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A dark energy model (DE) is proposed based on the Ginzburg-Landau theory of phase transition (GLT).
This model, GLTofDE, surprisingly provides a framework to study not only temporal tensions in
cosmology, e.g., H0 tension but also spatial anomalies of the cosmic microwave background (CMB), e.g.,
the hemispherical power asymmetry and quadrupole-octopole alignment. In the mean field (or Landau)
approximation of GLTofDE, there is a spontaneous symmetry breaking exactly like the Higgs potential. We
modeled this transition, phenomenologically, and showed that GLTofDE can resolve both the H0 tension
and Lyman-α anomaly in a nontrivial way. According to χ2-analysis the transition happens at zt ¼
0.738� 0.028 while H0 ¼ 71.89� 0.93 km=s=Mpc and Ωlike

k ¼ −0.225� 0.049 which are consistent
with the latest HðzÞ reconstructions. In addition, the GLTofDE proposes a framework to address the CMB
anomalies when it is considered beyond the mean field approximation. In this regime existence of a long
wavelength mode is a typical consequence which is named the Goldstone mode in the case of continuous
symmetries. This mode, which is an automatic by-product in GLTofDE, makes cosmological constant,
direction dependent. This means one side of the sky should be colder than the other side in agreement with
what has been already observed in CMB. In addition between initial stochastic pattern and the final state
with one long wavelength mode, we can observe smaller patches or protrusions of the biggest remaining
patch in the simulation. Our simulations show these protrusions are few in numbers and will be evolved
according to Alan-Cahn mechanism. These protrusions can give an additional effect on CMB which is the
existence of aligned quadrupole-octopole mode and its direction should be orthogonal to the dipole
direction. We conclude that GLTofDE is a fertile framework both theoretically and phenomenologically.
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I. INTRODUCTION

The standard model of cosmology, ΛCDM including
∼68% dark energy and ∼32% dark matter and ordinary
matter, can describe our universe very accurately thanks to
precision cosmology era [1]. Although ΛCDM is the best
known model of our universe but it suffers from some
issues in its details. Here we do not focus on theoretical
problems like the cosmological constant [2] or coincidence
problem. But, we concentrate on the tensions between
ΛCDM predictions and parameters emerging from obser-
vations both in early time, e.g., CMB and late time, e.g.,
supernovae. The most important tension is in the prediction
of the present value of the Hubble parameter, H0. ΛCDM
based on CMB data [1] predicts a lower value for H0 in
comparison to that derived from direct measurements of
supernovae [3,4] with ∼4σ discrepancy. Another way to see
this tension is in the behavior of HðzÞ predicted by ΛCDM
and that reconstructed from the data directly [5–8] where a

∼3.5σ tension has been reported [6]. At the level of the
linear perturbation there is also a mild tension in fσ8 which
represents the matter content of the universe. Observations
hint that there is less matter in the late time in comparison to
what we expect from CMB [9]. Another anomaly is in the
distance measurement of Lyman-α BAO [10,11]. We
categorize these tensions as temporal tensions since they
suggest a difference between early and late time cosmol-
ogies. In addition there are spatial anomalies which have
been reported in CMB anisotropies by both WMAP [12]
and Planck [13] and reviewed in [14]. The hemisphere
asymmetry stresses that temperature fluctuations have
larger amplitude on one side of CMB than on another
side. it means there is an unexpected dipole modulation in
CMB power spectrum [15]. Another famous anomaly is the
presence of a cold spot in CMB [16]. The other anomaly is
the alignment of quadrupole and octopole modes [17].
Note that these spatial anomalies are around 2 − 3σ which
may not be so significant but the story is different if they
are assumed to be independent1 which means around 7σ
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tension in ΛCDM [19] and if one takes H0 tension into the
account then the overall tension becomes even more severe.
These tensions are motivations for proposing many

ideas in relevant literature. One candidate to address these
tensions is considering the standard physics more carefully.
For example the neutrinos always were a candidate to
address these anomalies specially H0 and σ8 tensions [20].
Although it is an interesting idea inside the known physics
but unfortunately it cannot solve the problems. In another
viewpoint these tensions are hints of a new physics where
the more interesting ideas are the ones which either have
some roots in a fundamental (well-known) physics and/or
solve more than one of these tensions at once. To address
the temporal tensions specially H0 tension, the physics of
dark energy and gravity has been studied very extensively,
e.g., interacting dark energy [21,22], neutrino-dark matter
interaction [23], varying Newton constant [24], viscous
bulk cosmology [25], phantomlike dark energy [26], early
dark energy [27], massive graviton [28], etc. In addition
modified gravity can address fσ8 tension too [29]. It has
been shown in [30,31] that a transition in the behavior
of gravitational force [32] can lessen the H0 tension. A
transition in the behavior of dark energy has been studied in
[33–35] but not for solving the H0 tensions. Recently by
focusing on the transition point we have shown that a
DE model inspired by the Ising model can be a framework
to think about the temporal tensions [36]. However, to
address the spatial tensions, i.e., CMB anomalies, usually
the physics of early universe has been modified from its
standard version. To address the hemisphere asymmetry
an idea is the existence of a long wave mode [37] which
has been studied very extensively. This mode cannot be
realized in single field inflation as discussed in [38,39].
Another idea is to relate non-Gaussianity to the hemi-
spherical asymmetry [40,41]. In an interesting proposal
based on isotropic non-Gaussian gNL-like model, almost all
of these anomalies have been addressed simultaneously in
[19]. Although usually for CMB anomalies the physics of
inflation has been modified but there are few works based
on late time cosmology too, e.g., [42].
In this work we propose a new model of dark energy

