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We study the solution space of general relativistic, axisymmetric, equilibria of differentially rotating
neutron stars with realistic, nuclear equations of state. We find that different types of stars, which were
identified by earlier works for polytropic equations of state, arise for realistic equations of state, too.
Scanning the solution space for the sample of realistic equations of state we treat, we find lower limits on
the maximum rest masses supported by cold, differentially rotating stars for each type of stars. We often
discover equilibrium configurations that can support more than 2 times the mass of a static star. We call
these equilibria “overmassive,” and in our survey we find overmassive stars that can support up to 2.5 times
the maximum rest mass that can be supported by a cold, nonrotating star with the same equation of state.
This is nearly 2 times larger than what previous studies employing realistic equations of state had found,
and which did not uncover overmassive neutron stars. Moreover, we find that the increase in the maximum
rest mass with respect to the nonspinning stellar counterpart is larger for moderately stiff equations of state.
These results may have implications for the lifetime and the gravitational wave and electromagnetic
counterparts of hypermassive neutron stars formed following binary neutron star mergers.
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I. INTRODUCTION

Hypermassive neutron stars (HMNSs) [1] are transient
configurations that are supported against gravitational
collapse by the additional centrifugal support provided by
differential rotation, and possibly also by thermal pressure
[2,3]. HMNSs may be ubiquitous remnants of binary
neutron star (BNS) mergers (see, e.g., [4–7] for reviews
and references therein). An HMNS was also a likely out-
come [8–11] of the LIGO/Virgo event GW170817 [12,13].
The study of differentially rotating relativistic stars is

useful for understanding the types of BNS merger remnants
that are possible and their properties. Modest to high
degrees of differential rotation may support an HMNS
against collapse on dynamical timescales, but such objects
are unstable on secular timescales (see, e.g., [3,14,15] and
references therein). An important quantity that determines
whether following a BNS merger there will be prompt,
delayed, or no collapse at all is the maximum mass that can
be supported given an equation of state. Studying general
relativistic, equilibrium models of differentially rotating
stars provides a straightforward approach to determine this
maximum mass.
In [16,17] it was shown that cold, axisymmetric, differ-

entially rotating stars described by either polytropic or
realistic equations of state (EOSs) can support up to
approximately 70% more mass when compared to the
maximum rest mass that can be supported by a nonrotating
star—the Tolman-Oppenheimer-Volkoff (TOV) limit. This

result holds for the differential rotation law of Komatsu,
Eriguchi, and Hachisu [18] (referred to as the KEH law).
However, in [19] it was pointed out that early efforts to find
the maximum rest mass of differentially rotating, axisym-
metric configurations did not account for the full solution
space with the KEH law. Subsequently, it was found in [20]
that differentially rotating, axisymmetric, Γ ¼ 2 polytropic
models of neutron stars built with the KEH law can support
up to ∼4 times the TOV limit at even modest degrees of
differential rotation.
The solution space for relativistic, differentially rotating,

axisymmetric stars with the KEH law has been shown to
exhibit four types of equilibrium solutions [19] labeled
A, B, C, and D. A careful scan among these types reveals
that stars with quasitoroidal topology are those that tend to
be the most massive. Each stellar configuration belonging
to a solution type falls along a sequence characterized by a
quadruplet of parameters consisting of the maximum
energy density ϵmax, the degree of differential rotation
Â−1, the ratio of polar to equatorial radius rp=re, and
the parameter β̂ describing how close to the mass-shedding
limit the configuration is. Note that the first three of the
above parameters are needed to completely specify a
configuration, yet the solution space requires four param-
eters to be described. The full solution space with the KEH
law has been studied in great detail for polytropic EOSs of
varying stiffness [21]. In [21] it was further shown that the
existence of four types of solutions is a universal feature for
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a range of polytropic indices n ∈ ½2=3; 2�. Nevertheless, for
n ¼ 1.5 the authors did not report stars of Type B, C, or D.
These results imply that the possible types of solutions may
depend on the equation of state. This is important because
neutron star EOSs are not described by a single polytropic
index and different realistic nuclear equations of state have
varying degrees of stiffness. While n ¼ 1.5 does not
correspond to models of neutron stars, a natural question
arises by the work of [20,21]: do the different types of
differentially rotating, axisymmetric stars arise for realistic
nuclear EOSs? If they do arise, what is the maximum rest
mass that can be supported by the different types of
solutions when realistic nuclear EOSs are considered?
In this paper, we address these questions by considering

the solution space for differentially rotating, axisymmetric
stars built with the KEH law with realistic nuclear EOSs.
We find that the different types of solutions identified in
[19] arise even for realistic neutron star matter. As in
[20,21] we find that many configurations can support a
mass more than 2 times the TOV limit. Moreover, we find
configurations that can support a rest mass more than 2
times the supramassive limit (the maximum mass that can
be supported when allowing for maximal uniform rotation).
We term configurations that can support a rest mass more
than 2 times the TOV limit “overmassive.” We propose a
different name for these because overmassive neutron stars
(OMNS) are not likely to arise in nature through quasi-
circular mergers of binary neutron stars, as neutron stars in
binaries are not observed to have high enough spins to
support much more mass than the TOV limit. For instance,
even for the fastest spinning known neutron star with a
period of 1.5 ms the enhancement on the maximum
supportable mass over the TOV limit is Oð1%Þ. Thus, if
OMNSs form through astrophysical processes, in all like-
lihood it would have to be through some more exotic
channel than binary mergers. While one could define
overmassive stars as those that can support more than 2
times the supramassive limit mass, our current definition
takes into consideration prior knowledge on neutron star
properties based on decades of neutron star observations.
For the sample of realistic EOSs we explore, in our scan of
the solution space we find OMNSs that can support up to
2.5 times (150% more mass than) the corresponding
TOV limit.
The remainder of this paper is organized as follows. In

Sec. II we review basic equations and details pertaining to
the solution space of differentially rotating stars built with
the KEH law. In Sec. III we present the EOSs we treat here
and their basic properties. In Sec. IV we describe our
methods and reproduce some of the results presented in
[20] for a Γ ¼ 2 polytrope. Section V details our results,
showing the solution space of differentially rotating stars
with realistic nuclear EOSs along with the maximum rest
mass models we found for each EOS we considered. We
conclude in Sec. VI with a summary of our findings and a

discussion of future directions. Geometrized units, where
G ¼ c ¼ 1, are adopted throughout, unless otherwise
specified.

II. BASIC EQUATIONS AND TYPES OF
DIFFERENTIALLY ROTATING STARS

The spacetime of stationary, axisymmetric, equilibrium
rotating stars is described by the following line element in
spherical polar coordinates (see, e.g., [22])

ds2 ¼ −eγþρdt2 þ e2αðdr2 þ r2dθ2Þ
þ eγ−ρr2 sin2 θðdϕ − ωdtÞ2; ð1Þ

where the metric potentials γ, ρ, α, and ω are functions of r
and θ only and are determined by the solution of the
Einstein equations coupled to the hydrostationary equilib-
rium equation for perfect fluids (see, e.g., [7] for a review
and other forms of the line element used in the literature).
To close the system of equations an EOS and a differential
rotation law are required.
Most studies of differentially rotating stars adopt the

KEH rotation law [18], which is also called j-constant
rotation law (see [7] for a summary of other differential
rotation laws). In this law the specific angular momentum is
a function of the angular velocity as follows:

utuϕ ¼ A2ðΩc − ΩÞ; ð2Þ

where ut and uϕ are the temporal and azimuthal compo-
nents of the fluid four velocity, respectively, Ω ¼ uϕ=ut is
the local angular velocity of the fluid as seen by an observer
at infinity, and Ωc is the angular velocity on the rotation
axis. It is common and convenient to parametrize the
angular velocity by considering the ratio of polar (rp) to
equatorial (re) radius of the star,

rp
re
. Stars with larger values

of Ωc tend to have a smaller value of rp
re
, indicative of a

“flatter” stellar shape. The parameter A in Eq. (2) has units
of length and is a measure of the degree of differential
rotation in the star, i.e., the length scale over which the fluid
angular velocity changes in the star. It is also common to
use a rescaled A parameter

Â−1 ¼ re
A
: ð3Þ

A general relativistic stellar configuration is then com-
pletely determined by the values of Â−1, rpre , and the central
or maximum energy density (ϵmax). In the case of uniform
rotation or cases with low degrees of differential rotation
the central energy density and ϵmax coincide, since ϵmax
occurs at the center of the star. However, when considering
differentially rotating stars a quasitoroidal topology may
arise in which case ϵmax is not at the geometric center of the
configuration. In these cases it is more convenient to
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specify ϵmax instead of the value of the energy density at the
center of the star. Models with extreme quasitoroidal shapes
tend to have very small (but nonzero) densities near the
center.
The parameter Â−1 is important for identifying the

different types of solutions that arise for rotating stars.
When Â−1 ¼ 0 the stars are uniformly rotating, while stars
with Â−1 ≠ 0 are differentially rotating. Models with
relatively high values of Â−1 (typically Â−1 ≳ 1.0) tend
to show a smooth transition from spheroidal to quasitor-
oidal topologies, depending on the values of rp

re
and ϵmax.

