��
τi
5

�
5=8

−
�
τ

5

�
5=8

�
: ð35Þ

Finally, we can find the wave form in terms of the time to
coalescence τ,

h11ðt; rÞ ¼ −h22ðt; rÞ ¼
c
r

�
GMc

c3

�
5=4

�
5

τ

�
1=4

cos½ΦðτÞ�;

ð36aÞ

h12ðt; rÞ ¼ h21ðt; rÞ ¼
c
r

�
GMc

c3

�
5=4

�
5

τ

�
1=4

sin½ΦðτÞ�:

ð36bÞ
This is the same result as in GR and the predictions are

consistent with the observed GW events. Hence, it leads to
the same predictions on the chirp mass and the distance to
the source.

B. Small graviton mass

For the case of a small graviton mass ðmg < ℏωgw=c2Þ,
the power radiated into GWs is given by [32]

P ¼ 1

2

�
mgc2

ℏωgw

�
2 32c5

5G

�
GMcωgw

2c3

�
10=3

: ð37Þ

We now go beyond the quasistationary limit by equating
_Eorbit ¼ −P and solving for _ωgw yields

_ωgw ¼ 6

5
21=3

�
mgc2

ℏ

�
2
�
GMc

c3

�
5=3

ω5=3
gw : ð38Þ

We follow the same procedure as above and find with τ ¼
tcoal − t being the time interval to coalescence as measured
by a fiducial observer at the position of the source,

ωgwðτÞ ¼
�
mgc2

ℏ

�−3 1

32

�
5

τ

�
3=2

�
GMc

c3

�
−5=2

: ð39Þ

Note that ωgw diverges at t ¼ tcoal. This is no problem,
since the two objects merge before the divergence takes
place and further the Newtonian approximation breaks
down, when the two objects come to close together.
Inserting numerical values in (39) we find

fgw ¼ 1.67× 1033 Hz

�
10−58 kg

mg

�
3
�
M⊙

Mc

�
5=2

�
1 s
τ

�
3=2

:

ð40Þ

The evolution of the gravitational wave frequency
towards coalescence is shown in Fig. 1. The dotted,
dash-dotted and long dashed lines show the case of the
CGM with small graviton mass. For the dotted and dash-
dotted line we have tuned the gravitational mass in order to

obtain a signal in the LIGO/VIRGO frequency band and
stuck to the chirp masses of two typical neutron stars and a
black hole pair respectively. The value of the graviton mass
used in that cases exceeds the experimental upper limits on
mg by many orders of magnitude. For the long dashed line
we fix mg to its maximum value allowed by Solar System
tests of gravity and adapt the chirp mass, which now has to
be on the order of the mass of a galaxy. Thus we see already
that the observed GWevents are not easily explained in the
context of the CGMwith small graviton mass. But note that
for a proper comparison with data we also have to consider
the modified propagation of the gravitational wave signal in
the CGM and thus the results shown in Fig. 1 would
actually only be observed by a fiducial observer very close
to the source, but not by us. Thus we work out the details of
the wave form below.
For the massless mode of the gravitational wave

τ ¼ tcoal − t ¼ tcoal;0 − t0, as for the large mass limit of
conformal gravity. However, in the case of smallmg we find
for the massive mode of the gravitational radiation that the
modified speed of propagation must be taken into account
when we evaluate what a distant observer sees.

FIG. 2. World lines of massless and massive gravitational wave
modes emitted by a binary source and observed by a detector. The
observer sees a superposition of massless modes emitted at τ and
massive modes emitted at τ þ Δτ. Note that Δτ > 0 for ϵ ¼ þ1
and Δτ < 0 for ϵ ¼ −1. It is also shown that Δτ → 0 for τ → 0
meaning that the speed of the massive modes approaches the
speed of light at coalescence.
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Figure 2 illustrates the situation. Well before coalescence
at time t, the observer sees a superposition of the massless
mode emitted at retarded time t0 ¼ t − r=c and the massive
mode emitted at time tm ¼ t − vg;ϵr=c2. The time lag
between the emission of the two modes is Δτ≡
ð1 − vg;ϵ=cÞðr=cÞ ≈ ϵðr=2cÞðmgc2=ℏωgwÞ2, where we
expanded the expression for the group velocity, as the
condition mgc2=ℏωgw ≪ 1 holds in the small mass regime.
In the following we will assume that Δτ=τ ≪ 1. This is