based on the well-established physics of the critical
phenomena. As we mentioned above, we have examined
a simple model in [36] by assuming an Ising-inspired
model for DE. Now we generalize our idea by assuming DE
underwent a phase transition in its history in a model
independent way. This idea can be realized by working
within Ginzburg-Landau framework which is an effective
field theory describing the physics of phase transition
without any dependence on the details of relevant micro-
structures. Since the physics of Ginzburg-Landau Theory
(GLT) is very crucial for us in the next section II we will
focus on its details. In Sec. III we will propose a DE model
based on GLT and will show how this model can address
both temporal and spatial anomalies of the standard

cosmology, simultaneously, which happens for the first
time in the literature up to our knowledge. We finish with
conclusions and future perspectives in the last section IV.

II. GINZBURG-LANDAU MODEL

The main idea of GLT is to write an effective action for a
macroscopic system by ignoring its microscopic details
though keeping its main properties alive [43]. This idea has
been realized by writing a general phenomenological action
for the critical phenomena. By coarse graining over the
microscopic structure one can write an effective action as

HGL ¼ Cþ 1

2
m2

�
T − Tc

Tc

�
Φ2 þ ξΦ3 þ λΦ4 þ γð∇ΦÞ2

þ ζH:ΦþOðΦ;∇ΦÞ; ð1Þ

where C is an overall constant,2 H is the external (mag-
netic) field and Φ is representing the coarse grained field.
Note that the symmetries tell which terms should be inHGL
exactly like what we expect from and effective theory. The
first non trivial and interesting property of the above action
is the coefficient of Φ2 which changes its sign at the critical
temperature Tc resulting in a phase transition in the system.
The other term which will be crucial in the above action is
the gradient term, ð∇ΦÞ2, which represents the interaction
between neighboring cells in the lattice. We should mention
that, in principle, one can add higher order terms to GL
model, OðΦ;∇ΦÞ, but they just change the quantitative
analysis without any new qualitative behavior of the system
so in this work we will work with the first few terms. In
the following we will focus on properties of the above
action which are well-known in the literature of critical
phenomena [44].

A. Landau approximation

Landau made an approximation by assuming a coarse
graining with a typical length comparable to the size of
the lattice. This approximation is famous as a mean field
approximation and effectively says each cell can see all the
cells in the lattice. In Landau approximation there is no
spatial dependence in the field Φ and consequently HGL
will be3

2As it is mentioned in [43] “The integration over the magnetic
and nonmagnetic degrees of freedom at short scales also gen-
erates an overall constant.” This factor usually is ignored in
critical phenomena analysis but we keep it for our cosmological
model. Our physical intuition is that when gravity is at play then
even an overall constant will gravitate which will see is the
cosmological constant.

3Without loss of generality in this section we ignore Φ3 and
H:Φ terms.
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HLandau ¼
1

2
m2

�
T − Tc

Tc

�
Φ2 þ λΦ4; ð2Þ

which has been plotted in Fig. 1 before and after Tc.
Obviously the minimum field value, Φ0, depends on the
signature of T − Tc as

Φ0 ¼
8<
:

0 T > Tc;

�
�
m2ðTc − TÞ

4λTc

�
1=2

T < Tc
ð3Þ

where gives the following values for the potential

VðΦ0Þ ¼

8><
>:

0 T > Tc;

−
1

16

m4ðT − TcÞ2
λT2

c
T < Tc

ð4Þ

with a lower value for potential after critical temperature,
i.e., Vbc < Vac as it is obvious in Fig. 1. In the case of
magnetization it means above Tc fluctuations are dominant
and the net magnetization is zero. However by decreasing
the temperature and below Tc, spins become aligned in
macroscopic patches and there is a nonvanishing net
magnetization. For T < Tc, if we give enough time to
the system then all the spins become aligned which is the
final equilibrium state. However before reaching to this
state, there is distribution of patches in the system. To study
the effects of these patches we need to go beyond mean
field approximation.

B. Beyond Landau approximation

As we could see in Landau approximation, at T ¼ Tc a
phase transition happens which causes a spontaneous sym-
metry breaking. For example in the case of two-dimensional
Φ after the phase transition we have a Mexican hat potential

and due to the (rotational) symmetry of the model there is no
energy difference between the local minima. As we men-
tioned all the spinswill be aligned at absolute zero but there is
no preferred direction as a direct consequence of (rotational)
symmetry [43]. Note that this property is held even for all the
temperature below Tc. Note that any spontaneous (continu-
ous) symmetry breaking produces a long-wave mode which
is famous as Goldstone mode. This mode has a long
wavelength which cannot be explained by Landau approxi-
mation and it needs us to consider the last terms in (1),
ð∇ΦÞ2. This term means neighbor cells in the lattice has
interaction with each other in a way to minimize the energy
spins in the neighbor cells to make them be aligned. This
explains why the Goldstone mode has a long wavelength.
To have an idea about the behavior of GL model we have

