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In this paper, we extend the gravitational bending of light studies in Kottler metrics to comprise nonlinear
electrodynamics within the framework of Einstein-power-Maxwell theory. We show that the closest
approach distance and the gravitational bending of light are affected from the presence of charge for
particular values of the power parameter k, which is defined by means of energy conditions. It is shown that
the bending angle of light is stronger in the case of a strong electric field, which is the case for k ¼ 1.2.
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I. INTRODUCTION

The question of whether the cosmological constant Λ
contributes to the bending angle of light has been pondered
by many scientists. The pioneering study in this regard
belongs to N. J. Islam, who stated that Λ has no influence
on the bending angle of light [1]. This result was confirmed
by other authors [2–6]. The arguments in [1–6] are based on
the vanishing of the cosmological constant in the second
order null geodesic equation. However, Rindler and Ishak
(RI) have shown that the cosmological constant Λ, does
indeed contribute to the bending angle of light [7]. All these
discussions in the aforementioned papers are based on the
Kottler metric [8], which describes the geometry of
Schwarzschild metric coupled with the cosmological con-
stant Λ (Schwarzschild–de Sitter, SdS). The marked dis-
tinction between RI and the other authors is the method of
calculation of the bending angle. The RI method incorpo-
rates with the inner product of two coordinates in curved
space, which paves the way to include the contribution of
all the matter fields existed in the spacetime structure.
Therefore, if one wants to study the effect of the back-
ground matter fields on the bending angle of light, then the
method proposed by RI is adequate. Thus, one may extend
the method of RI to include the electric charge together
with the cosmological constant and investigate their com-
bined effect on the gravitational bending of light.
It has been known from observational stellar data that the

compact objects, namely, Vela X-1, SAXJ1808.4-3658 and
4U1820.30 are categorized as charged compact stars [9].
The peculiar feature of these compact stars is to hold a very
huge electric charge. The charge value at the surface of the
star is estimated to be ∼1020 Coulomb [10]. Such a huge

charge produces very strong electric field in the surround-
ing geometry. Solutions to the Einstein’s field equations for
a static spherically symmetric systems have shown that
charge associated with massive objects appear as higher
order corrections to the SdS solution. The geometry around
the compact object of such solutions can be associated with
the external geometry of a charged black hole, which may
exhibit a region of spacetime filled with strong electric field
in the presence of cosmological constant. From an astro-
physics point of view, it is important to investigate any
gravitational lensing effect that arise due to the presence of
charge in addition to the cosmological constant.
It has been known that the magnetars, which are known

as the charged rotating stars or black holes may produce
strong magnetic field. When the magnetic field is so strong,
the standard linear electrodynamics is not a correct model
to describe the geometry around the magnetars. In recent
years, there is a growing interest to use nonlinear electro-
dynamics in astrophysics. It has been demonstrated in
[11,12] that, unlike the standard linear Maxwell theory in
which the background magnetic field is not effective on the
gravitational redshift, when the background is filled with
nonlinear magnetic field, it contributes to the gravitational
redshift. This contribution is in the sense that, it tends
the gravitational redshift to infinity as the nonlinear
magnetic field grows. In analogy to this, if there is a
strong electric field emanated from charged compact stars,
its effect could be studied best by employing nonlinear
electrodynamics.
Basically, nonlinear electrodynamics has been intro-

duced to overcome the divergences in self-energy of
pointlike charges in the standard linear Maxwell theory.
The Born-Infeld nonlinear electrodynamic model was
developed with the expectation to resolve these divergences
[13–18]. It has been shown that this model helps to remove
curvature singularities at the core of black holes [19].
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Another alternative model to nonlinear electro-
dynamics is the power-law Maxwell field. In this model,
the Lagrangian density of the electromagnetic field is
described by F ¼ ðFμνFμνÞk, where k is the nonlinearity
parameter. This parameter is a real rational number, which
becomes bounded to some intervals by means of energy
conditions. It is worthwhile to note that, in this model of
nonlinear electrodynamics, conformal invariance condition
is satisfied whenever the nonlinearity parameter k ¼ d

4
is

chosen. Here, d denotes the dimension of the spacetime.
This choice implies traceless Maxwell’s energy-momentum
tensor. In the last decade, power-law Maxwell field has
been used in various studies ranging from lower to higher
dimensions [20–27].
In the present paper, we shall investigate the effect of

nonlinear electrodynamics on the gravitational bending of
light in the presence of a cosmological constant. Because
of the observational nature, gravitational bending of light is
the most striking consequence of Einstein’s theory of
relativity. In these phenomena, light emerging from distant
galaxies/stars, bends when it passes near a massive object.
There are considerable amount of research articles that
considers the effect of cosmological constant on the
bending angle of light (in addition to Refs. [1–7], see
[28,29]). However, there is no common consensus on its
effect. In this article, we shall go one step forward and
investigate the bending angle of light, when it passes close
to a charged compact star surrounded by strong electric
field in the presence of cosmological constant. This
problem is important, because, the existence of neutron
stars or black holes dominated by a strong electric field is a
known fact about our universe. Among the others; Vela
X-1, SAXJ1808.4-3658 and 4U1820.30 are the well known
observed charged compact stars (CCS) in astrophysics. In
order to describe the geometry around these CCS in the
presence of strong electric field coupled with the cosmo-
logical constant, one may consult Einstein-power-Maxwell
theory that incorporates a nonlinear electrodynamics
through a nonlinear parameter k. Within this context, the
solution obtained by Hendi and his coworkers [30] is used
for studying the bending angle of light in the presence of
nonlinear electromagnetic field coupled with the cosmo-
logical constant. Though the contribution of cosmological
constant to the bending angle of light has been extensively
studied, the contribution of nonlinear electrodynamics has
not been studied in detail.
The paper is organized as follows. In Sec. II, the action of

