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We consider the effect of a time-varying Planck mass on the propagation of gravitational waves (GWs).
A running Planck mass arises naturally in several modified-gravity theories, and here we focus on those that
carry an additional dark energy field responsible for the late-time accelerated expansion of the Universe,
yet—like general relativity (GR)—propagate only two GW polarizations, both traveling at the speed of
light. Because a time-varying Planck mass affects the amplitude of the GWs and therefore the inferred
distance to the source, standard siren measurements of H0 are degenerate with the parameter cM
characterizing the time-varying Planck mass, where cM ¼ 0 corresponds to GR with a constant Planck
mass. The effect of nonzero cM will have a noticeable impact on GWs emitted by binary neutron stars
(BNSs) at the sensitivities and distances observable by ground-based GW detectors such as Advanced
LIGO and Aþ, implying that standard siren measurements can provide joint constraints on H0 and cM.
Assuming a Λ cold dark matter evolution of the Universe and taking Planck’s measurement of H0 as a
prior, we find that GW170817 constrains cM ¼ −9þ21

−28 (68.3% credibility). We also discuss forecasts,
finding that if we assume H0 is known independently (e.g., from the cosmic microwave background), then
100 BNS events detected by Advanced LIGO can constrain cM to within �0.9. This is comparable to the
current best constraints from cosmology. Similarly, for 100 LIGO Aþ BNS detections, it is possible to
constrain cM to�0.5. When analyzing jointH0 and cM constraints we find that ∼400 LIGO Aþ events are
needed to constrain H0 to 1% accuracy. Finally, we discuss the possibility of a nonzero value of cM biasing
standard siren H0 measurements from 100 LIGO Aþ detections, and find that cM ¼ þ1.35 could bias H0

by 3σ to 4σ too low if we incorrectly assume cM ¼ 0.
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I. INTRODUCTION

Einstein’s general theory of relativity (GR) is the
foundation of gravity. On Solar System scales, not only
do its predictions show remarkable agreement with astro-
physical data, but precise measurements of phenomena
such as the deflection of light around the Sun and the
perihelion shift of Mercury rule out many modifications to
GR [1,2]. Nonetheless, GR exhibits weaknesses at both
the very high and the very low energy regimes. At high
energies, unavoidable singularities arise during gravita-
tional collapse, and the so-called renormalization problem
limits our understanding of quantum gravity [3–5]. In order
to fit observational data on cosmological scales, GR relies
on the presence of exotic unknown matter components,
namely, dark matter and dark energy, to make up 95% of
the total energy content of the Universe [6]. These issues

show the current limitations in our understanding of how
gravity behaves and interacts with matter in extreme energy
regimes. As a result, a number of modified-gravity theories
have been proposed (see, e.g., [7–9] for summaries and
reviews), and it is necessary to analyze their consistency,
viability, and consequences.
Recently, multimessenger astrophysics has shown great

potential for revealing new details of physical phenomena
and testing gravity. In particular, combined gravitational
wave (GW) and electromagnetic (EM) science is becoming
a central topic, allowing us to test different aspects of
cosmology and fundamental physics, including alternative
dark energy candidates, spatial curvature, the expansion
rate of the Universe, strong lensing sources, and the
graviton mass [10–13], among others. For instance,
the recent detection of GWs from a binary neutron star
(BNS) merger, GW170817 [14], by the Advanced Laser
Interferometer Gravitational Wave Observatory (LIGO)
[15] and Advanced Virgo [16], in conjunction with the
detection of an EM counterpart [17,18], constrained the
propagation speed of GWs, cT , to be jcT=c − 1j≲ 10−15
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relative to the speed of light c. This high-precision
constraint provides information about possible modifica-
tions to GR and strongly disfavors a number of gravity
theories proposed in the literature [19–23].
The detection of GW170817 and its EM counterpart

enabled the first standard siren measurement [24] of the
current rate of expansion of the Universe, H0, assuming Λ
cold dark matter cosmology and general-relativistic GW
propagation. Besides [24]’s result, independent methods
have been used to constrain the Hubble constant, falling
into two major categories: large-scale and local observa-
tions. From the cosmic microwave background (CMB), the
Planck mission [25] found H0 ¼ 67.4� 0.5 km=s=Mpc
[6], whereas from local observations of Type-Ia super-
novae, the SHoES survey [26] found H0 ¼ 73.48�
1.66 km=s=Mpc [27]. These two measurements disagree
at the 3.5σ level. Consequently, obtaining independent GW
constraints on H0 with ∼1% accuracy could substantially
improve understanding of this tension and potentially
reveal new physics or sources of systematic error.
However, if gravity is described by a theory other than
GR, an accurate inference of H0 could be hampered by
degeneracies with modified-gravity effects. Accordingly,
in this paper we constrain H0 with combined GW and EM
observational data in the context of alternative theories of
gravity with modified GW propagation.
The value of H0 can be obtained if we know the

redshift of the source and its luminosity distance. The
GW amplitude is inversely related to the luminosity
distance, and the scaling constant can be directly inferred
from the evolution of the gravitational waveform, which
depends on the theory of gravity [28]. While the source’s
redshift cannot be inferred directly from GWs, for events
with EM counterparts it is possible to obtain the redshift
from the EM spectrum. Sources of this kind are known as
“standard sirens” [29], after their EM analogues known as
“standard candles.” In this context, the first BNS detection,
GW170817, has already enabled the first standard siren
measurement, H0 ¼ 70.0þ12.0

−8.0 km s−1 Mpc−1 [24,30] sug-
gested that a detection of ∼100 BNS events could yield a
measurement with percent-level accuracy (see also
[31,32]). This target may be attainable in as little as five
years, as scheduled improvements bring the LIGO and
Virgo detectors to their design sensitivity [30]. Within the
next decade, the addition of two more detectors, KAGRA
[33] and LIGO-India [34], to the LIGO-Virgo network, as
well as the planned upgrade of Advanced LIGO to LIGO
Aþ [35], will further increase sensitivity to BNS mergers,
which occur at an astrophysical rate of 110 Gpc−3 yr−1 or
greater [36].
Inspired by modified-gravity models that introduce new

degrees of freedom as an alternative to dark energy, we
analyze how modified propagation of GWs affects the
standard siren estimation of H0. In the context of cosmol-
ogy, some alternative models have indeed been found to

affectH0 measurements and reduce the tension between the
cosmological ΛCDM and local H0 values (see [37] for a
recent review and discussion). Since the estimated lumi-
nosity distance depends on the gravitational theory, we
expect it to be different in models where the GW propa-
gation changes due to the presence of additional fields. The
impact of modified GW propagation on the measurement of
H0 was recently considered in [38], which studied a
specific model where the amplitude of the GWs is damped
due to modified-gravity effects in addition to the damping
caused by the expansion of the Universe. Specifically, this
work considered a nonlocal gravity model and analyzed
how constraints on H0 are affected by modifications to
gravity and to the equation of state of dark energy.
In this paper, we stay agnostic regarding the specific

underlying gravity theory and study H0 in a model-
independent manner, although for simplicity we assume
the background Universe to evolve according to the ΛCDM
model, while allowing for general modifications for
cosmological perturbations and gravitational waves. We
compare constraints on H0 with and without considering
cosmological data, and quantify the impact of damping
effects caused by modified gravity. In particular, we
identify the extra damping effect with an effective running
of the Planck mass, as it is typically found in common
modified-gravity theories, whose time evolution is given by
the fractional dark energy density ΩDE. This time evolution
will have one constant arbitrary parameter cM, representing
the Planck mass rate today, with cM ¼ 0 corresponding to
GR with a constant Planck mass. The observable conse-
quences of a running Planck mass have been studied in a
number of regimes (see, e.g., [39] for a review), and its
effect on the propagation of gravitational waves has been
considered in [40–44]. We find that external cosmological
data from Planck, in conjunction with GW170817, con-
strain cM to be −81 < cM < 28 at the 95% credible level.
These constraints are very weak compared to those from
cosmological data alone when assuming a specific modi-
fied-gravity theory, as cM also affects CMB and structure
formation. For instance, for Horndeski theories, current
cosmological constraints give −0.62 < cM < þ1.35 at
95% confidence level [45].
In addition, we consider populations of events and

discuss future forecasts for standard sirens with
Advanced LIGO and LIGO Aþ. We find that with Aþ,
100 BNSs with detected EM counterparts can lead to
cosmology-independent constraints on H0 with an accu-
racy of ∼3%, and on cM with σðcMÞ ∼ 0.9. From these
results we estimate the need for ∼400 events in order to
obtain a 1%-accurate constraint on H0 in the presence of a
running Planck mass, thereby matching current local and
cosmological constraints. Furthermore, we find thatH0 and
cM are highly degenerate, which highlights the importance
of testing for the parameter cM to avoid biasing the inferred
value of H0 by assuming GR (i.e., cM ¼ 0) in a setting