simulated its time dependent version, i.e., “time dependent
Ginzburg Landau” (TDGL). For details one can see the
Appendix A but the summary is in high temperatures we
have very small stochastically distributed patches and the
lattice does not exhibit any long range order. While below
critical temperature one state will be dominated and corre-
lation length diverges. Before the final state we have one big
patch, where its size is comparable with the lattice size,
which is exactly what we expected as the long-wavelength
mode. However more interestingly we can see before this
state we have few smaller patches. These patches either are
islandswhichwill be swallowed by the sea or are protrusions
of the biggest patch which will dissolved into the main
part. Note that these smaller patches cannot be very close
to the biggest patch since they will quickly be dissolved.
In subsection III B, these properties became visualized in a
cartoon but details are given in Appendix A.

III. GINZBURG-LANDAU THEORY OF
DARK ENERGY

In this section we will propose an idea on dark energy
based on GLT. We assume dark energy has a kind of
microscopic structure which could undergo a phase tran-
sition. So effectively its Lagrangian can be given by the
Ginzburg-Landaumodel (1) without any concerns about the
details of its microscopic structure. On the other hand in this
work, for simplicity, we assume dark energy sector has a
very small interaction with other species of the universe
including the gravity sector. This approximation allows us to
study the interesting and important properties of our model
without loss of generality. It means we can solve the TDGL
equation to get dynamics of DE in our model and then plug
the solution into the equations of motion of other species of
the universe. So, we assume the dynamics is governed by
TDGL equation (A1) while the potential for DE is given as

VGLTofDE ¼ Λþ 1

2
m2

�
T − Tc

Tc

�
ϕ2 þ ξϕ3 þ λϕ4

þ ζρextϕþ γ∇ϕ:∇ϕ; ð5Þ

FIG. 1. In this figure we have plotted GL-action for T > Tc by
dotted line and for T < Tc by solid line. Before phase transition
we do have Λ1 as the value of potential which is bigger than its
value after phase transition, i.e., Λ2. The existence of terms like
Φ3 orH:Φ can break the Z2 symmetry and results in difference in
the value of potential’s minimum on the right and left. This
difference will be crucial for us when we study the anisotropic
part of our model.
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where we introducedΛ instead ofC in (1), ϕ is a scalar field
and ρext represents any field except DE very similar to
interacting DE models [45,46]. The above potential should
remind us the effective theory of dark energywhich has been
studied in the literature extensively [47,48]. Although, the
main conceptual difference is the assumption of micro-
structure for DEwhich results in T − Tc factor in the second
term practically. For our cosmological purposes we think T
is proportional to photon temperature and phase transition
happens at a transition redshift zc which corresponds to a
critical temperature Tc, i.e., ðz − zcÞ ∝ ðT − TcÞ.

A. Background: Homogeneous and isotropic part

It is worthwhile to mention that the homogeneous and
isotropic background part is exactly same as the Landau
model where the field has no spatial dependence. It is
obvious why it is the case if we recall that the homogeneity
and isotropy is an approximation for above 100Mpc scales.
Averaging over this scale is similar to coarse graining in the
Landau approximation. According to the field value tran-
sition in the Landau model (3) the amplitude of the
potential will switch at the critical temperature from a
higher value in higher redshifts to a lower one in lower
redshifts,4 see Fig. 1. The z-dependence of this transition
depends on the details of cooling procedure5 and we model
it by Λeff ¼ ΛXðzÞ with

XðzÞ ¼ 1þ A½tanhðαðz − zcÞÞ þ tanhðαzcÞ� ð6Þ

where zc is representing the critical redshift, A and α are the
amplitude and the shape of the transition. Consequently,
Hubble parameter for a homogeneous and isotropic uni-
verse will be modified as

H2ðzÞ ¼ H2
0½Ωrð1þ zÞ4 þ Ωmð1þ zÞ3 þΩlike

k ð1þ zÞ2
þ ΩΛXðzÞ� ð7Þ

where we assumed Ωr þ Ωm þ Ωlike
k þΩΛ ¼ 1 at z ¼ 0

which is consistent with definition of XðzÞ and H0 is
Hubble parameter at z ¼ 0. Note that we introduced Ωlike

k
term which is very similar to spatial curvature term but
it is different since it just appears in the dynamics and not
in the geometrical kinematics, i.e., it means our model is
spatially flat.
We have checked GLTofDE with background data

encoded in HðzÞ where we report their details in
Appendix B. The best fits are reported in Table I and
the details of likelihoods in the Appendix B. In our analysis
we have not run MCMC for parameter α which is the speed
of phase transition in (6) and we just work with a typical
value of α ¼ 5.0. This is because we could see our model is
not too sensitive to the value of α and, on the other hand, for
large values of α, tan h-functions behave like a step
function and we cannot distinguish large α’s at all. In
addition to HðzÞ data set we have added fσ8ðzÞ data points
to constrain our model (The details can be found in
Appendix B.). Although we do not do perturbation theory
of our model in this work, using fσ8ðzÞ data points is still
valid for our model. In GLTofDE as well as quintessence

