
 

Polarized backgrounds of relic gravitons

Massimo Giovannini*

Department of Physics, CERN, 1211 Geneva 23, Switzerland
and INFN, Section of Milan-Bicocca, 20126 Milan, Italy

(Received 13 December 2018; published 1 April 2019)

The polarizations of the tensor modes of the geometry evolving in cosmological backgrounds are treated
as the components of a bispinor whose dynamics follows from an appropriate gauge-invariant action. This
novel framework is closely analog to the (optical) Jones calculus and leads to a compact classification of the
various interactions able to polarize the relic gravitons.
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I. POLARIZED RELIC GRAVITONS

The stochastic backgrounds of gravitational radiation
may be formed by relic gravitons parametrically amplified
in the early Universe, as suggested long ago by Grishchuk
[1]. In a general relativistic context, the action of the relic
gravitons has been derived, for the first time, by Ford and
Parker [2]. In conventional inflationary models, the two
polarizations of the gravitational waves do not interact [3],
and consequently the low-frequency branch of the spec-
trum, ranging between the aHz and 100 aHz, is unpolarized
[4]. The same conclusion holds at higher frequencies, e.g.,
in the mHz band and in the audio band. Hereunder, we shall
conventionally refer to the audio band as the region
between a few Hz and 10 kHz; standard prefixes will be
used throughout when needed (e.g.1 aHz ¼ 10−18 Hz,
1 mHz ¼ 10−3 Hz and so on and so forth).
At late times, the evolution of the relic gravitons is

affected by various anisotropic stresses whose transverse
and traceless modes could induce a certain degree
of polarization. After neutrino decoupling, the correspond-
ing anisotropic stress slightly suppresses the relic graviton
background [5], but it is unable to polarize the spectrum
either in the audio band or in the mHz range. The
polarization of the graviton background induced by
the anisotropic stresses typically involves a limited interval
of frequencies reflecting the physical properties of
the source. For instance, the anisotropic stress of the
hypermagnetic knots (i.e., maximally gyrotropic con-
figurations of the hypermagnetic fields) could polarize
the stochastic backgrounds of relic gravitons over

intermediate frequencies approximately ranging between
a few μHz and 10 kHz [6]. According to a complementary
perspective, the mutual interaction of the two tensor
polarizations might be ultimately responsible for the overall
polarization of the cosmic graviton background. This is
what happens, for instance, when the logic of the effective
field theory is applied, for instance, to single-field infla-
tionary models [7].
Indeed, the large-scale observations can be interpreted in

the light of a very simple class of single-field inflationary
models whose action can be written in terms of the
canonically normalized inflaton φ as

Sφ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

R
2l2

P
þ 1

2
gαβ∂αφ∂βφ − VðφÞ

�
; ð1:1Þ

where lP ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
, g denotes the determinant of the four-

dimensional metric, and VðφÞ is the inflaton potential.
Within the notations employed in this paper, we also have
that lP ¼ 1=MP;MP is the reduced Planck mass related to
MP ¼ 1=

ffiffiffiffi
G

p
asMP ¼ MP=

ffiffiffiffiffiffi
8π

p
; τ will denote throughout

the conformal time coordinate. We finally remind the
reader that in this paper the latin indices are all
Euclidian and, when this is the case, there is no difference
between covariant and contravariant components.
Equation (1.1) is just the first term of a generic effective

field theory of inflation [7] where the higher derivatives are
suppressed by the negative powers of a large massM < MP
that characterizes the fundamental theory underlying the
effective description. Assuming general covariance, as
already remarked in Ref. [7], it is possible to write down,
for instance, the leading correction containing four deriva-
tives and consisting of ten terms. Among these terms, one
has to do with the parity-violating interactions and contains
the product of the Riemann tensor with its dual, i.e.,
R̃μανβRμανβ; a term of the same kind will also contain the
product of the Weyl tensor (which is the traceless part of the
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Riemann tensor) with its dual, i.e., C̃μανβCμανβ. These terms
are able to polarize the background of the relic gravitons, but
there could also be different terms coming into play if we
consider, for instance, the interactions with the gauge fields.
The main purpose of this paper is to scrutinize and classify

