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We constructed a simple cosmological model which approximates the Einstein-de Sitter background
with periodically distributed dust inhomogeneities. By taking the metric as a power series up to the third
order in some perturbative parameter λ, we are able to achieve large values of the density contrast. With a
metric explicitly given, many model properties can be calculated in a straightforward way which is
interesting in the context of the current discussion concerning the averaging of the inhomogeneities and
their backreaction in cosmology. Although the Einstein-de Sitter model can be thought of as the model
average, the light propagation differs from that of Einstein-de Sitter. The angular diameter distance-redshift
relation is affected by the presence of inhomogeneities and depends on the observer’s position. The model
construction scheme enables some generalizations in the future, so the present work is a step toward more
realistic cosmological model described by a relatively simple analytical metric.
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I. INTRODUCTION

Inhomogeneous models of the Universe are an important
tool of modern cosmology. They are widely used in the face
of unsatisfying interpretation of astronomical observations
within the framework of the standard homogeneous
Friedmann-Lemaître cosmological model. The nature of
dark energy which explains the accelerated expansion of
the Universe in the concordance model is still unknown.
Therefore, there arises the question of if dark energy is not
an artifact of inaccurately founded modeling which ignores
the possibly significant effect of inhomogeneities [1–4].
A recent discussion concerning a qualitative and quanti-

tative influence of inhomogeneously distributed matter on
the cosmological parameters of the Universe obtained with
optical observations did not bring any coherent answer [5–
15]. This lack of consensus motivates studies of the light
propagation in particular cases of inhomogeneous cosmo-
logical models. Among exact solutions to the Einstein field
equations, models considered in this context are the
Lemaître-Tolman models [16–18] and their generalization,
the Szekeres models [19–22]. These models are studied with
matter distributed not only in a single halo cloud but also in
various different ways, e.g., in onionlike configurations [23–
25] or in layers of walls [26,27]. Results of these studies can
be compared with N-body relativistic simulations in a weak
field approximation [22,24,25,28,29]. Furthermore, exact
inhomogeneous models are used for building cosmological
models in a Swiss cheese arrangement which allows for light
propagation studies in more realistic conditions [30–33].
Another approach to observations in inhomogeneous cos-
mologies is based on models constructed as lattices of glued

Schwarzschild regions [34–37], perturbatively solved sys-
tem of spherical masses [38,39], or numerically simulated
interacting black holes [40,41]. There are also attempts to
study light propagation in more versatile settings of the post-
Newtonian approach to gravitation [42–44]. Recently, it has
become possible to analyze optical observations in cosmo-
logical models obtained with fully relativistic numerical
simulations of space-time [45].
In our previous paper [46], we constructed within the

linear perturbation theory a simple model of the dust
inhomogeneities on the Einstein-de Sitter (EdS) back-
ground. These inhomogeneities form an infinite, periodic,
cubic lattice presented in Fig. 1. We have chosen such a
density distribution for the following reasons:

(i) For the volume much larger than the elementary cell,
the model becomes homogeneous and isotropic in
common sense, so one can expect the Friedmann-
Lemaître-Robertson-Walker (FLRW) space-time as
the average;

(ii) it satisfies the weak version of the cosmological
principle, which means that there are no distin-
guished regions of the universe and each elementary
cell looks the same;

(iii) the cosmological numerical simulations often adopt
the cubic lattice with periodic boundary conditions,
e.g., Refs. [47,48], so there is a need for analytical
solutions with the same symmetries as tests of the
numerical codes.

The main goal of the present paper is to generalize our
previous model beyond the first order of the linear
perturbation theory. This allows us to consider higher
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values of the perturbation parameter and a higher amplitude
of the inhomogeneities preserving the same accuracy as in
the perturbation theory at the linear order with a small
amplitude. Therefore, the resulting space-time could sig-
nificantly differ from the background. It distinguishes this
model from the class of models with a metric close to some
FLRW space-time. For example, in the post-Newtonian
framework, the leading-order terms in the metric perturba-
tion are proportional to the Newtonian gravitational poten-
tial, which usually is very small except for close vicinity of
compact masses. From this reason, the post-Newtonian
metric is close to the FLWR background, although its
derivatives could not be close to the derivatives of the
background metric. On the other hand, it is possible to
construct a reasonable cosmological model filled with dust,
which is not close to any space-time with FLRW symmetry
taken as a background. The exact dust solutions of the
Einstein equations, like the Lemaître-Tolman models,
provide examples of such a situation. Unfortunately, the
internal symmetries of the exact solutions cause difficulties
in the construction of a realistic cosmological model
comprising many inhomogeneous regions. Usually, one
has to glue many such Lemaître-Tolman solutions with
some underlying FLRW space-time and take care of the
junction conditions. The model presented in this article
differs also from these kinds of approaches. In our
proposition, the space-time is constructed globally, and it
has no regions with FLRW symmetry so that the inhomo-
geneities cover the whole space. In this point, the idea of
avoiding junction conditions is similar to the method of
Ref. [38]. The scheme presented here is open for further
generalizations, so it is a single step toward the realistic
inhomogeneous cosmological model.

The paper is organized as follows. In Sec. II, the model
details are presented. In Sec. III, we show some model
properties and basic observables. Then, the conclusions
follow. We present in Sec. II the approximate metric in the
sense that the resulting energy-momentum tensor is not
exactly the dust one. It deviates from the dust solution in the
second and the third orders by some small, negligible
terms. The advantage is that the simple, elementary
functions appear in the metric elements. In the
Appendix, we present the strict dust solution up to second
order. In that case, the metric tensor is much more
complicated.