TABLE I. In this Table we have reported our χ2 analysis for two sets of the data points. Oncewe have used just background data points
and thenwehave addedfσ8ðzÞ data pointswhere the details can be found inAppendixB.Obviously ourmodel ismuch better in χ2 analysis
and can solve H0 tension. However we do have more free parameters but it is also obvious that our model has much better reduced-χ2,
which is defined as γ ¼ χ2min=ðNdata − NmodelÞ, whereNdata is number of data points andNmodel is number of free parameters in the model.
An interesting property of GLTofDE is prediction of zt ∼ 0.75 which is consistent with the observations from HðzÞ reconstruction. It is
worthwhile tomention that a negative value forΩlike

k is consistent with the recent results inHðzÞ reconstruction [7,8] as we described in the
Appendix B.

Data sets ΛCDM GLT of DE

Background χ2 ¼ 24.80 γ ¼ 1.77 χ2 ¼ 12.71 γ ¼ 1.06
H0 ¼ 71.13� 0.80 H0 ¼ 71.89� 0.93

Ωmh2 ¼ 0.1433� 0.0064 Ωmh2 ¼ 0.1432� 0.0074
Ωlike

k ¼ −0.046� 0.012 Ωlike
k ¼ −0.225� 0.049
A ¼ 0.80� 0.19

zt ¼ 0.738� 0.028

Backgroundþ fσ8ðzÞ χ2 ¼ 31.73 γ ¼ 1.38 χ2 ¼ 20.33 γ ¼ 0.97
H0 ¼ 71.22� 0.36 H0 ¼ 71.82� 0.91

Ωmh2 ¼ 0.1431þ0.0064
−0.0069 Ωmh2 ¼ 0.1431� 0.0073

Ωlike
k ¼ −0.045þ0.011

−0.013 Ωlike
k ¼ −0.204þ0.045

−0.038
A ¼ 0.72� 0.17

zt ¼ 0.733� 0.029

4For our purpose in the background we assume ξ ≪ 1 which
is in agreement with non-Gaussianity observations by Planck
results.

5There are two main cooling procedures, i.e., annealing and
quenching which are very slow and very fast, respectively.
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models, the evolution equation of perturbations can just be
modified through the modifications in HðzÞ. So it is physi-
cally viable to use fσ8ðzÞ data points in addition to HðzÞ’s.
The best fits have been shown inTable I. To get some intuition
about the behavior of GLTofDE we have plotted HðzÞ and
DVðzÞ versus redshift in Figs. 2 and 3, respectively. We can
see that our model can perfectly describe all the data points
with an obvious transition around zt ∼ 0.75.Wewould like to
emphasize that our model has its very own fingerprints in
HðzÞ andDVðzÞ between z ∼ 0.5–1.5 which can be checked
in future surveys like Euclid or SKAwhich look at structures
in higher redshifts. One can findmore details on the results in
Appendix B.

B. Anisotropic part

Now we study the effects of anisotropic terms on the
background, i.e., beyond mean field approximation. From
the previous section we expect to have patches in the sky
with different values of cosmological constant, (CC).6 In
this section for our purposes we keep ϕ3 term in (5). So the
values of CC is given by Λ2 þ δΛR and Λ2 − δΛL, e.g., for
blue and red patches.7 We emphasize that the existence of
the patches as well as occurring in the phase transition is

because of the local interactions between neighborhoods
given by ð∇ϕÞ2 term in (5) as we have discussed in the
previous section. We recall that the existence of a long-
wavelength mode is a natural consequence of broken
symmetry.
In the cosmological setup it means we have a spatial

asymmetry in the sky.8 We have sketched a cartoon based
on our simulations in Fig. 4.9 This asymmetry can be seen
in CMB due to Sachs-Wolfe effect.10 In other words, since
the late time acceleration depends on the direction, con-
sequently, CMB photons will be affected by it. The first
biggest patch which remains till the end makes an obvious
dipole in the sky according to different values of Λ’s for
each side. The patch with largerΛ causes larger redshift and
consequently a colder side. We emphasize that this asym-
metry is a direct consequence of having a phase transition in
the dark energy behavior. This asymmetry in the sky can
explain why a hemisphere of the CMB sky is colder than the
other side. For this purpose we need to assume the biggest
patch (which is almost comparable with the Hubble radius)
was dominant after DM-DE equality time.11 So GLTofDE

FIG. 3. We have plotted normalized DVðzÞ and DMðzÞ for
GLTofDE in solid and dashed lines, respectively. Note that we
have not used some of these data points in our χ2 analysis but
GLTofDE is very consistent with distance data points. Interest-
ingly, GLTofDE predicted a very nontrivial behavior of DVðzÞ
in z ∼ 0.4–0.7 which follows the trend of BOSS-DR12 and
DR14-LRG data points. Obviously GLTofDE (almost) solve
Lyman-α tension by predicting less DMðzÞ around z ∼ 2.4 while
it is compatible with a DES data point around z ∼ 0.7.