Models with lower values of Â−1 (typically Â−1 ≲ 0.7 for
the values of ϵmax considered here) show a richer solution
space, as we discuss below.
Another important parameter in describing differentially

rotating stars is β, which parametrizes how close to mass
shedding the stellar model is. The parameter β was
introduced in [19] and is defined as

β ¼ −
�
re
rp

�
2 dðz2Þ
dðϖ2Þ

����
ϖ¼re

; ð4Þ

where ϖ ¼ r sinðθÞ and z ¼ r cosðθÞ are cylindrical coor-
dinates, and the derivative is evaluated on the surface of the
star at the equator. On the surface of the star r ¼ rðθÞ, and
thus the function z2ðϖ2Þ describes the surface shape,
whose slope at the stellar equator determines how close
to mass shedding the configuration is. The “mass-shedding
parameter” is defined in terms of β as [19]

β̂ ¼ β

1þ β
: ð5Þ

While β̂ is not a gauge-invariant quantity, it is useful in
describing models in coordinates such as those defined by
Eq. (1). Depending on the surface slope at the equator, β̂
will approach different values. We are generally interested
in three limiting values of β̂:
(1) Nonrotating, spherical limit: For a spherical TOV

star, rp
re
¼ 1, and the derivative dðz2Þ

dðϖ2Þ ¼ −1 every-

where on the surface. Thus, in this limit β̂ → 1
2
.

(2) Mass-shedding limit: At the mass-shedding limit,
the stellar configuration begins to lose mass at the
equator. The surface derivative at the equator

vanishes dðz2Þ
dðϖ2Þ ¼ 0. Hence, β̂ → 0 at the mass-

shedding limit.
(3) Toroidal limit: As the stellar topology approaches

that of a toroid, rp → 0, and β becomes large. This
implies that β̂ → 1 as a sequence approaches the
toroidal limit.

The above discussion suggests that the complete set of
parameters describing general relativistic equilibria of

stationary and axisymmetric, differentially rotating stars
with the KEH law is the quadruplet ðϵmax;

rp
re
; Â−1; β̂Þ.

The solution types can be distinguished by specifying
ϵmax and considering the limiting values of β̂ for sequences
of constant Â−1 in the ðrpre ; β̂Þ plane. This requires that one
slowly vary the quadruplet ðϵmax;

rp
re
; Â−1; β̂Þ to carefully

scan the space of solutions. We use the convention
introduced in [19] to distinguish the types of differentially
rotating stars at fixed ϵmax for sequences of constant Â−1.
Given that in the numerical construction of rotating stars we
always start with an initial guess solution corresponding to
a static star, and then slowly vary the stellar parameters to
reach a particular type of solution at fixed ϵmax, below we
list the general trajectory of solutions used in building the
corresponding sequences:

(i) Type A: This sequence of solutions consists strictly
of spheroids. For low degrees of differential rotation
(i.e., close to rigid rotation), stars are spheroidal.
Spinning these stars up (i.e., decreasing rp

re
) results in

mass shedding, so that the Type A sequence goes
from the limiting solution of spherical stars
(rpre ¼ 1; β̂ ¼ 0.5) to mass shedding (β̂ ¼ 0). Starting
from a spherical solution, these models are obtained
by simply spinning up the initial model. A potential
path in the parameter space is as follows:

Spheroid (low Â−1)→
decrease

rp
re Mass shedding.

(ii) Type B: This type of star often exists for the same
values of Â−1 as Type A stars, but at lower values of
rp
re
. Spinning these stars down (increasing rp

re
) results

eventually in mass shedding. Therefore, the Type B
sequence goes from the limiting solution of toroids
ðβ̂ → 1.0Þ to mass shedding ðβ̂ ¼ 0Þ. These models
can be reached numerically by spinning up an initial
spherical model (decreasing rp

re
) with high Â−1 to

obtain quasitoroidal solutions, then decreasing Â−1,
and finally increasing rp

re
to approach the mass-

shedding limit. A potential path in the parameter
space is as follows:

Spheroid (low Â−1)→
increase Â−1;decrease

rp
re Quasitor-

oid (high Â−1) →decrease Â
−1

Quasitoroid (low Â−1)

→
increase

rp
re Mass shedding.

The Type B stars near the mass-shedding limit are
difficult to reach, and we were not able to construct
such extreme configurations.

(iii) Type C: This sequence exhibits a smooth transition
from a spherical solution ðβ̂ ¼ 0.5Þ to a quasitor-
oidal solution ðβ̂ ¼ 1.0Þ. As such, starting at a
spheroid with high Â−1 and spinning Type C stars
up by decreasing rp

re
would not result in mass
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shedding, but would shape the models into a
quasitoroid. A potential path in the parameter space
is as follows:

Spheroid (low Â−1) !increase Â
−1

decrease
rp
re

Quasitoroid

(high Â−1).
(iv) Type D: This type typically covers the smallest part

of the parameter space. The models of this type are
nontrivial to build directly from a spherical solution.
This is because Type D sequences start and end at
the mass-shedding limit (β̂ ¼ 0). Spinning these
stars either up or down would result in mass
shedding. We were unable to build Type D sequen-
ces at fixed values of Â−1 for any of the cases
considered. However, we were able to construct
individual candidate Type D models at specific
values of the quadruplet ðϵmax;

rp
re
; Â−1; β̂Þ.

III. EQUATIONS OF STATE

We consider a set of four realistic EOSs, all of which can
be found on the Compstar Online Supernovae Equations of
State (ComPOSE) [23] database. We chose two zero-
temperature EOSs and two finite temperature EOSs (in
their “cold” limit) to study. The zero-temperature, nuclear
EOSs we considered are APR [24] and FPS [25]. These
zero-temperature EOSs were also considered in [17] and
were chosen for a suitable comparison to the maximum rest
mass models found therein.
The first finite temperature EOS we consider is a variant

of the EOS of [26], which includes electrons, protons, and
neutrons and will hereafter be referred to as NL3. We also
consider the EOS of [27], will hereafter be referred to as
HFO (a common name for the HFO EOS in the existing
literature is SFHO). The finite temperature EOS tables
include values of the rest mass density ρ0 at different values
of the temperature T and the electron fraction Ye. Since our
focus is on cold, equilibrium models of differentially
rotating stars we set T ¼ 0.01 MeV, and enforce neutrino-
less beta equilibrium as is common in the case of finite
temperature EOSs. In particular, we numerically solve for
the value of Ye at which chemical equilibrium is established
between neutrons, protons, and electrons,

μn − μp − μe ¼ 0; ð6Þ

where μi is the chemical potential of species i. Once ρ0 and
T are specified for the EOS tables, we scan through values
of Ye until the condition in Eq. (6) is met. We then change
the value of ρ0 and repeat, building a tabulated EOS of
pressure, rest mass density, and energy density for the set of
electron fractions corresponding to beta equilibrium.
Figure 1 shows a plot of pressure as a function of energy
density for the set of EOSs we treat in this work. We discuss

the relevant astrophysical bounds for these EOSs in
Appendix C.
We compare the EOSs in terms of their stiffness, which

we characterize by the ratio of average energy density ϵ̄ to
maximum energy density ϵmax in models of equal rest mass
M0 for each EOS. The average density is defined as [17]

ϵ̄≡ 3M
4πR3

c
; ð7Þ

where M is the gravitational mass (also referred to as the
Arnowitt Deser Misner, or ADM, mass MADM) and Rc the
circumferential radius. We build M0 ¼ 1.4 M⊙ TOV mod-
els for each EOS and look at the ratio of average to
maximum energy density Cϵ,

