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We consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of
ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with
both attractive and repulsive interactions, and solve the Tolman-Oppenheimer-Volkoff equations to find
equilibrium sequences and maximum masses of ADM stars. Gravitational wave searches can utilize our
solutions to model exotic compact objects (ECOs). Our results for attractive interactions differ substantially
from those in the literature, where fermionic ADM with attractive self-interactions was employed to
destabilize neutron stars more effectively than noninteracting fermionic ADM. By contrast, we argue that
fermionic ADM with an attractive force is no more effective in destabilizing neutron stars than fermionic
ADM with no self-interactions.
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I. INTRODUCTION

Work on hidden sector dark matter has exploded over
the last decade [1]. One conclusion of this work is that
even modest extensions of the standard paradigm of dark
matter—as a single, stable, weakly interacting particle
coupling only via Standard Model forces—to include the
dynamics of dark forces can easily change the cosmology,
astrophysics, and terrestrial signatures of the dark sector
[2]. A leading example of this is theories of asymmetric
dark matter (ADM), where coupling to dark forces arises
naturally as a means to annihilate the symmetric abundance
of dark matter [3–6], similar to the annihilation of electron-
positron pairs to photons in the early Universe. When dark
forces are present, the cosmology of dark matter (DM) is
generically modified due to self-interactions [4,7–12].
When dark ADM forces are sufficiently strong and

attractive, bound states can form, similar to the formation
of nuclei in the Standard Model [13–15]. If the dark sector
simultaneously lacks a repulsive long range force (the
analogue of the photon), very large states—nuggets—are
generically synthesized [13,16–19].
The same dynamics that leads to nugget formation in the

early Universe can also lead to the formation of ADM stars
in the late Universe, via condensation arising from radiation

of dark force mediators or small nugget fragments [19].
Self-interacting or not, ADM may also collect in neutron
stars. If the ADM is a scalar particle, a black hole can form,
destroying the parent neutron star [20–27]. If the ADM is a
fermion, Fermi degeneracy pressure tends to stabilize the
ADM, though in principle attractive self-interactions can
help to overcome degeneracy pressure.
The primary results in this paper are a self-consistent set

of mass-radius relationships and stability bounds of exotic
compact objects (ECOs) comprised of fermionic ADM
with attractive and/or repulsive self-interactions. We also
consider the impact of such fermionic ADM on neutron star
stability. We focus on a model with a single stable Dirac
spin-1=2 fermion, X, as the dark matter candidate, with
attractive self-interactions mediated by a real scalar, ϕ, and
repulsive self-interactions by a vector, Vμ1:

L ¼ X̄½i=∂ − gV=V − ðmX − gϕϕÞ�X −
1

4
V2
μν þ

1

2
m2

VV
2
μ

þ 1

2
ð∂μϕ∂μϕ −m2

ϕϕ
2Þ − VðϕÞ: ð1Þ

We solve the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions for this theory to determine the stability against
gravitational collapse. We will argue that for ECOs
composed of fermionic constituents with arbitrary self-
interactions, the smallest maximum stable ECO size for a
given mass scale per constituent, mX, is approximatelyPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
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1The choice of the signs on gϕ and gV make hϕi and hV0i
positive when gV and gϕ are positive.
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realized in this model when only a scalar mediator with
negligible potential is present. Then we will see that this
minimum is of the same order of magnitude as Landau’s
estimate for Fermi degeneracy supported matter: Nmax ∼
M3

Pl=m
3
X;Mmax ∼M3

Pl=m
2
X [28].

We find in particular that spin-1=2 ADM with an
attractive force never collapses neutron stars (NSs) over
their lifetime in our Universe unless (perhaps) the fermionic
constituents are heavier than order 106 GeV. This means
that fermionic ADM with an attractive force does not in
general solve the missing pulsar problem [29–31], have
limits from imploding NSs [32], or lead to nonprimordial
solar mass black holes [33]. We also find a different
equilibrium sequence for stars made of self-attractive
ADM than derived elsewhere [34]. The most important
difference between our work and previous treatments is use
of a fully consistent equation of state (EoS), instead of
utilizing a Yukawa potential valid only in the nonrelativistic
and low-density limit in the case of scalar-mediated
interactions. The difference only becomes apparent at high
densities, where the self-consistent EoS guarantees that the
effective Dirac mass for the fermion, sourced by the scalar
field binding the nuggets, asymptotes to a constant value
and makes a positive contribution to the energy density (see
e.g., Ref. [35] and references therein).2 This crucially
changes both the impact on NS stability and the ADM
star equilibrium sequence. Our fully relativistic treatment
extends to a fully general relativistic treatment of ECOs
composed of two possibly interacting but separately con-
served constituents—in our case baryonic matter and
fermionic ADM.
The potential structure and stability of fermionic dark