the Einstein-power-Maxwell formalism and the solution to
(3þ 1) dimensional gravity in the presence of cosmologi-
cal constant is given. The possible values of nonlinear
parameter k is obtained with the help of energy conditions.
The method of calculating the bending angle of light
proposed by RI is briefly explained. In Sec. III, the bending
angle of light is calculated for k ¼ 1 (which is the linear
Maxwell extension of [7]), k ¼ 3=4 and k ¼ 1.2 (nonlinear

Maxwell extension of [7]). The obtained results are
compared with the outcomes of [7] and the contribution
of charge on the bending angle of light is clarified. In
section IV, relevant astrophysical applications are studied
numerically for three realistic charged compact star. The
paper is concluded with a results and discussion in Sec. V.

II. EINSTEIN-POWER LAW MAXWELL FIELD
SOLUTIONS IN ð3 + 1Þ-DIMENSIONAL GRAVITY

The ð3þ 1Þ-dimensional action in Einstein-power law
Maxwell theory of gravity with a cosmological constant Λ
is given by,

I ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p fR − 2Λþ LðF Þg; ð1Þ

in which R is the Ricci scalar, Λ ¼ 3
l2 is the positive

cosmological constant (for asymptotically de-Sitter solu-
tions) with a length scale l and LðF Þ ¼ −jF jk where k is
the nonlinearity parameter with the Maxwell invariant
F ¼ FμνFμν. Note that linear Maxwell limit is restored
when k ¼ 1. The metric ansatz for ð3þ 1Þ-dimensional
gravity is given in standard form by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ: ð2Þ

The solution to the Einstein-power law Maxwell equations
was given in any dimension in [30], and the particular
solution in ð3þ 1Þ-dimensional gravity is given by

fðrÞ ¼ 1−
Λr2

3
−
m
r

þ
8<
:

23=2q3

r lnðrlÞ; k ¼ 3
2
;

ð2k−1Þ2
�

2ð2k−3Þ2q2
ð2k−1Þ2

�
k

2ð3−2kÞr2=ð2k−1Þ ; otherwise; except for k ≠ 1
2
;

ð3Þ

in which q and m are charge and mass related integration
constants. The electric charge Q and the ADM mass M of
the object are defined by,

M¼m
2
; ð4Þ

Q¼
8<
:

3

4
ffiffi
2

p q2; k¼ 3
2
;

kð2k−1Þffiffi
2

p 2k−1=2
�
ð3−2kÞq
2k−1

�
2k−1

; otherwise; except fork≠ 1
2

:

ð5Þ
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A. Energy conditions

Before calculating the bending angle of light in the
presence of nonlinear electrodynamics, the energy con-
ditions must be checked for possible values of the param-
eter k. This is important within the context of the
considered model of nonlinear electrodynamics, as far as
the physically acceptable solutions are concerned.

The energy momentum tensor of the power-lawMaxwell
field is given by,

Tν
μ ¼

1

2
fLðF Þδνμ − 4LF ðF ÞðFμλFνλÞg; ð6Þ

in which LF ðF Þ ¼ ∂LðF Þ
∂F . The nonzero component of the

electromagnetic field tensor Fμν ¼ Ftr is given by

Ftr ¼
8<
:

− q
r ; k ¼ 3

2
;

kð2k−1Þffiffi
2

p 2k−1=2
�
ð3−2kÞq
2k−1

�
2k−1

r−ð 2
2k−1Þ; otherwise; except for k ≠ 1

2
;
: ð7Þ

As a direct consequence, the Maxwell invariant
F ¼ FμνFμν ¼ −2ðFtrÞ2 ¼ −2ðEÞ2, where E is the electric
field.
The weak energy conditions (WEC) state that

ρ ≥ 0; ρþ pr ≥ 0;

ρþ pθ ≥ 0 and ρþ pφ ≥ 0; ð8Þ

where ρ is the energy density, pr, pθ, and pφ are the
principal pressures defined by,

ρ ¼ −Tt
t ¼ −

1

2
ð2k − 1ÞF k; ð9Þ

pr ¼ Tr
r ¼

1

2
ð2k − 1ÞF k; ð10Þ

pθ ¼ Tθ
θ ¼ Tφ

φ ¼ pφ ¼ −
1

2
F k: ð11Þ

WEC is satisfied whenever k > 1
2
. The strong energy

condition (SEC) states that

ρþ
X3
i¼1

pi ≥ 0; ρþ pr ≥ 0;

ρþ pθ ≥ 0; and ρþ pφ ≥ 0: ð12Þ

This condition together with the WEC reveals that k > 1
2
.

The dominant energy condition (DEC) states that

peff ¼
1

2

X3
i¼1

Ti
i ≥ 0: ð13Þ

This condition yields k ≤ 3
2
. If WEC, SEC, and DEC are

combined, k gets bounded to 1
2
< k ≤ 3

2
. In addition to

energy conditions, one can also impose the causality
condition which is defined by

0 ≤
peff

ρ
≤ 1: ð14Þ

The analysis has revealed that the causality condition is
satisfied for 1

2
< k ≤ 3

2
. As a consequence, if the non-

linearity parameter k is chosen such that it satisfies the
constraint condition 1

2
< k ≤ 3

2
, then all the energy con-

ditions are satisfied and the resulting solution to the
Einstein-power law Maxwell equations becomes physically
acceptable.