LAGOS, FISHBACH, LANDRY, and HOLZ PHYS. REV. D 99, 083504 (2019)

083504-2



where the true gravitational wave physics is described by
cM of Oð1Þ. In particular, we show that if we have a
population of 100 events detected by LIGO Aþ with
cM ¼ 1.35, then the inferred H0, assuming cM ¼ 0, will
typically be >3σ away from the true value. In this case,
the true value of H0 would be outside the posterior 99%
credible interval due to the misplaced assumption of
cM ¼ 0.
The paper is structured as follows. In Sec. II we describe

how a time-dependent Planck mass modifies the propaga-
tion of GWs, as well as other local and cosmological
observables. In Sec. III we discuss the use of BNS mergers
as standard sirens in the context of a running Planck mass.
We describe our inference of H0 in Sec. IV, and in Sec. V
we show how estimates of H0 change compared to GR.
Finally, in Sec. VI we summarize our results and give an
outlook for future work. We set the speed of light to unity
(c ¼ 1) throughout.

II. RUNNING PLANCK MASS

Let us start by considering a perfectly homogeneous and
isotropic spatially flat cosmological background. In this
case, the metric line element in conformal time τ takes the
form of the Friedmann-Robertson-Walker (FRW) solution:

ds2 ¼ aðτÞ2½−dτ2 þ dx⃗2�; ð1Þ

where aðτÞ is the scale factor determining the expansion
of the Universe. We next suppose that gravity is described
by a modified theory with a time-dependent Planck mass.
As previously mentioned, alternative theories typically
include new degrees of freedom, which can interact non-
trivially with the metric to produce an effective running of
the Planck mass. In such a case, there is an ambiguity when
defining the stress-energy tensor: the new effects can be
interpreted as modifying gravity (i.e., the Einstein tensor
Gμν), or as modifying the matter content of the Universe
(i.e., the stress-energy tensor Tμν). However, without loss
of generality, we can always adopt the latter perspective
and write the background equations of motion in the
standard form

3H2M2
P ¼ a2ðρm þ ρDEÞ; ð2Þ

where H ¼ a0=a is the conformal Hubble rate (with
0≡ d=dτ), MP is the constant Planck mass, ρmðτÞ is the
energy density of CDM, and ρDEðτÞ is the energy density of
dark energy, which is to encapsulate all modified-gravity
effects. According to this definition, each of the fluid
energy-density components is separately conserved:

ρ0i þ 3Hðρi þ PiÞ ¼ 0; i ¼ m;DE: ð3Þ

We note that the choice to write the background equation as
in Eq. (2) is arbitrary, and we could have instead defined it

with an effective time-dependent massM�ðτÞ instead ofMP
on the left-hand side and a different ρDE on the right-hand
side. However, in that case, the energy-density components
would not have been separately conserved, and thus for
simplicity we avoid this choice.
Here we have assumed that there is an additional degree

of freedom that couples to the metric in a nontrivial way,
which leads to an arbitrary ρDE. In contrast, standard matter
components such as baryons and photons have been
assumed to be minimally coupled to the metric, as usual,
and therefore the way they contribute to the background
equations is unchanged. Furthermore, their propagation
and evolution are determined by standard geodesics in the
given metric background. In particular, for perturbations
about FRW, light still propagates at speed c.
Next, let us consider small cosmological perturbations

around this background universe, and write the total
metric as

gμν ¼ ḡμν þ hμν; jhj ≪ jḡj; ð4Þ

where ḡμν is the background FRWmetric and hμν is a linear
perturbation whose transverse and traceless part hTTμν
encodes the GW amplitude. The other components of
hμν determine the amplitude of matter energy-density
perturbations, which will be ignored for our purposes.
GR is a single metric theory for a massless spin-2

particle, and hence hTTμν propagates 2 physical degrees of
freedom corresponding to two tensor polarizations. We
consider modified-gravity theories that do not propagate
additional tensor modes, and therefore hTTμν alone carries all
the information on the evolution of the metric polarizations.
Generically, such theories have the following quadratic
action,

S ¼ 1

2

Z
d3xdτM2�a2½h02A − c2Tð∇⃗hAÞ2�; ð5Þ

where we have expanded hTTμν into two independent
polarization components hA with A ¼ þ;×. The equation
of motion for GWs will thus be given by

h00A þ ½2þ αMðtÞ�Hh0A þ k2c2ThA ¼ 0; ð6Þ

where we have transformed hA to the spatial 3D Fourier
space; its amplitude therefore implicitly depends on time τ
and wave number k. Here αM has been defined as

αM ≡ d lnðM�=MPÞ2
d ln a

¼ 2

H
M0�
M�

: ð7Þ

We recover GR whenM� ¼ MP (i.e., αM ¼ 0) and cT ¼ 1.
However, in modified-gravity theories, additional gravita-
tional fields such as scalars or vectors will generically have
a time-dependent solution in cosmological backgrounds,
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which can induce a running of the Planck mass M�ðτÞ due
to conformal couplings, even in a local frame. Additional
fields can also modify the propagation speed of GWs cTðτÞ
due to nonminimal and nonconformal couplings. We
remark that, in this background, both M� and cT are
functions of time only, and are thus isotropic and polari-
zation independent.
Note that we have not added any nonderivative terms

to Eq. (5). This is a consequence of our assumption that
the graviton remains massless in the modified theory,
and propagates only two polarizations, like in GR.
Nonderivative terms like m2h2A can appear in massive
gravity theories [46,47], but their GWs are described by
five different polarization modes, instead of the two modes
hA. More complicated models have also been developed,
such as ones in which GWs are directly coupled to
additional fields; the perturbations of these fields would
appear explicitly in Eq. (5). This is the case of bigravity
theories [48], which propagate one massless and one
massive graviton. In these models, GWs can oscillate
between the two gravitons (by analogy with neutrinos)
and lead to distinctive signals in the waveform [49,50].
A similar phenomenon is present in multivector theories
with internal SU(2) symmetry [51]. Nonetheless, we will
not consider such cases in this paper, focusing exclusively
on gravity theories that lead to the action of Eq. (5).
Due to the aforementioned constraints on the speed of

GWs from GW170817, we will focus only on running
Planck mass models where cT ¼ 1. Well-known modified-
gravity theories that lead to Eq. (5) with cT ¼ 1 are scalar-
tensor theories in the Horndeski [52,53] and beyond
Horndeski [54,55] families that have cT ¼ 1 [19]. Their
action takes the form

Ss ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G4ðϕÞRþ KðX;ϕÞ −G3ðX;ϕÞ□ϕ�;

ð8Þ

where ϕ is an additional scalar gravitational field respon-
sible for dark energy, X ¼ −∇μϕ∇μϕ=2 is the kinetic
term of the scalar field, and G4, K, and G3 are arbitrary
functions. In this case, αM ¼ G4ðϕÞ. Specific models
belonging to this category are quintessence, fðRÞ gravity,
kinetic gravity braiding, and Jordan-Brans-Dicke theory
[19]. Ignoring the matter sector, generalizations of the
gravitational action in Eq. (8) can be obtained by perform-
ing a disformal transformation of the metric (see, e.g., [22])
to obtain theories belonging to the degenerate higher
order scalar-tensor theory family [56–58], which retain
the same structure for the GWaction. See, e.g., [59–61] for
reviews on the status of scalar-tensor gravity theories after
GW170817.
We also mention that vector-tensor theories belonging to

the generalized Proca [62] family with cT ¼ 1 have an
action of the form [19]

