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Thermal freeze-out or freeze-in during a period of early matter domination can give rise to the
correct dark matter abundance for hσannvif < 3 × 10−26 cm3 s−1. In the standard scenario, a single field that
behaves like matter drives the early matter dominated era. However, in realistic models, this epoch may
involve more than one field. In this paper, we study the effect of such a modification on the production of
dark matter during early matter domination. We show that even a subdominant second field that decays
much faster than the dominant one can considerably enhance the temperature of the Universe during an
early matter-dominated phase. This in turn affects dark matter production via freeze-out/in and opens up the
allowed parameter space toward significantly larger dark matter masses. As a result, one can comfortably
obtain the correct relic abundance for PeV-scale dark matter for reheating temperatures at or below 10 GeV.
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I. INTRODUCTION

There are various lines of evidence that most of the
matter in the Universe is dark [1]. However, the identity of
dark matter (DM) remains as a major problem at the
interface of cosmology and particle physics. Weakly
interacting massive particles (WIMPs) are promising can-
didates for DM and have been the main focus of direct,
indirect, and collider searches for DM. Thermal freeze-
out in a radiation-dominated (RD) universe can yield
the correct DM abundance if the annihilation rate takes
the nominal value hσannvif ¼ 3 × 10−26 cm3 s−1 (called
“WIMP miracle”). However, this scenario has come under
pressure by recent experiments. For example, Fermi-LAT’s
results from observations of dwarf spheroidal galaxies [2]
and newly discovered Milky Way satellites [3] have placed
upper bounds on hσannvif that are below the nominal value
for certain final states. Based on these results, a recent
analysis [4] has ruled out thermal DM with a mass below
20 GeV in a model-independent way (unless there is
P-wave annihilation or coannihilation). For specific anni-
hilation channels, thermal DM with a mass up to 100 GeV
can be excluded.
The situation can change in a nonstandard thermal

history where the Universe is not RD at the time of
freeze-out [5]. An important example is an epoch of early
matter domination (EMD), which is a generic feature of

early universe models arising from string theory construc-
tions (for a review, see [6]). In this context, an EMD era is
driven by modulus fields that are displaced from the
minimum of their potential during inflation and come to
dominate the energy density of the postinflationary uni-
verse due to their long lifetime. Moduli eventually decay
and form a RD universe prior to big bang nucleosynthesis
(BBN). Thermal freeze-out or freeze-in during EMD
can accommodate the observed DM relic abundance for
hσannvif < 3 × 10−26 cm3 s−1 [7,8]. While a small annihi-
lation rate leads to DM overproduction in a RD universe,
entropy generation at the end of an EMD phase can regulate
the overabundance and bring it down to an acceptable level.
String constructions involve many modulus fields that

can lead to multiple stages of EMD separated by phases of
RD. In the standard picture, each period of EMD is driven
by a single field with the last one being the most relevant
for DM production. However, it is possible that two (or
more) fields are simultaneously present during the last
epoch of EMD. We study such a “two-field” scenario and
show that the presence of a second field, even if it
constitutes a tiny fraction of the energy density and decays
very quickly, can significantly enhance the temperature of
the Universe during EMD. We calculate the abundance of
DM particles produced via freeze-out/in under such a
modification and find that it opens up the allowed param-
eter space toward considerably larger DM masses. As a
result, PeV-scale DM can be comfortably accommodated
by an EMD phase that reheats the Universe to a temperature
at or below 10 GeV.
The rest of this paper is organized as follows. In Sec. II,

we briefly review the standard “single-field” scenario of
EMD and its consequences for DM production. In Sec. III,
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we discuss the two-field scenario for EMD and its various
regimes. In Sec. IV, we discuss DM production via thermal
freeze-out/in in the two-field scenario. In Sec. V, we present
the main results of this paper. We conclude the paper with
some discussions in Sec. VI. Some of the details of our
calculations are included in the Appendixes.

II. EARLY MATTER DOMINATION:
THE STANDARD LORE

An era of EMD can arise from oscillations of a long-
lived scalar field ϕ with mass mϕ and decay width Γϕ.