II. MODEL CONSTRUCTION

We assume the metric as a power series in some
perturbative parameter λ,

gμν ¼
XN
k¼0

λkgðkÞμν ; ð1Þ

where gð0Þ represents the EdS background metric. We adopt
the Cartesian coordinates1 ft; x; y; zg in which the back-

ground metric reads gð0Þμν ¼ diagð−1; a2; a2; a2Þ, where the
scale factor is aðtÞ ¼ Ct2=3 and C is a constant. In each
order k ≥ 1, we introduce the comoving synchronous

gauge, which means that gðkÞμν has the spatial part only:

gðkÞ00 ¼ 0 and gðkÞi0 ¼ 0. This gauge condition guarantees that
the vectorUμ ¼ ð1; 0; 0; 0Þ is always tangent to the timelike
geodesic. The dust particles follow the geodesic motion, so
when the universe is filled with the dust, then the four-
velocity Uμ represents the observer comoving with matter.
For the metric (1), one can calculate the Einstein tensor

GμνðλÞ. Let us assume that the Einstein equations are
satisfied. Then, the metric (1) is the model of space-time
filled with the matter described by the energy-momentum
tensor TμνðλÞ ¼ GμνðλÞ=ð8πÞ. Our aim is to find such

metric components gðkÞμν , for which the tensor TμνðλÞ
approximates some physical energy-momentum tensor,

in our case the dust one TðdustÞ
μν ¼ ρUμUν. Let us assume

further that we may expandGμνðλÞ in a Taylor series around
λ ¼ 0: GμνðλÞ ¼

P∞
k¼0 λ

kGðkÞ
μν . If there exists a similar

expansion of the energy-momentum tensor,

TμνðλÞ ¼
P∞

k¼0 λ
kTðkÞ

μν , we can identify the elements

TðkÞ
μν ¼ GðkÞ

μν =ð8πÞ. We will analyze the terms TðkÞ
μν order

by order. If TμνðλÞ ≈ TðdustÞ
μν , then T0

0ðλÞ ¼ −ρ, and the
other components of Tμ

νðλÞ should be as close to zero as

FIG. 1. The model isodensity surfaces which form an infinite,
periodic lattice.

1From now on, we will use the natural units c ¼ 1, G ¼ 1, and
the convention in which greek letters label the indices which
cover the range f0; 1; 2; 3g, while the latin letters describe the
spacelike indices f1; 2; 3g.
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possible. For convenience, we will use a formal expansion
of the density in the same form: ρ ¼ P∞

k¼0 λ
kρðkÞ.

Now, in order to find the metric for which TμνðλÞ
approximates the dust with a distribution similar to that
presented in Fig. 1, we impose one symmetry condition.
We demand that the metric gμν is invariant under every
permutation of the spatial variables fx; y; zg. Then, we can
consider a possible decomposition of the metric in a given
order which takes the form

gðkÞij ¼

0
BB@
AðkÞ
x 0 0

0 AðkÞ
y 0

0 0 AðkÞ
z

1
CCAþ

0
BB@
BðkÞ
xyz 0 0

0 BðkÞ
xyz 0

0 0 BðkÞ
xyz

1
CCAþ…

…þ

0
BB@
CðkÞ
yz 0 0

0 CðkÞ
xz 0

0 0 CðkÞ
xy

1
CCAþ

0
BB@

0 DðkÞ
z DðkÞ

y

DðkÞ
z 0 DðkÞ

x

DðkÞ
y DðkÞ

x 0

1
CCAþ…

…þ

0
BB@

0 EðkÞ
xyz EðkÞ

xyz

EðkÞ
xyz 0 EðkÞ

xyz

EðkÞ
xyz EðkÞ

xyz 0

1
CCAþ

0
BB@

0 FðkÞ
xy FðkÞ

xz

FðkÞ
xy 0 FðkÞ

yz

FðkÞ
xz FðkÞ

yz 0

1
CCA; ð2Þ

where we used the abbreviations AðkÞ
i ≡ AðkÞðt; xiÞ, BðkÞ

ijl≡
BðkÞðt; xi; xj; xlÞ, CðkÞ

ij ≡ CðkÞðt; xi; xjÞ, DðkÞ
i ≡DðkÞðt; xiÞ,

EðkÞ
ijl ≡ EðkÞðt; xi; xj; xlÞ, and FðkÞ

ij ≡ FðkÞðt; xi; xjÞ. In this
setup, to specify the metric in a given order, one should
propose six, symmetric in spatial coordinates func-
tions AðkÞ;…; FðkÞ.

A. First order

In the notation introduced above, the metric from our
previous paper [46] can be recovered by putting the only
nonzero function in the first order as

Að1Þðt;wÞ¼−t−1tðEdSÞ0 sin2ðBwÞ; ð3Þ

where tðEdSÞ0 ¼ 2=ð3H0Þ ¼ 9.32 Gyr is the age of the EdS
universe for the Hubble constant H0 ¼ 70 km=s=Mpc and
B is the parameter related to the size of the overdensities.
For such a choice, one can show that Tð1Þ0

0 ¼ −ρð1Þ, where

ρð1Þ ¼ 2tðEdSÞ0

3t3
ðsin2ðBxÞþ sin2ðByÞþ sin2ðBzÞÞ; ð4Þ

and other components of Tð1Þμ
ν are exactly zero. Since

ρð0Þ ¼ ð4=3Þt−2, up to the first order, TμνðλÞ represent an
exact dust solution, for which the periodically distributed
inhomogeneities have the amplitude decreasing in time.