Sv ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ G2ðX;F; YÞ þ G3ðXÞ∇μAμ�; ð9Þ

where Aμ is an additional vector gravitational field respon-
sible for dark energy; G2 and G3 are arbitrary functions of
X ¼ −AμAμ=2, F ¼ −FμνFμν=4, or Y ¼ AμAνFα

μFνα,
where Fμν ¼ ∇μAν −∇νAμ. Since there are no conformal
couplings between the vector field and the metric, it is
straightforward to see that these models will also have
constant M�, and hence no modification will be seen for
tensor polarizations (although the evolution of energy-
density matter perturbations will be modified) [43].
The same happens for Lorentz-breaking vector-tensor

theories of the Einstein-aether family [63,64]. In this case,
the vector field is timelike, and hence defines a preferred
frame of reference, and the subclass satisfying cT ¼ 1 also
has constant M�. We emphasize, however, that theories
involving multiple vector fields do allow for nontrivial
derivative couplings while still maintaining cT ¼ 1 [51].
However, this case is not encompassed by Eq. (5), as such
models have an additional field explicitly coupled to hA.
Extended scalar-vector-tensor theories can also have
cT ¼ 1 and a nontrivial M�ðtÞ; these are encompassed
by Eq. (5) [65]. Generalizations to action (9) including
higher derivative interactions have been also studied in
[66], where theories with cT ¼ 1 and nontrivial predictions
for GW astronomy have been found.
Having discussed examples of dark energy theories that

can lead to an effective running Planck mass, we now turn to
the observable consequences of such a modification. The
time variation of fundamental constants has previously been
studied in different regimes. Below, we survey its effect on
various observables (see, e.g., [39] for a detailed review).
Cosmology: The effects of a running Planck mass on

cosmology have been considered in [40,67–69] among
others. The time dependence of the Planck mass arises due
to the presence of additional fields, which can modify the
background evolution of the Universe through a time-
dependent energy density ρDE, in addition to modifying the
evolution of perturbations propagating in the background.
Early-time background modifications are well constrained
by big bang nucleosynthesis (see, e.g., [70]), and the late-
time background modifications are usually constrained
using simple parametrizations for the equation of state
of dark energy, such as wDE ¼ w0 þ ð1 − aÞwa, with w0

and wa two free constants. We recover the standard ΛCDM
model with w0 ¼ −1 and wa ¼ 0. The tightest constraints
come from combined CMB, supernova, and baryon acous-
tic oscillation measurements yielding w0¼−0.961�0.077
and wa ¼ −0.28þ0.31

−0.27 [6]. Since only small nonvanishing
wa are allowed, from now on we will assume that the
background evolution is exactlyΛCDM. This has the added
benefit of disentangling effects coming from the modified
background and those coming from the evolution of the
perturbations.
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Nonetheless, even if the background evolution of the
Universe is unmodified, the evolution of linear cosmologi-
cal perturbations can still differ from ΛCDM. It is custom-
ary to encode the modifications determining the evolution
of the energy-density matter perturbations in two param-
eters, which affect the evolution of the two Newtonian
potentials Φ and Ψ in the metric

ds2 ¼ −aðτÞ2½ð1þ 2ΦÞdτ2 þ ð1 − 2ΨÞdx⃗2�; ð10Þ

which describes the modifications relative to the FRW
solution. The first parameter is an effective Newton’s
strength Geff such that the Poisson equation becomes

□̄Φ ¼ 4πGeffρmΔm; ð11Þ

where □̄ is the d’Alembert operator using the covariant
derivatives of the background metric (1), Δm ¼ δρm=ρm þ
3Hvm is the comoving gauge-invariant matter perturbation,
δρm is the energy-density perturbation, and vm is its
velocity potential. The effective Newton’s strength depends
on time only for subhorizon perturbations with wave
number k > aH.
The second parameter, γ, describes an effective aniso-

tropic stress which makes the two metric potentials differ:

γ ¼ Ψ=Φ: ð12Þ

The parameter γ depends on time only for subhorizon
scales as well. Matter and metric perturbations behave
in the same way as general relativity when γ ¼ 1 and
Geff ¼ GN , where GN is Newton’s constant. In scalar-
tensor theories, it can be seen that the running of the Planck
mass causes dark energy to cluster, leading to Geff ≠ GN ,
and also induces anisotropic stress, making γ ≠ 1 (see,
e.g., [71,72]).
These two parameters are independent of the background

evolution, and can differ from GR even when wDE ¼ −1. In
this unmodified background, we can therefore still obtain
different predictions, for instance, for the CMB temperature
anisotropies, or large-scale galaxy distributions. If we knew
exactly the gravitational theory leading to these modifica-
tions, we could calculate exactly how αM affects matter
perturbations and use EM cosmological data to constrain
the running Planck mass (e.g., [45,73] for scalar-tensor
theories). However, in this paper we will remain agnostic
about the underlying gravity theory, and instead constrain
αM using gravitational wave data.
Solar System: The effects of a running Planck mass at

Solar System and laboratory scales have been studied in
[74–76]. The relevant modification is a time-varying
Newton’s constant, which affects, for instance, the period
and radius of planetary orbits. However, to remain con-
sistent with the remarkable agreement between GR and
observations in this regime, modified-gravity theories come

equipped with a “screening mechanism” that hides all
modified-gravity effects in dense regions, where one
recovers M� ¼ MP (see, e.g., [9,77] for reviews). The
mechanism can be due to the additional field acquiring a
large mass in dense environments, and effectively mediat-
ing an undetectable short-range force (chameleon mecha-
nism); due to changing its coupling with matter in this
regime, becoming negligible (symmetron mechanism);
or having dominant nonlinear kinetic terms effectively
produce a negligible coupling to matter (Vainshtein mecha-
nism), among other possibilities. These screening mecha-
nisms are expected to act in the Solar System as well as
clusters of galaxies. Currently, observations of the Solar
System and laboratory experiments constrain variations of
the Planck mass to be of order 10−3 [74,76].
Gravitational waves: The presence of an additional dark

energy field may affect the original emission of the wave-
form from binary mergers as well as GW propagation. In
this paper, we will assume that the additional gravitational
degrees of freedom will not modify the emitted waveform,
and hence we can use GR to predict the emission of the
waveform. Consistency checks must be performed in the
future for specific dark energy models to make sure that this
is the case, as it has been previously shown that even when
stationary black hole solutions may not be affected by the
dark energy field, dynamical situations may excite it and
leave an imprint [78]. Under our assumptions, we can still
use compact binaries with EM counterparts as standard
sirens.
Regarding the propagation of gravitational waves, mod-

ifications can occur even if the original emitted waveform is
the same as in GR. In particular, as shown in Eq. (6) and
considered previously in [40–44], a running Planck mass
can affect GW propagation. In this paper, we will assume
that the propagation can be modified inside and outside
galaxies, where screening will not be active for GWs and
hence the effects of the dark energy field become relevant.
However, we will assume that today, in our Galaxy,
the effective Planck mass is given by MP (although the
present-day value of αM need not vanish). Multimessenger
observations allow us to place independent constraints
on the running of the Planck mass [42–44] as well as
constraints on the present Hubble constant H0 (see [38] for
a specific model).

