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We discuss phenomenological consequences of the recently introduced refinements of the de Sitter
swampland conjecture, which constrains the first and the second derivative of the scalar potential in terms
of twoOð1Þ constants c and c0. Contrary to the original de Sitter swampland conjecture, the refinement has
no constraints on spontaneous breaking scenarios, such as the Higgs, the chiral symmetry breaking, and the
QCD axion. However, the refinement still strongly constrains inflation models. While we can achieve
sufficient number of e-foldings, single-field inflationary models have trouble reproducing the observed
valued of density perturbations, when c and c0 areOð1Þ. We point out that this constraint can be evaded for
example by curvaton scenarios, which typically leads to detectable non-Gaussianities. Our work can also be
regarded as bottom-up constraints on the values of c and c0.
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I. INTRODUCTION

It has been a fascinating question if theories of quantum
gravity give rise to any novel low-energy constraints
beyond those discussed in the framework of the low-energy
effective quantum field theory. To address this question,
several “swampland conjectures” have been proposed (see,
e.g., [1] for a recent review). The claim is that these
conjectures should be satisfied if the low-energy effective
field theory in question has a consistent UV completion
with gravity included.
One of the most recent among such swampland con-

jectures is the striking conjecture (the so-called de Sitter
conjecture) by Obied et al. [2] (see also [3–7] for related
discussion). This conjecture states that the scalar potential
V in a low-energy effective theory admitting a consistent
UV completion with gravity should satisfy the constraint

MPlj∇Vj > cV: ð1Þ

Here c is anOð1Þ positive constant independent of the choice
of the theory (as long as we are in four dimensions and the
scalar field is canonically normalized), and MPl ¼ 2.4×
1018 GeV is the reduced Planck mass. Subsequently there
have been many papers discussing this conjecture [8–55].

After the initial proposal, several authors examined the
bottom-up consequences of the conjecture, in the context
of the Higgs field [16,29,32,51] and the QCD axion [29]
(see also [23]). While these constraints do not necessarily
exclude the de Sitter conjecture (1), some exotic scenarios
seem to be inevitable, and one might be tempted to
conclude that such scenarios are unlikely.
In view of these results, one natural direction is to

weaken/refine the conjecture. Some proposals along
these lines have been made in [9,10,12,29]. Very recently,
in particular, Ooguri et al. [56] proposed a refinement
which is closely related with the proposal in [12], which
states [57]

MPlj∇Vj > cV or M2
Pl minð∇∇VÞ ≤ −c0V: ð2Þ

Here c and c0 are Oð1Þ positive constants, and minð∇∇VÞ
is the minimal eigenvalue of the Hessian ∇i∇jV in an
orthonormal frame. We call this the refined de Sitter
conjecture. This conjecture is obviously weaker than the
original conjecture (1), but is stronger than the conjecture
of [29], which corresponds to the c0 ¼ 0 case of (2):

MPlj∇Vj > cV when ∇∇V > 0; ð3Þ

namely the conjecture applies only when the Hessian is
positive definite (i.e., minð∇∇VÞ > 0).
While the authors of [56] point out the connection of the

refined de Sitter conjecture to the distance conjecture [59],
it is fair to say that the conjecture is still speculative, and it
is obviously an important question to find out whether or
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not there are counterexamples to the conjectures (2) and (3)
inside the framework of string/M-theory.
Instead of addressing these questions, in this paper we

assume the conjecture [(2) and (3)] as a working hypothesis
and set out to discuss some phenomenological conse-
quences of the conjecture. The quantitative constraints of
this paper depend on the numerical values of the two
positive constants c and c0 in the conjecture, which we
regard as free parameters [60]. One should keep in mind,
however, that small values of c or c0 signals some tension
with the conjecture. Our discussion is for the most part
rather general and does not rely on specific models. We
then illustrate our results by several concrete inflationary
models.

II. QUINTESSENCE

The stable de Sitter vacua, namely the point where we
have

V > 0; ∇V ¼ 0; ∇∇V > 0; ð4Þ

is clearly excluded by the refined de Sitter conjecture (2).
This means that the origin of the dark energy should not be
the cosmological constant, but rather be the quintessence
[61–63] as in the case of the original conjecture (1) [2,8].
For example, the quintessence potential of the form

VQðQÞ ¼ Λ4
Qe

−cQ
Q

MPl ð5Þ

satisfies the conjecture, as long as cQ > c. For
cQ < 0.5–0.9, the quintessence model is compatible with
the current cosmological observations [8,45,51].