FIG. 2. We have plotted HðzÞ vs. redshift for GLTofDE and
ΛCDM. ΛCDM has plotted for Planck 2018 best fit, with our
background data points and background þfσ8ðzÞ data points in
dashed yellow and green dot-lines, respectively. GLTofDE has
been plotted in solid and dotted lines for different sets of data
points. Obviously GLTofDE has this potential to solve both H0

and Lyman-α tensions simultaneously. One more interesting
property is the behavior of GLTofDE which can go through
BOSS-DR12 data points properly. Obviously GLTofDE has its
own fingerprint, e.g., its prediction forHðzÞ around z ∼ 1 is totally
different with ΛCDM.

6Note that we assumed the field is at the minimum of the
potential in Fig. 1 which means effectively we have a constant
cosmological constant in each patches.

7Note that for this purpose we could consider interaction term
in (5), i.e., ρextϕ with the same effect as ϕ3. A term like ρextϕwill
break the symmetry of black and white patches.

8In GLTofDE we should be careful about the DM-DE equality
redshift, zeq, because before zeq we do not expect to have any
effects of DE including its patches.

9It is actually based on a 2-D Ising simulation but the main
concepts are same as what we have for 3-D GLT.

10Integrated Sachs-Wolfe effects should be modified too, but
it is a secondary effect.

11Even the biggest patch will be resolved if one gives enough
time. Though its effect can be smaller, since CMB had seen this
anisotropy in their history, this will be detectable even after
reaching to the final state (i.e., the lattice with just one state, blue
or red in Fig. 4.).
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for sure predicts a dipole asymmetry in CMB. This result
by itself is very interesting since it shows GLTofDE can
address both H0 and hemisphere asymmetry of CMB
simultaneously.
Technically, the power asymmetry is a dipole modula-

tion, Θobsðn̂Þ ¼ ð1þ An̂:p̂ÞΘisoðn̂Þ [49], where Θ≡ ΔT=T
and Θobsðn̂Þ and Θisoðn̂Þ are observed temperature and
isotropic power respectively as functions of n̂, i.e., the
direction of observation. In this modulation A is the
amplitude of the anisotropic modulations and p̂ is a
preferred direction. An important observational property
of this modulation is its appearance in only l ≤ 60 which
makes it scale dependent. The most common idea to
address this modulation as we mentioned already is the
existence of a long-wave mode in the initial perturbations
(i.e., during inflation) [37–39]. In this framework the
perturbations see this long-wave mode as a modulations
over their isotropic background. In our GLTofDE scenario
we do have the same long-wave mode modulations in the
late time cosmology. As we mentioned above this late time
long-wave mode will change the expansion rate in different
directions of the sky and will cause a modulations in the
power spectrum. We emphasize that this mode is time
dependent since as times go up we expect that one of the
patches become larger and larger and finally cover the
whole sky. Note that the size of the smaller patch will
makes the dipole modulation scale dependent. So its
current size in the sky is constrained due to observation
of the existence of the dipole modulations for l ≤ 60.

However since in GLTofDE the smaller patch will be
smaller and smaller and finally will be resolved completely
then we predict that the dipole modulation will be observed
in the smaller modes, i.e., l > 60 but its amplitude depends
on the patch’s lifetime. But since the resolving speed is
higher while the patch is smaller then we expect to have
very small amplitudes for high l’s.
We can go further by considering the state of our model

earlier than its final state. As we mentioned in Appendix A.
Alan-Cahn mechanism says a patch will be evolved to
reduce its curvature and make a circle/sphere and finally to
be washed out. But before it became a symmetrical sphere
we expect this patch can have nonsymmetric protrusions
like an octopus with non-symmetric arms. These arms are
not symmetric in both size and position. But they cannot be
very close to each other since their dynamics make them
one arm. The Alan-Cahn mechanism wants to make this
octopus a very symmetric octopus so we expect during this
evolution there is a time that only a few (e.g., two or three)
arms exist with different sizes. Now if this is the situation
after DM-DE equality then CMB should be affected by this
structure. The main body (as we mentioned already) will
make a dipole and the arms can produce both quadrupole
and octopole which are automatically aligned.12 In Fig. 4 we

(a) (b) (c) (d) (e)

FIG. 4. A cartoon sketched based on our simulations for T < Tc (see Appendix A). In very early times, i.e., figure (a), the system is
very stochastic but while time is going then we see the appearance of structures, i.e., patches in figure (b). The final state will be as half
red/blue [figures (c) and (d)] but then one color will be dominant which has not been in this figure. In cosmological scenario red and blue
colors represent Λ2 − δΛL and Λ2 þ δΛR (cf. Fig. 1) which means different effective CC. Hence for redshifts before DM-DE equality,
i.e., z > zeq, CC has no effect so we do not see any effects of patches in our model. But near zeq these patches will affect the cosmology
and for our purposes we expect zeq to be a little bit before (almost) final state, i.e., figures (c) and (d). Obviously there is a dipole in
(d) which can address the hemispherical asymmetry in CMB via (integrated) Sachs-Wolfe effect of different CC’s. In figure (e) we
removed the dipole structure and we can see the remaining gives a structure with higher multipoles. In this simulation we can see three
cold/hot patches which gives aligned quadrupole and octopole very interestingly. In addition in bottom-left of (e) we could get a cold/hot
spot. We emphasize that for quantitative arguments we need more simulations which will be remained for the future works. However
GLTofDE is a rich framework to address CMB anomalies as well as H0 tension.