Cϵ ¼
ϵ̄

ϵmax
: ð8Þ

A maximally stiff EOS would have Cϵ ¼ 1, corresponding
to a uniform energy density configuration. We list C1.4

ϵ

[Eq. (8) for a 1.4 M⊙ star] for each EOS in Table I. Using
Cϵ as a measure for stiffness is accurate for polytropic
equations of state, because a larger adiabatic index yields
larger Cϵ for fixed mass. However, since Cϵ varies with rest
mass (see Appendix B), it is important to use additional
measures of stiffness for realistic EOSs.
As an alternative measure of EOS stiffness, and to

compare with the polytropic models in [20], we also

FIG. 1. Pressure as a function of energy density for the EOSs in
our sample. The red dashed, blue dotted, green dash-dotted, and
black dashed–double-dotted lines correspond to the FPS, HFO,
NL3, and APR EOSs, respectively. The solid lines of the same
color scheme correspond to representations of each EOS using a
single polytrope as described by Eqs. (A3) and (A4).
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consider the effective adiabatic index Γnuc
eff for each model,

calculated as in [17]. In particular, to find Γnuc
eff for each

realistic EOSs we first calculate Cnuc
ϵ for the maximum rest

mass TOV model. Next, we calculate the ratio Cpoly
ε for the

maximum rest mass TOV models of polytropes with a wide
range of adiabatic indices Γpoly and construct a function
ΓpolyðCpoly

ε Þ that we linearly interpolate over the range of
Cpoly
ε considered. The effective adiabatic index of a nuclear

EOS is then defined through

Γnuc
eff ¼ ΓpolyðCnuc

ϵ Þ: ð9Þ

Γnuc
eff is an “average” rate of change of pressure with rest-

mass density by approximating the EOS as a single
polytrope in the high density regime that primarily deter-
mines the bulk structure of the star. Γnuc

eff is useful when
comparing features in the solution space of realistic EOSs
to those of polytropes. All of the EOSs in our set have
2.5 < Γnuc

eff < 3.1, and it turns out that certain features of the
solution space for these realistic EOSs are consistent with
the Γ ≥ 2.5 polytropes [21], as further discussed in Sec. V.
The effective adiabatic indices for the EOSs we treat are

listed in Table I, where we also show the TOV limit mass
and the supramassive limit mass for each of these EOSs.
Compared to the values of Γnuc

eff reported in [17] for the FPS
and APR EOSs, our results differ by 0.04% and 1.56%,
respectively. Note that we have ranked the EOSs in Table I
in order of increasing C1.4

ϵ and Γnuc
eff . By both metrics of the

stiffness APR is the stiffest, and FPS is the softest.
In order to see how well approximated the realistic EOSs

are by single polytropes, we also include a polytropic
representation of each nuclear EOS. Along with the
effective adiabatic index Γnuc

eff , we calculate an effective
polytropic constant κnuceff for each EOS as detailed in
Appendix A.
The polytropic representations of the nuclear EOSs are

presented in Fig. 1. Although not perfect, using a single
polytrope to represent the nuclear EOS is reasonable at
higher densities, and the qualitative results of [21] for

polytropes of varying polytropic indices may be suitably
compared to those presented in this work for nuclear EOSs.

IV. METHODS

We adopt the code detailed in [22,28] (hereafter referred
to as the Cook code) to solve the coupled Einstein-hydro-
stationary equilibrium equations in axisymmetry. This code
was also used in [16,17]. In this section we describe the
numerical grid and tests we performed to validate the code
in the case of differentially rotating stars found by [19–21].

A. Numerical grid and determination of stellar surface

The stellar models are constructed on a numerical grid
where the computational domain in spherical polar coor-
dinates covers the regions 0 ≤ r ≤ ∞ and 0 ≤ θ ≤ 2π.
Instead of the coordinates ðr; θÞ in Eq. (1), the code solves
the coupled Einstein-hydrostationary equations in coordi-
nates defined by u ¼ cos θ and a compactified radial
coordinate s that maps spatial infinity onto the computa-
tional domain as

r≡ re

�
s

1 − s

�
: ð10Þ

By construction, the surface of the star on the equator
corresponds to r → re and s → 1

2
.

Adopting the coordinates ðu; sÞ results in the radial grid
points being concentrated closer to the origin. This is not
very convenient, because it does not allow an accurate
determination of the stellar surface, which is necessary to
compute β̂ through the surface derivative appearing in
Eq. (4). To resolve this problem we adopt very high radial
resolution. We use linear interpolation along r of the
pressure (p) to determine the location where the pressure
drops to 1010 dyn=cm2, which is more than 20 orders of
magnitude below the maximum pressure in the neutron star
models. We call that location the surface of the star. We
have experimented with higher order interpolation, too, but
found that linear interpolation exhibits convergence to
within 1% in most cases, and within 3% at most in some
cases, in finding the surface at the adopted radial reso-
lutions. This is not the case with higher order interpolation
because it is oscillatory. This procedure determines the
surface of the star as rsurfðuÞ, which we use to compute
numerically the derivative needed for β̂ in Eq. (4), which
we reexpress as

β̂ ¼ −
�
re
rp

�
2
� dz2

du2

dϖ2

du2

�
re

; ð11Þ

where

z2 ¼ ½rsurfðuÞ�2u2 ð12Þ

TABLE I. Ratio of average energy density to maximum energy
density C1.4

ϵ (for models of rest massM0 ¼ 1.4 M⊙) and effective
adiabatic index Γnuc

eff as measures of EOS stiffness for each EOS in
our study.MTOV

0;max andM
sup
0;max are the rest masses of the TOV limit

and the supramassive limit, respectively, and MTOV
ADM;max and

Msup
ADM;max are the gravitational masses of the TOV limit

and the supramassive limit, respectively. All masses are in units
of M⊙.

EOS C1.4
ϵ Γnuc

eff MTOV
0;max Msup

0;max MTOV
ADM;max Msup

ADM;max

FPS 0.40 2.55 2.10 2.45 1.80 2.12
HFO 0.42 2.66 2.41 2.83 2.06 2.44
NL3 0.43 2.84 3.27 3.88 2.75 3.30
APR 0.44 3.07 2.66 3.09 2.19 2.60
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and

ϖ2 ¼ ½rsurfðuÞ�2ð1 − u2Þ: ð13Þ

We use a three-point one-sided stencil for finite differenc-
ing combined with high radial resolution on the solution
grid to determine the numerical derivatives in Eq. (11). We
determine the necessary grid resolution by calculating β̂ for
benchmark sequences including spheroidal, quasitoroidal,
and near mass-shedding models at increasing resolution
until the results converge to within 1% accuracy in most
cases, but within 3% at most in some cases. A typical
configuration is constructed with 500 grid points covering
the equatorial radius for polytropes, 1250 points covering
the equatorial radius for nuclear EOSs, and 500 grid points
covering the angular direction in all cases. All parameters in
the quadruplet ðϵmax;

rp
re
; Â−1; β̂Þ besides β̂ are specified as

inputs to the Cook code.

B. Solution space of a Γ= 2 polytrope

A polytropic EOS is described by

p ¼ κρΓ0 ; ð14Þ

where p is the pressure, ρ0 is the rest mass energy density, κ
is the polytropic constant, and Γ is the adiabatic index.
When treating polytropes, we employ polytropic units,
such that κ ¼ G ¼ c ¼ 1. For a Γ ¼ 2 polytrope,
Refs. [19,20] showed that there exist four types of
solutions, as we discussed in Sec. II, and focused on the
maximum rest mass models obtainable for each type of
solution. In [20] it was speculated that [16] was unable to
discover the different types of solutions of differentially
rotating stars due to limitations of the Cook code. Here we
demonstrate that the Cook code can reproduce many of the
Γ ¼ 2 results reported in [20]. We find that how one
searches the parameter space is the greatest limitation in
constructing different types of differentially rotating stars.
Given that the code of [20] is spectral, we use the results
reported in that work to gauge the accuracy of the Cook
code.
Unlike the code of [20], which employs surface fitted

grids and also appears to be able to control the parameter β̂,
the Cook code builds rotating stars by specifying the triplet
ðϵmax;

rp
re
; Â−1Þ. Once a configuration has been built, β̂ is

determined by the use of Eq. (11). This makes scanning the
full parameter space challenging and is probably the reason
why we were not able to build sequences of Type D and
lower-β̂ Type B stars.
At a given value of ϵmax, there exists a critical degree of

differential rotation at which the solution space exhibits
equilibrium solutions of all types (A, B, C, and D). Three
out of the four solution types we were able to construct
with the Cook code for ϵmax ¼ 0.12 are shown in Fig. 2.