B. Bending angle

As is well known, the inner product of two vectors
remains invariant under the rotation of coordinate systems.
Rindler and Ishak have used this property in [7] to calculate
the relativistic bending angle of light in the following way.
The angle between two coordinate directions d and δ as
shown in Fig. 1 is given by the invariant formula,

cosðψÞ ¼ diδiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdidiÞðδjδjÞ

q ¼ gijdiδjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgijdidjÞðgklδkδlÞ

q : ð15Þ

In this formula, gij is the metric tensor of the constant time
slice of the metric (2), a two-dimensional curved ðr;φÞ
space, which is defined at the equatorial plane (when
θ ¼ π=2) in the following form [31], as the orbital plane of
the light rays,

dl2 ¼ dr2

fðrÞ þ r2dφ2: ð16Þ

As a requirement of the formalism, we need to define the
null geodesics equation. The constants of motion in the
considered spacetime are

dt
dτ

¼ −
E

fðrÞ ;
dφ
dτ

¼ h
r2

; ð17Þ

in which τ stands for proper time. Using these conserved
quantities, we obtain
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�
dr
dτ

�
2

¼ E2 −
h
r2
fðrÞ; ð18Þ

and

�
dr
dφ

�
2

¼ r4

h2

�
E2 −

h2

r2
fðrÞ

�
; ð19Þ

where E and h represent energy and angular momentum,
respectively. It has been found convenient to introduce a
new variable u, such that, u ¼ 1

r. Using this transformation,
Eq. (19) transforms to

d2u
dφ2

¼ −ufðuÞ − u2

2

dfðuÞ
du

: ð20Þ

Once the above differential equation is solved, the obtained
solution is used to define another equation in the following
way,

Aðr;φÞ≡ dr
dφ

: ð21Þ

Now, if the direction of the orbit is denoted by d and that of
the coordinate line φ ¼ constant δ, we have

d ¼ ðdr; dφÞ ¼ ðA; 1Þdφ dφ < 0;

δ ¼ ðδr; 0Þ ¼ ð1; 0Þδr: ð22Þ

If we use these definitions in (15), we obtain,

tanðψÞ ¼ ½grr�1=2r
jAðr;φÞj : ð23Þ

The one-sided bending angle is therefore defined as
ϵ ¼ ψ − φ.

III. BENDING OF LIGHT IN THE PRESENCE
OF LINEAR AND NONLINEAR

ELECTRODYNAMICS

The main purpose of this paper is to study the effect of
linear and nonlinear electromagnetic fields (in the form of
power-law Maxwell invariant described by ðFμνFμνÞk,
where k is the nonlinearity parameter). on the bending
angle of light. Our motivation for introducing nonlinear
electrodynamics is as follows: When the light passes
through a region in which the surrounding geometry is
filled by strong electric field, such a strong electric field is
best described by nonlinear electrodynamics. This effect
will be investigated in ð3þ 1Þ-dimensional geometry
where the power-law Maxwell field is coupled to
Schwarzschild–de Sitter (SdS) metric. In the present paper,
we shall consider the extension of the RI’s paper with
different values of parameter k. We shall investigate the

cases where k ¼ 1 (linear electrodynamics), k ¼ 3=4
(k < 1) and k ¼ 1.2 (k > 1) (nonlinear electrodynamics).

A. The case in linear electrodynamics: k= 1

In this subsection, we will extend the study of RI for the
SdS case to the charged SdS. This problem has already
been considered in [32] partly, by employing the method of
RI. The contribution of electric charge to the bending angle
of light within the context of Reissner-Nordström–de Sitter
metric is shown. In the present paper, the effect of
the electric charge and the cosmological constant on the
bending of light will be investigated in more detail. The
spacetime geometry for this case is described by

fðrÞ ¼ 1 −
m
r
−
Λr2

3
þQ2

r2
: ð24Þ

Here Q ¼ q. The orbital equation for the light in this
spacetime is obtained from Eq. (20), and is given by

d2u
dφ2

þ u ¼ 3

2
mu2 − 2Q2u3: ð25Þ

The homogeneous part of equation (25) has solution in
harmonic form. At this stage, we prefer to use the same
solution used in [7], namely sinφ

R . This solution corresponds
to the undeflected light in the absence of gravity, displayed
as a solid horizontal line in Fig. 1. This choice ensures that
we recover the results found in [7], when we set Q ¼ 0.
Then, we substitute the first order homogeneous solution to
the right-hand side and solve for the full inhomogeneous
equation (25), which admits the approximate solution as

u ¼ 1

r
¼ sinφ

R
þ 1

4R3
f2mRð1þ cos2 φÞ

þQ2ð3φ cosφ − sinφ cos2 φ − 2 sinφÞg: ð26Þ

We differentiate Eq. (26) with respect to φ, in accordance
with Eq. (21) to get Aðr;φÞ,