matter ECOs [34,36] and of ADM-admixed NSs [37–43]
has been examined before, and there has been renewed
interest in such objects in the context of gravitational wave
observations [44–50]. This work gives a comprehensive
account of the effect of interactions, including the first
correct treatment of attractive self-interactions that cause
binding, and baryon-ADM interactions in the case of
admixed stars.
The outline of this paper is as follows. In Sec. II we

specify and interpret the EoS for spin-1=2 dark matter with
attractive and/or repulsive scalar- and/or vector-mediated
self-interactions. In Sec. III we find and interpret the
sequence of gravitationally stable stars composed of such
matter. Then in Sec. IV, employing results from the
previous section, we argue that ADM with spin-1=2
constituents smaller than about 106 GeV cannot collapse
NSs, regardless of whether the constituents are self-
interacting. Finally, in Sec. V we conclude. Appendix A
explains nongeneric features of ADM at the cusp of being

self-bound. Appendix B lays out the general relativistic
equations appropriate for determining structure and gravi-
tational stability of static stars composed of multiple
separately conserved, possibly interacting, components.
It details methods we used to obtain numerical solutions
that confirm the less technical arguments presented
in Sec. IV.

II. EQUATION OF STATE FOR
SELF-INTERACTING SPIN-1=2 ADM

The EoS for fermionic matter described by Eq. (1) is
given by [35,51–54]

ϵ ¼ m4
X
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where

C2
i ≡ 4αi

3π

m2
X

m2
i
; ð4Þ

with αi ≡ g2i =4π, kF the X Fermi momentum, WðφÞ≡
m4

X
3π2

VðmXφ=gϕÞ, and φ ¼ gϕhϕi=mX is defined through the
transcendental equation

φ

C2
ϕ

þW0ðφÞ ¼ 3

Z
kF=mX

0

x2
1 − φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ð1 − φÞ2
p dx: ð5Þ

The effective Dirac mass [cf. Eq. (1)] is m� ¼ mXð1 − φÞ
and the number density is given by n ¼ 2

R
kF d3k⃗

ð2πÞ3 ¼
k3F
3π2
.

The equations above assume zero temperature, though
generalization to nonzero temperature is straightforward
and has been worked out in the context of the σ-ω model
(see e.g., Refs. [35,54]). The equations are derived in the
mean field limit, where scalar and vector fields are
approximated by their mean values. Additionally, the mean
fields are assumed to be static and spatially uniform. This
last assumption is inconsistent with solutions to the general
relativistic equilibrium equations when order one variations
in star density occur over length scales comparable to or
smaller than the force range, 1=mϕ; 1=mV . For example,
with C2

ϕ fixed, the approximation breaks down in the
decoupling limit, αϕ → 0. We explored the transition where

2The EoS derived from the Yukawa potential is identical to the
fully relativistic EoS in the vector-mediated case but not in the
scalar-mediated case.
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spatial uniformity breaks down for self-bound matter
in Ref. [15].
Equations (2) and (3) are related through the thermo-

dynamic relation

p ¼ −
∂E
∂V

����
S;N

¼ −
∂ðϵ=nÞ
∂ð1=nÞ ¼

∂ϵ
∂n n − ϵ ¼ μn − ϵ; ð6Þ

where μ ¼ ∂ϵ
∂n is chemical potential. Note that rest energy

per constituent, ϵ=n, is necessarily minimized when p ¼ 0.
For large enough attractive interactions, there are solutions
where p ¼ 0, ∂p∂n > 0, and the binding energy per particle is
positive (mX − ϵ=n > 0), meaning that large stable self-
bound states exist, elsewhere called nuggets [14,15,18,19].
Figure 1 shows the rest energy per particle as a function of

number density forC2
ϕ ¼ 0.5, 10,C2

V ¼ 0, andVðϕÞ ¼ 0, as
computed fromEq. (2) by solving the equation ofmotion for
the scalar field in Eq. (5). The solid and dotted lines show
Eq. (2) while the “semi-relativistic” dashed lines show the
energy computed assuming ϵ ¼ ϵkin þ ϵY with potential
energy given by the nonrelativistic expression ϵY ¼
− 1

2
n2αϕ

R R
e−mϕrij

rij
d3r⃗id3r⃗j=vol, with indices i and j run-

ning over particles, and ϵkin ¼ 2
R
kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

X

p
d3k⃗
ð2πÞ3, as was

done explicitly or implicitly in Refs. [29–34], for example.
As number density grows and the constituents grow
more relativistic, the fully relativistic and semi-relativistic
expressions diverge. Were it correct, the semi-relativistic
expression would imply that self-attractive ADM is micro-
scopically unstable such that the energy per constituent
becomes negative at high density and is unbounded below.
By contrast, the fully relativistic expression for energy per
constituent remains positive but can develop a local or global
minimum at nonzero density. This happens because Fermi
pressure overcomes the attractive force at high density and
the pressure grows again. More specifically, as density
grows, hϕi grows, initially decreasing pressure, but simul-
taneously decreasing the effective Dirac mass, accelerating
the growth of Fermi degeneracy pressure.
For C2