The solid black curve in the plot is the separatrix in the
solution space that corresponds to the critical degree of
differential rotation and separates the space into four
regions, each corresponding to a solution type (although
here we have only three regions because we could not
generate Type D sequences). Type A solutions are found on
the lower right part of the plot, e.g., with values of
Â−1 ∈ f0.0; 0.4; 0.7g; Type B solutions are found on the
left side of the plot, e.g., with values of Â−1∈f0.4; 0.7g; and
Type C solutions are found along the top part of the plot,
e.g., with values of Â−1 ∈ f0.8; 1.0g.

C. Solution space

It was shown in [19] that for a fixed value of ϵmax, Â
−1 is

a function of rp
re
and β̂ exhibits a saddle point at the value

Â−1 ¼ Â−1
crit, so that the solution to the equations

� ∂Â−1

∂ðrp=reÞ
�

ϵmax

¼ 0 ¼
�∂Â−1

∂β̂
�

ϵmax

ð15Þ

defines the value Â−1
crit. Instead of solving these equations

we use a different method to find the critical degree of
differential rotation. For each rp

re
and at fixed ϵmax, there

exists a minimum value of Â−1 for which equilibrium
solutions exist. We denote this minimum value Â−1

min.

FIG. 2. Mass-shedding parameter β̂ as a function of rp
re
at fixed

maximum energy density ϵmax ¼ 0.12 for a Γ ¼ 2 polytrope at
varying degrees of differential rotation. The solid black line
shows the separatrix at the critical value of differential rotation
Â−1
crit ¼ 0.75904 found in [19], which divides the solution space

into the three regions wherein we are able to build equilibrium
models. The colored lines show the characteristic sequences of
equilibrium models for spheroids (Type A, right of the separa-
trix), quasitoroids (Type B, left of the separatrix), and spheroids/
quasitoroids (Type C, above the separatrix).
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The function Â−1
minðrpreÞ exhibits a maximum, and the

maximum value is Â−1
crit. We effectively solve Eq. (15) by

locating the maximum in the ðrpre ; Â
−1
minÞ plane. We find that

this extremum is a globalmaximum, so that it is possible to
accurately locate the value of Â−1

crit with our method instead
of actually solving Eq. (15) as was done in [20]. The critical
value we find for Γ ¼ 2 polytropes at ϵmax ¼ 0.12 is
Â−1
crit ¼ 0.7612, which is only ∼0.284% greater than the

critical value of Â−1
crit ¼ 0.75904 found in [20]. To more

accurately determine the value of Â−1
crit we slowly lower the

value of Â−1 until we reach a value that exhibits solutions of
all types (except for Type D, which we cannot build), which
are continuously joined (the defining feature of the sepa-
ratrix). This procedure allows for the determination of Â−1

crit
to better than 1% accuracy. In Table II we show the value of
Â−1
crit found using our method for polytropes across several

polytropic indices and values of the maximum energy
density. Values of Â−1

crit at the same maximum energy
densities and for the same polytropic indices can be found
in Table A1 in [21]. All of the values of Â−1

crit presented in
Table II agree with those in Table A1 in [21] to within 1%.
Note that we also list the logarithm of the specific enthalpy
Hmax ≡ logðhmaxÞ, where

h ¼ ϵþ p
ρ0

; ð16Þ

to offer easier comparison to the results of [21].
In Table III we show properties of the maximum rest

mass models obtained for a Γ ¼ 2 polytrope. For each
quantity also computed in [20], we show the percent error
between our models and the corresponding ones in [20],
computed as

δx≡ jx − xref j
xref

× 100; ð17Þ

where x represents the values obtained using the Cook code
and xref represents the values presented in [20]. Given that
the code of [20] is spectral, δx is an estimate of the error in
our calculations for the resolution we adopt. Note that we
also show δx for the values of Â−1

crit in Table II.
The highest fractional differences are seen in the Type B

models, going as high as Oð10%Þ in the rest mass and
angular momentum for the most massive configuration and
less than 10% in other quantities; in all other cases the
errors are subpercent. We suspect that the relatively high

TABLE III. Listed are the degree of differential rotation Â−1, ratio of polar to equatorial radius rp
re
, and maximum energy density ϵmax

for the maximum rest mass models of a Γ ¼ 2 polytrope. Also shown for each model are the ratio of central to equatorial angular
velocity Ωc

Ωe
, the rest mass M0, the ratio of kinetic to potential energy T

jWj, angular momentum J, and the ratio of ADM mass to

circumferential radius M
Rc
. For each quantity of interest we also report the percent error [δðÞ] as defined in Eq. (17).

Type Â−1 rp
re

ϵmax
Ωc
Ωe

δðΩc
Ωe
Þ M0 δM0

T
jWj δð T

jWjÞ J δJ M
Rc

δðMRc
Þ

A 0.0 0.585 0.350 1.000 0.000 0.207 0.029 0.083 0.240 0.020 0.843 0.174 0.155
0.1 0.580 0.349 1.027 0.000 0.208 0.037 0.086 0.467 0.021 1.597 0.174 0.040
0.2 0.565 0.347 1.108 0.000 0.211 0.037 0.093 0.432 0.022 0.677 0.174 0.275
0.3 0.541 0.343 1.240 0.000 0.216 0.055 0.104 0.192 0.025 1.215 0.176 0.245
0.4 0.511 0.335 1.422 0.000 0.224 0.011 0.120 0.332 0.028 1.720 0.178 0.231
0.5 0.473 0.323 1.657 0.000 0.236 0.183 0.142 0.070 0.034 0.176 0.181 0.121
0.6 0.427 0.304 1.959 0.000 0.254 0.079 0.171 0.117 0.043 0.327 0.188 0.181
0.7 0.352 0.306 2.518 0.439 0.294 0.396 0.222 0.090 0.062 0.689 0.221 3.107

B 0.4 0.035 0.089 1.774 0.616 0.682 5.409 0.331 1.488 0.381 9.716 0.280 3.704
0.5 0.114 0.084 1.976 1.496 0.586 8.294 0.324 3.284 0.289 15.000 0.259 5.285
0.6 0.144 0.081 2.196 1.215 0.516 9.632 0.313 5.438 0.227 18.051 0.242 9.009
0.7 0.164 0.081 2.458 0.614 0.463 9.216 0.302 6.790 0.184 18.222 0.231 14.925

C 0.8 0.005 0.097 2.997 0.067 0.463 0.041 0.294 0.102 0.176 0.114 0.250 0.160
0.9 0.002 0.100 3.388 0.177 0.434 0.099 0.285 0.140 0.152 0.393 0.246 0.408
1.0 0.005 0.103 3.809 0.105 0.409 0.120 0.277 0.036 0.134 0.149 0.241 0.207
1.5 0.010 0.121 6.431 0.171 0.326 0.031 0.238 0.042 0.079 0.894 0.228 0.220

TABLE II. Critical degree of differential rotation Â−1
crit at several

values of the maximum energy density ϵmax [and log of specific
enthalpy Hmax ≡ logðhmaxÞ] in polytropic units for polytropes of
four different polytropic indices Γ. Also shown is the percent
error [calculated using (17)] for each value of Â−1

crit compared with
those of Table A1 in [21].

Γ ϵmax Hmax Â−1
crit δðÂ−1

critÞ
1.8 0.023 0.1 1.016 0.294
2.0 0.123 0.2 0.758 0.132
2.5 0.402 0.3 0.480 0.629
3.0 0.667 0.4 0.340 0.295
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residuals in some of the Type B models we built are due to
the fact that the solutions presented in [20] are near the
mass-shedding limit (highly pinched and quasitoroidal at
low β̂), whereas the corresponding models presented here
belong to the part of the Type B sequence at higher values
of β̂. Close inspection of the Type B sequences in [20]
shows that they are not always single valued in rp

re
, so that

without the full solution space coordinates [i.e., the full
quadruplet ðϵmax;

rp
re
; Â−1; β̂Þ] two distinct models may be

misidentified as the same equilibrium solution. Because
only the triplet ðϵmax;

rp
re
; Â−1Þ is presented in [20] for these

maximum mass models, we cannot be sure that we are
comparing the same two models. However, the confidence
in our solutions is supported by the fact that the majority of
other cases show subpercent residuals in all of the model
properties.