B. Second order

To estimate the contribution to the energy-momentum
tensor from the higher orders, we have to specify the values
of the model parameters. We will use megaparsec as a unit
of length. Then, in the natural units convention c ¼ 1, the

age of the EdS universe is tðEdSÞ0 ¼ 2855.16 Mpc. For the

typical scaling aðtðEdSÞ0 Þ ¼ 1, the value of the constant C is
4.96 × 10−3. The elementary cell D is the region
x ∈ ð0; π=BÞ, y ∈ ð0; π=BÞ, z ∈ ð0; π=BÞ. For the simple
choice B ¼ 1, the size of the elementary cell should be
around 3 Mpc, which is a typical scale of the galaxy
clusters. Further, it is convenient to measure the energy-
momentum contribution in the units of the critical density
ρcr ¼ ð3H2

0Þ=ð8πÞ. We introduce the definitions ΩðkÞ ≔
ρðkÞ=ρcr and ΩðkÞμ

ν ≔ TðkÞμ
νðλÞ=ρcr. Of course, the back-

ground density of the EdS model at tðEdSÞ0 is Ωð0Þ ¼ 1.0. Let
us take the relatively high amplitude λ ¼ 4=15 ≈ 0.26.
Then, at the maximum of the overdensity x⃗O ¼ ðπ

2
; π
2
; π
2
Þ

at the time tðEdSÞ0 , we have Ωð1Þ ¼ 0.4. The observer located
in the underdensity x⃗U ¼ ð0; 0; 0Þ measures Ωð1Þ ¼ 0.0, so
the density contrast is quite high.
For the metric of the form (2), the energy-momentum

tensor in each order k ≥ 1 has the four types of compo-
nents: TðkÞ0

0, TðkÞi
0, and TðkÞi

j for i ¼ j and TðkÞi
j for i ≠ j.

Each type characterizes by the same structural dependence
on the metric functions. For the amplitude λ given above,
the maximum over the elementary cell D of the diagonal
elements in the second order is maxmaxxμ∈D jΩð2Þi

jji¼j ¼
0.013. It is a matter of luck that one can easily get rid of
these elements with the help of the Að2Þ and Fð2Þ as the only
nonzero metric functions in the second order, by putting

Að2ÞðwÞ¼ t−2ðtðEdSÞ0 Þ2
�
sin4ðBwÞ

4
−
sin2ðBwÞ

8
þ 1

32

�
;

Fð2Þðw1;w2Þ¼−
t−8=3ðtðEdSÞ0 Þ2C2

64B2
sinð2Bw1Þsinð2Bw2Þ: ð5Þ

After that, jΩð2Þi
jji¼j ¼ 0. Unfortunately, it is not possible

to find the metric functions made of the simple, elementary
functions as these given above, for which all the other
energy-momentum components are equal to zero simulta-
neously. In the Appendix, we show the exact solution up to
second order. One can observe that the metric functions are
much more complicated there. Nevertheless, after substi-
tution (5) alone, the remaining energy-momentum tensor

elements in the second order are small at the time tðEdSÞ0 :
maxxμ∈DjΩð2Þi

jji≠j ¼ 2.2 × 10−10 and maxxμ∈DjΩð2Þ0
ij ¼

1.5 × 10−6. To ensure that these values are negligible,
one can compare them with the third-order contribution:
maxxμ∈DjΩð3Þi

jji¼j ¼ 2.2 × 10−3. Now, instead of trying to
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get the exact dust solution in the second order, we can
cancel out the maximal contribution from the third order.

C. Third order

The structure of the energy-momentum tensor elements in
the third order is similar to that of the second order. In the
same manner, by introducing the only nonzero metric
functions

Að3ÞðwÞ¼t−3ðtðEdSÞ0 Þ3
�
sin4ðBwÞ

16
−
3sin2ðBwÞ

64
þ 1

96

�
;

Fð3Þðw1;w2Þ¼
t−11=3ðtðEdSÞ0 Þ3C2

32B2
fðw1;w2Þ;

fðw1;w2Þ¼ðsin3ðBw1ÞsinðBw2ÞcosðBw1ÞcosðBw2Þþ…

…þsinðBw1Þsin3ðBw2ÞcosðBw1ÞcosðBw2Þ−…
…−2sinðBw1ÞsinðBw2ÞcosðBw1ÞcosðBw2ÞÞ;

ð6Þ

one can obtain jΩð3Þi
jji¼j ¼ 0. As previously, the remaining

values are small: maxxμ∈DjΩð3Þi
jji≠j ¼ 1.2 × 10−10 and

maxxμ∈DjΩð3Þ0
ij ¼ 8.5 × 10−7. The deviation from the dust

energy-momentum tensor which comes from the second and
third orders is smaller than themaximal contribution from the
fourth order: maxxμ∈DjΩð4Þi

jji¼j ¼ 3.5 × 10−4. The pro-
cedure of approaching the dust energy-momentum tensor,
with the help of theAðkÞ andFðkÞ functions, can be continued
in the fourth and higher orders until one reaches the second-
order limit of around 10−6. However, the result which we
have gotten so far is good enough. The deviation of order