the mutual interactions of the tensor polarizations in cos-
mological backgrounds by expressing their gauge-invariant
action in terms of appropriate bispinors whose components
coincide with the polarized amplitudes. In this context, the
parity-violating interactions mentioned in the previous para-
graph as well as other possible contributions will be
parametrized in terms of an effective action reducing to
the Ford-Parker action in the unpolarized case [2]. In optical
applications, the Jones calculus stipulates that the electric
fields of the waves are organized in a two-dimensional
column vector. In the analyses of optical phenomena, the
Jones approach is customarily contrasted with the Mueller
calculus where the polarization is described by a four-
dimensional (Mueller) column vector of which the compo-
nents are the four Stokes parameters [8]. The description of
the tensor polarizations in terms of bispinors allow for a
general classification of the various interaction terms which
can be expressed in a much more compact and revealing
form. Different Pauli matrices (or, by stretching the language
a bit, different directions in “isospace”) parametrize the
various interactions between the two polarization. The
obtained action is invariant under infinitesimal diffeomor-
phisms; it reduces to the Ford-Parker action when the
interaction between the polarizations is absent, and it
contains at most two derivatives with respect to the con-
formal time coordinate. While it seems plausible to suggest
that any generally covariant model leading to a mutual
interaction between the two linear polarizations should fit
within the scheme of this paper, examples will be provided
with the aim of showing how the arbitrary couplings
introduced in the general form of the action can be explicitly
computed in concrete models.
The layout of this paper is the following. In Sec. II, we

shall outline the main idea and the general form of the
effective action. We shall also examine some particular cases
with the purpose of illustrating the simplifications introduced
by the use of the bispinors. In Sec. III, we shall examine the
opposite perspective by considering two classes of generally
covariant modes and by showing that they naturally fit in the
general scheme proposed in the paper. Section IV discusses
some specific applications aimed at illustrating the use if the
bispinors for the general solution of the evolution equations
of the two polarizations of the graviton. Finally, Sec. V,
contains the concluding remarks.

II. GENERAL FORM OF THE ACTION
FOR THE BISPINORS

A. Basic considerations

The tensor fluctuations of conformally flat background
geometries are defined as gμνðx⃗; τÞ ¼ ḡμν þ δð1Þt gμν, where

ḡμν ¼ a2ðτÞημν, aðτÞ is the scale factor and ημν is the
Minkowski metric. Overall, the metric fluctuations contain
ten independent components; only two describe the cosmic
gravitons and are parametrized in terms of a rank-2 tensor

in three spatial dimensions, i.e., δð1Þt gij ¼ −a2ðτÞhijðx⃗; τÞ,
where hij is divergenceless and traceless (i.e., hii ¼
∂ihji ¼ 0). Since the tensor modes of the geometry are
real quantities, they can be expressed in Fourier space as

hijðx⃗; τÞ ¼
ffiffiffi
2

p
lP

ð2πÞ3=2
Z

d3khijðk⃗; τÞe−ik⃗·x⃗;

hijðk⃗; τÞ ¼ e⊗ijh⊗ðk⃗; τÞ þ e⊕ijh⊕ðk⃗; τÞ; ð2:1Þ

where h�ijðk⃗; τÞ ¼ hijð−k⃗; τÞ and the factor
ffiffiffi
2

p
lP appearing

in Eq. (2.1) is determined, as we shall see in a moment, by
demanding that the action for each of the two polarizations
is canonically normalized. The two (orthogonal) polar-
izations are e⊗ij ¼ ðm̂in̂j þ n̂im̂jÞ and e⊕ij ¼ ðm̂im̂j − n̂in̂jÞ,
where m̂, n̂, and k̂ form a triplet of mutually orthogonal unit
vectors in the three spatial dimensions (i.e., m̂ × n̂ ¼ k̂).
Following the spirit (if not the letter) of the Jones

calculus [8], the tensor polarizations can be arranged in
a bispinor, be it Ψ, the components of which are given by
h⊕ðk⃗; τÞ and by h⊗ðk⃗; τÞ, respectively. The action describ-
ing the dynamics ofΨmust be invariant under infinitesimal
diffeomorphisms; it must contain (at most) two derivatives
with respect to τ, and it should reduce to the Ford-Parker
action [2] when the interactions between the polarizations
are absent. Putting together these three requirements,1 we
are led to the following expression,

Spol ¼
1

2

Z
d3k

Z
dτfa2ðτÞ½∂τΨ†∂τΨ − k2Ψ†Ψ�

þ Ψ†ðv⃗ · σ⃗ÞΨþ ∂τΨ†ðr⃗ · σ⃗Þ∂τΨ

þ Ψ†ðp⃗ · σ⃗Þ∂τΨþ ∂τΨ†ðq⃗ · σ⃗ÞΨg; Ψ ¼
�
h⊕
h⊗

�
;

ð2:2Þ

where σ⃗ ¼ ðσ1; σ2; σ3Þ and σi (with i ¼ 1; 2; ; 3) are the
three Pauli matrices. The dagger denotes, as usual, the
transposed and complex conjugate of the corresponding
spinor or matrix. In the parametrization of Eq. (2.2), the
vector r⃗ðk; τÞ is dimensionless, while the two vectors
v⃗ðk; τÞ, p⃗ðk; τÞ, and q⃗ðk; τÞ are all dimensional and may
otherwise contain an arbitrary dependence on k. Finally,
since the quantum Hamiltonian associated with the action
(2.3) must be Hermitian, we are led to demand that p⃗ ¼ q⃗.
Thanks to this plausible requirement, the terms containing a