Aðr;φÞ ¼ r2

4R3
f2mR sin 2φ

þQ2ðcos3 φ − sinφ sin 2φþ 3φ sinφ − cosφÞg

−
r2

R
cosφ: ð27Þ

In Eqs. (26) and (27), the constant parameter R is called the
impact parameter and in the case of asymptotically flat
metrics it is defined as b. As mentioned in [7], since the
considered spacetime is not asymptotically flat, the effect
of other parameters should also be taken into account.
Hence, in conjunction with [7], this parameter is related
with the physically meaningful area distance r0 of closest
approach by,
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1

r0
¼ 1

R
þ m
2R2

−
Q2

2R3
: ð28Þ

From this result, it is seen that the closest approach distance
increases when compared to the uncharged case [7]. Note
that, the cosmological constant Λ does not have any
contribution to the closest distance r0.
The one-sided bending angle ϵ of light is calculated by

using Eq. (23). As can be seen from Fig. 1, the value of this
angle is measured relative to the coordinate planes where
φ ¼ constant. For the small bending angle, tanψ0 ≈ ψ0.
We then take φ ¼ 0, for large distance away from the
source. For this particular case, the one-sided bending
angle is

ϵ ¼ ψ0 ¼
m
R

�
1 −

ΛR4

3m2
−
m2

R2
þQ2m2

R4

�
1=2

≃
m
R

�
1 −

ΛR4

6m2
−

m2

2R2
þQ2m2

2R4

�
þO

�
Q4m5

R9

�
: ð29Þ

The total bending angle is defined as the twice of this angle,
namely, 2ψ0. It is important to note the difference in the
contribution to the bending angle of light between the
cosmological constant and the electric charge. While
the positive cosmological constant decreases the bending
angle, the electric charge has the tendency to increase it.
As an observational viewpoint this contribution may
be negligibly small, but from the theoretical viewpoint
it is important to see how the electric charge enters the
calculation.
In order to explore the contribution of electric charge in

the presence of the cosmological constant, we consider also
the bending angle occurring at φ ¼ π=4, rather than zero.
This value is chosen intentionally to compare the obtained
results with the outcomes of RI’s work [7]. When φ ¼ π=4
in Eq. (26), we have,

r ¼ 4R3

2
ffiffiffi
2

p
R2 þ 3mRþ Q2

2
ffiffi
2

p ð3π
2
− 5Þ

: ð30Þ

If we assume that mR ≪ 1 and ΛR2 ≪ 1 as in [7], we obtain,

r¼
ffiffiffi
2

p
R; Aðr;π=4Þ ¼−

ffiffiffi
2

p
R

�
1−

mffiffiffi
2

p
R

�
; ð31Þ

tanðψÞ ¼ 1þ m

2
ffiffiffi
2

p
R
−
ΛR2

3
þ Q2

4R2
: ð32Þ

Note that the one-sided bending angle is defined as ϵ ¼
ψ − φ and for small angle it may be written as,
ϵ ≃ tan ðψ − φÞ ¼ tanψ−tanφ

1þtanψ tanφ. Since tanφ ¼ 1, we obtain
the one-sided bending angle as,

ϵ ¼ m

4
ffiffiffi
2

p
R
−
ΛR2

6
þ Q2

8R2
: ð33Þ

This result indicates that the effect of cosmological constant
(when, Λ > 0) and the electric charge on the bending angle
of light is not in phase. Furthermore, the contribution of the
charge to the bending angle of light is more dominant when
compared to small angle calculation [ψ0, namely Eq. (29)].
Of course, the above result is a consequence of the
assumption made on the values of m

R ≪ 1 and ΛR2 ≪ 1.
The exact results without imposing these conditions are as
follows:

Aðr; π=4Þ ¼ r2

4R3

�
2mRþ 3Q2

4
ffiffiffi
2

p ðπ − 2Þ − 2
ffiffiffi
2

p
R2

�
ð34Þ

and

tanðψÞ ¼ 4R3ð1 − m
r −

Λr2
3
þ Q2

r2 Þ
1=2

rj2mRþ 3Q2

4
ffiffi
2

p ðπ − 2Þ − 2
ffiffiffi
2

p
R2j

ð35Þ

FIG. 1. A diagram of light bending in the presence of a massive object.
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where r is given in Eq. (30), and the one-sided bending
angle becomes,

ϵ ≃ tan ðψ − φÞ ¼ tanðψÞ − 1

1þ tanðψÞ : ð36Þ

B. The case in nonlinear electrodynamics: k= 3
4

The metric in this case is given by

fðrÞ ¼ 1 −
m
r
−
Λr2

3
þ Q̃
r4

ð37Þ

in which Q̃ is related to the star’s charge Q through,

Q̃ ¼ ð18q2Þ3=4
12

¼ 4.469Q3. The orbital equation of the light is
obtained as

d2u
dθ2

þ u ¼ 3

2
mu2 − 3Q̃u5: ð38Þ

The approximate solution of this equation is found to be

u ¼ 1

r

¼ sinφ
R

þ 1

48R5

�
Q̃

�
sin 2φcos3φ −

9

2
sin 2φ cosφ − 8 sinφ

�

þ 24mR3ð1þ cos2φÞ
�
; ð39Þ

and Eq. (21) becomes,

Aðr;φÞ ¼ Q̃r2

48R5
ð2sin22φ cosφþ 9cos3φþ 15φ sinφ

− 2cos5φ − 7 cosφ − 9 sin 2φ sinφÞ

þ r2

R

�
m
2R

sin 2φ − cosφ

�
: ð40Þ

The closest distance of approach r0, in the presence of
nonlinear electrodynamics becomes,