10−4 that we get at tðEdSÞ0 for the amplitude λ ¼ 0.26 is
comparable to the second-order deviation in the linear
perturbation theory with the much smaller amplitude
λ ≈ 10−2.
The above estimation was made at the time tðEdSÞ0 . Now,

in Fig. 2, we plot the time dependence of the energy-
momentum tensor elements for the metric functions (3),

(5), (6). One can see that the approximation TμνðλÞ ≈ TðdustÞ
μν

is good for a late times t > 3 Gyr. For the small t, the
energy-momentum tensor elements other than the density
become important, and one cannot expect that the space-
time metric describes the dust universe there.
For the universe filled with the dust, the total mass within

the elementary cell MDðtÞ should be conserved in time.
(see, e.g., Ref. [49]). Once the metric is explicitly given,
one can obtain MDðtÞ by a direct numerical integration:

MDðtÞ ¼
Z
D
d3x

ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

q
ρðt; x⃗Þ: ð7Þ

The result is plotted in Fig. 3. The mass discrepancy for the
times t > 5 Gyr is lower than 0.5%. During this period of

time our model approximates well the dust universe with a
relatively high amplitude of the overdensities.Moreover, it is
evident that the higher-order terms in themetric are necessary
to achieve this accuracy. In the next section, wewill study the
basic properties of the model.

III. MODEL PROPERTIES

A. Density distribution

In the calculation of the total density, we will restrict
to the fourth order ρ ¼ P

4
k¼0 λ

kρðkÞ. The contribution

FIG. 2. The energy-momentum tensor elements as functions of
time. The blue curve represents maxxμ∈DjTð4Þi

jji¼j=ρ
ð0Þ; the

orange one represents maxxμ∈DjTð2Þ0
i þ Tð3Þ0

i þ Tð4Þ0
ij=ρð0Þ;

while the green one represents maxxμ∈DjTð2Þi
j þ Tð3Þi

jþ
Tð4Þi

jji≠j=ρð0Þ.

FIG. 3. The normalized mass of the elementary cell as the
function of time is plotted in blue. For comparison, the gray
dashed curve relates to the metric restricted to the linear order
with the same amplitude λ ¼ 0.26.
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ρðkÞ ¼ −TðkÞ0
0 behaves roughly as ρðkÞ ∝ ðtðEdSÞ0 Þkt−k−2.

The higher orders are more important at early times and
give less impact on the total density at the late times. The
analytical formula for ρ is the large but relatively simple
expression containing some products of the powers of the
trigonometric functions. In Fig. 4, we show the isodensity

surfaces at the time tðEdSÞ0 and t ¼ 3 Gyr. Although the time
dependence of ρðkÞ in each order is different, the shape of
the isodensity surfaces does not change much during the
time evolution. Following Ref. [49], by introducing the
volume of the elementary cell at the hypersurface of a
constant time,

VD ¼
Z
D
d3x

ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

q
; ð8Þ

we may define the average density hρiD ¼ MD=VD. At the

time tðEdSÞ0 , the resulting average density in the critical units
is hΩiD ¼ 1.23, where Ω ¼ ρ=ρcr. At that time, the
observer located at the overdensity x⃗O measures
Ω ¼ 1.52, while at the underdensity x⃗U, one gets Ω ¼ 0.97.

B. Hubble parameter

For the observer located at the time tðEdSÞ0 at x⃗O or x⃗U,
respectively, we performed the following numerical
experiment. With the probability distribution uniform
on the unit sphere, we generated ten random directions
ðθ;ϕÞ. For each direction, we generated randomly ten points

lying on the curve γðlÞ ¼ ðtðEdSÞ0 ; x0 þ l sinθ cosϕ; y0þ
l sinθ sinϕ; z0 þ l cosθÞ, where x⃗ ¼ ðx0; y0; z0Þ is the
observer position. Then, by performing the numerical
integration, we obtain the distance dðl̃Þ to each point:

dðl̃Þ ¼
Z

l̃

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0ðlÞiγ0ðlÞjgij

q
dl: ð9Þ

The integration kernel is the explicit function of time since
the metric elements depend on t. By taking the time
derivative of the integration kernel and calculating the
numerical integral again, we obtain the velocity of each
point _dðl̃Þ. This allows us to make the Hubble diagram
presented in Fig 5. The linear fit to the points located
farther than 5 Mpc gives the value of the Hubble constant
H0 ¼ 77.68 km=s=Mpc for the observer at x⃗O, and
H0 ¼ 77.42 km=s=Mpc for the observer located at x⃗U . In
the considered space-time, there are no significant
differences in the values of the Hubble constant between
the overdense and underdense regions. However, if we
demand that the observer should measure the Hubble
constant comparable to the real value, we should locate
him in another time position.

FIG. 4. Left: the model isodensity surfaces within the elementary cell at the time t ¼ 3 Gyr. Right: the same picture at the time

t ¼ tðEdSÞ0 ¼ 9.32 Gyr.