1

Such a field is typically displaced from the true minimum
of its potential during inflation. It starts oscillating about
the minimum when the Hubble expansion rate is
Hosc ≃mϕ. Since these oscillations behave like matter,
the ratio of their energy density to that of background
radiation increases proportional to the scale factor a. They
will therefore come to dominate the energy density of the
Universe leading to an epoch of EMD. Assuming that ϕ
decays perturbatively, which is valid if its couplings to
other fields are sufficiently small and its potential is not too
steep, its oscillations decay when the Hubble expansion
rate is HR ≃ Γϕ and result in a RD universe with the
following reheat temperature:

TR ≃
�

90

π2g�;R

�
1=4

ðΓϕMPÞ1=2: ð1Þ

Here g�;R is the number of relativistic degrees of freedom
(d.o.f.) at temperature TR, and MP is the reduced Planck
mass.
The decay of ϕ is a continuous process and, assuming

that decay products are relativistic and thermalize immedi-
ately, it forms a subdominant thermal bath during EMD
that grows in time. For H ≫ Γϕ, the instantaneous temper-
ature T of the thermal bath follows [for example, see
Eq. (20) of [7]],

T ≈
�
6g1=2�;R
5g�

�1=4�
30

π2

�
1=8

ðHT2
RMPÞ1=4; ð2Þ

where g� denotes the number of relativistic d.o.f. at
temperature T.
For small DM annihilation rates, hσannvif < 3×

10−26 cm3 s−1, the correct DM abundance can be obtained
via thermal freeze-out/freeze-in during EMD [7,8].2 The
relic abundance due to freeze-out is given by

ðΩχh2Þ1−fieldf:o: ≃ 1.6 × 10−4
g1=2�;R
g�;f

�
mχ=Tf

15

�
4
�

150

mχ=TR

�
3

×

�
3 × 10−26 cm3 s−1

hσannvif

�
; ð3Þ

where g�;f is the number of relativistic d.o.f. at T ¼ Tf. If
hσannvif is very small, then DM particles will never reach
thermal equilibrium at T > mχ . In this scenario, the DM
relic abundance is due to freeze-in of DM production from
annihilations of the standard model (SM) particles. The
main contribution arises from production at T ∼mχ=4 [7].
DM particles produced at higher temperatures are quickly
diluted by the Hubble expansion (when hσannvif has none
or mild dependence on the temperature), while production
at lower temperatures is Boltzmann suppressed. The relic
abundance due to freeze-in, assuming that χ represents
1 d.o.f., is given by [7]

ðΩχh2Þ1−fieldf:i: ≃ 0.062
g3=2�;R

g3�ðmχ=4Þ
�

150

mχ=TR

�
5
�

TR

5 GeV

�
2

×

� hσannvif
10−36 cm3 s−1

�
; ð4Þ

where g�ðmχ=4Þ is the number of relativistic d.o.f. at
T ¼ mχ=4.
For a given DM mass, when the freeze-out and freeze-in

abundances become comparable, it signals a transition
between the two regimes. The annihilation rate at which
the transition occurs can be roughly estimated by setting
the expressions in Eqs. (3) and (4) equal. However, for an
accurate calculation of this transition one needs to solve a
set of Boltzmann equations that also include details of the
thermalization of DM particles (including their kinetic
equilibrium) and other species with sizable interactions
with DM.

III. EARLY MATTER DOMINATION:
THE TWO-FIELD SCENARIO

We now consider a situation where two fields ϕ and φ
with corresponding energy densities ρϕ and ρφ are present
during the EMD. We define the parameters f and α as
follows:

f ≡ ρφ;i
ρϕ;i

; α≡ Γφ

Γϕ
: ð5Þ

Here, Γϕ and Γφ are the decay widths of ϕ and φ
respectively, and ρϕ;i and ρφ;i denote the initial energy
density in ϕ and φ respectively.
We are interested in a situation where both ϕ and φ are

present during an epoch of EMD as opposed to two
separate phases of EMD driven by ϕ and φ respectively.

1It is also possible that EMD is driven by nonrelativistic quanta
produced in the postinflationary universe [9–12].