12For completeness we would like to mention that in addition
to protrusions we could think of smaller disjoint patches.
Although our arguments work for this scenario too, our simu-
lations show that this scenario is less probable.
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have sketched a cartoon describing these properties. This
means GLTofDE framework can address two anomalies
together; hemispherical power asymmetry and quadrupole-
octopole alignment.13 We also can imagine that the cold
spot in CMB is the remnant of a disjoint patchwhich became
like a sphere in its final state according to the Alan-Cahn
mechanism.However to have this patchwith appropriate size
we need too much fine-tuning.
In this section we showed that “GLT-of-DE” initiates a

very promising framework to study both temporal and
spatial cosmological tensions simultaneously. Up to our
knowledge it makes our proposal unique in the literature.

IV. CONCLUDING REMARKS AND
FUTURE PERSPECTIVE

We assumed a (micro)structure for dark energy which
made a phase transition in its history. This phase transition
can be realized by Ginzburg-Landau theory which is the
effective theory of phase transition. We could show
GLTofDE can be a framework not only to address temporal
tensions of cosmology, e.g., H0 tension but also spatial
ones, i.e., CMB anomalies. We analyzed the background
cosmology with background data points [and fσ8ðzÞ data]
and our model is much better than ΛCDM in χ2 analysis.
With our analysis the transition has been occurred around
z ∼ 0.74. Our model has its very own fingerprints between
z ∼ 0.5–1.5 inHðzÞ andDVðzÞ as it is plotted in Figs. 2 and
3 which can be checked in near future surveys like Euclid
and SKA. An unavoidable consequence of GLT is the
existence of a long-wavelength mode. This long-wave-
length mode can affect the CMB temperature fluctuation
and address the hemispherical asymmetry of CMB. As we
have shown in Appendix A this long-wavelength mode is
the biggest patch in the simulation. In addition the few
smaller patches which could have survived after matter
domination era can cause the alignment of quadrupole and
octopole modes. We argued that quadrupole and octopole
should be aligned and orthogonal to the dipole. This
(natural) result of GLTofDE gives a promising framework
to address CMB anomalies very interestingly. We also
argue that the existence of the cold spot can be studied in
this model but it needs fine-tuning.

A. Future perspective

GLTofDE shows a promising framework with many
directions to explore. The first direction is to work with
CMB temperature/polarization data sets and employing
Bayesian analysis to study goodness of fits. Another inter-
esting direction is to investigate the CMB spatial anomalies
more carefully. This needs to run very accurate simulations

and study the details of results especially the distribution of
patches’ size vs. time. In this work we modeled the phase
transition by a tan h-function but in principle one could try to
solve the equations more concretely. One further goal can be
look for another observational fingerprints of our model e.g.
between different patches we can expect to have domain
walls and they should have their own affects.
At the end we would like to emphasize that GLTofDE is

based on a very profound and well-studied topic in physics
i.e., critical phenomena. The idea of phase-transition can
tell us more about our model GLTofDE e.g. in [50] it has
been shown that a Bose condensate state can be seen as an
expanding universe in the lab. In this direction we think it is
possible to setup an experiment to simulate our idea.
Actually it can also gives us more idea about the behavior
of GLTofDE e.g. after the phase transition it is possible for
the field to oscillate at the bottom of the potential before
becoming relaxed to its final state14 as it has been seen in
[50]. This feature can explain the oscillations which has
been observed in reconstructed HðzÞ in [7].
In addition we showed that GLTofDE is a very promising

framework to think about the both temporal and spatial
anomalies in the cosmology simultaneously which happens
for the first time in the literature up to our knowledge.

ACKNOWLEDGMENTS

We are grateful to S. Baghram, M. Farhang, A. Mehrabi
and S. Shahbazian for very fruitful discussions. We also
thank A. Kargaran, A. Inanlou, A.Manavi andM. Sarikhani
for their helps on using packages. N. K. would like to thank
School of Physics at IPM where he is a resident researcher.
We have used the GETDIST package to produce likeli-
hoods [51].

APPENDIX A: TIME DEPENDENT
GINZBURG-LANDAU

Using energy function, someone can go further and intro-
duce a thermodynamic force −δH=δΦ to write a dynamic
equation in first order (overdamped) approximation:

∂Φ
∂t ¼−

δH
δΦ

¼∇2Φþ1

2
m

�
T−Tc

Tc

�
Φþ ξΦ2þλΦ3þηðtÞ ðA1Þ

which is called the time-dependent Ginzburg-Landau
(TDGL) equation. The last term ηðtÞ in TDGL represents
thermal noise contribution, but many efforts of TDGL
analysis are focused on zero-temperature dynamics.
The TDGL equation is the continuous counterpart of
Ising-Glauber mechanism to simulate the relaxation process

13We should check the details of statistic in details. This needs
full consideration of simulations which is beyond the scope of
this work and will remain for the future works.