FIG. 5. The Hubble diagram for the observers at the time tðEdSÞ0 .
The blue points are generated for the observer located at the
overdensity, while the cyan points are plotted for the observer in
the underdensity. The linear fit is depicted by the red line.
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To find the time coordinate tðλÞ0 , in which the Hubble
constant is equal to H0 ¼ 70.0 km=s=Mpc, we repeat the
procedure of the Hubble diagram construction placing the
observer in the overdensity x⃗O at a discrete set of the time
coordinate values. In each case, we perform the linear fit to
the generated data ðd; _dÞ, and in effect, we get a discrete set
of points in a Hubble parameter HðtÞ plot. We show them
as the blue points in Fig. 6. After that, we use the cubic
spline interpolation shown as the light blue curve. The
resulting value of the universe age for which the H0 ¼
70.0 km=s=Mpc is tðλÞ0 ¼ 10.25 Gyr.
Sometimes, it is convenient to use the domain dependent

effective Hubble parameterHD, defined as in Ref. [49]. We
will consider the elementary cell as the domain D. For the
selected domain, one can introduce the effective scale

factor aDðtÞ ¼ V1=3
D ðtÞ=V1=3

D ðtðλÞ0 Þ. Then, by definition,
HDðtÞ ¼ _aDðtÞ=aDðtÞ. It is numerically more efficient to
take the time derivative of the integration kernel of (8),
perform the numerical integration again to obtain _VD,
and calculate the effective Hubble parameter from
HD ¼ _VDðtÞ=ð3VDðtÞÞ. In Fig. 6, the resulting HDðtÞ is
plotted by the red dashed curve. One can see that it is
consistent with the Hubble parameter HðtÞ calculated
previously. We want to emphasize that we computed both
quantities in a straightforward way, directly from the space-
time metric.
At the end of this paragraph, we want to analyze the

model density at the time tðλÞ0 . The maximum density at x⃗O
is Ω ¼ 1.22. The minimum density for the observer located
at x⃗U is Ω ¼ 0.82. The average over the elementary cell is
hΩiD ¼ 1.003. It seems that the average density at the time

tðλÞ0 , in which the observer measures the Hubble constant

H0, is close to the EdS model with the same H0 value.
Below, we discuss this issue in detail.

C. EdS as the model average

When one considers the limit λ → 0, the metric tends to
the background metric gð0Þ, which is the EdS space-time.
On the other hand, because we used a quite high amplitude
λ ¼ 4=15, the metric g is not close to gð0Þ. This situation is
qualitatively different from the widely used Swiss cheese
models, where the space-time regions describing inhomo-
geneities are glued with the background FLRW model.
Here, there are no space-time regions with the FLRW
symmetry, and the inhomogeneities cover the entire space.
It is then interesting that the EdS model is a possible
candidate for the model average.
In the FLRW model, one can introduce the parameter

Ωk ¼ −k=ðH2ðtÞa2ðtÞÞ ¼ −R=ð6H2ðtÞÞ, which is the mea-
sure of the curvature of space. In this formula, k is the
curvature parameter from the FLRW metric, and R is the
scalar curvature of the hypersurface of the constant time. In
analogy, one can define the averaged curvature parameter at

the time tðλÞ0 : hΩRiD ¼ −hRiD=ð6H2
0Þ. In the presented

model, it has the value hΩRiD ¼ −8.9 × 10−5, which means
that the space is almost flat.
In Fig. 7, we present the time evolution of the model

density, while in Fig. 8, we show the time evolution of the
Hubble parameter. To be able to compare them with the
EdS prediction, both figures were plotted with respect to
the time t0, in which the observer measures the value
of the Hubble constant H0 ¼ 70.0 km=s=Mpc. As it is
seen, there is a perfect agreement between the model
behavior and the EdS prediction. Therefore, we conclude

FIG. 6. The plot of the Hubble parameter HðtÞ. The blue points
are generated with the method described in the text. The light blue
curve is the cubic spline interpolation of these points. The
effective Hubble parameter HDðtÞ is shown by the red dashed
curve.

FIG. 7. The blue curve is the time dependence of the averaged
density of the model, with respect to the time t0 ¼ tðλÞ0 . The red
dashed curve is the EdS prediction calculated with respect to the

time t0 ¼ tðEdSÞ0 .
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that the EdS space-time describes the average density and
the average expansion very well.

D. Light propagation

The procedure of the angular diameter distance-redshift
relation derivation is similar to that in Ref. [46]. We
will consider three different locations of the observer:
the overdensity x⃗O ¼ ðπ

2
; π
2
; π
2
Þ, the underdensity x⃗U ¼

ð0; 0; 0Þ and the point x⃗M ¼ ð0.7; 1.1; 2.1Þ in between;

and two different time instants tðλÞ0 and tðEdSÞ0 . The density at

the middle position x⃗M at the time tðλÞ0 is Ω ¼ 1.067, so it is
the point with a slightly higher density than the average.
For each observer position, we generate 100 random

directions k⃗, with a probability distribution uniform on the
unit sphere. Since jk⃗j ¼ 1, we choose k0 so that kμkμ ¼ 0 at
the observer position and k0 < 0, so the geodesic is past
oriented.With the observer position xμ andwave vector kμ as
the initial conditions, we solve with the help of the fourth-
order Runge-Kutta method the geodesic equation written in
the form of the two first-order differential equations:

dkμ

dl
¼ −Γμ

αβk
αkβ; ð10Þ

dxμ

dl
¼ kμ: ð11Þ

To check the numerical accuracy, we generate the reference
geodesic, for which we correct jk⃗j in each Runge-Kutta step
to satisfy kμkμ ¼ 0 exactly. Then, we choose so small a
Runge-Kutta step,Δl ¼ 0.05, that the difference between the
geodesics generated by both methods is negligible.