an excellent assumption for the interesting parameter
space as

Δτ
τ

¼ ϵ
512

5

r
c

�
mgc2

ℏ

�
8
�
GMc

c3

�
5
�
τ

5

�
2

ð41Þ

¼ϵ 4.24×10−66
�

r
1Gpc

��
mg

10−58 kg

�
8
�
Mc

M⊙

�
5
�
τ

1 s

�
2

:

ð42Þ

Since the value assumed for mg is an upper limit, and the
value assumed for the distance of the source is of the order
of the size of the observable universe, the condition is met
for all chirp masses below 1.4 × 1013M⊙. It is even met for
larger chirp masses if the source is located at distance
<1 Gpc. Note that the condition is not met for
mg > 2 × 10−50 kg, but those values are excluded based
on Solar System tests.
The next step is to calculate the frequency at the time of

the emission of the massive mode,

ωgwðτ þ ΔτÞ ≈ ωgwðτÞ þ _ωgwΔτ: ð43Þ

Using (38) we find

ωgwðτ þ ΔτÞ ≈ ωgwðτÞ
�
1 − ϵ

384

125

�
GMc

c3

�
5
�
mgc2

ℏ

�
8 r
c
τ2
�
:

ð44Þ

For the massless mode we obtain the phase by integrat-
ing (39) from τi to τ,

ΦðτÞ−Φi¼
Z

τ

τi

dτ0ωgwðτ0Þ

¼ 5

16

�
mgc2

ℏ

�−3�GMc

c3

�
−5=2

��
5

τi

�
1=2

−
�
5

τ

�
1=2

�
;

ð45Þ

where Φi ¼ ΦðτiÞ.
For the massive mode we have to integrate (39) from

τi þ Δτi to τ þ Δτ. Keeping only contributions that are
linear in Δτ, we find

Φðτ þ ΔτÞ −Φðτi þ ΔτiÞ

¼
Z

τþΔτ

ðτþΔτÞi
dτ0ωgwðτ0Þ

≈
Z

τ

τi

dτ0ωgwðτ0Þ þ ωgwðτÞΔτ − ωgwðτiÞΔτi
≈ΦðτÞ −Φi

þ ϵ16
r
c

�
mgc2

ℏ

�
5
�
GMc

c3

�
5=2

��
τ

5

�
3=2

−
�
τi
5

�
3=2

�
:

ð46Þ

To find the waveform we start from Eqs. (21a) and (21b)
in which we have to replace ωgwt0 with ΦðτÞ and ωgwtm
withΦðτ þ ΔτÞ. After making use of Kepler’s 3rd law (26),
by which we eliminate the orbital radius, we must take care
of the fact that the gravitational wave frequency has to be
evaluated at different retarded times for the massless and
massive modes, which yields

h11ðt; rÞ ¼ −h22ðt; rÞ

¼ ϵ

4

c
r

�
ℏ

mgc2

�
2
�
5

τ
cos½ΦðτÞ�

−
5

τ þ Δτ
cos½Φðτ þ ΔτÞ�

�
; ð47aÞ

h12ðt; rÞ ¼ h21ðt; rÞ

¼ ϵ

4

c
r

�
ℏ

mgc2

�
2
�
5

τ
sin½ΦðτÞ�

−
5

τ þ Δτ
sin½Φðτ þ ΔτÞ�

�
: ð47bÞ

Now we assume that the delay between the massive and
massless modes is small and keep all terms linear inΔτ. Let
us demonstrate this for the h11 component,