14We thank A. Sheykhan and A. Ashoorioon for discussion on
this point.
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of a spin system after quenching to a zero temperature.
Figure 5 demonstrates some steps of TDGL simulation,
starting from a random state and ending to a global
minimum. The most prominent aspect of TDGL analysis
is interface evolution. Because of bilateral stable potential
term, interfaces emerges after a few steps. The Allen-
Cahn equation is governing the evolution of interfaces as
follow [44]:

v ¼ −
Xd−1
j

1

Rj
ðA2Þ

where v is the local velocity of an interface and Rj’s are
principal radii of curvatures. So the fate of a 3d spherical
droplet with radius R0 is vanishing after t ¼ R2

0=4.
Regarding this argument, the final state in three dimensions
is one dominant state as ground state. The stability of an
interface between two states only exists where all part of an
interface has two opposite curvature states, i.e., saddle point.
These interfaces are called minimal surfaces and only are
presented in period boundary condition [44]. Another
important consequence of Allen-Cahn is the smoothing
effect of TDGL dynamics.
Based on TDGL evolution, we can study the evolution of

discrete patches in three dimension. The simulation detail is

FIG. 5. 5 random 2d cross sections from 3d cubic lattice in simulation (A3) for simulation steps (a) 15, (b) 39, (c) 158, (d) 630,
(e) 1584, (f) 9999, (g) 25118, (h) 39810. Obviously for early times we have stochastic pattern in the system. As time goes on the patterns
start to be formed and finally one state becomes dominant. However before the final state it is obvious to see the appearance of a long
wavelength mode in (f).

FIG. 6. (a) Contour plot of patch’s proportional size distribution, in several time steps. Color bar also has log scale for better
demonstration. Marked points demonstrate the most probable patch’s proportional size, in each time step. (b) Shows the standard error of
patch’s proportional size distribution, in an ensemble of simulations with size 30.
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as follow: we start with a random state in 1003 cubic lattice,
and solve step-wise TDGL partial differential equation:

Φðx; tþ dtÞ ¼ Φðx; tÞ þ dtð∇2Φþ 2Φð1 −Φ2ÞÞ ðA3Þ

which is simplified version of (A1). One of main feature for
our further argument is the statistics of 2d patches on plane
intersections in the cubic lattice. For several time t, we
sample 100 different plane cross section with cubic lattice
and measure the size of discrete patches of Φ ¼ �1 in that

FIG. 7. The spherical slices of our TDGL simulation which shows what we have expected. In (a) we see stochastic behavior of patches
while with increasing time, the patches became more structured as it is obvious from (b). In later time in (c), the size of patches becomes
comparable to the lattice size. And finally we will be close to the final state of TDGL simulation where one of the states becomes
dominant. Interestingly in (d), we can see existence of few patches with different sizes. The biggest one can make a dipole and the
smaller ones make a framework to think about higher order multipoles.

TABLE II. The background dataset. Θ represents the distance of the last scattering surface to us. We also use thirteen BAO
measurements and one data point from BOSS DR14 quasars. The additional data point is the Hubble parameter at the present time, H0,
which is reported by analysis of supernovae. All values of H and distances in the above table are in units of km=s=Mpc and Mpc
respectively. In addition, we do our χ2 analysis with a prior on Ωmh2 given by Planck 2018.

CMB BAO BAO BAO
CMB first peak [1] BOSS DR12 (z ¼ 0.38) [53] BOSS DR12 (z ¼ 0.51) [53] BOSS DR12 (z ¼ 0.61) [53]
100Θ ¼ 1.04085� 0.00047 HðzÞ=ð1þ zÞ ¼ 59.05� 1.38 HðzÞ=ð1þ zÞ ¼ 59.87� 1.26 HðzÞ=ð1þ zÞ ¼ 60.43� 1.3

Hubble Quasars BAO BAO
Local H0 [3] BOSS DR14 (z ¼ 1.52) [54] BOSS Ly-α (z ¼ 2.33) [10] BOSS Ly-α (z ¼ 2.40) [11]
H0 ¼ 73.48� 1.66 HðzÞ=ð1þ zÞ ¼ 63.1� 4.96 HðzÞ=ð1þ zÞ ¼ 67.27� 2.40 HðzÞ=ð1þ zÞ ¼ 67.14� 1.65

BAO BAO BAO BAO
6dFGS (z ¼ 0.106) [55] DES (z ¼ 0.81) [56] MGS (z ¼ 0.150) [57] WiggleZ (z ¼ 0.44) [58]
DV ¼ 449.1� 20.1 DM ¼ 2861.4� 115.2 DV ¼ 657.7� 25.6 DV ¼ 1698.7� 82.0

BAO BAO BAO BAO
WiggleZ (z ¼ 0.60) [58] WiggleZ (z ¼ 0.73) [58] DR14 LRG (z ¼ 0.72) [59] BOSS Ly-α (z ¼ 2.40) [11]
DV ¼ 2200.0� 100.3 DV ¼ 2491.0� 85.6 DV ¼ 2340.4� 62.6 DM ¼ 5378.1� 179.3
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plane (Fig. 5 demonstrates a different cross section for
several times [52]). We study the patch’s statistics of one of
states�1 based on the final dominantΦ, in other words, we
measure patches with the sign of final dominant state of Φ.
Figure 6 depicts the patch’s proportional size distribution in
time evolution. Please note that in late time steps, all
patches are collapsed and consist a one 3d big patch, which
is presented in Fig. 7.