After we get the resulting geodesic xμðlÞ, we obtain the
redshift along it from the definitions z ¼ ðωem −
ωobsÞ=ωobs and ω ¼ Uμkμ. We assume that the light emitter
and the observer are comoving with matter, so their four-
velocity is represented by the vector Uμ ¼ ð1; 0; 0; 0Þ,
while kμðlÞ is the wave vector along the geodesic.
To derive the angular diameter distance dA along the

geodesic, we use the Sachs formalism [50]. We construct
the Sachs basis ðsμ1; sμ2Þ at the observer position. The Sachs
basis vectors are orthogonal to each other and orthogonal to
the wave vector kμ and the observer four-velocity Uμ,
respectively. Next, for each of the Sachs basis vectors, we
solve numerically the equation of the parallel transport
along the geodesic. This way, the Sachs basis is defined at
each point of the geodesic. Then, to calculate the angular
diameter distance along the geodesic, we solve with the
help of the fourth-order Runge-Kutta method the following
system of equations. The first is the focusing equation
rewritten as the two first-order differential equations,

d
dl

_dA ¼ −
�
1

2
Rμ νkμkν þ jσj2

�
dA; ð12Þ

d
dl

dA ¼ _dA; ð13Þ

and the second is the system of the Sachs evolution
equations for the components of the complex shear σ,

d
dl

σ1 þ 2σ1θ ¼ −
1

2
Cα β γ δðsα1kβkγsδ1 þ sα2k

βkγsδ2Þ; ð14Þ

d
dl

σ2 þ 2σ2θ ¼ Cα β γ δsα1k
βkγsδ2; ð15Þ

where Cα β γ δ is the Weyl tensor and the scalar expansion

rate θ is substituted by θ ¼ _dA=dA. Here, by the dot, we
mean the derivative over the affine parameter along the
geodesic _≡d=dl. The initial conditions at l ¼ 0 are
dA ¼ 10−6 Mpc, _dA ¼ 1, σ ¼ 0. For numerical reasons,
we start with the dA slightly above zero, so that the
expansion scalar is finite at l ¼ 0. As a result of the
presented procedure, we obtain the angular diameter
distance along each geodesic dAðlÞ. Finally, by using the
information about the redshift along the geodesic, we get
the angular diameter distance as a function of redshift
dAðzÞ. At the end, we checked the convergence of the
resulting dAðzÞ with a decreasing Runge-Kutta step.
We present the results in Figs. 9 and 10. In each figure,

the set of the blue curves shows the dAðzÞ for the 100
geodesics generated for the observer at the overdensity
x⃗O, the similar set of the cyan curves corresponds to the

FIG. 8. The blue curve is the time dependence of the model
Hubble parameter, with respect to the time t0 ¼ tðλÞ0 . The red
dashed curve is the EdS prediction calculated with respect to the

time t0 ¼ tðEdSÞ0 .
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FIG. 9. The angular diameter distance-redshift relation dAðzÞ.
The observer is located at the time tðEdSÞ0 at the overdensity x⃗O ¼
ðπ
2
; π
2
; π
2
Þ (blue), at the underdensity x⃗U ¼ ð0; 0; 0Þ (cyan), or in the

middle x⃗M ¼ ð0.7; 1.1; 2.1Þ (orange). Top panel corresponds to
the amplitude λ ¼ 4=15, the middle panel corresponds to
λ ¼ 2=15, and the bottom panel corresponds to λ ¼ 1=15. The
red dashed curve is the EdS prediction.

FIG. 10. The similar plots of the dAðzÞ as in Fig. 9, although for
the observer located at the time tðλÞ0 .
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observer at the underdensity x⃗U, while the orange curves
refer to the observer at the middle position x⃗M. The
red dashed line is the EdS prediction. The plots are
prepared for the following values of the amplitude
λ ∈ f4=15; 2=15; 1=15g and for the observer located in

the two time instants t ∈ ftðEdSÞ0 ; tðλÞ0 g.
On basis of these results, we conclude that, although the

EdS space-time describes well the average properties of the
matter distribution and expansion rate of the considered
model, the light propagation differs significantly from the
EdS prediction. The behavior of the dAðzÞ depends on the
observer position. For the observer located in the point with
the local density lower than the average, the resulting dAðzÞ
is lower than the EdS reference curve. If the observer’s local
density is higher than the average, then the resulting dAðzÞ
is larger than the EdS curve. The deviation from the EdS is
the greatest for the observer located in the maximum or the
minimum of the density distribution. The greater the
amplitude λ, the larger the differences between different
curves. If one takes the small amplitude, locates the

observer at the time tðEdSÞ0 , and restricts the metric to the
linear order, then the resulting dAðzÞ tends to the curves we
have shown in our previous paper, where we do not observe
the position dependence of the results.
Another interesting property is the width of the bundle of

the dAðzÞ curves. The bundle of 100 geodesics generated
from the middle position x⃗M is characterized by the larger
width in the angular diameter distance-redshift relation than
the bundle related to the overdensity or the underdensity.
In the positions x⃗O and x⃗U , the density distribution is
much more symmetrical than in the middle x⃗M.
This could indicate that the local neighborhood of the
observer plays the crucial role here. To confirm this
intuition, we plot in Fig. 11 the dAðzÞ relation for the

low redshifts. One can see that the separation between
the curves begins around dA ≈ 1 Mpc. For the 20 curves