�
1

τ
cos½ΦðτÞ� − 1

τ þ Δτ
cos½Φðτ þ ΔτÞ�

�

≈
Δτ
τ

�
sin½ΦðτÞ�ΦðτÞ0 − 1

τ
cos½ΦðτÞ�

�
: ð48Þ

With ΦðτÞ0 ¼ ωgwðτÞ, we find

h11ðt; rÞ ¼ −h22ðt; rÞ

≈ 4

�
mgc2

ℏ

�
3
�
GMc

c3

�
5=2

�
τ

5

�
1=2

×
�
sin½ΦðτÞ� − 32

5

�
mgc2

ℏ

�
3
�
GMc

c3

�
5=2

×

�
τ

5

�
1=2

cos½ΦðτÞ�
�
; ð49aÞ
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h12ðt; rÞ ¼ h21ðt; rÞ

≈ 4

�
mgc2

ℏ

�
3
�
GMc

c3

�
5=2

�
τ

5

�
1=2

�
− cos½ΦðτÞ�

−
32

5

�
mgc2

ℏ

�
3
�
GMc

c3

�
5=2

�
τ

5

�
1=2

sin½ΦðτÞ�
�
:

ð49bÞ

At leading order, the massless and massive mode cancel
each other and the emission of gravitational waves is
strongly suppressed when compared to GR or the large
graviton mass situation. Another important observation is
that the result does not depend on the distance of the
observer from the source, which is a reflection of the Weyl
symmetry of the model. For small graviton mass, the
emitted gravitational waves are in the high energy regime
of the theory where typically symmetries are seen more
explicitly than at low energy scales. Moreover the result
does not depend on the sign of ϵ. And most importantly, the
amplitude of the signal decreases towards coalescence and
vanishes at τ ¼ 0, in stark contrast to the GR and large mass
CGM predictions.
To estimate the order of magnitude of the gravitational

wave amplitude we can write the factor in front of the
square bracket as

4

�
mgc2

ℏ

�
3
�
GMc

c3

�
5=2

�
τ

5

�
1=2

¼ 6.00× 10−35
�

mg

10−58 kg

�
3
�
Mc

M⊙

�
5=2

�
τ

1 s

�
1=2

: ð50Þ

For the typically assumed chirp masses this is many orders
of magnitudes smaller than the amplitude observed by the
LIGO/VIRGO detectors. For chirp masses below the mass
of a typical galaxy, the second terms in the square brackets
are negligible and it is sufficient to compare LIGO/VIRGO
observations to the leading terms for both polarizations.
Thus the predicted wave form for gravitational radiation

from a coalescing binary for the CGM in the small graviton
mass regime reads,

h11ðt;rÞ¼−h22ðt;rÞ

≈4

�
mgc2

ℏ

�
3
�
GMc

c3

�
5=2

�
τ

5

�
1=2

sin½ΦðτÞ�; ð51aÞ

h12ðt; rÞ ¼ h21ðt; rÞ

≈ −4
�
mgc2

ℏ

�
3
�
GMc

c3

�
5=2

�
τ

5

�
1=2

cos½ΦðτÞ�:

ð51bÞ

In the limit of vanishing mg, there is no gravitational
radiation emitted to the far field of the source.

In Fig. 3 we show the time evolution of the GW
amplitudes for GR or the CGM with large mg (grey lines)
and for the CGM for mg ¼ 10−58 kg (black lines). The two
GR examples are located at a distance of 10 Mpc and show
chirp masses of 1.2 M⊙ and 30 M⊙. The CGM results are
valid for arbitrary distance. For comparison we show the
chirp masses typical for the observed GW events in the
context of GR as dotted and dashed-dotted lines. They give
rise to amplitudes that are many orders of magnitude below
those discovered by the LIGO/VIRGO collaboration. In
order to match the typical amplitudes found, one would
require a chirp mass of 5 × 104 M⊙, which in turn would
predict a gravitational wave frequency ≈3 × 1021 Hz
ð1 s=τÞ3=2, which is not at all in the frequency band. It
is not possible to find values of mg and Mc that fit both the
frequency and amplitude range of the LIGO/VIRGO
detectors and evolve on a typical timescale of a fraction
of a second to about a few minutes.