2Another possibility for obtaining the correct abundance is
direct production of DM particles in ϕ decay [13–15]. This
scenario can be embedded in explicit string compactifications
[16] (see [17,18] for dark radiation and inflationary constraints on
this embedding).
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Therefore, without loss of generality, we consider the case
where f < 1 and α > 1 with αf ≫ 1.3

In order to find the instantaneous temperature of the
thermal bath, we need to solve the following system of
Boltzmann equations [19]:

_ρϕ þ 3Hρϕ ¼ −Γϕρϕ;

_ρφ þ 3Hρφ ¼ −Γφρφ;

_ρr þ 4Hρr ¼ Γϕρϕ þ Γφρφ: ð6Þ

The first two equations describe the exponential decay of
the energy densities of ϕ and φ, respectively, in an
expanding background, while the last one describes the
evolution of the radiation energy density due to Hubble
expansion as well as feeding from the decay of both ϕ
and φ. In the absence of the second field (i.e., ρφ ¼ 0), the
situation is reduced to the standard EMD scenario with a
single field ϕ. The two-field scenario of EMD has three
different regimes:
(1) Two-field regime (H > Γφ)—In this regime, both of

the ϕ and φ fields are present. The right-hand side
of the last equation in (6) is modified from the
single-field case by an additional factor of ð1þ αfÞ.
Thus, assuming that both fields decay to relativistic
particles in the same sector, the instantaneous
temperature of the thermal bath for H ≫ Γφ is
given by

T ≈
�
6g1=2�;R
5g�

�1=4�
30

π2

�
1=8

ðαfÞ1=4ðHT2
RMPÞ1=4: ð7Þ

The important point is that even though the field ϕ
dominates the energy density, the decay of the
second field φ determines the temperature due to
its larger decayed fraction since αf ≫ 1. As a result,
T is enhanced in this regime compared to the single-
field scenario (2) by a factor of ðαfÞ1=4.

(2) Transition regime (Htran < H ≲ Γφ)—In this re-
gime, φ has completely decayed while ϕ is still
present. Since αf ≫ 1, the amount of radiation
produced by φ decay dominates over that continu-
ously produced by ϕ decay. For H ≫ Htran, see
Appendix A, the instantaneous temperature of the
thermal bath is given by

T ≈
�

22.5

g1=3�;Rg�

�
1=4

α−1=6f1=4
�
H2M2

P

TR

�
1=3

: ð8Þ

We note the different scaling of temperature in the
transition regime T ∝ H2=3 ∝ a−1, which implies
that temperature is simply redshifted due to expan-
sion of the Universe. While the field φ is absent in
this regime, its memory still persists in the form
of radiation that its decay produced. As shown in
Appendix A, one can estimate Htran to be

Htran ≃ 0.5

�
π2g�;R
90

�
1=2

α2=5f−3=5
T2
R

MP
: ð9Þ

(3) Single-field regime (Γϕ < H ≲Htran)—The memory
of the second field is erased in this regime and the
Universe is in the standard EMD phase where
temperature is given by the expression in Eq. (2).

The important point to note is that the two-field scenario
can yield much higher temperatures than that in the single-
field scenario as long as αf ≫ 1. To demonstrate this, we
have numerically solved the Boltzmann equations in (6) to
find the evolution of the energy densities in the dominant
and subdominant fields, ϕ and φ respectively, and radia-
tion. The initial conditions correspond to the onset of EMD,
and hence the initial radiation energy density is negligible.
In Fig. 1, we show the evolution of the three energy

densities (as a function of the scale factor a) in a two-field
scenario with f ¼ 10−4, α ¼ 108, and TR ¼ 10 GeV. We
depict the temperature of the Universe in this scenario in
Fig. 2 and compare it to that in the single-field scenario
(i.e., f ¼ 0) with the same TR. We see that in the two-field
regime (region 1), the temperature is enhanced by a factor
of ðαfÞ1=4. It starts approaching the temperature of
the single-field scenario during the transition regime
(region 2) as the memory of the second field is being

FIG. 1. Evolution of energy densities of the dominant field ϕ
(purple/top), the subdomiant field φ (red/middle), and radiation
(green/bottom) in a two-field scenario with f ¼ 10−4, α ¼ 108,
and TR ¼ 10 GeV. Regions 1, 2, and 3 correspond to the two-
field, transition, and single-field regimes respectively. The dashed
line that extrapolates region 3 denotes the single-field scenario
with the same TR.