The highest mass models built in [20,21] were of Type B
with the lowest value of Â−1 among those considered. We
note that the maximum rest mass Type D models presented
in [20,21] exceed neither the maximum rest mass Type B
models nor TypeCmodels in the rest mass in all cases where
they could be built. We anticipate that this result holds true
for realistic EOSs, too. Although we were unable to
construct a suitable sequence of Type D models with the
Cook code, Type D models are likely unphysical as pointed
out in [21].Despite the limitations of nonspectral codes, here
we showed that the Cook code can generate Type A, B,
and C models, and closely match the maximum-mass
configurations for aΓ ¼ 2 polytrope obtainedwith a spectral
code.This result gives us confidence that themaximum-mass
modelswe report for realistic EOSs in the next section are the
true maximum-mass Type A and Cmodes and are very close
to the true maximum-mass Type B models.

FIG. 3. Solution space for the FPS, HFO, NL3, and APR EOSs. These plots correspond to fixed energy densities, the values of which,
along with Â−1

crit, are displayed in Table IV for each EOS.
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V. RESULTS WITH REALISTIC EQUATIONS
OF STATE

In this section we discuss the solution space of differ-
entially rotating, relativistic stars with realistic equations of
state and the maximum rest mass they can support.
The solution space depends on the value of ϵmax. To

reveal as large a fraction of the space of solutions as
possible, for each EOS we obtain the critical degree of
differential rotation Â−1

crit for different values of ϵmax. Then
we choose the values of ϵmax for which 0.7 ≤ Â−1

crit ≤ 0.8.
With this choice of ϵmax, three out of four types of
sequences we are able to construct are present for each
of the EOSs considered. Moreover, models with Â−1 ∈
½0.0; 0.4; 0.7� belong to sequences of Type A and B, and

models with Â−1 ∈ ½0.8; 1.0� belong to sequences of
Type C. As in the Γ ¼ 2 polytrope in the previous section,
to scan the parameter space we fix the value of ϵmax, modify
the parameters ðÂ−1; rpreÞ to construct stellar models and

compute β̂. Our results for the solution space of realistic
EOSs with differential rotation at fixed ϵmax are shown in
Fig. 3. The values of ϵmax and Â−1

crit for each EOS that
correspond to Fig. 3 are given in Table IV. Figure 3
demonstrates that the existence of different types of differ-
entially rotating stars are not a property of polytropic EOSs
only. The different types exist for realistic EOSs, too.
In Fig. 4, we show meridional contours of the energy

density ϵ normalized to ϵmax for different types of differ-
entially rotating stars constructed with the HFO EOS. The
top left and right panels of Fig. 4 depict the maximum rest
mass Type A models for Â−1 ¼ 0.0 (uniform rotation) and
Â−1 ¼ 0.4 (largest rest mass Type A model), respectively.
The bottom left and bottom right panels depict the largest
rest mass Type B and Type C models, respectively.
Although we were not able to build complete sequences

of Type D equilibria, we were able to construct indi-
vidual candidate configurations near the mass-shedding
limit, and for values of Â−1 > Â−1

crit, all of which are
properties of Type D models. For example, one candidate
Type D configuration for the HFO EOS corresponds to

TABLE IV. Maximum energy density ϵmax and corresponding
critical degree of differential rotation Â−1

crit used in generating the
solution spaces shown in Fig. 3 for realistic EOSs.

EOS ϵmax

1015 g=cm3 Â−1
crit

FPS 0.77 0.7161
HFO 0.6 0.753
NL3 0.35 0.717
APR 0.7 0.7376

FIG. 4. Examples of meridional energy density contours for the HFO EOS. Top left: The maximum rest mass uniformly rotating
(Â−1 ¼ 0.0). Top right: The maximum rest mass Type A model. Bottom left: The maximum rest mass Type B model. Bottom right: The
maximum rest mass Type C model.
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ϵmax ¼ 6 × 1014 g=cm3, rp
re
¼ 0.375, Â−1 ¼ 0.757, and

β̂ ¼ 0.064. This candidate Type D model has M0

MTOV
0;max

¼
0.574 and M0

Msup
0;max

¼ 0.464, meaning that they are less

massive than the maximum rest mass TOV model of
HFO. We were able to construct this model by finding a
model close to mass shedding along the separatrix for the
panel corresponding to HFO in Fig. 3 (i.e., using the values
of ϵmax and Â−1 from Table VI for HFO). Once the closest
model to mass shedding for the separatrix was built, we
decreased the value of rp

re
while increasing the value of Â−1

and searched for models near mass shedding.

A. Maximum rest mass

We search for the maximum rest mass models for Â−1 ∈
½0.0; 1.0� in increments of 0.1, as well as for Â−1 ¼ 1.5. We
also build the benchmark TOV limit model (MTOV

0;max), and
the supramassive limit model (Msup

0;max) against which we
compare the increase in rest mass when considering
differential rotation. For these same models, we also
consider the increase in the gravitational mass compared
to the gravitational mass of the TOV limit (MTOV

ADM;max) and
the supramassive limit (Msup

ADM;max). As a reminder, the
values for MTOV

0;max, M
sup
0;max, M

TOV
ADM;max, and Msup

ADM;max for
each EOS in our sample are shown in Table I. To find the
maximum rest mass Type A and C models presented here

we built sequences of constant Â−1 and ϵmax while varying
rp
re
from 1.0 to 0.01 and found the model with the largest rest

mass. To find the maximum rest mass Type B models
presented here we first built models at Â−1 ¼ 1.5 and rp

re
¼

0.01 (Type C models), then decreased Â−1 to the target
value, and finally increased rp

re
to as high as possible. For

each model type we then change the value of ϵmax while
holding Â−1 fixed and repeat the aforementioned scans,
resulting in a set of maximum rest mass models for each
value of ϵmax at a given value of Â−1. The model with the
largest rest mass among these is taken to be the maximum
rest mass model for a given value of Â−1 and of a given type
(A, B, or C). We note that since we are not able to build
complete Â−1 − constant sequences for Type B stars, the
values we report for the Type B stars correspond to the
maximum rest mass configurations found in our search.
Properties of the maximum rest mass models are shown

in Tables V–VIII. We also list whether a given maximum
rest mass model is supramassive, hypermassive, or over-
massive. We remind the reader that supramassive stars are
uniformly rotating stars that can support more mass than
the TOV limit. Hypermassive stars are those with masses
that exceed the maximum mass that can be supported by
supramassive stars (the supramassive limit). As such,
hypermassive stars can only exist in cases with differential
rotation. Overmassive stars are those with masses exceed-
ing twice the TOV limit. We find that for the four EOSs

TABLE V. Maximum rest mass models for the FPS EOS. Shown are the values of the degree of differential rotation Â−1, the maximum
energy density ϵmax in units of 1015 g

cm3, the ratio of polar to equatorial radius rp
re
, the mass-shedding parameter β̂, the circumferential

radius Rc in units of km, the ratio of kinetic to gravitational potential energy T
jWj, the ratio of central to equatorial angular velocity

Ωc
Ωe
, the

dimensionless spin J
M2, the compactness C ¼ MADM

Rc
, the rest massM0, the ratio of rest mass to the TOV limit rest massMTOV

0;max, the ratio of

rest mass to the supramassive limit rest mass Msup
0;max, and the ADM mass MADM along with the ratio of ADM mass to TOV limit ADM

mass MTOV
ADM;max and the supramassive limit ADM mass Msup

ADM;max. Also shown is the classification of each star as supramassive (SUP),
hypermassive (HYP), or overmassive (OBE).