III. HIGGS, CHIRAL SYMMETRY,
QCD AXION AND ALL THAT

The refined version of the de Sitter conjecture removes
bottom-up constraints for the Higgs and the QCD axion
pointed out in the literature [16,23,29,32,51]. While this is
technically an easy consequence, it is worth emphasizing
this point, since one of the important motivations for the
refinements of the de Sitter conjectures (2), (3) is to evade
the bottom-up constraints.
Let us take the Higgs as an example. The potential for the

Higgs field HSM

VHSM
ðHSMÞ ¼ λðjHSMj2 − v2Þ2 ð6Þ

has a local maximum at HSM ¼ 0, which violates the first
condition in (2) for the first derivative. However, the second
derivative is nonzero around this point, where we have

M2
Pl
V 00

V
∼ −O

�
M2

Pl

ð100 GeVÞ2
�

≪ −c0: ð7Þ

The similar argument applies to the QCD axion, which has
a cosine potential, or more generally many scenarios for
spontaneous symmetry breaking, such as the chiral sym-
metry breaking. In fact, as these examples show, the
condition (2) is satisfied for a generic potential for energy
scale much smaller than the Planck scale, except when
there is an (nearly) stable de Sitter vacua.

IV. INFLATION

The new conjecture (9) has more nontrivial implications
on inflation, for which the potential is often fine-tuned.
For simplicity let us consider a single-field inflation

with the canonical kinetic term. Let us denote the inflaton
by ϕ. It is customary to define two slow-roll parameters ϵV
and ηV by

ϵV ¼ M2
Pl

2

�
V 0

V

�
2

; ηV ¼ M2
Pl

�
V 00

V

�
; ð8Þ

and then the refined dS conjecture (2) reads

½ϵ�∶ϵV ≥
c2

2
or ½η�∶ηV ≤ −c0: ð9Þ

In the slow-roll regime ϵV ≪ 1, jηV j ≪ 1, the slow-roll
parameters are directly related with the scalar spectral index
ns and the tensor-to-scalar ratio r by the relations,

ns ¼ 1 − 6ϵV þ 2ηV; r ¼ 16ϵV: ð10Þ

The parameters c and c0 are bounded by the conjecture
for consistency with a canonical single-field inflation. If we
try to satisfy the first condition [ϵ] in (9), then we have
r ≥ 8c2. By combining this with the current observational
bound r < 0.064 [64] we have c < 0.09, which is in some
tension with the conjecture, as already pointed out in
[8,11,12,14,15,24]. The inflation also relates the condition
[ϵ] to another conjecture [11,15], the distance conjecture
[59] Δϕ=MPl < Δ with a constant Δ ¼ Oð1Þ. The restric-
tion is relaxed in the new conjecture (9):

Δϕ
MPl

¼
Z ffiffiffiffiffiffiffiffi

2ϵV
p

dNe > cNðconvexÞ
e ; ð11Þ

where NðconvexÞ
e is the e-fold elapsed in the convex region of

the potential, instead of that measured from the end of
inflation.
In the refined version of the conjecture (2) we have

another option, namely to satisfy the condition [η] during
inflation. This in particular implies that the inflaton
potential should be concave (ηV < 0), and this is also
favored by recent observations. The condition ηV ≤ −c0
immediately leads to the bound on the size of the tensor-to-
scalar ratio,
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r ≤
8

3
ð1 − 2c0 − nsÞ: ð12Þ

Taking into account the scalar modes as well as the tensor
modes, the observational data lead to ϵV < 0.005;
ηV ≃ −0.01 without assuming the slow-roll approximation
]64 ]. We then have c0 < 0.01.
A small value of c0 is also indicated by another argument,

namely to get a sufficiently long period of inflation,
Ne ¼ 50–60. The condition [η] is not a direct obstacle
for inflation, but ϵV should be tuned to a tiny value because
the slope of the potential rapidly increases as the inflaton
rolls down the potential. However, in this case, the energy
scale of the inflation becomes very low to give the observed
value of the scalar power spectrum amplitude As ∝ V=ϵV ,
which conflicts with the lower bound on the reheating
temperature from big bang nucleosynthesis [65] when c0
is Oð1Þ.
It is noteworthy that, in contrary to the case of the

original conjecture, the refined conjecture is compatible
with the accelerated expansion of the Universe and con-
strained solely by observations of the fluctuations.
Therefore, the conclusions above depend on the generation
mechanism of the curvature fluctuations.
For example, in the curvaton scenario [66–69], the scalar