3The case with f > 1 and α < 1 leads to a similar scenario
with the roles of ϕ and φ exchanged. On the other hand, the case
with f > 1 and α > 1 results in successive phases of EMD driven
by φ and ϕ respectively, and the case with f < 1 and α < 1 leads
to a similar scenario with φ and ϕ switching roles.
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erased. Eventually, this transition becomes complete when
the Universe enters the single-field regime (region 3).
We would like to reiterate that the enhancement of

temperature depends on the product of α and f instead
of their individual values. Therefore, as long as αf ≫ 1,
a subdominant field (f ≪ 1) that decays very early (α ≫ 1)
can indeed significantly enhance the instantaneous temper-
ature at early stages of EMD.

IV. DARK MATTER PRODUCTION
IN THE TWO-FIELD SCENARIO

In this section, we discuss production of DM via thermal
freeze-out/in in the two-field scenario of EMD. We
particularly show how the temperature enhancement in
the two-field and transition regimes, discussed in the
previous section, affects the DM relic abundance.
In order to calculate the DM relic abundance in the two-

field scenario, one needs to solve the equations in (6)
together with the following one:

_nχ þ 3Hnχ ¼ −hσannvifðn2χ − n2χ;eqÞ; ð10Þ

where nχ;eq denotes the thermal equilibrium value of the
DM number density at a given temperature. In the rest of
this paper, we consider the case where hσannvif has no
temperature dependence (as happens in the case of S-wave
dominance). When the annihilation rate is constant, there is
no need to have the subscript “f”. We nevertheless keep it
for the sake of generality. The situation is qualitatively
similar for temperature-dependent hσannvif, but quantita-
tive differences will arise.
In the case of freeze-out, nχ closely follows nχ;eq down

to the freeze-out temperature Tf. In the case of freeze-in,
we always have nχ ≪ nχ;eq as DM never reaches thermal
equilibrium. The system of four differential equations can
be solved numerically in both cases. Here, we provide

approximate expressions for the DM abundance in the two-
field and transition regimes where the two-field scenario
deviates from the single-field scenario:

Two-field regime—Let us first consider freeze-out dur-
ing the two-field regime. In general, the number
density of DM particles at the time of freeze-out
follows nf ∝ Hf. The expansion of the Universe
between freeze-out and reheating, which is the
relevant epoch for calculating the entropy density,
dilutes nf by a factor of H2

R=H
2
f. This implies that

Ωχh2 ∝ H−1
f , which can be seen from Eqs. (2) and (3)

in the single-field case. Therefore, after taking into
account the additional factor of ðαfÞ1=4 in the
relation between T and H in the two-field regime
(7), we arrive at

ðΩχh2Þ2−fieldf:o: ≈ αfðΩχh2Þ1−fieldf:o: ; ð11Þ

where ðΩχh2Þ1−fieldf:o: is given in Eq. (3). Due to the
same functional dependence of H on T, the value of
mχ=Tf is almost the same as that in the single-field
case up to a logarithmic term in αf.
Next, we consider freeze-in during the two-field

regime. Since H ∝ T4, similar to the standard sce-
nario, the bulk of DM particles are produced within
one Hubble time when Tf ∼mχ=4. The number
density of DM particles at the time of freeze-in is
nf ∝ H−1

f , and the dilution factor due to expansion
between freeze-in and reheating is H2

R=H
2
f. This

implies that Ωχh2 ∝ H−3
f in this case, which after

using Eq. (7) results in

ðΩχh2Þ2−fieldf:i: ≈ ðαfÞ3ðΩχh2Þ1−fieldf:i: ; ð12Þ

where ðΩχh2Þ1−fieldf:i: is given in Eq. (4).
We note that the DM relic abundance is enhanced in

the two-field regime for both of the freeze-out and
freeze-in cases, (11) and (12) respectively, with the
latter being more significant. It is then seen from
Eqs. (3) and (4) that, for fixed TR and hσannvif, the
parameter space that produces the correct DM abun-
dance is shifted toward larger values of mχ .

Transition regime—In the case of freeze-out, the relic
abundance of DM particles at reheating follows the
usual scaling Ωχh2 ∝ H−1

f . However, in the transition
regime the relation between H and T is given by the
expression in Eq. (8). After using (2), (8), we find