1

r0
¼ 1

R
þ m
2R2

−
Q̃
6R5

: ð41Þ

When we compare Eqs. (28) and (41), it is observed that the
closest distance decreases with respect to the linear
Maxwell case. Next, we calculate the bending angle when
φ ¼ 0, which is the bending angle named as the small angle
ψ0. For this particular case we found that

r ¼ R2

m
; Aðr; 0Þ ¼ −

R3

m2
; ð42Þ

then the one-sided bending angle becomes

ϵ ¼ ψ0 ¼
m
R

�
1 −

ΛR4

3m2
−
m2

R2
þ Q̃m4

R6

�
1=2

≃
m
R

�
1 −

ΛR4

6m2
−

m2

2R2
þ Q̃m4

2R6

�
þO

�
Q̃2m5

R13

�
: ð43Þ

This result indicates that the contribution of the charge to
the bending angle of light is negligible, due to the fact that
m
R ≪ 1. For the sake of completeness, it is of interest to look
at the bending angle of light when φ ¼ π=4. The values of r
and Aðr; π=4Þ are exactly the same as in Eq. (31), while
tanðψÞ is obtained as,

tanðψÞ ¼ 1þ m

2
ffiffiffi
2

p
R
−
ΛR2

3
þ Q̃
8R4

; ð44Þ

we find the one-sided bending angle of light as

ϵ ¼ m

4
ffiffiffi
2

p
R
−
ΛR2

6
þ ΛQ̃
48R2

: ð45Þ

Note that, in obtaining the Eq. (45), only the dominant
terms are preserved, the higher order terms are ignored. The
peculiar feature of nonlinear electrodynamics is very clear
in the above equation. The charge and the cosmological
constant are coupled together.

C. The case in nonlinear electrodynamics: k= 1.2

In this subsection, we consider the case where the
nonlinearity parameter k > 1. The solution for this par-
ticular case describes a region of spacetime, which is
dominated by strong electric field. The bending angle of
light is calculated for k ¼ 1.2. The metric function for the
power parameter k ¼ 1.2 is obtained from Eq. (3) which
yields,

fðrÞ ¼ 1 −
Λr2

3
−
m
r
þ 0.484Q12=7

r10=7
: ð46Þ

The equation for the light in this spacetime is obtained from
Eq. (20) as,

d2u
dφ2

þ u ¼ 3m
2

u2 − 0.824Q12=7u17=7: ð47Þ

The first approximate solution u ¼ sinφ
R , is substituted back

in Eq. (47) and its resulting solution for u is obtained as

u¼ 1

r
¼ sinφ

R
þ m
2R2

ðcos2φþ1Þ

−
0.484Q12=7

R17=7

�
7

24
sin31=7φ− cosφ

Z
sin24=7φdφ

�
;

ð48Þ
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and the Eq. (21) becomes,

Aðr;φÞ ¼ −r2
�
cosφ
R

−
m
2R2

sin 2φ

−
0.484Q12=7

R17=7

	
31

24
cosφsin24=7φ

þ sinφ
Z

sin24=7φdφ − cosφsin24=7φ


�
ð49Þ

The integral expression in Eqs. (48) and (49), whenever
necessary can be evaluated in terms of incomplete Beta
functions. The closest approach distance r0 occurs when
φ ¼ π=2, which is found to be

1

r0
¼ 1

R
þ m
2R2

−
0.625Q12=7

R17=7 : ð50Þ

The comparison of the closest approach distance to the
results found formerly for k ¼ 3=4 and k ¼ 1 reveals that
when k ¼ 1.2, the closest approach distance r0 becomes
larger than the other two cases. The one-sided bending
angle measured at φ ¼ 0 is given by

ϵ ¼ ψ0 ¼
m
R

�
1 −

ΛR4

3m2
−
m2

R2
þ 0.484Q12=7m10=7

R20=7

�
1=2

≃
m
R

�
1 −

ΛR4

6m2
−

m2

2R2
þ 0.242Q12=7m10=7

R20=7

�

þO
�
Q24=7m27=7

R47=7

�
: ð51Þ

The calculation of the one-sided bending angle for three
different k parameters indicates that the charge of the
compact star contributes to the bending angle. In contrast to
the positive cosmological constant, the charge of the star
has the tendency to increases the bending angle of light.
The next section is devoted to discuss numerically about
the effect of power parameter k and the electric charge Q,
by using the real approximate values of three different
charged compact stars.

IV. RELEVANT ASTROPHYSICAL
APPLICATIONS

In this section, we discuss relevant astrophysical appli-
cations. The obtained bending angles for different power
parameter k are studied numerically to display the effect of
electric charge in the presence of cosmological constant.
Our numerical analysis are carried for three realistic
charged compact stars whose properties are tabulated in
Table I [9].
In our numerical analysis, we take φ ¼ 0 as the reference

point at which the one-sided bending angle is measured.
This point corresponds to a very large distance away from

the source. The bending angle ϵ is plotted against
x ¼ R=R�, here R� denotes the radius of the charged
compact star. It is important to mention here that the
geometrized units are converted to standard international
units (S.I. units). The mass (M) and the electric charge (Q)
are converted to S.I. units by multiplying the mass
with Gc−2 and the charge with G1=2c−2ð4πε0Þ−1=2. Here
G ¼ 6.67408 × 10−11 m3 kg−1 s−2 is the gravitational con-
stant, c ¼ 3 × 108 ms−1 is the speed of light, and ε0 ¼
8.85418 × 10−12 C2 N−1m2 is the free space permittivity.
Thus, the one-sided bending angle is measured in radians.
In Figs. 2–4, the one-sided bending angles for three