spectral index is given by,

ns ¼ 1þ 2
_H
H2

þ 2ησσ; ð13Þ

for the curvaton σ with ησσ ≡ Vσσ=3H2, where the quan-
tities are evaluated at the horizon exit. When there is no
coupling with the inflaton, the conjecture (2) reads jησσj >
c0Ωσ for the energy fraction of the curvaton Ωσ at the
horizon exit. Thus, ησσ can be small when the curvaton is
sufficiently subdominat during inflation. The tiny value of
ϵV for a sufficiently long period of inflation leads to
ns ≃ 1þ 2ησσ. Consistency with the observed value of
ns requires ησσ ∼ −Oð0.01Þ, which indicates that the
curvaton should have a potential with a hilltop region.
To conclude whether the curvaton scenario makes

inflation compatible with the refined conjecture, more
investigations will be needed with taking into account
non-Gaussianity. In fact, Kawasaki et al. [70] showed that
large non-Gaussianity can be produced by a curvaton with a
hilltop potential even when the curvaton dominates the
Universe at its decay. More concretely, a pseudo-Nambu-
Goldstone curvaton predicts non-Gaussianity parameter
larger than the Planck constraint [71]: 10≲ fNL ≲ 30.
On the other hand, Mukaida et al. [72] pointed out that
non-Gaussianity can be suppressed for some class of the
curvaton potentials. We leave it to future work to inves-
tigate whether the curvaton scenario above can be con-
sistent with observations of non-Gaussianity by suitably
designing the curtvaton potential.

V. GLOBAL CONSTRAINTS ON
INFLATON POTENTIAL

We have so far discussed the region of the inflaton
potential for the accelerated expansion. The condition (2),
however, applies to any point in the configuration space (as
long as the low-energy effective theory is valid), and hence
we need to make sure that there are no extra constraints in
other regions of the configuration space for the inflaton.
In inflationary models one often assumes that there is a

region of the inflaton potential where the inflaton oscillates
around the bottom of the potential and the reheating
happens. The potential in this region can for example be
taken to be quadratic (where we have chosen the origin
ϕ ¼ 0 to be the minimum of the inflaton potential)

VðϕÞ ∼m2ϕ2

2
: ð14Þ

Near the origin (jϕj < MPl) we have MPlV 0=V ¼ MPl=ϕ,
and the first derivative condition [ϵ] is automatically
satisfied as long as ϕ ≪ MPl=c.
The situation is more nontrivial when the value of the

inflaton becomes large, ϕ ∼MPl=c. Let us choose the value
of the inflaton to be ϕ ¼ ϕ� such that we have
V 00=V ¼ −c0. Then we need to satisfy

MPl
V 0

V

����
ϕ¼ϕ�

> c: ð15Þ

This gives extra nontrivial constraints on the parameters of
the inflaton potential (See Fig. 1 for the schematic picture
of the inflationary potential.). Equivalently, once we fix the
inflaton potential we can use this condition as constraints
on the parameters c and c0. In the following we will
sometimes simplify the analysis by taking c0 ¼ 0. This
corresponds to the weaker conjecture (3), and gives the
more conservative estimate of the constraints.
One might notice that in many inflationary models

(including pure natural inflation and α-attractors discussed
below) have plateau, where one might run into contra-
dictions with the conjecture (2). Since we have argued
below (12) that c0 < 0.01, this would happen at large values
of the inflaton, where the effective field theory might break
down according to the distance conjecture [59]. Our
analysis below is conservative in that we will not take this
point fully into account.

VI. NATURAL INFLATION

For our further discussion we need to have the inflation
scenario where we know the global form of the inflaton
potential. A good example is provided by the natural
inflation [73,74]. In this scenario the inflaton potential is
generated by the coupling of the inflaton to the non-Abelian
Yang-Mills gauge field, and the inflaton potential takes the
cosine form, as generated by the one-instanton:
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VðϕÞ ¼ V0

�
1 − cos

ϕ

f

�
: ð16Þ

Here f is the decay constant of the axion and the overall
scale V0 is determined by the dynamical scale of the
confined Yang-Mills field.
This potential is 2πf-periodic, has a maximum at

ϕ ¼ πf, and is convex when jϕj < πf=2. In this range
the minimal value of the ratio MPlV 0=V should be larger
than the Oð1Þ coefficient c, so that

MPl
V 0

V
¼ MPl

f
cot

ϕ

2f
≳MPl

f
> c; ð17Þ

namely we obtain an upper bound on the decay constant

f <
MPl

c
: ð18Þ

For c≳ 1 this constraint can be stronger than the constraint
from the weak gravity conjecture [75], which imposes
f ≲OðMPlÞ. Note that we obtain a similar constraint
f < MPl=

ffiffiffiffi
c0

p
by applying the second-derivative condition

[η] near the top of the potential [56]. We can also plot the
constraint on the ns − r plane, see Fig. 2 for exclusion
region for c ¼ 0.3.
We have chosen c0 ¼ 0 above for simplicity, but we can

analyze the more general case c0 > 0. We impose consis-
tency with the conjectures for the inflaton potential in the

whole region between the initial field value for inflation
and the global minimum. In Fig. 3, we show the resulting
constraints for c0 and c for the natural inflation with
e-folding 50.