1It should be stressed that these requirements are physically
complementary but conceptually separate.
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single conformal time derivative can be eliminated by
dropping a total time derivative, while b⃗ is redefined as
v⃗ → b⃗ ¼ v⃗ − ∂τp⃗. Therefore, the canonical form of
Eq. (2.3) is always expressible as

Spol ¼
1

2

Z
d3k

Z
dτfa2ðτÞ½∂τΨ†∂τΨ − k2Ψ†Ψ�

þ Ψ†ðb⃗ · σ⃗ÞΨþ ∂τΨ†ðr⃗ · σ⃗Þ∂τΨg: ð2:3Þ

In the noninteracting limit (i.e., when all the vectors are
vanishing identically), the actions (2.2)–(2.3) both coincide
with the result obtained in Ref. [2], and the two polar-
izations evolve independently. The physical model and the
form of the interaction is specified by the components of
the vectors b⃗ðk; τÞ and r⃗ðk; τÞ.
By construction, the action (2.3) is invariant under

infinitesimal diffeomorphisms; it reduces to the Ford-
Parker action when the interaction between the polar-
izations is absent, and it contains at most two derivatives
with respect to the conformal time coordinate. Furthermore,
the interactions between the two polarizations are invariant
under rotations in isospace. Before discussing the advan-
tages and the implications of the description in terms of

bispinors, it is useful to examine some potentially different
viewpoints. There might be some who would like to
introduce terms proportional to Ψ†Ψ. This kind of term
does not mix the polarizations, and it would correspond to a
massive contribution that does not disappear in the limit
where the interaction between the polarizations vanishes.
Let us finally remark that the quantum Hamiltonian
describing the parametric amplification of the polarizations
is necessarily Hermitian since the vectors describing the
couplings are all real.

B. Advantages and implications
of the bispinor description

A recurrent theme in the present paper will be the
advantages of the spinor description in comparison with
the case where the polarization and treated independently.
This aspect should be already clear; however, to make it
even more transparent, we shall unpack some specific cases
contained in the general form of the action. These terms
will have specific implications in the examples more
specifically studied in Sec. III. When Eq. (2.3) involves
the only diagonal Pauli matrix (i.e., σ3) the action follows
from Eq. (2.3) by choosing b⃗ ¼ ð0; 0; b3Þ and r⃗ ¼ ð0; 0; r3Þ,

Spol ¼
1

2

Z
d3k

Z
dτfa2ðτÞ½ð∂τh⊗∂τh�⊗ þ ∂τh⊕∂τh�⊕Þ − k2ðh⊗h�⊗ þ h⊕h�⊕Þ�

þ b3ðk; τÞðh�⊕h⊕ − h⊗h�⊗Þ þ r3ðk; τÞð∂τh�⊕∂τh⊕ − ∂τh⊗∂τh�⊗Þg: ð2:4Þ

Depending upon the specific forms of r3 and b3, the evolution of h⊕ and h⊗ can be different, but the corresponding
equations for h⊕ and h⊗ do not mix. Conversely, whenever the interaction involves either σ2 or σ1, the two polarizations are

coupled in the linear basis. For instance, when b⃗ ¼ ð0; b2; 0Þ and r⃗ ¼ ð0; r2; 0Þ, Eq. (2.3) becomes

Spol ¼
1

2

Z
d3k

Z
dτfa2ðτÞ½ð∂τh�⊗∂τh⊗ þ ∂τh�⊕∂τh⊕Þ − k2ðh�⊗h⊗ þ h�⊕h⊕Þ�

þ ib2ðk; τÞðh⊕h�⊗ − h⊗h�⊕Þ þ ir2ðk; τÞð∂τh⊕∂τh�⊗ − ∂τh⊗∂τh�⊕Þg: ð2:5Þ

The action (2.5) becomes diagonal in the circular basis where the Fourier amplitude of Eq. (2.1) reads now

hijðk⃗; τÞ ¼ ½eðRÞij hRðk⃗; τÞ þ eðLÞij hLðk⃗; τÞ�, and hL ¼ ðh⊕ þ ih⊗Þ=
ffiffiffi
2

p
and hR ¼ ðh⊕ − ih⊗Þ=

ffiffiffi
2

p
. For the sake of precision,

we remind the reader that, in the present paper, the right (i.e., R) and left (i.e., L) polarizations are defined as eðRÞij ¼
ðe⊕ij þ ie⊗ijÞ=

ffiffiffi
2

p
and eðLÞij ¼ ðe⊕ij − ie⊗ijÞ=

ffiffiffi
2

p
. The relation between the linear and the circular tensor amplitudes follows

easily from Eq. (2.1).
With these specifications, in the circular basis, the action of Eq. (2.5) is