γðpÞ¼ðtðλÞ0 ;psinθcosϕ;psinθsinϕ;pcosθÞ, where ðθ;ϕÞ
are the random directions, the average length from
p ¼ 0 to p ¼ π=2 is d ¼ 1.605 Mpc. The same calculation
for the curves centered at the overdensity gives d ¼
1.538 Mpc. Since π is the coordinate size of the elementary
cell, in view of these estimations, the value around
1.57 Mpc can be thought of as the physical radius of

the inhomogeneities at tðλÞ0 . The separation of the dAðzÞ
curves takes place, while the light ray passes through the
observer neighborhood to the nearest region with a differ-
ent density.
The Ricci term in the focusing equation (12) is very

small compared with dA in the observer’s neighborhood.
Since initial shear is equal to zero, for small distances, the
right-hand side of the focusing equation is close to zero.
Therefore, the angular diameter distance as a function of
the affine parameter dAðlÞ is almost linear there. This
suggests that the separation of the dAðzÞ curves is caused by
the local changes of redshift along the geodesics initiated in
different environments. To show that, we plot in Fig. 12 the
relation between the redshift and the affine parameter along
the resulting geodesics. For the local universe, dA ≈ l. The
separation of the curves around l ≈ 1.5 is then consistent
with that in Fig. 11.
In the end, it is instructive to show the emission time of

the light as a function of redshift. This relation is plotted in
Fig. 13. For a given redshift, the emission time is the same,
no matter where the observer is located. This is not
surprising since the redshift z is related to the timelike
component of the wave vector k0. One can connect the
emission time tem with the effective scale factor at that

FIG. 11. The angular diameter distance-redshift relation dAðzÞ
for the observers at tðλÞ0 . The low redshift range. Colors as in the
Fig. 9.

FIG. 12. The redshift as a function of the affine parameter
along the geodesic zðlÞ for the observers located at the time tðλÞ0 .
Blue is the observer in the overdensity x⃗O, cyan is the observer in
the underdensity x⃗U, and orange is the middle position of the
observer x⃗M.
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time aDðtemÞ. Because the EdS model describes well the
average expansion, the effective scale factor expressed
as a function of redshift has the same form as in the
EdS space-time:

aDðzÞ ¼
1

1þ z
: ð16Þ

IV. CONCLUSIONS

In the present paper, we constructed perturbatively the
approximate model of the inhomogeneous universe for
which the dust inhomogeneities are distributed in the
infinite, periodic lattice on the Einstein-de Sitter back-
ground. This way, we extend our previous work beyond the
linear perturbation theory so that the larger amplitude of the
inhomogeneities is allowed. We analyzed basic properties
of the model. We have shown that the Einstein-de Sitter
space-time describes well the time evolution of the model
average density and the averaged expansion characterized
by the Hubble parameter HðtÞ. On the other hand, the light
propagation differs significantly from that in the EdS
background. The angular diameter distance-redshift rela-
tion dAðzÞ is influenced by the inhomogeneities and
depends on the observer’s position.
In the literature, the position dependence of dAðzÞ

appears in some inhomogeneous models. In some of them,
e.g., Ref. [51], the presence of the inhomogeneities could
partly mimic the effect of the dark energy driven accel-
erated expansion. However, as it was pointed out in
Ref. [52], the cosmological model which tries to avoid
the cosmological constant should explain not only the
dAðzÞ relation but also the variety of the other available
observations, in particular, the isotropy of the cosmic

microwave background power spectrum. Nevertheless, if
effects like the strong position dependence of the dAðzÞ
results are present in simple, inhomogeneous models with a
reliable matter content, one cannot exclude that they appear
also in the real Universe.
The model presented in the current paper has no

ambition to describe the real Universe. It should be rather
considered as a training model. There are some aspects of
this model which should be improved first:

(i) In the current model, the amplitude of the inhomo-
geneities decreases with time. It is reasonable to look
for a model with an increasing amplitude of the
inhomogeneities with a controlled growth rate.

(ii) For the presented model, the approximation to the
dust energy-momentum tensor holds for the late
times only. It is necessary to construct the model
which is valid also for the early Universe, to be able
to consider the cosmic microwave background ob-
servations.

(iii) Some generalizations with a background space-time
other than the Einstein-de Sitter will be useful.

Anyway, the presented framework is a step toward the
more realistic inhomogeneous cosmological model con-
structed beyond the linear perturbation theory. We empha-
size that the presented solution is not in the widely used
Swiss cheese class of models, so it provides new possibil-
ities. We also think that the models which offer the metric
explicitly given, as our model does, are important because
they enable one to calculate the observables directly from
the metric without additional simplifying assumptions.
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APPENDIX: STRICT METRIC OF THE
PERTURBED MODEL UP TO SECOND ORDER

We construct a sample of a linearly perturbed spatially
flat Friedmann-Lemaître cosmological model with irrota-
tional dustlike inhomogeneities up to second order. We
consider a cosmic fluid which is irrotational, nonconduc-
tive, and inviscid and for which the spatial gradient of the
pressure vanishes. For simplicity, we additionally assume
that at the first order the magnetic part of the Weyl tensor
vanishes, which enables us to treat only the scalar pertur-
bations and disables vector and tensor perturbations.
Further, we assume that still at the first order the Ricci
scalar of the three-spaces orthogonal to the fluid flow is
zero, which enables only the decreasing mode of pertur-
bations and disables the growing one.
The assumed conditions allow the synchronous

comoving gauge at both orders in the problem without
loss of generality. The solution for the metric field of the