ðΩχh2Þtranf:o: ≈ 0.15

�
g�;f
g�;R

�
5=8

α−1=4f3=8

×

�
Tf

TR

�
5=2

ðΩχh2Þ1−fieldf:o: : ð13Þ

FIG. 2. Evolution of the temperature in the two-field scenario of
Fig. 1. Temperature is enhanced by a factor of ðαfÞ1=4 ¼ 10 in
region 1, approaches that of the single-field scenario in region 2,
and coincides with it in region 3.
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Due to the different relation betweenH and T, the value
of Tf=mχ differs from that in the two-field regime and
the single-field case by logarithmic corrections.
However, the situation is very different in the case

of freeze-in. The comoving number density of DM
particles produced via freeze-in is proportional toR
n2χ;eqa3dt. Starting at a temperature T ≫ mχ , we have

nχ;eq ∝ T3. In both the two-field regime and the single-
field scenario, theH ∝ T4 relation, see Eqs. (2) and (7)
respectively, causes the integral to be dominated by the
lowest relevant H, which corresponds to T ∼mχ=4
[7,8]. On the other hand, in the transition regime,
see (8), we have H ∝ T3=2. As a result, as shown in
AppendixB, the integral is now controlled by the largest
value ofH in the transition regime, namelyH ≃ Γφ. Up
to an overall proportionality factor, see Appendix B, the
freeze-in DM abundance is then found to be

ðΩχh2Þtranf:i: ∝ f3=2ðTRMPÞ
�

mχ

1 GeV

�
hσannvif: ð14Þ

An interesting point to note is that the DM abundance
in this case has a milder dependence on mχ and TR as
compared to the two-field regime and the single-field
scenario; see Eqs. (12) and (4). This is because freeze-in
production mainly occurs at the onset of the transition
regime regardless of the value of mχ .

V. RESULTS

In this section, we present our results. We have numeri-
cally solved the coupled system of four Boltzmann

equations in (6), (10) to obtain the DM relic abundance.
The initial conditions are set such that we begin well within
the EMD phase, but also long before either of the ϕ or φ
field decays, so that the initial radiation energy density is
negligible. This allows us to obtain the behavior due to
decay of the two fields, as opposed to the residual effects at
the start of EMD. Decayed energy densities are tracked
until they are sufficiently small to be unimportant for the
subsequent evolution and are then dropped to facilitate
faster numerical calculation. We have taken the detailed
temperature dependence of the g� factor into account down
to TR. In order to calculate the DM relic abundance, we
have normalized the DM number density with the entropy
density long after decay of the dominant field ϕ.
We investigate the parameter space, in the mχ − hσannvif

plane that yields the correct DM abundance via freeze-out/
in for various values of f and α, as well as TR. Each TR has
a corresponding single-field scenario (f ¼ 0) that we use as
a baseline for comparison. In Figs. 3 and 4, we show curves
in themχ − hσannvif plane that represent individual choices
of the three varied parameters that reproduce the correct
abundance. We vary f for constant α in Fig. 3, and α for
constant f in Fig. 4. The left and right panels in each figure
correspond to TR ¼ 10 GeV and TR ¼ 1 GeV respec-
tively. For a given set of parameters, DM is underproduced
(overproduced) above/outside (under/inside) each curve.
The peak of each curve marks the transition between
freeze-in (on the left) and freeze-out (on the right).
The curves, in general, consist of three distinct regions

that correspond to DM production in regions 1, 2, or 3 of
Sec. III. The central region that encompasses the peak of
each curve, mimics the shape of the single-field curve

FIG. 3. Curves represent points in the mχ − hσannvif plane where the two-field scenario yields the correct DM abundance. We
have chosen α ¼ 108 and varied f between 10−2 (pink/top) and f ¼ 10−5 (blue/bottom) in this figure. The single-field scenario is shown
at the very bottom for comparison. The left (right) panel corresponds to TR ¼ 10 GeV (TR ¼ 1 GeV). DM abundance is set during the
two-field regime, transition regime, and single-field regime in regions 1, 2, and 3 respectively. The left and right sides of the curves
correspond to freeze-in and freeze-out production respectively.
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while being offset toward higher DM masses and slightly
smaller annihilation rates. This distinguishes the part of the
parameter space where DM production happens well within
the two-field regime (region 1). The curves then move into
a near-vertical transition region on both the freeze-in and
freeze-out sides, which is identified with DM production in
the transition regime (region 2). The two ends of each curve
finally merge with the single-field curve, where DM
production occurs in the single-field regime after the
memory of the second field has been erased (region 3).
The following main features are observed in the figures:
(1) The peak, corresponding to region 1, is more

significant for larger values of f and α. For fixed
values of f and α, the shape of the peak does not
depend on TR, but for higher TR it occurs at a
larger mχ.