APPENDIX B: DATASETS AND MORE RESULTS

In this Appendix we report which data sets we have used
to find the likelihoods for GLTofDE parameters and then, as
is shown in Fig. 8, we have compared our model with
reconstructed dark energy density. We have used back-
ground data points given in Table II. In addition to back-
ground data points we have used CMB distance data point
since it is a model independent information about the CMB.
We have usedΩmh2 as a prior based on Planck 2015 but we
see our final results are not sensitive to this prior, see Table I
for the results. Since our model is a DE model and not a
modified gravity one then we expect that the evolutionary
equation for the linear structure, i.e., fσ8ðzÞ be affected just
by the modification in the background behavior. This means

we can also use fσ8ðzÞ data sets from Table III to constrain
our parameters. We have reported the best fits in Table I and
likelihoods in Figs. 9–12. In addition we have plotted HðzÞ
versus redshift in Fig. 13 for different values of α to show the
general behavior of our model is not sensitive to this
parameter too much. However we have plotted HðzÞ and
fσ8ðzÞ versus redshift in Figs. 2 and 14 for α ¼ 5,
respectively.

1. A comment on Ωlike
k

As it is obvious from our results in Table I we do get a
negative Ωlike

k which seems very far from what we have
expected. First we would like to emphasize that since this
term, Ωlike

k , just appears in the dynamics (i.e., Friedmann
equation) and plays no role in the geometrical kinematics
(e.g., distances) then it should not be confused with the
spatial curvature term. In comparison to [7], the difference
is in our parametrization. In [7] the Friedmann equation has
been written as

H2ðzÞ ¼ H2
0½Ωrð1þ zÞ4 þ Ωmð1þ zÞ3 þΩΛYðzÞ� ðB1Þ

and from the data YðzÞ became reconstructed. It means they
prior assumed flatness but the price they had to pay is
getting negative energy density for dark energy as it is
obvious in Fig. 1 in [7]. However we think our para-
metrization is more physical since we get an always
positive energy density for dark energy while we our
model predicts exactly the same behavior as their YðzÞ.
We can rebuild their dark energy density YðzÞ as15

YðzÞ ¼ ½Ωlike
k ð1þ zÞ2 þΩΛXðzÞ�=½1 −Ωm − Ωr�: ðB2Þ

In Fig. 8 we have plotted the above YðzÞwith our best fits
which exactly shows a same behavior as Fig. 1 in [7]. This
means GLTofDE could predict the data even with less data
set. This negative cosmological constant is also reported in
[8]. We think our reparametrization may give a clue to look
for departure from spatially flatness geometry which
remains for the future works. If it is true then we do not
need to assume negative energy density for the dark energy
which does not seem physically interesting.

TABLE III. fσ8 datasets.

6dFGS+SnIa [60] SDSS-MGS [61] SDSS-LRG [62]
0.428� 0.0465 (z ¼ 0.02) 0.490� 0.145 (z ¼ 0.15) 0.3512� 0.0583 (z ¼ 0.25)

BOSS-LOWZ [63] SDSS-CMASS [64] WiggleZ [65]
0.384� 0.095 (z ¼ 0.32) 0.488� 0.060 (z ¼ 0.59) 0.413� 0.080 (z ¼ 0.44)

WiggleZ [65] WiggleZ [65] Vipers PDR-2 [66]
0.390� 0.063 (z ¼ 0.60) 0.437� 0.072 (z ¼ 0.73) 0.400� 0.110 (z ¼ 0.86)

FIG. 8. In this figure we have plotted YðzÞ which is defined in
relation (B2) versus redshift for both best fits of our parameters in
Table I. This function is what has been named XðzÞ and be
reconstructed from data in [7]. By comparing our prediction with
Fig. 1 in [7] it is obvious that our model behaves as data wants.
We do get a negative YðzÞ for redshifts above z ∼ 2.2 and a
maximum around z ∼ 1 exactly same as [7].

15Note that in [7] they have XðzÞ instead of YðzÞ but we have
used XðzÞ for a different quantity.
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FIG. 9. Likelihood of GLTofDE free parameters for α ¼ 5 if we use just background data points in Table II.
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FIG. 10. Likelihood of GLTofDE free parameters for α ¼ 5 if we use both background and fσ8ðzÞ data sets in Tables II and III.
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FIG. 11. Likelihood of ΛCDM free parameters if we use both background and fσ8ðzÞ data sets in Tables II and III.

GINZBURG-LANDAU THEORY OF DARK ENERGY: … PHYS. REV. D 99, 083509 (2019)

083509-13



FIG. 12. Likelihood of ΛCDM free parameters if we use only background data set in Table II.

FIG. 13. We have plottedHðzÞ in GLTofDE for different values
of parameter α. α in relation (6) shows the shape of transition and
it is obvious from this plot that our model is not very sensitive to
its value at least forHðzÞ data points we have used here. Note that
for larger values of α tan h-function becomes like a step function.

FIG. 14. We have plotted the fσ8ðzÞ for the best fit values of
GLTofDE. Our model has its own fingerprint which can be seen
around z ∼ 0.75.
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