different charged compact stars are plotted for linear
electrodynamic case k ¼ 1 and nonlinear electrodynamic
cases k ¼ 3=4 and k ¼ 1.2, respectively. In each of these
figures the variation in the bending angle with and without
charge is displayed. The solid line in each figure displays
the change in the bending angle when the electric charge Q
is taken into consideration. It is very clear to observe in
Figs. 2 and 4, which corresponds to k ¼ 1 and k ¼ 1.2,
respectively, that the one-sided bending angle in the
charged case is greater than the uncharged case.
Moreover, in the case for k ¼ 1.2, which represents a
stronger electric field, the one-sided bending angle is
greater. On the other hand, when the nonlinearity parameter
k ¼ 3=4, the effect of charge to the bending angle is almost
negligible as depicted in Fig. 3. This particular case in fact
corresponds to weak electric fields.
The variation in the one-sided bending angle as a

function of power-law exponent is studied numerically
in Fig. 5, for the set of charged compact stars. The plots
depicted that the one-sided bending angle becomes stronger
as the power parameter k increases, which implies strong
electric fields.
Since the electric charge is extremely large in our

compact objects considered, the produced electric field
will also be very large. At this stage, one may naturally ask
whether the system is stable against pair creation. It has
been known that the critical electric field (Schwinger limit)
for pair creation is ∼1018 V=m. The compact stars con-
sidered in this study have electric fields at the surface in the
order of ∼1021–22 V=m, when calculated from Eq. (7) for
the linear electrodynamic case k ¼ 1. As a result, near the
surface of these stars, particle creation is inevitable. But, at

TABLE I. The approximate values of the masses, radii, and
charges of the charged compact stars. Here M⊙ denotes the mass
of the sun.

Charged Compact Stars M Radius (km)
Electric

Charge (C)

Vela X-1 (CS1) 1.77 M⊙ 9.56 1.81 × 1020

SAXJ 1808.4-3658 (CS2) 1.435 M⊙ 7.07 1.87 × 1020

4U 1820-30 (CS3) 2.25 M⊙ 10 1.89 × 1020
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the distances away from the surface, say 103R�, the
intensity of the electric field is in the order of
∼1017 V=m, which is below the level of critical value
and therefore particle creation do not occur. In view of this
fact, it is worthwhile to emphasize that the bending angle
calculations for k ¼ 1, k ¼ 1.2 and their numerical analysis
ignores the possible pair creation. The corresponding
figures display only the behavior in the variation of the
bending angle as the distance diameter x increases.
However, when the outcomes of the nonlinear electrody-
namics is used, for example in the case of k ¼ 3=4, the
corresponding electric field becomes proportional to 1

r4, and
the produced electric field intensity at the surface of the star

becomes smaller than the critical electric field value for pair
creation. As mentioned in [10], according to the recent
observations, there are magnetars which have magnetic
fields as high as 1018 to 1020 Gauss. And, the known
critical limit for pair creation in vacuum is 1013 Gauss.
However, observations have revealed that those magnetars
are stable. In view of this fact, it would not be wrong to state
that the linear electrodynamics may not be a suitable model
to explore the physics around these highly dense charged
compact objects. This controversial subject is not the scope
of this paper, however, it deserves to be investigated in a
separate paper. In this manuscript, we have investigated
only the effect of power-Maxwell field to the gravitational

FIG. 3. The bending angle ϵ versus x, for the nonlinear electrodynamic case when k ¼ 3=4 < 1, have been plotted for the compact
objects Vela X-1, SAXJ1808.4-3658, and 4U1820.30. The effect of charge is almost negligible and curves with and without charge
coincides with each other. Figure 2(a), 2(b), and 2(c) belongs to Vela X-1, SAXJ1808.4-3658, and 4U1820.30, respectively.

FIG. 2. The bending angle ϵ versus x, for the linear case k ¼ 1, have been plotted for the compact objects Vela X-1, SAXJ1808.4-
3658, and 4U1820.30. The solid line indicate the variation in the bending angle as the parameter x ¼ R=R�, (here R� denotes the radius
of the charged compact star) changes. The dashed line represent the variation in the absence of charge. Figure 2(a), 2(b), and 2(c)
belongs to Vela X-1, SAXJ1808.4-3658, and 4U1820.30, respectively. It is important to emphasize that the possible pair creation near
the surface of the compact objects are ignored. The above figures display only the behavior of the bending angle as the distance
parameter x increases with and without charge.
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bending of light in the presence of cosmological constant.
Our analysis has revealed that both the electric charge and
the power parameter k does contribute to the gravitational
bending angle of light.

V. RESULTS AND DISCUSSIONS

In this paper, we have studied the gravitational lensing
by a charged massive object surrounded by a strong electric
field coupled with the cosmological constant. The strong
electric field is characterized by the Maxwell invariant
F ¼ ðFμνFμνÞk, in which the parameter k stands for the
nonlinearity parameter. The allowable values of this

parameter is obtained by using the energy conditions. As
a result, the nonlinearity parameter must satisfy the inequal-
ity 1

2
< k ≤ 3

2
, for a physically acceptable solution.