(2) As f increases for constant α, see Fig. 3, region 1
broadens, pushing out region 2 toward smaller
(larger) values of hσannvif on the freeze-in (freeze-
out) side. The change is larger on the freeze-in side.

(3) As α increases for constant f, see Fig. 4, the points
where regions 2 and 3 meet are independent of
α on the freeze-in side, and only have a mild α-
dependence on the freeze-out side, moving toward
smaller hσannvif. The width of region 1 changes
slightly.

These features can be qualitatively explained by using
the relations that we derived in Sec. IV. Let us start with
point (1) from above. As mentioned earlier, the position of
the peak can be estimated by setting the freeze-out and
freeze-in DM abundances equal. Using Eqs. (11) and (12)
for the two-field regime (region 1), we find that mχ ∝
ðαfÞ1=2 and hσannvif ∝ ðαfÞ−1=2 at the peak. This explains
why the peak moves toward larger values ofmχ and smaller
values of hσannvif with increasing f or α. It also implies that

the peak position depends on the product of α and f. This is
confirmed by comparing the curve with f ¼ 10−5 in Fig. 3
to that with α ¼ 107 in Fig. 4 (both having αf ¼ 103). As
far as dependence on TR is concerned, we note that DM
production occurs in the two-field regime when Tf is larger

than the temperature at H ≃ Γφ ∝ T1=2
R . Since Tf ∼mχ=4

for freeze-in and Tf ∝ mχ (up to logarithmic corrections)
for freeze-out, higher TR implies larger values of mχ in
region 1, hence a higher peak.
Regarding points (2) and (3), we need to find the points

at which regions 2 and 3 meet. On the freeze-in side, this
point can be found by setting the expressions in Eqs. (4)
and (14) equal. This results in mχ ∝ f−1=4 and hσannvif ∝
f−5=4 at the intersection point, which is independent of α.
This explains why this point moves down and to the left
with increasing f in Fig. 3 but does not move in Fig. 4
(where f is kept constant). On the freeze-out side, the
intersection point can be found by setting Tf ∝ mχ (up to
logarithmic factors) equal to temperature at Htran. After
using Eq. (8), (9), this results in mχ ∝ α1=10f−3=20 and
hσannvif ∝ α−3=10f9=20 at the intersection point. This
explains why the point moves slowly in Fig. 3 and very
little in Fig. 4. The opposite signs in the exponents of α and
f explain why the curves on the freeze-out side of Fig. 4
cross while those of Fig. 3 do not. The points where regions
1 and 2 meet can be found similarly to 2 and 3. We have
checked that for these points too, our estimates agree with
what is obtained from the figures. Finally, (1) and (2) imply
that decreasing f lowers the peak and makes region 1
narrower. This is expected as the curves must be reduced to
that for the single-field scenario in the f → 0 limit.
The main conclusion from our results is that the two-

field scenario can yield the correct abundance for much
larger DM masses. As seen in Figs. 3 and 4, the maximum

FIG. 4. The same as Fig. 3, but we have chosen f ¼ 10−4 and varied α between 108 (blue/top) and 105 (cyan/bottom) in this figure.
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DM mass that it can accommodate is larger by an
approximate factor of ðαfÞ1=2 than that in the single-field
scenario. This holds even for a very small value of f as long
as α is sufficiently large so that αf ≫ 1.4 It is indeed
interesting that a subdominant field with a tiny fractional
energy density that decays very early can affect DM
production in a significant way. As seen in Figs. 3 and
4, the two-field scenario with TR ≳OðGeVÞ can yield the
correct abundance for DM masses up to OðPeVÞ.

VI. DISCUSSIONS AND CONCLUSION

So far, we have shown how a second field can enhance
the temperature of the Universe and thereby affect DM
production during EMD. We now briefly discuss some
possible realizations of the two-field scenario and reason-
able ranges of the f and α parameters that can be expected.
A natural possibility that can arise in string constructions

is that ϕ and φ are both modulus fields. Such models
typically contain many moduli with gravitationally sup-
pressed couplings to matter, implying that Γϕ ∼m3