III. STANDARD SIRENS

In this section, we show explicitly how a running Planck
mass affects standard siren measurements. Since we take
the running of the Planck mass to be the result of a new dark
energy field, we expect αM to change over cosmological
timescales and only affect the late-time Universe. We will
consider a specific parametrization for M�ðtÞ satisfying
these requirements, and discuss in detail its consequences.
Following the approach in [38,43], we start by canoni-

cally normalizing the field hA in Eq. (5), and obtain the
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following equation of motion for the propagation of the two
GW polarizations:

ĥ00A þ
�
k2 −

a00GW
aGW

�
ĥA ¼ 0: ð13Þ

Here, aGW is an effective scale factor given by
aGWðzÞ ¼ aðzÞðM�ðzÞ=MPÞ, and ĥA ¼ aGWhA is the
canonically normalized amplitude of GWs. For very small
wavelengths, namely, for k2≫a00GW=aGW with a00GW=aGW ¼
½2α0MHþ 2H0ð1þ αMÞ þH2ð2þ αMÞ2�=4,1 the solution
for ĥA simply is a plane wave with constant amplitude.
This means that the original metric perturbation hA is also a
plane wave with a decreasing amplitude due to the factor of
1=aGW. In GR, the amplitude would simply decay as 1=a,
so we can interpret aGW as the effective scale factor felt by
GWs due to the combined effects of the background metric
and the background’s additional degree of freedom. In this
case, the present-day observed amplitude hoA is given by

hoA ¼ M�ðzÞ
M�ðz ¼ 0Þ h

o
A;GR ∝

M�ðzÞ
M�ðz ¼ 0Þ

1

dLðzÞ
≡ 1

dGW
; ð14Þ

where z is the redshift of the source and hoA;GR is the
expression for the observed amplitude in GR; hoA;GR decays
as 1=dL, with

dL ¼ 1þ z
H0

Z
z

0

dz̃

Ĥðz̃Þ ð15Þ

the luminosity distance. ĤðzÞ ¼ HðzÞ=H0 is the normal-
ized Hubble rate, which is explicitly

ĤðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0ð1þ zÞ3 þ ρDEðzÞ=ρc

q
: ð16Þ

We have introduced the fractional energy-density param-
eter Ω ¼ ρ=ð3H2M2Þ, and the critical energy density ρc ¼
3H2

0M
2
P. We have also used the fact that a ¼ ð1þ zÞ−1,

with a ¼ 1 today.
The omitted proportionality factor in Eq. (14) character-

izes the emitted waveform (which is a function of the GW
frequency, chirp mass, the effective Newton’s constant felt
by the compact binary, and the equation of state for neutron
stars), and we assume that it is the same as in GR.
We note that Eq. (14) depends only on the value ofM� at

the source and observation points, and not on the inter-
mediate evolution. This is because we can only measure
the cumulative change in the amplitude compared to GR,
which depends exclusively on the initial and final values of
M�. In keeping with the previous section’s discussion, we

assume that M�ðz ¼ 0Þ ¼ MP, and that M� depends only
on time. As a consequence, the result depends only on the
distance to the source galaxy, not on the properties of the
host galaxy itself. Furthermore, we assume that the effec-
tive Planck mass evolves in the same way as the cosmo-
logical one, and hence it does not depend on whether we are
inside a galaxy or not.
In order to make a concrete estimation of the effect of

the running Planck mass, we need to assume a specific
functional form for M�. Since we are interested in modi-
fied-gravity models of dark energy, a common time para-
metrization for αM is [73,79]

αMðzÞ ¼ cM
ΩDEðzÞ
ΩDE;0

; ð17Þ

where cM is a free constant parameter and ΩDE is the
fractional dark energy density. So far the background has
been kept arbitrary, but we now assume it to be given by a
fiducial ΛCDM expansion history, and thus from now on
we assume that ρDE is constant, and set ΩDE;0 to the best-fit
Planck value [6]. Note that the parametrization in Eq. (17)
is not well suited to fðRÞ models [80], and hence different
time evolutions may also be of interest (see, for instance,
[66]). In any case, simple parametrizations with a few free
constants are sufficient for the time being, as observational
data does not have the constraining power to test more
complicated functions [81].
This parametrization assumes that there are no modified-

gravity effects at early times, but at late times new degrees
of freedom come into play and modify the evolution of
the Universe through ΩDEðzÞ. Other parametrizations with
early-time modifications can also be considered (see, for
instance, [79]).
For the specific case of scalar-tensor theories, it is known

how αM affects the effective Newton constant Geff and the
effective anisotropic stress γ, and thus cosmological data
has been used to constrain cM to the range −0.62 < cM <
þ1.35 at 95% C.L. [45], which means cM is allowed to be
of order unity. Thus, in contrast to constraints on the
propagation speed of GWs, this kind of modified-gravity
effect is not yet ruled out. Forecasts for this same para-
metrization were studied in [79], where it was found that
the 1σ uncertainties on the parameter cM may improve by a
factor of 5 when taking into consideration future photo-
metric redshift surveys such as LSST [82] and SKA [83], as
well as the Stage IV CMB experiment [84].
Regardless of the underlying modified-gravity theory

causing αM, from standard sirens we can also place
constraints on cM by measuring the difference between
the luminosity distance and the GW distance. As shown
in [38], according to Eq. (14) we have that

dGW
dL

¼ MP

M�
¼ exp

�
1

2

Z
z

0

dz0

1þ z0
αMðz0Þ

�
; ð18Þ

1Note that this condition limits how large αM can be, and how
quickly it can evolve in time. Typically, we will consider
evolution over cosmological times, and αM ≪ k2=H2.
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and for the specific parametrization (17), we explicitly
obtain

dGW
dL

¼ exp

�
cM

2ΩDE;0
ln

1þz

ðΩm;0ð1þzÞ3þΩDE;0Þ1=3
�
; ð19Þ

where we have used the assumption that ρDE is constant.
This ratio describes the cumulative difference in the GW
amplitude in GR compared to that in modified gravity, if
the wave had the same emitted amplitude. In order to
illustrate the effect of cM on this ratio, we Taylor expand
this expression for low redshifts z ≪ 1 to find

dGW
dL

≈ 1þ 1

2
cMzþ

1

8
cMðcM − 2 − 6Ωm;0Þz2 þOðz3Þ:

ð20Þ

From here we explicitly see that if cM ¼ 0, then
dGW=dL ¼ 1, and the leading-order correction is propor-
tional to z, hence, no considerable modifications are
expected for low-redshift events.
When estimatingH0 from standard sirens, we first obtain

dGW from the waveform and the redshift z from the EM
counterpart. Then, we combine Eqs. (19) and (15) to obtain
H0. At low redshifts, we have that

H0 ¼
z

dGW
þ z2

½1 − ð3=4ÞΩm;0 þ ð1=2ÞcM�
dGW

þOðz3Þ;

ð21Þ

and thus the estimates of H0 in GR and modified gravity
would differ by a factor z2cM=ð2dGWÞ for a given value of
dGW. We note that the sign of cM determines whether the
measured H0 in the modified-gravity model will be larger
or smaller than the GR value. In particular, if cM < 0, then
cM contributes with a negative term to H0, yielding a
smaller H0, and vice versa.
Going beyond the low-redshift limit, Fig. 1 shows the

evolution of the fractional difference ðdGW − dLÞ=dGW as a
function of dGW for different values of cM (blue, green,
and orange lines), up to a GW distance of 1.5 Gpc. For
comparison, the GW distances for BNSs detected by
aLIGO at design sensitivity and Aþ are expected to follow
the distributions in Fig. 2 under the assumptions discussed
in Sec. IV. The ratio ðdGW − dLÞ=dGW illustrates the
fractional cumulative difference in the GW amplitude that
would be detected in GR compared to that detected in
modified gravity, for a source at a given distance with the
same emitted amplitude. As expected, the larger the jcMj,
the larger the fractional difference between the GW dis-
tance and dL, indicating a larger deviation from GR. We
note that for values of cM ≳ −3, the ratio flattens out at
large distances due to the fact that our αM in Eq. (17)
decreases with redshift (or, equivalently, with distance), and

hence the accumulated difference between GR and modi-
fied gravity becomes negligible at large distances. The
distance at which a given curve starts flattening out depends
on the value of cM and the cosmological parameters.
Explicitly, from Eq. (19), we find that the maximum
fractional difference is given by

lim
z→∞

jdGW − dLj
dGW

¼
����1 − exp

�
−

cM
2ΩDE;0

lnΩ−1=3
m;0

�����: ð22Þ

Using best-fit Planck cosmological parameters, we find that
if cM ¼ 1, for instance, then the maximum fractional
difference will be about 32%. However, for sources at
aLIGO or LIGO Aþ horizons (dotted vertical lines,

FIG. 1. Fractional change in dGW due to modified-gravity
effects as a function of dGW, for different values of cM. Here
we have fixed cosmological parameters to the best-fit values from
Planck. The yellow (pink) region corresponds to the range of
1σ dGW measurement uncertainties for aLIGO (LIGO Aþ).
The sharp cutoff at �22.5% is due to our assumption that only
systems with a single-detector SNR > 8 are detected; lower-SNR
systems, if included in the sample, will yield broader dGW
measurements (see Sec. IV).