Type Â−1 ϵmax
rp
re

β̂ Rc
T
jWj

Ωc
Ωe

J
M2 C M0

M⊙

M0

MTOV
0;max

M0

Msup
0;max

MADM
M⊙

MADM
MTOV

ADM;max

MADM
Msup

ADM;max

CLASS

A 0.0 2.92 0.568 0.060 12.44 0.117 1.000 0.658 0.170 2.452 1.167 1.000 2.120 1.178 1.000 SUP
0.1 2.92 0.557 0.097 12.50 0.123 1.049 0.674 0.171 2.478 1.179 1.010 2.143 1.190 1.011 HYP
0.2 2.90 0.526 0.202 12.69 0.141 1.194 0.719 0.174 2.557 1.217 1.043 2.213 1.230 1.044 HYP
0.3 2.87 0.470 0.305 13.05 0.173 1.442 0.786 0.180 2.713 1.291 1.106 2.350 1.305 1.108 HYP
0.4 2.47 0.387 0.480 13.73 0.226 1.839 0.874 0.193 3.059 1.455 1.247 2.648 1.471 1.249 HYP
0.5 1.34 0.361 0.547 16.43 0.241 1.888 0.923 0.159 2.983 1.419 1.217 2.619 1.455 1.236 HYP

B 0.4 0.94 0.010 1.000 20.65 0.327 1.988 1.026 0.217 5.238 2.492 2.136 4.490 2.494 2.118 OBE
0.5 0.98 0.010 1.000 19.10 0.317 2.335 1.009 0.212 4.699 2.235 1.916 4.054 2.252 1.912 OBE

C 0.6 1.01 0.010 1.000 18.010 0.306 2.705 0.991 0.207 4.297 2.044 1.752 3.728 2.071 1.758 OBE
0.7 1.05 0.010 1.000 17.040 0.295 3.132 0.970 0.203 3.983 1.895 1.624 3.467 1.926 1.636 HYP
0.8 1.09 0.010 1.000 16.230 0.284 3.598 0.949 0.201 3.732 1.775 1.522 3.257 1.809 1.536 HYP
0.9 1.14 0.010 1.000 15.490 0.273 4.127 0.926 0.199 3.526 1.678 1.438 3.083 1.712 1.454 HYP
1.0 1.19 0.010 1.000 14.870 0.262 4.699 0.902 0.198 3.356 1.597 1.369 2.937 1.632 1.386 HYP
1.5 1.47 0.010 0.990 12.720 0.210 8.329 0.788 0.195 2.828 1.345 1.153 2.478 1.377 1.169 HYP
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considered here, the maximum rest mass model is the
configuration with Â−1 ¼ 0.4 (the lowest value of Â−1 for
which Type B models exist that we considered) and is
always an overmassive Type B model. For polytropes,
Ref. [20] showed that Type B models at the lowest possible
value of Â−1 are the most massive ones, too. As shown in
Tables V–VIII, depending on the EOS overmassive con-
figurations arise not only for Type B, but also for Type C
stars. Our search results suggest that OMNSs are, in
general, more common for softer EOSs, which is consistent
with our finding that softer EOSs lead to larger increases in
the rest mass.
We now compare our results for the APR and FPS EOSs

with those of [17]. In [17] models of differentially rotating
stars were constructed that exceeded the TOV limit rest
mass by at most 31% for APR and 46% for FPS. Given that

the maximum rest mass models for APR and FPS reported
in [17] correspond to Â−1 ¼ 0.3 and Â−1 ¼ 0.5, respec-
tively, it suggests that these models were of Type A.
However, maximum rest mass Type B models (quasitor-
oidal models at a low degree of differential rotation) are in
all cases more massive than maximum rest mass Type A
and C models. When considering Type B models, we find
that the maximum rest mass can increase by as much as
approximately 100% and 150% in the cases of APR and
FPS, respectively. The largest increase in rest mass for NL3
and HFO is approximately 120% and 130%, respectively.
These maximum rest mass configurations are all OMNSs.
We emphasize the fact that generally Type B models tend to
be the most massive and that they show the largest increase
in rest mass when compared to the TOV limit, as depicted
in Fig. 5.

TABLE VI. The columns list the same quantities as in Table V but for the HFO EOS.

Type Â−1 ϵmax
rp
re

β̂ Rc
T
jWj

Ωc
Ωe

J
M2 C M0

M⊙

M0

MTOV
0;max

M0

Msup
0;max

MADM
M⊙

MADM
MTOV

ADM;max

MADM
Msup

ADM;max

CLASS

A 0.0 2.32 0.564 0.078 13.710 0.125 1.000 0.677 0.178 2.829 1.174 1.000 2.440 1.187 1.000 SUP
0.1 2.32 0.550 0.089 13.810 0.132 1.054 0.695 0.179 2.863 1.188 1.012 2.470 1.202 1.012 HYP
0.2 2.30 0.515 0.207 14.040 0.153 1.214 0.746 0.183 2.972 1.234 1.051 2.567 1.249 1.052 HYP
0.3 2.24 0.450 0.334 14.470 0.192 1.496 0.820 0.191 3.199 1.328 1.131 2.767 1.346 1.134 HYP
0.4 1.54 0.376 0.565 15.690 0.245 1.869 0.900 0.200 3.624 1.504 1.281 3.134 1.525 1.284 HYP
0.5 0.99 0.360 0.544 18.320 0.242 1.841 0.935 0.154 3.177 1.319 1.123 2.817 1.370 1.154 HYP

B 0.4 0.80 0.011 0.999 21.960 0.327 2.025 1.020 0.221 5.642 2.342 1.994 4.854 2.362 1.989 OBE
0.5 0.83 0.010 1.000 20.380 0.316 2.378 1.002 0.215 5.070 2.105 1.792 4.391 2.136 1.800 OBE

C 0.6 0.86 0.010 1.000 19.150 0.305 2.772 0.983 0.211 4.644 1.928 1.642 4.041 1.966 1.656 HYP
0.7 0.90 0.010 1.000 18.060 0.293 3.231 0.960 0.208 4.312 1.790 1.524 3.763 1.831 1.542 HYP
0.8 0.94 0.010 1.000 17.160 0.282 3.734 0.937 0.206 4.048 1.680 1.431 3.539 1.722 1.450 HYP
0.9 0.99 0.010 1.000 16.330 0.270 4.314 0.911 0.205 3.833 1.591 1.355 3.355 1.632 1.375 HYP
1.0 1.03 0.010 1.000 15.710 0.258 4.913 0.887 0.204 3.657 1.518 1.293 3.204 1.559 1.313 HYP
1.5 1.29 0.010 1.000 13.440 0.203 8.863 0.769 0.203 3.120 1.295 1.103 2.732 1.329 1.120 HYP

TABLE VII. The columns list the same quantities as in Table V but for the NL3 EOS.

Type Â−1 ϵmax
rp
re

β̂ Rc
T
jWj

Ωc
Ωe

J
M2 C M0

M⊙

M0

MTOV
0;max

M0

Msup
0;max

MADM
M⊙

MADM
MTOV

ADM;max

MADM
Msup

ADM;max

CLASS

A 0.0 1.36 0.559 0.064 17.490 0.136 1.000 0.704 0.189 3.881 1.185 1.000 3.301 1.202 1.000 SUP
0.1 1.36 0.540 0.080 17.690 0.145 1.062 0.726 0.190 3.940 1.203 1.015 3.353 1.221 1.016 HYP
0.2 1.34 0.498 0.226 18.020 0.172 1.248 0.784 0.196 4.134 1.263 1.065 3.524 1.283 1.067 HYP
0.3 1.24 0.411 0.395 18.780 0.225 1.603 0.872 0.209 4.598 1.405 1.185 3.925 1.429 1.189 HYP
0.4 0.72 0.365 0.502 21.920 0.248 1.736 0.921 0.182 4.609 1.408 1.188 3.984 1.450 1.207 HYP
0.5 0.54 0.359 0.521 23.820 0.242 1.754 0.957 0.141 3.777 1.154 0.973 3.367 1.226 1.020 HYP

B 0.4 0.50 0.010 1.000 27.180 0.326 2.050 1.016 0.224 7.114 2.173 1.833 6.082 2.214 1.842 OBE
0.5 0.52 0.010 1.000 25.180 0.315 2.419 0.996 0.219 6.403 1.956 1.650 5.508 2.005 1.668 HYP