ϕ=M
2
P

and Γφ ∼m3
φ=M2

P. Assuming that ϕ is the lightest modulus,
it drives the last phase of EMD relevant for DM production.
Obtaining TR ∼ ð1 − 10Þ GeV then requires that mϕ ∼
ð106–107Þ GeV. Explicit string constructions exist in the
context of KKLT [20] and large volume [21] flux com-
pactifications where the volume modulus arises as the
lightest modulus in the desired mass range [22,23]. The
second field φ can then be one of the heavier moduli that
decays before ϕ. Generic arguments based on effective field
theory estimates [24] or explicit calculations [25] suggest
the amplitude of moduli at the onset of their oscillations to
be ≳Oð0.1 MPÞ. This implies that H ∼mϕ at the onset of
EMD, which requires mφ < 1014 GeV in order for φ to
decay during EMD. For mφ ≲ 103mϕ, the α parameter is in
the range shown in Figs. 3 and 4. Due to the Planckian size
of the initial amplitude of both fields, we can have
f ∼Oð1Þ, in which case the effect of the second field will
be even more prominent than that shown in the figures.
Another possibility is that the second field φ belongs to

the visible sector a notable example of which is super-
symmetric flat directions. These are directions in the field
space of supersymmetric extensions of the SM along which
the supersymmetry conserving part of the potential iden-
tically vanishes at the renormalizable level [26]. These
fields are typically displaced from the true minimum of
their potential in the early Universe. The initial amplitude
of their oscillations depends on the level of nonrenorma-
lizable operator that lifts flatness [27] and can be much

smaller than MP. One can then naturally obtain the small
values of f in Figs. 3 and 4 if ϕ is a modulus and φ is a
supersymmetric flat direction. Since φ has gauge and
Yukawa couplings to other fields in this case, it induces
a large mass for them that is proportional to the amplitude
of its oscillations. As a result, φ decay is kinematically
blocked until the induced mass has dropped below mφ.
For mϕ ∼ ð106–107Þ GeV (as in the previous case) and
mφ ≳OðTeVÞ (so that the scale of supersymmetry break-
ing in the visible sector is not much higher than TeV), the
second field decays during EMD and can lead to values of α
that are comparable to or higher than those in Figs. 3 and 4.
In passing, we note a more exotic possibility where the

subdominant component is not a field but is composed
of primordial black holes (PBH). PBH’s with a mass
Oð108 gÞ evaporate before BBN and could form during
a very early bout of matter domination [28,29]. A situation
could then arise where a population of light PBH’s in an
extended mass range constitute the subdominant compo-
nent of energy density during EMD.
In summary, we have studied a modification of EMD that

contains two (or, perhaps, more) fields. The presence of a
second field may be expected in realistic models and can
have important consequences. Even a subdominant field
with a tiny fractional energy density that decays much
earlier than the dominant field can considerably enhance
the temperature of the Universe and affect freeze-out/in
production of DM during EMD. We have shown that this
two-field scenario can open up new regions of the param-
eter space with much larger DM masses. Therefore, the
details of the EMD epoch should be taken into account for a
careful determination of the DM relic abundance.
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APPENDIX A: TEMPERATURE DURING THE
TRANSITION REGIME

Here, we first derive an expression for the instantaneous
temperature of the Universe in the transition regime of the
two-field scenario discussed in Sec. III. The last equation
in (6), assuming that H ≫ Γϕ, results in

dða4ρrÞ
dt

≈ ð1þ αfe−ΓφtÞΓϕρϕa4: ðA1Þ

Noting that ρϕa3 ≈ const in this case, and that a ∝ t2=3

during EMD, we find

4We note that α is bounded from above in order for the second
field not to decay before the onset of EMD. This in turn sets a
lower limit on the value of f for which the subdominant field can
have a significant effect. However, in realistic situations, this
lower limit is typically too small to be relevant.
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dða4ρrÞ
dt

≈ ð1þ αfe−ΓφtÞΓϕρϕ;ia4i

�
t
ti

�
2=3

; ðA2Þ

where ti is an initial time that we take to be the onset of
EMD. Then ρr;i ¼ 0, and integrating both sides of (A2)
gives

a4ρr ≈ Γϕρϕ;ia4i t
−2=3
i ðI1 þ αfI2Þ; ðA3Þ

where

I1 ≡ 3

5
ðt5=3 − t5=3i Þ;