FIG. 2. Distance distribution of the BNS events detected by
Advanced LIGO at design sensitivity and LIGO Aþ, assuming
1.4–1.4 M⊙ mergers and that the underlying merger rate density
follows dN

dVcdt
∝ ð1þ zÞ2.7 and Planck cosmology.
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corresponding to the largest detectable distances in Fig. 1),
the fractional difference will be about 4% or 7%, respec-
tively, for cM ¼ 1.
Due to the aforementioned behavior, we conclude that

more distant events have a priori more constraining power
on cM than nearby events; however, this effect starts to
diminish for events at distances much greater than a few
gigaparsecs. We note that the measurement uncertainties in
dGW tend to grow with distance, as the signal to noise ratio
(SNR) of a GW signal scales inversely with the source
distance. The range of expected 1σ uncertainties in the
measured GW distance is shown as solid colored regions in
Fig. 1: yellow for aLIGO and pink for LIGO Aþ, under the
simplified assumptions discussed in Sec. IV. The boundary
closest to zero of each colored region corresponds to the
best sources, which produce the optimal SNR and the
smallest distance uncertainties, and thus the tightest con-
straints on cM. In the above discussion, we assumed that the
uncertainty in the EM distance, dL, is negligible, and that
all the uncertainty in the fraction ðdGW − dLÞ=dGW comes
from dGW. Indeed, for a fixed cosmology, the uncertainty
on dL comes exclusively from the peculiar velocity of the
source, which is typically around 150–250 km=s at all
distances, and therefore for a fixed background cosmology
the fractional error of the luminosity distance σdL=dL
decreases with distance.
From Fig. 1, we see that in order to distinguish GR from

a nonzero cM, we need to measure dGW to a precision better
than the deviation caused by the nonzero value of cM. For a
single event, this is only possible for the most extreme
values of cM, because we will rarely get an event with a 1σ
distance uncertainty that is comparable to the deviation
caused by −1 < cM < 1. However, by combining a pop-
ulation of events, it will be possible to place tight
constraints on cM, as discussed in Sec. V B. A population
of BNS events detected by LIGO Aþ is especially
promising, because the typical source detected by Aþ at
a given distance has a much higher SNR, and therefore a
smaller relative distance uncertainty, than the typical source
detected by aLIGO. However, it becomes less useful to
extend the detection horizon much beyond Aþ, because the
effect of nonzero cM ∼Oð1Þ starts to saturate at ∼1.5 Gpc
(additionally, it is increasingly difficult to find counterparts
and identify host galaxies for events at high redshift).
Finally, we recall that we have a schematic relationship

between dGW and redshift z of the form

dGW ¼ dLðz;H0;Ωm;0ÞRðz; cM;Ωm;0Þ; ð23Þ

where R is a function corresponding to the ratio of dGW=dL
given on the right-hand side of Eq. (19). It is clear that,
given cosmological parameters (H0, Ωm;0), we can con-
strain cM by measuring dGW and z. We emphasize that if the
cosmological parameters are fixed by some cosmological
data, then the resulting constraint on cM is not independent

of these cosmological datasets. However, if the cosmo-
logical parameters H0 and Ωm;0 are taken to be free
constants, then Eq. (23) can be used to find joint constraints
on cM, H0, and Ωm;0 which are completely independent
from the cosmological datasets. Note that the constraints
would still depend on the cosmological model (assumed to
beΛCDM here), but not on the best-fit values from external
data. If cM ¼ 0, then R ¼ 1, and we can use this relation-
ship to find independent constraints on the cosmological
parameters, as has been done for H0 in [24].
While for low-redshift sources Ωm;0 has a negligible

effect and the only relevant cosmological parameter is H0,
for high-redshift sources Ωm;0 does become relevant and
must be taken into consideration. For simplicity, in the rest
of the paper we will always fix Ωm;0 ¼ 0.315, the best-fit
value from Planck 2018 [6], while keeping H0 free. In this
sense, the constraints that we quote are not fully cosmology
independent, although we have checked that if we freeΩm;0

and use a flat prior with a 6σ width around the best-fit
Planck value, i.e., 0.330 < Ωm;0 < 0.372, our results are
unaffected, as the uncertainty on Ωm;0 is subdominant,
affecting the distance-redshift relation to less than 1% over
the redshift range of interest (z≲ 0.1 for aLIGO and z≲
0.2 for LIGO Aþ) for BNSs. For this reason, in the rest of
the paper we will focus on the joint constraints for cM and
H0 only, and these will be referred to as cosmology-
independent constraints. In particular, we will analyze the
data from GW170817 as well as forecasts for Advanced
LIGO and LIGO Aþ.

IV. METHOD

In this section, we describe the method used for our
standard siren inference of H0 in the context of a running
Planck mass. Throughout the analysis, we fit only for cM
andH0, assuming that the other cosmological parameters in
the ΛCDM background (namely, Ωk, Ωm, and ΩΛ),
collectively denoted by Ξ, are known to a few percent.
We note that cM is not expected to correlate with these other
cosmological parameters in their impact on CMB observ-
ables [69], and it is therefore self-consistent to fix the
background cosmology to the Planck 2018 values while
measuring cM with standard sirens. Allowing these param-
eters to vary by up to 10% from their best-fit Planck 2018
values has a ≲1% effect on the distance-redshift relation
over the detectable redshift range, and so even if the current
measurement errors were several times larger, marginal-
izing over the extra uncertainty would have a negligible
impact on our results. Within the current Planck 2018
uncertainties, the distance-redshift relation only varies by
<0.05% over the detectable redshift range. In the future,
however, especially if standard sirens with counterparts are
detectable to much higher redshifts z > 1 by, e.g., LISA,
one could carry out a joint CMB-standard siren analysis
that would incorporate all cosmological parameters.
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GW measurements: We assume that the GW measure-
ment uncertainty of distance scales as 1.8=ρ (at 1σ) where ρ
is the single-detector SNR of the source. We assume a
threshold SNR of ρth ¼ 8 for detection. From Fisher matrix
arguments, we expect the GW distance to scale inversely
with the SNR, with the proportionality factor >1 because
of the distance-inclination degeneracy [85]. We choose the
1σ uncertainty of 1.8=ρ to match the expected H0 con-
vergence rate of ð13%–15%Þ= ffiffiffiffi

N
p

, where N is the number
of GW detections [30]. For simplicity, when simulating
a mock population of sources, we assume that the GW
distance likelihood is approximated by a Gaussian
distribution:

pðdobsGWjdGWÞ ¼ N½μ¼dGW;σ¼1.8=ρ�ðdobsGWÞ; ð24Þ

where N½μ;σ� denotes the standard normal distribution with
mean μ and standard deviation σ. While this is not a
realistic approximation for individual sources, when
combining tens to hundreds of detections, it yields the
expected convergence rate for the recovered cosmological
parameters.
Likelihood: We denote the GW data by xGW and the EM

data by xEM. The likelihood of the GW data depends on the
source’s GW distance dGW, sky position ω, inclination ι,
and all other parameters of the signal, including its redshift
z (which affects the frequency of the waveform), and the
source-frame masses, spins, etc., which we collectively
denote by ξ. The likelihood given the extrinsic parameters
(sky localization and inclination) is largely independent of
the intrinsic parameters [86,87], and we marginalize over
these other parameters to get the GW likelihood given its
distance and sky position:

pðxGWjdGW;ωÞ ¼
Z

pðxGWjdGW;ω; ι; z; ξÞdιdzdξ: ð25Þ

Meanwhile, the likelihood of the EM data depends on the
host galaxy’s sky position and luminosity distance, which
is related to its cosmological redshift (the redshift it would
have if it were in the Hubble flow, corrected for any
peculiar velocities) by the standard ΛCDM relation.
We put a prior pðz;ωÞ on the redshifts and sky positions

of the host galaxies. We choose this prior to match a merger
rate density that is isotropic and roughly follows the star-
formation rate (see the Appendix). To avoid a biased
measurement of the cosmological parameters, this prior
must match the true redshift distribution of the host
galaxies; however, we find that any likely deviation from
a uniform merger rate density, including a merger rate
that traces the star-formation rate, is too small to cause a
noticeable bias. Similarly, deviations from an isotropic
distribution of sources on the sky (e.g., due to large-scale
structure) are largely irrelevant to this analysis unless there
are significant correlations between the underlying distri-
bution of sources on the sky and the antenna power patterns
of the detectors. Moreover, a significant deviation from
the assumed merger rate density will be easily detectable
with hundreds of host galaxies with well-measured red-
shifts and sky positions, and can be used to update our prior
accordingly.
The relationship between dL and dGW is given in