Spol ¼
1

2

Z
d3k

Z
dτfa2ðτÞ½ð∂τh�R∂τhR þ ∂τh�L∂τhLÞ − k2ðh�RhR þ h�LhLÞ�

þ b2ðk; τÞðh�RhR − h�LhLÞ þ r2ðk; τÞð∂τh�R∂τhR − ∂τh�L∂τhLÞg: ð2:6Þ

Once more, the two circular amplitudes will obey two different equations that are, however, decoupled and will eventually
produce a net degree of polarization, as we shall more concretely illustrate in a moment. Needless to say, Eq. (2.6) can be
swiftly derived by working directly with bispinors; indeed, the action (2.3) in the case σ⃗ ¼ ð0; σ2; 0Þ is
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Spol ¼
1

2

Z
d3k

Z
dτfa2ðτÞ½∂τΨ†∂τΨ − k2Ψ†Ψ� þ b2ðk; τÞΨ†σ2Ψþ r2ðk; τÞ∂τΨ†σ2∂τΨg; ð2:7Þ

and it becomes diagonal by performing the following unitary transformation,

Ψ ¼ UΦ; U ¼
�
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

i=
ffiffiffi
2

p −i= ffiffiffi
2

p
�
; Φ ¼

�
hR
hL

�
; ð2:8Þ

where U† ¼ U−1. Since U†σ2U ¼ σ3, we have that Eq. (2.3) becomes

Spol ¼
1

2

Z
d3k

Z
dτfa2ðτÞ½∂τΦ†∂τΦ − k2Φ†Φ� þ b2ðk; τÞΦ†σ3Φþ r2ðk; τÞ∂τΦ†σ3∂τΦg: ð2:9Þ

Equation (2.9) can be expressed in an even more
compact form by introducing two appropriate matrices
Z and W:

Spol ¼
1

2

Z
d3k

Z
dτ½∂τΦ†Z∂τΦ −Φ†WΦ�: ð2:10Þ

The two matrices appearing in Eq. (2.10) are Zðk;τÞ¼
f½a2ðτÞþr2ðk;τÞ�PRþ½a2ðτÞ−r2ðk;τÞ�PLg and Wðk; τÞ ¼
f½k2a2ðτÞ − b2ðk; τÞ�PR þ ½k2a2ðτÞ þ b2ðk; τÞ�PLg, where
PL ¼ ðI − σ3Þ=2 and PR ¼ ðI þ σ3Þ=2 denote the left
and right projectors, while I is the identity matrix. The
same steps leading to Eqs. (2.9) and (2.10) can be repeated
when the interaction is dictated by σ1 rather than by σ2.
Since σ1 has only real entries, the analog of Eq. (2.7) can be
easily derived from Eq. (2.3). The resulting action will only
contain r1 and b1 and can diagonalized by the following
unitary transformation,

Ψ ¼ VΞ; V ¼
 
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p

1=
ffiffiffi
2

p −1= ffiffiffi
2

p
!
; Ξ ¼

�
hþ
h−

�
;

ð2:11Þ

where Ξ is defined in the new basis provided by the sum
and by the difference of the two linear polarizations
(i.e., h� ¼ ðh⊕ � h⊗Þ=

ffiffiffi
2

p
). By plugging Eq. (2.11) into

Eq. (2.3) written in the case σ⃗ ¼ ðσ1; 0; 0Þ, we are now
led to

Spol ¼
1

2

Z
d3k

Z
dτ½∂τΞ†Z̃∂τΞ − Ξ†W̃Ξ�; ð2:12Þ

where Z̃ðk;τÞ¼f½a2ðτÞþr1ðk;τÞ�PRþ½a2ðτÞ−r1ðk;τÞ�PLg
and W̃ðk; τÞ ¼ f½k2a2ðτÞ − b1ðk; τÞ�PR þ ½k2a2ðτÞ þ
b1ðk; τÞ�PLg in full analogy with the results of
Eq. (2.10). As in the case of the circular basis, the
components of Ξ obey two different equations, which
are decoupled.

III. TWO CONCRETE MODELS

A. Purely gravitational case

While Eq. (2.3) purportedly describes the most general
interaction of the two tensor polarizations evolving in
conformally flat backgrounds, the reverse must also be
true, and any concrete model will have to correspond to a
specific choice of b⃗ðk; τÞ and r⃗ðk; τÞ. Along this perspec-
tive, the action of the relic gravitons may contain a parity-
violating term [7,9–11] that involves the dual the Riemann
(or Weyl) tensor,

S¼−
1

2l2
P

Z
d4x

ffiffiffiffiffiffi
−g

p
R−

β

8

Z
d4x

ffiffiffiffiffiffi
−g

p
fðφÞR̃μανβRμανβ;