I2 ≡ Γ−5=3
φ ½γð5=3;ΓφtÞ − γð5=3;ΓφtiÞ�: ðA4Þ

Here, γ denotes the lower incomplete gamma function.
We can now solve for ρr and in turn get the corresponding
temperature from ρr ¼ ðπ2=30Þg�T4, making use of ρϕ;i ≈
3H2

i M
2
P and ti ¼ 2=3Hi,

T ≈
�
40ΓϕM2

P

π2g�

�
1=4�I1 þ αfI2

t8=3

�
1=4

: ðA5Þ

Since t ≫ Γ−1
φ in the transition regime, and noting that

ti ≪ Γ−1
φ , the incomplete gamma functions in I2 approach

Γ−5=3
φ Γð5=3Þ and ð3=5Þt5=3i respectively, leading to

I1 þ αfI2 ≈
3

5
t5=3 þ αfΓ−5=3

φ Γð5=3Þ: ðA6Þ

During the transition regime, the second term on the
right-hand side of this expression dominates. After using
Γφ ¼ αΓϕ and Eq. (1), we find

T ≈
�

22.5

g1=3�;Rg�

�
1=4

α−1=6f1=4
�
H2M2

P

TR

�
1=3

: ðA7Þ

The first term on the right-hand side of Eq. (A6) will
eventually take over as it increases in time. At that point,
the expression in (A5) is precisely reduced to that in the
single-field scenario given in (2). Therefore, we can
approximately find the time after which the effect of the
second field completely disappears by equating the two
terms on the rhs of (A6). This yields

Htran ≃ 0.5

�
π2g�;R
90

�
1=2

α2=5f−3=5
T2
R

MP
; ðA8Þ

where Γϕ < H ≲Htran corresponds to the single-field
regime.

APPENDIX B: FREEZE-IN DURING THE
TRANSITION REGIME

Here, we derive the abundance of DM produced via
freeze-in during the transition regime. From Eq. (10),
noting that nχ ≪ nχ;eq in the case of freeze-in, we find

dða3nχÞ
dt

≈ a3hσannvifn2χ;eq: ðB1Þ

After converting dt to dH, this equation becomes

dða3nχÞ
dH

≈
−2Γ2

φ

3H4
a3φhσannvifn2χ;eq: ðB2Þ

Here, we have used t ¼ 2=3H and a3 ¼ a3φðΓφ=HÞ2 during
EMD, where aφ is the value of the scale factor at the onset
of the transition regime H ≃ Γφ. Starting at temperatures
T ≫ mχ , and assuming that χ represents 1 d.o.f., the
equilibrium number density is nχ;eq ¼ ðζð3Þ=π2ÞgχT3.
We thus have

dða3nχÞ
dH

≈
−2ζð3Þ2
3π4

T6

H4
hσannvifΓ2

φa3φ: ðB3Þ

After using Eq. (A7), this becomes

dða3nχÞ
dH

≈ −
�

22.5

g1=3�;Rg�

�
3=2 2ζð3Þ2

3π4
α−1f3=2

M4
P

T2
R
hσannvifΓ2

φa3φ:

ðB4Þ

The integral of the rhs over H is controlled by the largest
value of H during the transition regime, namely Γφ. After
using a3 ¼ a3φðΓφ=HÞ2 once again, and Γφ ¼ αΓϕ, we find

nχ ≈
�

22.5

g1=3�;Rg�;φ

�
3=2 2ζð3Þ2

3π4
f3=2

ΓϕM4
PH

2

T2
R

hσannvif; ðB5Þ

where g�;φ is the number of relativistic d.o.f. at H ¼ Γφ.
After normalizing this frozen number density by the
entropy density at the end of EMD, and using the
expression in Eq. (1), we arrive at

nχ
s
≈ ð4g�;φÞ−3=2

15ζð3Þ2
π3

f3=2ðTRMPÞhσannvif: ðB6Þ

This can be directly used to find Ωχh2 (where we have
dropped an overall proportionality factor)
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ðΩχh2Þtranf:i: ∝ f3=2ðTRMPÞ
�

mχ

1 GeV

�
hσannvif: ðB7Þ

We note that Eq. (B5) is obtained by integrating the
expression in (B4) for a constant hσannvif, which we have

considered throughout this paper. In cases where
hσannvif ∝ Tn, with n > 0, freeze-in during the transition
regime yields a higher DM abundance. The enhancement is
more significant for a strong temperature dependence of
hσannvif, like models studied in [30,31].
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