V. CONCLUSION

We have calculated the effect of gravitational radiation
on the orbit of a binary system of compact objects in the
late inspiral phase in a conformal gravity model for large
and small graviton masses. For the binary system we used
the center of mass frame on a quasicircular orbit and in the

FIG. 3. Time evolution of the gravitational wave amplitudes
during the last 100 seconds before coalescence. The grey solid
and dashed lines show the GR prediction for two different chirp
masses at an assumed distance of 10 Mpc. The GR prediction is
identical to the CGM prediction with a large graviton mass. The
black lines show three examples for the CGM with a small
graviton mass with the maximally allowed value of the
graviton mass.
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Newtonian limit, which is justified because in the early
phase of observed merger events the two bodies are still
quite far apart. Furthermore, binary systems, although they
may posses large eccentricity in the early phase of the
inspiral, tend to circularize in the late inspiral phase very
rapidly.
This work builds on the results obtained in [32], where

the decrease of the orbital period of stellar binary systems
in the CGM in the early stationary inspiral phase was
investigated.
The conformal models of gravity studied in this work

allow for seven radiative d.o.f. Two of them are massless
and behave very similar as in general relativity. The other
five d.o.f. are massive. For a conserved energy-momentum
tensor of the source only two of those five d.o.f. can be
excited by a binary system [32]. These two modes
propagate to a distant detector if the frequency of the
gravitational wave is above the characteristic frequency that
corresponds to the massmg. We referred to this as the small
graviton mass case.
For large graviton mass we found that the observed wave

form is (at least at leading order in a post-Newtonian
expansion) indistinguishable from the GR result.
Corrections from higher-derivative contributions of the
CGM become important only on microscopic scales, which
are irrelevant on the distance scales of binary systems. All
modifications to the GR results are negligible, since they
are much smaller than the error of measurement.
In the case of a small graviton mass the GW solutions

look very different than in GR. In the parameter regime
withΔτ=τ ≪ 1 the amplitude is independent of the distance
to the binary system and is decreasing as coalescence is
approached. We conclude that for small graviton mass both
regimes of the studied CGM (ϵ ¼ �1) cannot explain the
observed gravitational wave events.
Suppressed GWs have also been found in a version of

torsionfree gravitational Yang-Mills gauge theories based
on the SO(4,2) conformal group of the Minkowski space-
time [46,47], which coincides with the considered CGM for
ϵ ¼ þ1. The retarded Green’s function in a de Sitter
vacuum derived in [48] resembles our results in flat
spacetime, which we found in [32].
Our new findings, together with the results from [32],

restrict the CGM to large graviton masses and the regime
ϵ ¼ þ1, which cannot explain galaxy rotation curves
without dark matter. The large graviton masses give rise

to a modification of GR at high energies and small
distances and therefore the CGM remains an interesting
target for further studies.
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APPENDIX: CONVENTIONS

The signature of the metric is g ¼ diagð−;þ;þ;þÞ. The
Riemann tensor in terms of Christoffel symbols is given by

Rλ
μνκ ¼ −ð∂νΓλ

μκ − ∂κΓλ
μν þ Γλ

ναΓα
μκ − Γλ

καΓα
μνÞ: ðA1Þ

From this we find the Ricci tensor Rμκ ¼ gλνRλμνκ and the
Ricci scalar R ¼ gμκRμκ. The Weyl tensor is given by the
expression

Cλμνκ ¼ Rλμνκ þ
1

6
R½gλνgμκ − gλκgμν�

−
1

2
½gλνRμκ − gλκRμν − gμνRλκ þ gμκRλν�: ðA2Þ

The Einstein equations in the convention used in [49] reads

Gμν ≡ Rμν −
1

2
gμνR ¼ −8πGTμν þ Λgμν: ðA3Þ

Finally, the Bach tensor can be written as

Wμν ¼−
1

6
gμνR;β

;β þRμν;β
;β −Rμβ;ν

;β −Rνβ;μ
;β − 2RμβRν

β

þ 1

2
gμνRαβRαβ þ 2

3
R;μ;νþ 2

3
RRμν −

1

6
gμνR2: ðA4Þ
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