FIG. 13. The time of the light emission as a function of redshift

temðzÞ. The observers are located at the time tðλÞ0 . Dashed blue is
the observer in the overdensity x⃗O, dashed cyan is the observer in
the undersity x⃗U, and dashed orange is the middle position of the
observer x⃗M.
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space-time gμν and the velocity field of the fluid flow uν of
the considered perturbed model take the form

gμν ¼ gð0Þμν þ λgð1Þμν þ λ2

2
gð2Þμν ; ðA1Þ

gð0Þμν ¼ diagð−b2; a2; a2; a2Þ; ðA2Þ

uν ¼ ð−b; 0; 0; 0Þ; ðA3Þ

where a and b are functions of the time coordinate t and λ is
some small parameter. The first-order correction to the
metric has the following form:

gð1Þμν ¼ 2a2

0
BBB@

0 0 0 0

0 ∂xxo ∂xyo ∂zxo

0 ∂xyo ∂yyo ∂yzo

0 ∂zxo ∂yzo ∂zzo

1
CCCA: ðA4Þ

Here, o is a function of time and spatial coordinates x, y, z,
which satisfies the equation

∂to −
b
a3

i ¼ 0; ðA5Þ

where i is an arbitrary function of spatial coordinates. The
second-order correction is given as

gð2Þμν ¼ 2a2

0
BBB@

0 0 0 0

0 c11 c12 c31
0 c12 c22 c23
0 c31 c23 c33

1
CCCA; ðA6Þ

where cmn are functions of time and spatial coordinates.
Because of complexity of the equations at the second order,
the functions cmn are determined with the function i
explicitly specified as

i ¼ lx þ ly þ lz: ðA7Þ

We used the abbreviated notation lx ≡ lðxÞ. The function l
is assumed to satisfy the equation

∂xxlx þ α2lx ¼ 0; ðA8Þ

where α is a constant and thus l is a linear combination of
sine and cosine functions.

We get the following result,

c23 ¼ o1l0yl0z; ðA9Þ

c31 ¼ o2l0zl0x; ðA10Þ

c12 ¼ o3l0xl0y; ðA11Þ

c11 ¼ −α2v1l2x −
α2

2
j1lylz − α2

�
o2 −

1

2
j2

�
lzlx

− α2
�
o3 −

1

2
j3

�
lxly; ðA12Þ

c22 ¼ −α2v2l2y − α2
�
o1 −

1

2
j1

�
lylz −

α2

2
j2lzlx

− α2
�
o3 −

1

2
j3

�
lxly; ðA13Þ

c33 ¼ −α2v3l2z − α2
�
o1 −

1

2
j1

�
lylz − α2

�
o2 −

1

2
j2

�
lzlx

−
α2

2
j3lxly; ðA14Þ

where l0x ≡ ∂xlx and vn, on, in, jn are functions of time
which satisfy the following equations:

∂ttvn −
∂t

b
a3

b
a3

∂tvn þ 2α2
b2

a6
¼ 0; ðA15Þ

∂ton −
α2

2

b
a3

in ¼ 0; ðA16Þ

∂tin þ abjn ¼ 0; ðA17Þ

∂ttjn −
∂t

b
a3

b
a3

∂tjn þ 2α2
b2

a2
jn þ 2α2

b2

a6
¼ 0: ðA18Þ

For the considered model, the above solution for the metric
functions is the simplest possible in a sense that none of
the functions vn, on, in, nor jn can be taken as null. The
function vn is easy to find since

vn ¼ −α2c2 þ βcþ γ; ðA19Þ

where the auxiliary function c satisfies

∂tc −
b
a3

¼ 0; ðA20Þ
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and β and γ are constants of integration. When the scale
factor a is a power function of time, then also vn is.
However, this is not the case for the function jn, which is
then a combination of sine and cosine integral functions.
This causes the metric to be a highly complicated function
of time.
The energy density ρ and the pressure p in the considered

model are expressed by the metric functions as follows,

8πρ¼ 3
ð∂taÞ2
a2b2

þλ

�
−2α2

∂ta
a4b

lx−2α2
∂ta
a4b

ly−2α2
∂ta
a4b

lz

�

þλ2

2

�
2α2

∂ta
ab2

∂tð−v1−2α2c2Þl2x

þ2α2
∂ta
ab2

∂tð−v2−2α2c2Þl2y

þ2α2
∂ta
ab2

∂tð−v3−2α2c2Þl2z

þα2
�∂ta
ab2

∂tð−4o1þ j1Þþ2α2
1

a6

�
lylz

þα2
�∂ta
ab2

∂tð−4o2þ j2Þþ2α2
1

a6

�
lzlx

þα2
�∂ta
ab2

∂tð−4o3þ j3Þþ2α2
1

a6

�
lxly

�
; ðA21Þ

8πp ¼ −
1

a2∂ta
∂t

að∂taÞ2
b2

; ðA22Þ

where c is defined as above. One can observe that the
function −4on þ jn satisfies the same equation as the
function vn

∂ttð−4on þ jnÞ −
∂t

b
a3

b
a3

∂tð−4on þ jnÞ þ 2α2
b2

a6
¼ 0;

ðA23Þ

sowhen the scale factor is a power function of time, then the
energy density is also a power function of time even though
the metric is essentially not.
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