Eq. (19), where dL is given by z, H0, and the standard
ΛCDM parameters Ξ. We denote the function that returns
dGW given z, H0, cM, and Ξ by d̂GW.
The likelihood for the data given cM and H0 is

pðxGW; xEMjcM;H0Þ ¼
R
pðxGWjdGW ¼ d̂GWðz; cM;H0;ΞÞ;ωÞpðxEMjz;ωÞpðz;ωÞpðΞÞdzdωdΞ

βðH0; cMÞ
; ð26Þ

where βðH0; cMÞ ensures that the likelihood integrates to
unity over detectable datasets, and accounts for selection
effects in the GW detection and measurement process (see
the Appendix).
We take pðΞÞ to be the posterior on these parameters

from Planck 2018, although, as noted earlier, we can
approximate these as being measured exactly and given
by a δ function centered on their mean values. We also
assume that the sky position is measured exactly, and that
the redshift uncertainty is small (i.e., spectroscopic red-
shifts, so that the only significant source of uncertainty
in the cosmological redshift is in the peculiar velocity
correction, typically around 200 km=s [88]). For a pop-
ulation where the majority of detected sources are at
redshifts z≳ 0.05 and the redshift uncertainty is subdomi-
nant to the dGW uncertainty, we can therefore approximate

the EM likelihood term, pðxEMjz;ωÞ by a δ function
centered at the true redshift and sky position:

pðxEMjz;ωÞ ¼ δðz − zobsÞδðω − ωobsÞ: ð27Þ

When analyzing GW170817, a very nearby event at red-
shift z ∼ 0.01, we include the peculiar velocity uncertainty
in the calculations, taking the EM likelihood to be

pðxEMjz;ωÞ ¼ N½μ¼z;σ¼σz�ðzobsÞδðω − ωobsÞ; ð28Þ

where zobs is the observed, peculiar-velocity corrected
redshift, σz is the uncertainty, and ωobs is the observed
sky position. For this analysis, we also choose priors that
match the default priors in [24]: pðdGWÞ ∝ d2GW and
pðH0Þ ∝ 1=H0.
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V. RESULTS

In this section we analyze the one BNS detection so far,
GW170817, as well as a simulated population of BNSs
detected by aLIGO at design and Aþ sensitivities. In each
case, we present joint constraints on cM and H0 and
highlight the correlations between them. Section VA
discusses constraints from the single event GW170817,
detected at dGW ∼ 40 Mpc. Then, in Sec. V B we discuss
forecast constraints from populations of standard sirens
detected with design-sensitivity LIGO and Aþ.

A. Single event

In this section we study joint constraints on cM and H0

from a single multimessenger signal. We start by consid-
ering GW170817, which has a measured2 GW distance
of dGW ¼ 41þ4

−7 Mpc and a “Hubble” velocity of vH ¼
3017� 166 km=s [24]. Combining the GW distance sam-
ples with the redshift of the host galaxy, we can calculate
the joint posterior on H0 and cM. If we assume an H0 prior
given by Planck (2018) [25], we find cM ¼ −9þ21

−28 (68.3%
credible interval); alternatively, taking a H0 prior given by
SHoES (2018) [26] gives cM ¼ 8þ21

−30 . The cM posterior
under each assumption is shown in Fig. 3. The 95%
credible interval under the Planck (SHoES) H0 prior is
cM ¼ −9þ37

−72 (cM ¼ 8þ39
−74 ).

We see that even though this event had a high SNR of
32.4, since it was very close by (∼40 Mpc), the constraints
on cM are very broad. As Fig. 1 shows, at 40 Mpc, a large
range of cM values would produce GW distances that are
consistent with the ∼15% distance uncertainty from
GW170817. As a comparison, we mention that constraints
on cM have been obtained for scalar-tensor theories from
cosmological data, where it was found that −0.62 < cM <
þ1.35 at 95% C.L. [45]. Therefore, current GW constraints
allow for cM of Oð10Þ, whereas cosmological data require
cM of Oð1Þ.
However, future detector networks with improved sen-

sitivity, such as Aþ, will detect events out to much higher
distances with comparable measurement uncertainties. For
example, a single event detected by Aþ at dGW ¼ 400 Mpc
with a 1σ distance uncertainty of 15% would constrain
−4 < cM < 4 for a true cM ¼ 0, assuming the Planck H0

measurement as a prior.
We can also obtain constraints on cM independently of

other datasets by using an uninformative prior on H0. In
this case, we find a strong positive correlation between cM
and H0, as shown in Fig. 4. This correlation arises because
a given pair (z, dGW) can also be achieved in a universe
where H0 is larger (and hence the source is closer) but the
friction term cM is correspondingly larger too (and hence
the amount of amplitude decay during its travel is larger).

Equivalently, the same data could also be fitted by a
universe with a smaller H0 and a smaller cM.
The posterior probability of H0, with cM marginalized

over a flat prior in the range cM ∈ ½−150; 150� and a flat-in-
log prior on H0, is shown in Fig. 5. In this case, the
constraints become H0 ¼ 76þ53

−28 km=s=Mpc (68.3% high-
est density posterior interval). As a comparison, we also
show the constraint on H0 found by marginalizing over a
narrow cM prior, −2 < cM < 2, and assuming cM ¼ 0.
In both of these cases, we find H0 ¼ 70þ13

−7 km=s=Mpc,
in agreement with [89]. In this case, we find that for this
one event the uncertainties on H0 grow by a factor of > 2
when marginalizing over a very broad prior on cM, but are
unaffected by a more reasonable prior −2 < cM < 2.

FIG. 3. Posterior probability of cM from the multimessenger
detection of GW170817, with an H0 prior given by the Planck
(2018) measurement (blue) and the SHoES (2018) measure-
ment (green).

FIG. 4. Joint posterior probability of cM and H0 from
GW170817, for a flat prior −150 < cM < 150 and a flat-in-
log prior in the range 10 < H0 < 250 km=s=Mpc. The black
and green contours indicate 90% and 50% credibility levels,
respectively.

2We use the publicly available posterior samples released with
[89] and available at http://dcc.ligo.org/LIGO-P1800061/public.
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B. Population

We now consider a population of BNS events detected
by aLIGO at design and Aþ sensitivities, with EM
counterparts that allow us to identify unique redshifts of

the host galaxies. As the GW network sensitivity reaches
design sensitivity for aLIGO and later upgrades to Aþ, a
GW event at a given distance will be detected with higher
SNR and yield a better-constrained dGW measurement,
meaning that although GW170817 is only sensitive to
cM ∼Oð50Þ, a single event detected by aLIGO at design
(Aþ) sensitivity will typically constrain cM to a 1σ width of
≲10 (≲5). In Fig. 6 we show the joint and marginalized
constraints on cM and H0 for a simulated population of 250
BNSs detected by aLIGO, where the injected values are
cM ¼ 0 and H0 ¼ 67.4 km=s=Mpc (indicated by solid
black lines). We assume flat priors on both cM and H0.
The bottom left panel shows the joint posterior proba-

bility on cM and H0, with the contours indicating 90% and
50% credibility levels. As expected, there is a positive
correlation between H0 and cM, which leads to a broader
recovered posterior on H0 when marginalizing over cM, as
opposed to fixing cM ¼ 0 (the correct value in this case).
This is shown in the top left panel. When fixing cM ¼ 0, the
1σ constraints on H0 scale roughly as ð13%–15%Þ= ffiffiffiffi

N
p

(for aLIGO and Aþ), giving a 1σ interval of 0.6 for 250
events (green dotted line); however, when marginalizing
over a completely uninformative prior on cM, the same
number of events yields a 1σ interval that is twice as broad

FIG. 5. Posterior probability of H0 from GW170817, margin-
alizing over a wide, flat prior on cM ∈ ½−150; 150� (solid blue
line), a narrow prior on cM ∈ ½−2; 2�, and constant cM ¼ 0
(dashed line; corresponding to GR).