C 0.6 0.54 0.010 1.000 23.630 0.303 2.833 0.975 0.215 5.875 1.795 1.514 5.075 1.847 1.537 HYP
0.7 0.57 0.010 1.000 22.140 0.290 3.342 0.948 0.214 5.468 1.670 1.409 4.731 1.722 1.433 HYP
0.8 0.60 0.010 1.000 20.960 0.278 3.901 0.922 0.213 5.147 1.572 1.326 4.458 1.623 1.350 HYP
0.9 0.63 0.010 1.000 19.980 0.265 4.515 0.895 0.212 4.889 1.493 1.260 4.237 1.542 1.283 HYP
1.0 0.66 0.010 1.000 19.170 0.252 5.184 0.869 0.212 4.679 1.429 1.206 4.056 1.477 1.229 HYP
1.5 0.83 0.010 1.000 16.500 0.193 9.511 0.746 0.213 4.059 1.240 1.046 3.509 1.277 1.063 HYP
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We find that among Type A models, those with larger
values of Â−1 tend to have a larger rest mass. However, the
relationship between Â−1 and M0 for Type A models is not
monotonic. There appears to be a value of Â−1 above which
the maximum rest mass begins to decrease as seen from the
curves in the lower left corner of Fig. 5. This feature of the
solution space was also observed in [21] for a Γ ¼ 2.5
polytrope, suggesting that it may arise for stiffer EOSs. We
note that this feature is observed for all EOSs we study
here, which have effective polytropic exponents of
Γnuc
eff ≳ 2.5. For Type A the largest rest mass models were

found for values of Â−1 of 0.35 for both APR and NL3, 0.4
for HFO, and 0.45 for FPS, suggesting that the value of Â−1

at which the maximum rest mass begins to decrease is
smaller for stiffer EOSs (note that we also built maximum
rest mass Type A models in increments of Â−1 ¼ 0.05 for
finer resolution in Fig. 5).
For Type B and C models, we observe the same

monotonic behavior between the increase in rest mass
relative to the TOV limit and Â−1 as seen for stiffer EOSs in
[21]; i.e., the maximum rest mass increases with decreasing
Â−1. We also find the same general ordering of EOS by
stiffness whereby softer EOSs (FPS and HFO) tend to
exhibit larger increases of the rest mass compared to the
TOV limit (see Fig. 5).
It is noteworthy that the largest increase in rest mass is

seen in the FPS EOS, the softest EOS in our set. In [21] the
maximal increase in rest mass was observed for a moder-
ately stiff EOS, which was neither the softest nor the stiffest
considered. There it was argued that, generally, the increase
in rest mass compared to the TOV limit due to differential
rotation decreases with increasing stiffness. We observe the
same trend with realistic EOSs for Type B and C models,
which indicates that the largest increase in rest mass due to
differential rotation is possible for quasitoroidal configu-
rations described by softer EOSs. For the polytropes

considered in [21], it was found that stiffer EOSs show
larger increases in the rest mass for Type A models of low
Â−1 (0.0 to 0.4) We find a similar general trend for the Type
A models at low Â−1 (0.0 to 0.3) presented here. However,
an “anomaly” in this trend is seen in the case of the APR
EOS. For instance, the low Â−1 (0.0 to 0.3) maximum rest
mass models for the FPS EOS (the softest considered here)
show a very similar increase in the rest mass as those of
APR (the stiffest EOS considered here), as can be seen from

TABLE VIII. The columns list the same quantities as in Table V but for the APR EOS.

Type Â−1 ϵmax
rp
re

β̂ Rc
T
jWj

Ωc
Ωe

J
M2 C M0

M⊙

M0

MTOV
0;max

M0

Msup
0;max

MADM
M⊙

MADM
MTOV

ADM;max

MADM
Msup

ADM;max

CLASS

A 0.0 2.42 0.564 0.059 12.900 0.137 1.000 0.709 0.201 3.091 1.163 1.000 2.599 1.187 1.000 SUP
0.1 2.43 0.546 0.121 12.980 0.148 1.074 0.735 0.204 3.141 1.182 1.016 2.644 1.208 1.017 HYP
0.2 2.41 0.490 0.248 13.270 0.181 1.298 0.801 0.210 3.306 1.244 1.070 2.793 1.276 1.075 HYP
0.3 2.00 0.414 0.508 13.700 0.236 1.703 0.880 0.226 3.649 1.373 1.181 3.095 1.414 1.191 HYP
0.4 1.27 0.368 0.510 16.360 0.247 1.769 0.912 0.186 3.547 1.335 1.148 3.047 1.392 1.172 HYP
0.5 0.99 0.377 0.521 17.520 0.231 1.772 0.925 0.144 2.852 1.073 0.923 2.525 1.154 0.972 HYP

B 0.4 0.86 0.011 1.000 20.900 0.327 2.025 1.020 0.221 5.410 2.036 1.751 4.621 2.111 1.778 OBE
0.5 0.91 0.010 1.000 19.090 0.315 2.432 0.996 0.219 4.875 1.835 1.578 4.182 1.910 1.609 HYP

C 0.6 0.95 0.010 1.000 17.830 0.304 2.869 0.973 0.216 4.476 1.685 1.448 3.853 1.760 1.483 HYP
0.7 0.99 0.010 1.000 16.830 0.291 3.353 0.949 0.214 4.168 1.569 1.349 3.597 1.643 1.384 HYP
0.8 1.04 0.010 1.000 15.920 0.279 3.918 0.922 0.213 3.926 1.477 1.270 3.391 1.549 1.305 HYP
0.9 1.10 0.010 1.000 15.110 0.265 4.572 0.894 0.213 3.732 1.405 1.208 3.223 1.472 1.240 HYP
1.0 1.16 0.010 1.000 14.440 0.252 5.285 0.866 0.214 3.576 1.346 1.157 3.087 1.410 1.188 HYP
1.5 1.48 0.010 1.000 12.340 0.190 9.915 0.739 0.217 3.124 1.176 1.011 2.683 1.226 1.032 HYP

FIG. 5. Ratio of rest mass M0 to maximum TOV rest mass
MTOV

0;max as a function of degree of differential rotation Â
−1 for each

solution type and EOS. The solid lines show the relative increase
for Type A models, the dash-dotted lines show the relative
increase for Type B models, and the dashed lines show the
relative increase for Type C models. The red, blue, green, and
black lines correspond to the FPS, HFO, NL3, and APR EOSs,
respectively.
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the low Â−1 part of the leftmost curves of Fig. 5 and the
corresponding M0

MTOV
0;max

entries of Tables Vand VIII for Type A

models of low Â−1. A possible explanation for the break in
the trend is that the authors of [21] consider a large range of
adiabatic indices 1.8 ≤ Γ ≤ 3.0, whereas the effective
adiabatic indices of the EOSs in our sample cover a smaller
range. On the other hand, assigning one number to stiffness
in the case of realistic EOSs may not be entirely appropriate
as the stiffness defined through stellar models may depend
on the choice of mass. For example, the TOV mass-radius
curves of the HFO and APR EOSs intersect near their
corresponding TOV limits (see Appendix C). In this work
we defined stiffness based on the maximum rest mass TOV
configurations and on TOV configurations with a gravita-
tional mass of 1.4 M⊙. It is also the case that Type A
configurations of low Â−1 mostly sample the value of ϵmax
from higher density regions of the EOSs which may be of
comparable stiffness. This is supported by the fact that in all
cases considered here, the values of ϵmax for the Type A
models of low Â−1 are larger than for the Type B and C
models. The anomaly we mentioned above would not be
observed for EOSs of constant stiffness as defined by the
effective polytropic exponent, as in the case of the poly-
tropes of the fixed polytropic index studied in [21].
A systematic study of the effect may employ realistic
EOSs as done here or a piecewise polytropic EOS such as
those presented in [29–31], where the polytropic index has
a dependence on the energy density. However, such a study
goes beyond the scope of the current work.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have presented results for the solution
space of general relativistic differentially rotating neutron
stars with realistic EOSs. We found that the different types
of differentially rotating equilibrium solutions that were
previously discovered for polytropes [20,21] with the KEH
rotation law [18] exist for realistic neutron star equations of
state, too. Moreover, we demonstrated that codes based on
the KEH scheme [18], such as the Cook code [22,28], can
build these different types of stars, although we were not
able to construct Type D sequences of constant degree of
differential rotation and constant maximum energy density
or complete Type B sequences. The Cook code is capable
of building most of the extremely massive quasitoroidal,
relativistic configurations using realistic EOSs, but finds it
challenging to converge on solutions that are both highly
pinched and quasitoroidal. Note that Type D stars are not
likely to be physical [20,21].
We presented the maximum rest mass configurations