R̃μανβ¼1

2
EμαρσRρσ

νβ; ð3:1Þ

where g is the determinant of the four-dimensional metric,
Eμαρσ ¼ ϵμαρσ=

ffiffiffiffiffiffi−gp
, and ϵμαρσ is the Levi-Cività symbol; β

is just a numerical constant, while fðφÞ contains the
dimensionless coupling to some scalar degree of freedom
that can be identified, for instance, with the inflaton or with
some other spectator field. Before proceeding, we remark
that a complementary class of examples is obtained by
replacing the Riemann tensor with the Weyl tensor in
Eq. (3.1). Being the traceless part of the Riemann tensor,
the Weyl tensor vanishes for a spatially flat Friedmann-
Robertson Walker metric; the derivation of the second-
order action describing the tensor modes is comparatively
easier in the Weyl rather than in the Riemann case that will
be specifically studied hereunder.
The action of the tensor modes of the geometry follows,

in this example, by perturbing Eq. (3.1) to second order in
the amplitude of the tensor modes of the geometry
introduced prior to Eq. (2.1). The explicit result is given by

δð2Þt S ¼ 1

8l2
P

Z
d4xa2½∂τhij∂τhij − ∂khij∂khij�

−
β

8

Z
d4xð∂τfÞϵijk½∂τhqi∂τ∂jhkq − ∂lhiq∂l∂jhqk�;

ð3:2Þ
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where ϵijk is now the Levi-Cività symbol in three dimen-
sions; we remind the reader that the latin indices are all
Euclidian. According to Eq. (2.1), the tensor amplitudes
appearing in Eq. (3.2) can be expressed in the linear
polarization basis, and the result will be

δð2Þt S ¼ 1

2

Z
d3k

Z
dτfa2½∂τh⊕∂τh�⊕ þ ∂τh⊗∂τh�⊗

− k2ðh⊕h�⊕ þ h⊗h�⊗Þ� þ ikβl2
P∂τf½∂τh⊕∂τh�⊗

− ∂τh⊗∂τh�⊕ − k2ðh⊕h�⊗ − h⊗h�⊕Þ�g: ð3:3Þ

If the two linear polarizations appearing in Eq. (3.3) are
arranged into the components of the bispinorΨ, we obtain a
particular case of Eqs. (2.3) and (2.7). More specifically,
indeed, Eq. (2.7) reproduces exactly Eq. (3.3), provided

b2 ¼ −k3βl2
Pð∂τfÞ; r2 ¼ kβl2

Pð∂τfÞ: ð3:4Þ

As argued in general terms in Eq. (2.6), the resulting action
becomes diagonal in the circular polarization basis, and
Eq. (3.3) shall then be expressible in the compact form of
Eq. (2.10) where now the matrices Z and W are given by
Zðk; τÞ ¼ f½a2ðτÞ þ kβ∂τfl2

P�PR þ ½a2ðτÞ − kβ∂τfl2
P�PLg

and by W ¼ k2Z.

B. Interactions with the gauge fields

A different class of illustrative models is obtained by
considering the case where only b⃗ does not vanish. While
these examples would seem naively difficult to concoct,
they may arise from the following generally covariant
action,

S¼ −
1

2l2
P

Z
d4x

ffiffiffiffiffiffi
−g

p
R−

1

2l2
PM

4

Z
d4xfðφÞRμανβYμαỸνβ;

ð3:5Þ

where Yμν and Ỹμν ¼ EμνρσYρσ=2 are the gauge field
strength and its dual. In Eq. (3.5), M sets the typical scale
of the interaction. Note, incidentally, that the explicit
powers of M are often omitted in the analysis of effective
theories of inflation [7] with the proviso that all constants in
the higher derivative terms of the effective action take
values that are powers of M indicated by dimensional
analysis, with coefficients roughly of order unity. If there
exists a family of four-dimensional observers moving with
four-velocity uμ (possibly related with the covariant gra-
dients of a scalar field) in Eq. (3.5), the gauge fields can be
covariantly decomposed in their electric and magnetic parts
[12] according to Yμα ¼ E½μuα� þ EμαρσuρBσ and to Ỹνβ ¼
B½νuβ� þ EνβρσEρuσ (note that ½…� denotes an antisymmet-
ric combination of the two corresponding tensorial indices).
Inserting this decomposition into Eq. (3.5) and neglecting
the electric contributions, we can perturb the action to

second order in the amplitude of the tensor modes of the
geometry, and the result of this step can be written as