FIG. 6. Joint and marginalized posterior probabilities of cM andH0 (solid blue lines) for 250 mock BNS mergers detected by aLIGO at
design sensitivity, with true values of H0 and cM indicated with solid black lines. The contours in the bottom left panel denote 90% and
50% confidence levels. In the top left panel we also show the posterior probability ofH0 when fixing cM ¼ 0 with a green dotted line. In
the bottom right panel we show the posterior probability of cM when H0 ¼ 67.4� 0.5 km=s=Mpc (Planck 2018).
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(solid blue line). This implies that with no external knowl-
edge of cM, it would take 4 times as many events to reach
the same precision in the standard siren H0 measurement,
or around 200 events to reach 2% as opposed to only ∼50
events if fixing cM ¼ 0 [30].
Meanwhile, the bottom right panel shows the posterior

probability of cM when marginalizing over H0 with a
flat, broad prior (solid blue line), as well as when fixing the
H0 prior to the Planck (2018) posterior (green dotted line).
In the former case, taking the Planck H0 measurement as
a prior, this realization gives cM ¼ 0.16þ0.58

−0.60 (68.3%
credible interval), whereas the latter case, which assumes
no external measurement of H0, gives cM ¼ 0.35þ1.08

−1.10 .
Including an external constraint on H0 reduces the uncer-
tainties on cM by almost a factor of 2.
Although Fig. 6 shows only a single realization of 250

simulated BNSs detected by design-sensitivity aLIGO, we
find that the expected constraints oncM andH0 and the1=

ffiffiffiffi
N

p
scalings are typical across many realizations for aLIGO.
Generically, for aLIGO, we find constraints on cM with a 1σ
width that scale roughly as ∼9.3=

ffiffiffiffi
N

p
for an informative H0

prior, and∼16=
ffiffiffiffi
N

p
for a flatH0 prior. In particular, with 100

BNS events detected by aLIGO, assuming thatH0 is obtained

from external information (such as from the cosmic micro-
wave background), we would find that jcMj≲ 0.9. This
number is comparable to the current constraints for scalar-
tensor theories obtained from cosmological observations
[45]. Similarly, with Aþ sensitivity, we find that the same
number of events yields constraints on cM that are tighter
by a factor of 2, constraining cM with a 1σ width that scales
roughly as ∼4.7=

ffiffiffiffi
N

p
for an informative H0 prior, and

∼9.5=
ffiffiffiffi
N

p
for a flat H0 prior. In this case, we find that 100

BNS events would allow us to get a limit jcMj≲ 0.5 when
assuming H0 is known.
For the previous example, we chose the true cM ¼ 0

(i.e., assumed that GWs propagate as predicted by general
relativity), and so by fitting a model with an uninformative
prior for cM and H0, we recovered the true values with a
larger uncertainty than if we had assumed GR and fixed
cM ¼ 0. However, if the true cM ≠ 0 but GR is assumed in
the usual standard siren analysis, we will recover a biased
H0 measurement. Due to the previously shown positive
correlation between H0 and cM, if the true cM > 0, the H0

measurement will be biased to low values if falsely
assuming cM ¼ 0, and if cM < 0, the H0 measurement
will be biased to large values. As an example, Fig. 7 shows

FIG. 7. Joint and marginalized posterior probabilities of cM andH0 (solid blue lines) for 100 mock BNS mergers detected by LIGO Aþ,
with true values of H0 and cM indicated with solid black lines. The contours in the bottom left panel denote 90% and 50% confidence
levels. In the top left panel we also show the posterior probability ofH0 when cM ¼ 0with a green dotted line. In the bottom right panel we
show the posterior probability of cM when taking the informative prior H0 ¼ 67.4� 0.5 km=s=Mpc (Planck 2018).
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the joint and marginalized constraints on cM and H0 for a
simulation in which we injected cM ¼ 1.35. We emphasize
that this value of cM is currently allowed within the
95% confidence interval inferred by [45] for scalar-tensor
theories of gravity. For this simulation, we take 100 mock
BNS events detected by LIGO Aþ.
As in the previous figure, in the bottom left panel we

show the joint posterior probability, where the contours
indicate 50% and 90% levels. The bottom right panel shows
the posterior probability of cM marginalizing over an
uninformative prior on H0 (solid blue line), as well as
when adopting the Planck (2018) measurement as the prior
onH0 (green dotted line). In the former case, it is found that
cM ¼ 1.3� 0.8 (68.3% credible interval), whereas in the
latter case cM ¼ 1.5� 0.5.
In the top left panel, we see that the posterior probability

of H0 is significantly biased away from its true value
if we falsely assume cM ¼ 0 (green dotted line). If we
properly marginalize over a flat cM prior, we find
H0 ¼ 66.9þ1.6

−1.5 km=s=Mpc, whereas fixing cM ¼ 0 gives
H0 ¼ 64.8þ0.8

−0.8 km=s=Mpc. In the latter case, the true H0 is
outside the 99% credible interval. In other words, incor-
rectly assuming cM ¼ 0 yields an H0 measurement that is
biased by more than 3σ with only 100 events detected
by Aþ. In general, if the true value is positive (cM > 0) and
we fit a model with cM ¼ 0, we bias H0 towards lower
values than the true one. Conversely, if the true value is
negative (cM < 0), we bias H0 towards higher values.

VI. DISCUSSION

In this paper we describe a modification to GR which
impacts the propagation of GWs. This extension corre-
sponds to a possible running of the Planck mass, which
we describe with one free parameter cM, where cM ¼ 0
represents GR with a constant Planck mass. This modifi-
cation affects the friction of GW amplitudes when they
propagate through a homogeneous and isotropic universe,
and also affects the evolution of matter perturbations in
different ways depending on the theory of interest. Here we
focus on GW standard siren measurements, studying how
a cM ≠ 0 modification is degenerate with the value of the
local Hubble expansion rate, H0. We also explore the
ability to constrain both these quantities with future
standard siren events detected by LIGO at design and
Aþ sensitivities.
Studying the event GW170817, we find that if we

include external cosmological data, namely, the Planck
2018 H0 posterior, then we find −81 < cM < 28 at 95%
credibility. This constraint is very weak compared to
existing constraints from cosmological data when a
specific modified-gravity theory is considered. Since
cM affects matter perturbations, it leaves potentially detect-
able imprints on CMB and structure formation. For
Horndeski theories, current cosmological constraints give

−0.62 < cM < þ1.35 at 95% C.L. [45]. Hence, current
GW constraints allow for cM of Oð10Þ, whereas cosmo-
logical data require cM of Oð1Þ. On the other hand,
for cosmology-independent results, we find that cM and
H0 are highly degenerate, and constraints on H0 are
degraded from H0 ¼ 70þ12

−8 km=s=Mpc (when cM ¼ 0,
that is, when GR is assumed to be correct) to H0 ¼
76þ53