found in our search of the solution space for three of the
four types of solutions we were able to construct. As in
[20,21] we find configurations that can support a mass
more than 2 times the TOV limit. We called these
configurations overmassive. For the equations of state

considered here we find that overmassive stars can support
up to 150% more rest mass than the TOV limit mass with
the same equation of state. This number is a lower limit to
the maximum rest mass that can be supported by differ-
ential rotation. We have classified the maximum mass
configurations we found as supramassive, hypermassive, or
overmassive, and we found that depending on the equation
of state overmassive stars can be Type B or Type C.
Differentially rotating hypermassive neutron stars can

form following binary neutron star mergers. Clearly, follow-
ing such a merger, the remnant configuration cannot have
mass more than 2 times the TOV limit mass. Thus, the
overmassive configurations we found may never appear in
nature, and if they do, theywould have to form through some
more exotic channel. Moreover, it is well known that in
binary neutron star mergers there exists a threshold value for
the binary total mass above which a black hole forms
promptly after merger [32–37]. This value for the threshold
mass (Mthres) depends on the equation of state, and for
quasicircular, irrotational binaries it may be up to ∼70%
greater than the TOV limit mass [32]. It may also be that for
irrotational binaries Mthres ∈ ½2.75 − 3.25�M⊙ [38].
Therefore, it may be difficult to form even extreme hyper-
massive neutron stars in binary neutron star mergers. An
exception may be dynamical capture mergers such as those
studied recently in [39–46], where the total angular momen-
tum at merger can be higher than those in quasicircular
binaries, which can provide additional centrifugal support.
Regardless of the precise value of Mthres the question

about what type of differentially rotating star can form
following a neutron star merger remains open. This is
interesting because less dramatic, but significant, increases
to the maximum supportable mass can arise for degrees of
differential rotation different from those corresponding to
the more extreme cases. Such configurations may be
relevant for binary neutron star mergers and may have
implications for the stability and lifetime of their hyper-
massive neutron star remnants.
Another important question is how well the KEH rotation

law describes the differential rotation profile of a hyper-
massive neutron star formed in a binary neutron star merger
and whether the different types of stellar solutions are unique
to the KEH law. The rotational properties of hypermassive
neutron stars formed in quasicircular binary neutron star
mergers have been studied recently in a number of works
[47–51], and they appear to deviate from that of the KEH
rotation law. Nevertheless, the rotation profiles reported in
[41,42] for eccentric neutron star mergers are different and
seem to be within the realm of the KEH rotation law.
Interestingly, the remnants found in [41,42] were also
quasitoroidal. In a recent work a new differential rotation
law was introduced [52] that captures the rotational profile of
some binary neutron star merger remnants. An interesting
follow-up to our work is to adopt this new rotation law and
investigate themaximum possiblemass that can be supported
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for different realistic EOSs and whether different types (or
even more types) of differentially rotating stars arise.
Finally, the issue of dynamical stability of the different

types of differentially rotating stars is important to
address. Moreover, are overmassive stars dynamically
stable? Many of the equilibrium configurations we built
have T=jWj > 0.25, and hence are unstable to a dynamical
bar mode instability (see [7] and references therein). Some
of the configurations we built have dimensionless spin
parameter J=M2 > 1, which does not necessarily imply
collapse on a secular timescale, as the star can be unstable
to nonaxisymmetric modes and collapse through fragmen-
tation (see [7,53,54] for a review). Nonaxisymmetric
instabilities in differentially rotating stars arise even for
low values of T=jWj [55–63] and in binary neutron star
merger remnants [41–43,64,65]. If a certain type of
solution is dynamically unstable to collapse, then it cannot
arise in nature, despite the fact that the equilibrium
configuration can support an amount of mass much larger
than the TOV limit. Unlike the case of uniformly rotating
stars the turning point theorem [66–68] does not apply to
differentially rotating stars (although it seems to apply
approximately for Type A configurations [69,70]); there-
fore dynamical simulations in full general relativity offer a
straightforward avenue to study the dynamical stability of
these configurations. The solutions we have constructed
can serve as initial data for such dynamical simulations. We
will address all of these open questions in future studies.
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APPENDIX A: CALCULATION OF POLYTROPIC
REPRESENTATION OF REALISTIC EQUATIONS

OF STATE

When building polytropic stellar configurations in geom-
etrized units, the polytropic constant κ defines a funda-
mental length scale (κn=2), which scales out of the problem.
To calculate κnuceff we first build the maximum rest mass
TOV models for polytropes with Γnuc

eff as defined in Eq. (9).
Next, we calculate the polytropic constant in geometrized
units κnuceff;geo by matching the maximum TOVADM masses
of the nuclear and polytropic EOSs,

κnuceff;geo ¼
�
MTOV;nuc

ADM;max

MTOV;poly
ADM;max

� 2
nnuc
eff
: ðA1Þ

The quantity in the parentheses of Eq. (A1) is then
converted to a unit of length (specifically, we work in cgs
units). We then replace the appropriate factors of G and c
needed to express our physical quantities in cgs units,

κnuceff ¼ G
1
n

c
2
n−2

κnuceff;geo: ðA2Þ

Finally, we write the polytropic representation of the
nuclear EOSs we considered as

P ¼ κnuceff ρ
Γnuc
eff

0 ðA3Þ
and

ϵ ¼ ρ0c2 þ
P

ðΓnuc
eff − 1Þ ; ðA4Þ

where Γnuc
eff is the effective adiabatic index as calculated in

Sec. III.

APPENDIX B: Cϵ AS A MEASURE OF EOS
STIFFNESS

Here we discuss how Cϵ as defined through Eqs. (7) and
(8) varies with rest mass and how that may change the
ranking of EOS stiffness. In Fig. 6, we present the ratio of
average energy density to maximum energy density (Cϵ)
plotted against the rest mass for the TOV sequence of each
EOS we treat in this paper. As can be seen from Fig. 6, the
value of Cϵ changes as a function of the rest mass M0, so
that depending on the choice of M0 the EOS ranking by
stiffness based solely on Cϵ may change. However, since

FIG. 6. Ratio of average energy density to maximum energy
density Cϵ as a function of rest mass along the TOV sequence for
each EOS in our study.
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the stiffness comparison is at fixed rest mass, the EOS
ranking by stiffness remains unchanged (and is the one we
list in Table I), if we cap the range of masses at the
maximum mass of the FPS EOS.
Nevertheless, Cϵ should not be adopted as the definitive

measure of EOS stiffness for realistic EOSs. This is why we
also considered Γnuc

eff as calculated in Sec. III. By both
measures of the stiffness, the ranking of EOS by stiffness is
consistent with the one presented in Table I.

APPENDIX C: MASS-RADIUS CURVES FOR
REALISTIC EQUATIONS OF STATE

Here we present the mass-radius relation of the nuclear
equations of state used in this work. As can be seen from
Fig. 7, all EOSs but the FPS EOS respect the upper bound
set on NS masses from observations of the most massive
pulsar to date, PSR J1614-2230 [72,73]. Despite the FPS
EOS having a maximum mass that falls below this upper
bound we include it in this study to offer a comparison to
the results of [17]. It is also useful to consider the FPS EOS
as an example of a relatively soft nuclear EOS. We find that
the maximum increase in rest mass when compared to the
TOV mass for the FPS EOS is the highest (150%) in the set
of EOS we considered (see Fig. 5), which is consistent with
our finding that softer EOSs result in larger increases of the
rest mass relative to the TOV mass.
All EOSs but the NL3 EOS respect the 90% confidence

upper bound on NS radii set by the tidal deformability of
NSs as inferred from GW170817 [12,74,75]. The NL3
EOS may also have too high a maximum mass [8–10,76].
Despite the fact that using the NL3 EOS results in stars with
masses and radii above these bounds, we include it in this
study to investigate the solution space of differentially
rotating stars and maximum rest mass solutions for an EOS

with a relatively large TOV mass. It is also useful to
consider the NL3 EOS to investigate the solution space
of differentially rotating stars for a relatively stiff EOS.
We find that the maximum increase in rest mass when
compared to the TOV mass for the NL3 EOS is among the
lowest (120%) in the set of EOSs we considered, which is
consistent with our finding that stiffer EOSs result in
smaller increases of the rest mass relative to the TOV mass.
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