δð2Þt S ¼ 1

8l2
P

Z
d4xfa2½ð∂τhijÞð∂τhijÞ − ð∂khijÞð∂khijÞ�

þ 4a2Fncnaϵbpc½∂τhpqð∂ahqb − ∂bhqaÞ
− ∂τhaqð∂bhqp − ∂phbqÞ�g; ð3:6Þ

where baðτÞ ¼ nabðτÞ and F ¼ ðb2fÞ=M4. To derive
Eq. (3.6), we note that, to zeroth order in the tensor
amplitude, we have Ỹ0i ¼ −bi=a2 and Yij ¼ −ϵijkbk=a2.
To first and second orders in the amplitude of the tensor

modes, the previous expressions are corrected as δð1Þt Ỹ0i ¼
hikbk=a2 and as δð2Þt Ỹ0i ¼ −hilhlkbk=a2.
The action perturbed to second order in the amplitude of

the tensor modes of the geometry becomes then

Spol ¼
1

2

Z
d3k

Z
dτfa2½ð∂τh⊕∂τh�⊕ þ ∂τh⊗∂τh�⊗Þ

− k2ðh⊕h�⊕ þ h⊗h�⊗Þ� þ ika2F½ð∂τh⊕Þh�⊗
− ð∂τh⊗Þh�⊕� þ ika2F½h⊕ð∂τh�⊗Þ − h⊗ð∂τh�⊕Þ�g:

ð3:7Þ

In the linear basis, Eq. (3.7) coincides with Eq. (2.2),
provided we choose p⃗ðk; τÞ ¼ ð0; ka2F; 0Þ. Up to a total
derivative, the obtained equation can be brought in the form
(2.3) with b⃗ðk; τÞ ¼ ½0;−k∂τða2FÞ; 0� and then diagonal-
ized in the circular basis. If the two previous steps are
inverted, the final result does not change, and Eq. (3.7) can
be diagonalized2 before the elimination of the total deriva-
tive. In either case, the final form of the action (3.7) is

Spol ¼
1

2

Z
d3k

Z
dτfa2½∂τΦ†∂τΦ − k2Φ†Φ�

− k∂τða2FÞΦ†σ3Φg: ð3:8Þ

Equation (3.8) can be finally put in the form (2.10) by
choosing Z ¼ Ia2 and W ¼ f½k2a2 þ k∂τða2FÞ�PR þ
½k2a2 − k∂τða2FÞ�PLg.

IV. ILLUSTRATIVE APPLICATIONS
OF THE SPINOR ACTION

A. Polarization degree

In the two previous paragraphs, different generally covar-
iant models have been shown to reproduce some particular
cases of Eq. (2.3), and this conclusion corroborates the

2According to Eq. (2.8), we can go from the linear to the
circular basis by positing Ψ ¼ UΦ, whereΦ denotes the bispinor
in the circular basis. Since U†σ2U ¼ σ3, the canonical action is
easily obtained.
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validity of the direct derivation. We now turn to the
evaluation of the degree of polarization, and for this purpose,
it is interesting to remark that Eq. (2.10) can be simplified
even further by defining the rescaled bispinor M ¼
ðPRzR þ PLzLÞΦ of which the components, in the circular
basis, are given by μR ¼ zRhR and μL ¼ zLhL. After
expressing Eq. (2.10) in terms of M, we obtain

Spol ¼
1

2

Z
d3k

Z
dτ

�
∂τM†∂τM

þM†
��

z00R
zR

− ω2
R

�
PR þ

�
z00L
zL

− ω2
L

�
PL

�
M
�
;

ð4:1Þ
where the prime denotes a derivation with respect to the
conformal time coordinate and the same shorthand notation
will be employed hereunder. Furthermore, in Eq. (4.1), zR;L
and ωL;R are defined as

z2Rðk; τÞ ¼ a2ðτÞ þ r2ðk; τÞ; z2Lðk; τÞ ¼ a2ðτÞ − r2ðk; τÞ;

ω2
Rðk; τÞ ¼

k2a2ðτÞ − b2ðk; τÞ
a2ðτÞ þ r2ðk; τÞ

;

ω2
Lðk; τÞ ¼

k2a2ðτÞ þ b2ðk; τÞ
a2ðτÞ − r2ðk; τÞ

: ð4:2Þ

For example, the action of Eq. (3.1) implies that ωL ¼
ωR ¼ k2, while in the case of Eq. (3.5), r2 → 0 and zL ¼
zR ¼ aðτÞ. Similarly, the general expressions of Eq. (4.2)
may simplify for other specific values of b2ðk; τÞ and
r2ðk; τÞ. Recalling thatΦ denotes the bispinor in the circular
basis, the degree of circular polarization can be defined as

Πcircðk; τÞ ¼
Φ†σ3Φ
Φ†Φ

¼ jhRðk; τÞj2 − jhLðk; τÞj2
jhRðk; τÞj2 þ jhLðk; τÞj2

: ð4:3Þ

From Eq. (4.1), the evolution of M reads

∂2
τMþ

��
ω2
R −

z00R
zR

�
PR þ

�
ω2
L −

z00L
zL

�
PL

�
M ¼ 0: ð4:4Þ

Equation (4.4) reduces to a pair of decoupled equations
defined in the circular basis,

μ00R þ
�
ω2
R −

z00R
zR

�
μR ¼ 0; μ00L þ

�
ω2
L −

z00L
zL

�
μL ¼ 0; ð4:5Þ

where we defined μR ¼ zRhR and μL ¼ zLhL. The evolution
of the right and of the left movers can be studied within
different approximation schemes. The expansion in the
conformal coupling parameter, originally explored by
Birrell and Davies [13], has been subsequently applied to
the case of gravitational waves by Ford [14]. However, since
the illustrative goal is to evaluate the degree of circular
polarization at high-frequencies, the Wentzel–Kramers–
Brillouin (WKB) approximation seems more directly

applicable [15]. We remind that the WKB approximation
is a method for finding approximate solutions to linear
differential equations with varying coefficients. While this
method has not been applied so far to the polarized case, this
gap will now be bridged, at least partially.