In our analysis; we first consider the case when k ¼ 1,
which describes the linear Maxwell extension of the SdS
case [7]. It is shown that the presence of charge contributes
to the closest approach distance r0. Note that the cosmo-
logical constant is not effective, but the charge is.
Regardless of the sign of the charge, the closest approach
distance increases when compared to the SdS case. It is
interesting to compare the contribution of charge to the
bending angle of light occurring at different φ values. The
one-sided bending angle corresponding to φ ¼ 0 is given in

FIG. 5. The bending angle ϵ versus x, have been plotted for the charged compact objects Vela X-1, SAXJ1808.4-3658, and
4U1820.30. Figures display how the bending angle of light affected when the power parameter k changes. Figure 5(a), 5(b), and 5(c) are
for Vela X-1, SAXJ1808.4-3658, and 4U1820.30, respectively. It should be noted that for each of the compact object, the behavior of the
bending angle for k ¼ 1 and k ¼ 3=4 is almost the same, thus the corresponding curves coincides with each other.

FIG. 4. The bending angle ϵ versus x, for the nonlinear case when k ¼ 1.2 > 1, have been plotted for the compact objects Vela X-1,
SAXJ1808.4-3658, and 4U1820.30. The solid line indicate the variation in the bending angle as the parameter x ¼ R=R�, (here R�
denotes the radius of the charged compact star) changes. The dashed line represent the variation in the absence of charge. Figure 4(a),
4(b), and 4(c) belongs to Vela X-1, SAXJ1808.4-3658, and 4U1820.30, respectively. As in the case of k ¼ 1, it is important to
emphasize that the possible pair creation near the surface of the compact objects are ignored. The above figures display only the behavior
of the bending angle as the distance parameter x increases with and without charge.
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Eq. (29). On the other hand, Eq. (33) corresponds to
φ ¼ π=4. Our first observation is that charge has an adverse
effect on the bending angle when compared to the cosmo-
logical constant. Furthermore, for small angle calculation
(i.e., φ ¼ 0), the contribution of charge is very weak
relative to the cosmological constant. But, the calculation
for φ ¼ π=4, has revealed that the contribution of charge is
more dominant. In each of these cases, charge has the
tendency to increase the one-sided bending angle.
Next, the effect of nonlinear electrodynamics is consid-

ered for values of k < 1 and k > 1. When the nonlinearity
parameter k ¼ 3

4
< 1, the effect of charge on the closest

approach distance is weaker compared to the k ¼ 1 case.
This behavior is also valid for one-sided bending angle

calculations that occurs at φ ¼ 0 and φ ¼ π=4. The effect
of electric charge is almost negligible when k ¼ 3=4. But,
the calculations for the nonlinearity parameter k ¼ 1.2 > 1,
which corresponds to strong electric fields are more
striking. The plots for charged compact stars have shown
that the one-sided bending angle is stronger. Furthermore,
the sign of charge is effective both on the closest approach
distance and the one-sided bending angle.
As a final remark, although the discussions among the

scientists are still continuing whether or not the cosmo-
logical constant contributes to the bending angle of light
[33–37], with this study we added yet another question
about the contribution of charge within the context of
nonlinear electrodynamics.

[1] N. J. Islam, Phys. Lett. 97A, 239 (1983).
[2] W. H. C. Freire, V. B. Bezerra, and J. A. S. Lima, Gen.

Relativ. Gravit. 33, 1407 (2001).
[3] A.W. Kerr, J. C. Hauck, and B. Mashhoon, Classical

Quantum Gravity 20, 2727 (2003).
[4] V. Kagramanova, J. Kunz, and C. Lammerzahl, Phys. Lett.

B 634, 465 (2006).
[5] M. Serano and Ph. Jetzer, Phys. Rev. D 73, 063004 (2006).
[6] F. Finelli, M. Galaverni, and A. Gruppuso, Phys. Rev. D 75,

043003 (2007).
[7] W. Rindler and M. Ishak, Phys. Rev. D 76, 043006 (2007).
[8] F. Kottler, Ann. Phys. (Berlin) 361, 401 (1918).
[9] M. Ilyas, Eur. Phys. J. C 78, 757 (2018).

[10] S. Ray, A. L. Espíndola, M. Malheiro, J. P. S. Lemos, and
V. T. Zanchin, Phys. Rev. D 68, 084004 (2003).

[11] H. J. Mosquera Cuesta and J. M. Salim, Mon. Not. R.
Astron. Soc. 354, L55 (2004).

[12] H. J. Mosquera Cuesta and J. M. Salim, Astrophysics. J.
608, 925 (2004).

[13] M. Born and L. Infeld, Proc. R. Soc. A 144, 425 (1934).
[14] H. Salazar, A. Garcia, and J. Plebanski, J. Math. Phys.

(N.Y.) 28, 2171 (1987).
[15] H. Salazar, A. Garcia, and J. Plebanski, Nuovo Cimento

Soc. Ital. Fis. 84B, 65 (1984).
[16] G.W. Gibbons and D. A. Rashed, Nucl. Phys. B454, 185

(1995).
[17] E. Fradkin and A. Tseylin, Phys. Lett. 163B, 123 (1985).
[18] S. Deser and G.W. Gibbons, Classical Quantum Gravity 15,

L35 (1998).
[19] E. Ayón-Beato and A. Garcia, Phys. Rev. Lett. 80, 5056

(1998).

[20] M. Cataldo, N. Cruz, S. D. Campo, and A. Garcia, Phys.
Lett. B 484, 154 (2000).