−28 km=s=Mpc (when marginalizing over a very broad
cM prior, −150 < cM < 150).
In addition, we consider populations of events and

discuss future forecasts for standard sirens with aLIGO
and LIGO Aþ. We find that 100 BNSs detected by Aþ
with identified EM counterparts can lead to cosmology-
independent constraints on H0 with an accuracy of ∼3%,
and on cM with σðcMÞ ∼ 0.9 (or σðcMÞ ∼ 1.6 with 100
aLIGO detections). From these results we estimate the need
for 400 detections in order to obtain a ∼1% constraint on
H0, or 4 times what is required if cM is known exactly to be
zero. Furthermore, we find that H0 and cM are highly
degenerate, which highlights the importance of testing for
the parameter cM to avoid biasing the inferred value of H0

by wrongly assuming GR. In particular, we show that if we
have a population of 100 events with cM ¼ 1.35, then the
inferred H0, assuming cM ¼ 0, will be > 3σ below the true
value. In this case, the actual H0 of the population may be
ruled out at more than 99% confidence due to the incorrect
assumption that cM ¼ 0. This result emphasizes the impor-
tance of testing the minimal assumptions of one’s models.
Finding a bias of this magnitude could help arbitrate the
current discrepancy between local and cosmological H0

constraints.
It is important to discuss some caveats of our results

and calculations. In general, all population results depend
on the time evolution of the background, assumed to be
ΛCDM here. They also depend on the specific values of the
cosmological parameters considered, and in some cases we
also assumed H0 to be fixed. One possible extension
to the analysis made in this paper could involve a change
in the background, e.g., changing Λ (w ¼ −1) to a more
general form of dark energy, wDE ¼ w0 þ wað1 − aÞ.
In addition, the numbers quoted here also depend on the

parametrization adopted for αMðtÞ, which means that even
if these constraints are found to be in tension with future
measurements, we cannot conclude that all models with
nonzero αT are disfavored, but rather that the specific time
behavior assumed here, αMðtÞ ¼ cM

ΩDEðzÞ
ΩDE;0

, is disfavored.

This is why alternative parametrizations, such as the ones
considered in [45], must also be tested.
Furthermore, we have made the crucial assumption that

the GWemission of the BNS source is the same in GR as in
the modified-gravity theory. One typically justifies this by
arguing that some compact object solutions, such as those
for black holes, are exactly the same as the solutions in GR.
However, as shown in [78], even if the stationary solutions
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in the strong-field regime of modified gravity look the same
as in GR, the emission of GWs in dynamical environments
can still differ. Another argument is that the extra gravi-
tational field may be suppressed due to a screening
mechanism in the intermediate and high-energy regimes.
However, even if this is true, one should check that the
suppressed effects are negligible given LIGO’s current
measurement uncertainty. To date, GR waveforms have
been found to describe all detected compact binary GWs.
Nonetheless, it would be interesting to have analytical or
numerical calculations (for instance, for Horndeski theo-
ries) that allow us to estimate the size of modified-gravity
effects in the waveform, and determine whether they can be
seen with LIGO Aþ or next-generation detectors.
Finally, we highlight that given the current constraints on

the propagation speed of gravitational waves jcT=c − 1j≲
10−15, a constraint on αM would have a large impact on
modified-gravity theories, as this is the only possible effect
that could be detected with GW data for second-order-
derivative scalar-tensor theories, and the only remaining
nontrivial extension to GR that can be achieved in this case.
For the model in Eq. (8), a constraint pointing to αM ≈ 0
(i.e., no modification to GW propagation) would disallow
all scalar-tensor interactions but those given by

Ss ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Rþ KðX;ϕÞ −G3ðX;ϕÞ□ϕ�: ð29Þ

In the subhorizon regime, these models always give γ ¼ 1,
as well as Geff ¼ GN for structure formation when the
coupling term G3 is sufficiently small, and hence modified
gravity would only affect scales near the cosmological
horizon.
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APPENDIX: STATISTICAL FORMALISM

In this Appendix, we give additional details regarding
the statistical formalism summarized in Sec. IV. In order to
arrive at the likelihood [Eq. (26)] for a given EM and GW
dataset given values of cM andH0, we follow the formalism

of [24,30,90,91] for incorporating measurement uncer-
tainty and selection effects.
In the likelihood equation (26), we include a term

βðH0; cMÞ to account for selection effects in the measure-
ment process. This term is given by the integral of the
numerator over all detectable EM and GW datasets [91]:

βðcM;H0Þ ¼
Z
xGW>xthreshGW ;xEM>xthreshEM

pðxGWjdGW

¼ d̂GWðz; cM;H0;ΞÞ;ωÞpðxEMjz;ωÞ
× pðz;ωÞpðΞÞdzdωdΞdxGWdxEM; ðA1Þ

where we assume that a given EM or GW dataset is
detected if and only if it is above certain threshold. In
reality, the detectability of an EM counterpart to a GW
event may depend on details such as the inclination,
masses, and apparent magnitude of the source, but for
simplicity we assume that all BNS mergers detected in
GWs will have an observed EM counterpart and an
identified host galaxy. If such counterparts are similar to
the kilonova associated with GW170817, their detection
is certainly feasible with current telescopes for aLIGO
sources (which will be at redshifts z≲ 0.1), and with future
telescopes such as LSST for higher-redshift Aþ sources
[30]. We therefore assume that the integral over xEM is
independent of the other terms, and ignore it. However, if
it becomes the case with future detections that only a subset
of GW BNS events have identified host galaxies, this term
must be modeled and incorporated into the likelihood.
For the GW selection effects, we assume that a BNS is

detected if it produces a single-detector SNR ρ > 8. When
a real population of BNSs is detected in GWs, this
assumption can be easily modified to consider the network
SNR, or calibrated to injection campaigns in real data [92].
As in [30], we define

PdetðdGWÞ≡
Z
xGW>xthreshGW

pðxGWjdGW;ωÞpðωÞdωdxGW:

ðA2Þ

(Recall that our assumed prior pðz;ωÞ is separable,
pðz;ωÞ ¼ pðzÞpðωÞ.) We evaluate the term PdetðdGWÞ
with the procedure described in [30]. In particular, we
make the simplifying assumptions that the detectability of a
GW waveform is independent of its redshift, which affects
the observed frequency and therefore the SNR of the
source, but only by a negligible amount for the redshifts
z≲ 0.2 considered here. We assume that all BNS sources
are nonspinning (the dimensionless spin is expected to be
very small, a < 0.05, for BNS sources) and 1.4–1.4 M⊙ in
mass. The mass distribution will, in general, affect the term
PdetðdGWÞ, since the SNR of a GW source is a strong
function of the binary’s mass. However, to leading order the
SNR depends only on the chirp mass, and so the term
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PdetðdGWÞ depends only on the underlying distribution of
BNS chirp masses. The chirp mass of each source is
measured extremely well, and so with Oð100Þ sources, the
distribution of chirp masses will be accurately determined
and can be used to update the function PdetðdGWÞ used in
standard siren analyses. Note that we also assume that any
running of the Planck mass (nonzero cM) only affects the
amplitude of the signal and not the frequency evolution of
the waveform; otherwise, the recovered masses would be
affected.
We therefore have that the βðcM;H0Þ term in the like-

lihood is given by

βðcM;H0Þ ¼
Z

PdetðdGW ¼ d̂GWðz; cM;H0;ΞÞÞ

× pðzÞpðΞÞdzdωdΞ: ðA3Þ

The prior on the redshift of the source, pðzÞ, enters into
this equation. In general, to avoid a biased measurement,
the prior pðzÞ must match the true redshift distribution.

In our simulations, we assume that the underlying redshift
distribution matches a merger rate that roughly traces the
low-redshift star-formation rate:

pðzÞ ¼ dVc

dz
1

1þ z
ð1þ zÞ2.7; ðA4Þ

where Vc is the comoving volume, ð1þ zÞ2.7 approximates
the Madau-Dickinson star-formation rate [93] at low red-
shift and the factor of 1

1þz accounts for difference in clocks
between the source frame and the detector frame. In reality,
for the redshifts considered here, z≲ 0.2, any reasonable
redshift distribution, including one that traces the star-
formation rate, is a very small deviation from the uniform-
in-comoving volume and source-frame time redshift
distribution, and is unlikely to significantly affect the
results. Furthermore, the true redshift distribution will be
accurately measured given a precise redshift measurement
of each identified host galaxy, and can be used to update the
prior pðzÞ.
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