B. Solution for the bispinors in the
WKB approximation

The equations for μR and μL reported in (4.5) closely
resemble Schrödinger equations with different k-dependent
potentials for the left and right movers [i.e., VRðk; τÞ ¼
z00R=zR and VLðk; τÞ ¼ z00L=zL]. Thus, for ω2

R ≫ VR and
ω2
L ≫ VL, the general solution of Eq. (4.5) is3

μXðk; τÞ ¼
1ffiffiffiffiffiffiffiffiffi
2ωX

p ½αXe−i
R

τ
ωXðk;τ0Þdτ0 þ βXe

i
R

τ
ωXðk;τ0Þdτ0 �;

ω2
X ≫

				 z00XzX
				; ð4:6Þ

where αX and βX are arbitrary complex numbers and
X ¼ R, L; Eq. (4.6) holds independently for the left and
right movers, provided the variation of ωX is sufficiently
slow (i.e., jVXj ≪ ω0

X=ωX < jz0X=zXj). In the opposite limit
(i.e., ω2

X ≪ VX), the general solution of Eq. (4.5) is instead
given by

μXðk; τÞ ¼ AXðkÞzXðk; τÞ þ BXðkÞzXðk; τÞ
Z

τ dτ0

z2Xðk; τ0Þ
;

ω2
X ≪

				 z00XzX
				: ð4:7Þ

For a wide class of problems, the potentials jVXj have a
bell-like shape in the conformal time coordinate and vanish
in the limit τ → �∞. The solution (4.6) is valid outside the
potential barrier jVXj (i.e., inside the effective horizon
defined by the variation of zX); the solution (4.7) holds
instead when jVXj dominates against ω2

X (or, more pre-
cisely, when the corresponding wavelengths are larger than
the effective horizon). The turning points are fixed byω2

X ¼
VX and will be denoted by τex (i.e., the time at which the
mode exits the effective horizon) and by τre (i.e., the
moment at which the given mode reenters the effective
horizon). To the left of the barrier, for τ < τex, the solution

will be in the form e−i
R

τ
ωXðk;τ0Þdτ0=

ffiffiffiffiffiffiffiffiffi
2ωX

p
. To the right of

the barrier, the solution is instead given by Eq. (4.6).
Finally, between the turning points, the solution has the
form (4.7). The continuous matching of the three solutions
(and of their first derivatives) across the two turning points
allows for an explicit determination of αX and βX. In the

interesting physical case (i.e., jzðXÞre =zðXÞex j ≫ 1), the coef-
ficient βX is always larger than αX (i.e., jβXj2 ≫ jαXj2);

3In general terms, since b2=r2 ¼ −k2, we shall also have that
ω2
L ¼ ω2

R ¼ k2.
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thus, we shall only need to mention the results for jβRj2 and jβLj2:

jβLj2 ≃
1

4

"
zðLÞre

zðLÞex

#
2�
1þ L2

re

ω2
L

�
f1 − 2Lexz

ðLÞ2
ex J L þ zðLÞ4ex ½L2

ex þ ω2
L�J 2

Lg;

jβRj2 ≃
1

4

"
zðRÞre

zðRÞex

#
2�
1þR2

re

ω2
R

�
f1 − 2Rexz

ðRÞ2
ex J R þ zðRÞ4ex ½R2

ex þ ω2
R�J 2

Rg: ð4:8Þ

In Eq. (4.8), the rates of variation of zR and zL (i.e., R ¼
z0R=zR and L ¼ z0L=zL) have been introduced, while
J Lðk; τex; τreÞ and J Rðk; τex; τreÞ involve two different
integrals between the two turning points:

J Lðk; τex; τreÞ ¼
Z

τre

τex

dτ0

z2Lðk; τ0Þ
;

J Rðk; τex; τreÞ ¼
Z

τre

τex

dτ0

z2Rðk; τ0Þ
: ð4:9Þ

If the interaction between the polarizations ceases after the
end of inflation, the high frequencies will cross the barrier
the second time when zR¼ zL¼aðτÞ and will remain inside
the effective horizon thereafter. In this case, the total degree
of circular polarization of Eq. (4.3) can be expressed as