[21] O. Gurtug, S. H. Mazharimousavi, and M. Halilsoy, Phys.
Rev. D 85, 104004 (2012).

[22] S. H. Mazharimousavi, O. Gurtug, M. Halilsoy, and O.
Unver, Phys. Rev. D 84, 124021 (2011).

[23] M. Hassaïne and C. Martínez, Classical Quantum Gravity
25, 195023 (2008).

[24] S. H. Hendi and H. R. Rastegar-Sedehi, Gen. Relativ.
Gravit. 41, 1355 (2009).

[25] H. Maeda, M. Hassaïne, and C. Martínez, Phys. Rev. D 79,
044012 (2009).

[26] S. H. Hendi and B. E. Panah, Phys. Lett. B 684, 77
(2010).

[27] S. H. Hendi, S. Kordestani, and S. N. D. Motlagh, Prog.
Theor. Phys. 124, 1067 (2010).

[28] H. Arakida and M. Kasai, Phys. Rev. D 85, 023006 (2012).
[29] H. Arakida, Gen. Relativ. Gravit. 50, 48 (2018).
[30] S. H. Hendi and M. H. Vahidinia, Phys. Rev. D 88, 084045

(2013).
[31] W. Rindler, Relativity: Special, General, and Cosmological,

2nd ed. (Oxford University Press, New York, 2006).
[32] M. Heydari-Fard, S. Mojahed, and S. Y. Rokni, Astrophys.

Space Sci. 351, 251 (2014).
[33] M. Ishak and W. Rindler, Gen. Relativ. Gravit. 42, 2247

(2010).
[34] M. Ishak, W. Rindler, and J. Dossett, Mon. Not. R. Astron.

Soc. 403, 2152 (2010).
[35] M. Sereno, Phys. Rev. D 77, 043004 (2008).
[36] M. Sereno, Phys. Rev. Lett. 102, 021301 (2009).
[37] T. Schucker, Gen. Relativ. Gravit. 41, 1595 (2009).

O. GURTUG and M. MANGUT PHYS. REV. D 99, 084003 (2019)

084003-10

https://doi.org/10.1016/0375-9601(83)90756-9
https://doi.org/10.1023/A:1012013809911
https://doi.org/10.1023/A:1012013809911
https://doi.org/10.1088/0264-9381/20/13/320
https://doi.org/10.1088/0264-9381/20/13/320
https://doi.org/10.1016/j.physletb.2006.01.069
https://doi.org/10.1016/j.physletb.2006.01.069
https://doi.org/10.1103/PhysRevD.73.063004
https://doi.org/10.1103/PhysRevD.75.043003
https://doi.org/10.1103/PhysRevD.75.043003
https://doi.org/10.1103/PhysRevD.76.043006
https://doi.org/10.1002/andp.19183611402
https://doi.org/10.1140/epjc/s10052-018-6232-z
https://doi.org/10.1103/PhysRevD.68.084004
https://doi.org/10.1111/j.1365-2966.2004.08375.x
https://doi.org/10.1111/j.1365-2966.2004.08375.x
https://doi.org/10.1086/378686/meta
https://doi.org/10.1086/378686/meta
https://doi.org/10.1098/rspa.1934.0059
https://doi.org/10.1063/1.527430
https://doi.org/10.1063/1.527430
https://doi.org/10.1007/BF02721649
https://doi.org/10.1007/BF02721649
https://doi.org/10.1016/0550-3213(95)00409-L
https://doi.org/10.1016/0550-3213(95)00409-L
https://doi.org/10.1016/0370-2693(85)90205-9
https://doi.org/10.1088/0264-9381/15/5/001
https://doi.org/10.1088/0264-9381/15/5/001
https://doi.org/10.1103/PhysRevLett.80.5056
https://doi.org/10.1103/PhysRevLett.80.5056
https://doi.org/10.1016/S0370-2693(00)00609-2
https://doi.org/10.1016/S0370-2693(00)00609-2
https://doi.org/10.1103/PhysRevD.85.104004
https://doi.org/10.1103/PhysRevD.85.104004
https://doi.org/10.1103/PhysRevD.84.124021
https://doi.org/10.1088/0264-9381/25/19/195023
https://doi.org/10.1088/0264-9381/25/19/195023
https://doi.org/10.1007/s10714-008-0711-8
https://doi.org/10.1007/s10714-008-0711-8
https://doi.org/10.1103/PhysRevD.79.044012
https://doi.org/10.1103/PhysRevD.79.044012
https://doi.org/10.1016/j.physletb.2010.01.026
https://doi.org/10.1016/j.physletb.2010.01.026
https://doi.org/10.1143/PTP.124.1067
https://doi.org/10.1143/PTP.124.1067
https://doi.org/10.1103/PhysRevD.85.023006
https://doi.org/10.1007/s10714-018-2368-2
https://doi.org/10.1103/PhysRevD.88.084045
https://doi.org/10.1103/PhysRevD.88.084045
https://doi.org/10.1007/s10509-014-1815-0
https://doi.org/10.1007/s10509-014-1815-0
https://doi.org/10.1007/s10714-010-0973-9
https://doi.org/10.1007/s10714-010-0973-9
https://doi.org/10.1111/j.1365-2966.2010.16261.x
https://doi.org/10.1111/j.1365-2966.2010.16261.x
https://doi.org/10.1103/PhysRevD.77.043004
https://doi.org/10.1103/PhysRevLett.102.021301
https://doi.org/10.1007/s10714-008-0731-4