VII. STAROBINSKY MODEL

Let us next discuss theR2 inflation model by Starobinsky
[76]. When we choose the canonical kinetic term for the
inflaton, the inflaton potential is given by

VSðϕÞ ¼ V0

�
1 − e−

ffiffi
2
3

p
ϕ

MPl

�
2
: ð19Þ

By repeating the computation as before, we find constraints
from the intermediate regions as in Fig. 1 to be

FIG. 1. For a plateau-type inflaton potential, we find that
(1) near the bottom of the potential for reheating the condition
[ϵ] is satisfied (region colored red), and (2) the condition [η] is
satisfied in the regions for accelerated expansion (region colored
blue). Depending on the choice of the parameters there could be
an intermediate region where neither condition is satisfied, as in
the figure below.

FIG. 2. The ns − r plane for the natural inflation (16), with
e-folding between 50 and 60. The constraint (18) for c ¼ 0.3
excludes the region of the right side of the purple line, making the
model inconsistent with current observational constraints [64]
(blue regions, 68% and 95% CL). The black and solid (dotted)
line shows the upper-bound for r (12) with c0 ¼ 0ð0.01Þ.

FIG. 3. The constraint of c and c0 for the natural inflation model
with e-folding 50. The regions below the lines are allowed.
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c < 2

ffiffiffi
2

3

r
∼ 1.6: ð20Þ

VIII. α-ATTRACTOR

The Starobinskymodel can be thought of as a special case
of themore general models known as the α-attractor [77,78].
The so-called E-model of the α-attractor is

VEðϕÞ ¼ V0

�
1 − e−

ffiffiffi
2
3α

p
ϕ

MPl

�
2n
; ð21Þ

which includes the Starobinsky model (19) as a special case
n ¼ 1, α ¼ 1. In this case the constraint on c gives

c < 2

ffiffiffiffiffiffi
2

3α

r
n

2n − 1
; ð22Þ

which is shown in Fig. 4 on the ns − r plane.
The constraint (22) is strong for larger values of α, such

as α ∼Oð102Þ, which are still marginally consistent with
the current observations. Note that the constraints from the
field range [Δϕ=MPl < Oð1Þ] is also stronger for larger
values of α. We also show the constraint of c and c0
in Fig. 5.
In the Supplementary Material [79] we discuss more

examples for such constraints. In all these analysis,
we obtain interesting bottom-up constraints on values of
c and c0, and these constraints apply universally to any
scalar potential of a low-energy effective theory with UV
completion.

IX. SUMMARY AND CONCLUSION

In this paper, we examined phenomenological implica-
tions of the refined swampland conjecture. Although the
original de Sitter conjecture (1) severely constrains the low-
energy spontaneous symmetry breaking scenarios, such as
the Higgs potential, chiral symmetry breaking, and QCD
axion, the refined conjecture (2) has no such consequences.
The main consequence of the refined conjecture is in

inflation. The original conjecture forbids a flat scalar
potential, which is an essential ingredient for the exponen-
tial expansion during the cosmological inflation. By con-
trast in the refined conjecture, we can obtain sufficient
e-folding for c and c0 of Oð1Þ, if the initial condition is
fine-tuned. However, there is still tension with observed
cosmological density fluctuation—we need either c or c0
should be much smaller than Oð1Þ for observationally
successful single-field slow-roll inflation. If we still require
that c and c0 are Oð1Þ, inflation models beyond a single-
field slow-roll model is required, such as noncanonical
kinetic term and multifield models (including curvaton).
In such cases, we can expect exotic cosmological signa-
tures, such as detectable non-Gaussianity in the curvaton
scenario.
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FIG. 4. Same as in Fig. 2 but for the E-model α-attractor (21)
with n ¼ 1, with e-folding between 50 and 60. This model
contains the Starobinsky model (19) as a special case α ¼ 1. The
constraint (22) for c ¼ 0.3, 1, 3 excludes the region above the
purple line.

FIG. 5. Same as in Fig. 3 but for the E-model α-attractor (21)
with n ¼ 1.
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