Πcirc ¼
jβRðkÞj2 − jβLðkÞj2
jβRðkÞj2 þ jβLðkÞj2

: ð4:10Þ

Equation (4.10) demonstrates that the left and right movers
see effectively different potential barriers so that the degree
of circular polarization is ultimately determined by the
difference of the two dominant mixing coefficients. The
explicit evaluation of Eqs. (4.3) and (4.10) is delicate when
the potential VX → 0 in the vicinity of the second turning
point (as it happens when the second crossing takes place
during radiation where a00 ¼ 0 [15]). With these caveats,
after inserting Eq. (4.8) into Eq. (4.10), the explicit
expression of the polarization degree depends solely on
the values of the pump fields and of their first derivatives at
the turning points:

Πcirc ¼
jzðRÞre j2jzðLÞex j2ðk2 þR2

reÞ − jzðRÞex j2jzðLÞre j2ðk2 þ L2
reÞ

jzðRÞre j2jzðLÞex j2ðk2 þR2
reÞ þ jzðRÞex j2jzðLÞre j2ðk2 þ L2

reÞ
:

ð4:11Þ

If all the modes reenter after the end of inflation (i.e.,

zðRÞre ¼ zðLÞre ¼ are), the polarization degree is particularly

simple, and it only depends on zðXÞex , i.e., Πcirc ¼
ðjzðLÞex j2 − jzðRÞex j2Þ=ðjzðLÞex j2 þ jzðRÞex j2Þ.

C. Explicit evaluations of the polarization degree

While Eqs. (4.10) and (4.11) hold for different functional
forms of the pump fields, more explicit expressions also
demand further details on zL and zR. If we consider, for the

sake of illustration, the case zR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ kβf0l2

P

p
and zL ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − kβf0l2
P

p
[discussed in Eq. (3.3) and thereunder] the

explicit form of Eq. (4.11) becomes4

jΠcircj ¼ β
ffiffiffiffiffi
2ϵ

p �
H

MP

�
2

¼ 6 × 10−13
�

β

0.1

��
ϵ

0.001

�
3=2

×

�
As

2.41 × 10−9

�
; ð4:12Þ

where we assumed, for illustration, that the dependence on
the inflaton of fðφÞ is linear (i.e., f ¼ lPφ) and that

zðRÞre ¼ zðLÞre ¼ are. In Eq. (4.12), ϵ is the slow-roll parameter
that ultimately determines the derivative of φ (i.e.,
φ0 ¼ ffiffiffiffiffi

2ϵ
p

aHMP). The result of Eq. (4.12) becomes a bit

different if zðRÞre ≠ zðLÞre ≠ are. In this case, Eq. (4.11) implies

jΠcircj ¼ β

�
H

MP

�
2
				 ffiffiffiffiffi2ϵp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3wre þ 1

p �
k
k1

�3ðwreþ1Þ
3wreþ1

				;
ð4:13Þ

where wre denotes the barotropic index of the plasma when
the given mode reenters the effective horizon (i.e., at the
second turning point). While Eqs. (4.12) and (4.13) are
qualitatively different, they are similar from the quantitative
and physical viewpoints. They both hold for all the modes
that reentered the effective horizon after the end of inflation
but before the onset of the matter epoch (i.e., for frequen-
cies larger than 100 aHz). In practice, however, the
estimates apply for frequencies larger than the Hz since
we also neglected the presence of the neutrino anisotropic
stress [5]. They also suggest that Πcirc gets larger at high
frequencies. More specifically, since k1 is of the order of
GHz (and it corresponds to the Hubble rate at the end of
inflation), the degree of polarization is maximal at high
frequencies so that the instruments operating in the kHz (or
even MHz) regions are potentially more promising than the
space-borne interferometers operating below the Hz.

V. CONCLUDING REMARKS

All in all, the polarizations of the tensor modes evolving
in cosmological backgrounds have been described in terms

4Note that As denotes the amplitude of the scalar power
spectrum appearing since ðH=MPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
πϵAs

p
.
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of appropriate bispinors closely analogous to what are
commonly referred to as Jones vectors. Unlike the case of
polarized optics, the present goal was to obtain a gauge-
invariant action containing at most two (conformal) time
derivatives and reducing to the standard (Ford-Parker)
result when the two polarizations are mutually decoupled
and only feel the overall effect of the space-time curvature.
After arguing that the interactions potentially leading to
polarized relic gravitons can be compactly classified in
general terms, we showed that the reverse is also true. For
this purpose, the direct derivation has been corroborated by
a few examples demonstrating, in a conservative perspec-
tive, that different classes of generally covariant models

ultimately fit within the scheme of the spinor action pro-
posed here. For an illustrative application, we derived the
degree of polarization and its spectral dependence at high
frequencies by introducing a suitable WKB approximation
where the modes corresponding to each of the two tensor
amplitudes obey a different evolution equation and cross
their effective horizons at slightly different turning points.
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