ϕ > 1.09 there is a global minimum in ϵ=n, with
energy per constituent at this minimum less than mX
(the value at n ¼ 0), indicating the existence of large stable
bound states, or nuggets,3 that form without the aid of
gravity through a fusion process. This situation is shown in
the C2

ϕ ¼ 10 curve in Fig. 1. The dotted curve lies in a
density region with mostly negative pressure, representing
the instability of ADM to condensation into large, dense
nuggets by a fusion process—the matter goes through a
burning and cooling stage before hitting a point where a
zero-temperature description is again applicable. The exact
evolution of the process is beyond the scope of this paper

and would require some knowledge of the star formation
process.4 The end point of this process is clear, however,
and is marked by a dot in Fig. 1, corresponding to the
saturation density. The saturation density is reached once
the matter has stopped fusing and is once again cold
[15,55]. The relevant equation of state at higher densities
and zero temperature is subsequently represented by the
thick solid line in Fig. 1; it begins at zero pressure but
nonzero (corresponding to saturation) density.
Numerical solutions to Eqs. (2) and (5) for 0.840 <

C2
ϕ < 1.09 reveal a local minimum with ϵ=n > mX, indi-

cating a phase change at positive pressure. At this pressure,
zero-temperature matter jumps from a gaslike state at low
density to a liquidlike state at higher density. The liquid
state can be realized only with the help of another force—
for example with the aid of gravity in the core of a star.
See Appendix A 1 for further discussion.

FIG. 1. Energy per particle per mX (top) and pressure per
density per mX (bottom) as functions of number density for

C2
ϕ ≡ 4αϕ

3π
m2

X
m2

ϕ
¼ 0.5 (thin) and 10 (thick) using a semi-relativistic

treatment (dashed) alongside the expressions obtained using
relativistic mean field theory (solid). When C2

ϕ ¼ 10, ADM is
self-bound; the dotted line shows the analytic EoS in the density
range below the density of self-bound nuggets, where the matter
is unstable to coalescence.

3For large enough C2
ϕ, local and global minima also exist when

C2
V ≠ 0, VðϕÞ ≠ 0. See e.g., Refs. [15,19].

4Among other possible details, one would need to know the
spectrum of small-N states to discern fusion rates at varying
densities and temperatures. The spectrum, in turn, can depend on
details of the specific model including the masses and relative
couplings of all light force carriers [15,18,19]. One might also
need to follow the nonlinear, possibly far-from-equilibrium
evolution of overdense patches of matter.
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We show this same phenomenon of fusion and cooling to
saturation density for a choice of a larger self-coupling,
C2
ϕ ¼ 4.24 × 104 in Figs. 2 and 3, in order to make contact

with typical model parameters shown in Figs. 4, 5, as well
as the case examined in Ref. [34] with mX ¼ 100 GeV,
mϕ ¼ 10 MeV, and αϕ ¼ 10−3. They show, as in Fig. 1,
energy per constituent per mass, ϵ=ðmXnÞ, and pressure per
rest mass density, p=ðmXnÞ, but now in an extreme non-
relativistic density range (Fig. 2) and in a higher density
range where the semi-relativistic and fully relativistic EoSs
diverge (Fig. 3). As density initially increases from zero,
pressure and energy per constituent increase. But as noted
in Ref. [34], the pressure turns negative around when
n ¼ n� with 3π2n�=m3

X ∼ 10−15, marked by the vertical
gray line in Fig. 2. Reference [34] interpreted this density as
an absolute upper limit, with the matter collapsing to a
black hole at this point. By contrast, we find that following
the EoS to higher densities, as shown in Fig. 3, the pressure
turns once again positive at the saturation density, marked
by the red dot. Shown by the dashed red line, as in Fig. 1,
the EoS has an intermediate regime below the saturation
density where the ADM fuses; once fusion has completed
and the star has cooled again, saturation is reached and the
pressure turns positive again, indicating the possibility for a
stable equilibrium between gravitational forces, binding
forces, and Fermi degeneracy pressure.

With the EoS for ADM self-interacting through scalar
and vector exchange in hand, we now explore the structure
of self-gravitating objects composed of such matter.

III. ADM STAR STABILITY AND
EQUILIBRIUM SEQUENCE

In the previous section, we showed that self-attractive
fermionic ADM is microscopically stable. Our main objec-
tive here is to pinpoint when cold ADM stars become
gravitationally unstable. In particular we will show that
the maximum stable mass cannot deviate much below
Landau’s estimate, Mfermion

max ∼M3
Pl=m

2
X [28] (see also

Ref. [55]). An implication is that self-attractive fermionic
ADM cannot seed collapse of neutron stars more efficiently
than non-self-interacting fermionic ADM.
We restrict our attention to spherically symmetric com-

pact objects such that the Tolman-Oppenheimer-Volkoff
(TOV) equation governing such objects reads,

dp
dr

¼ −
ðpþ ϵÞðGMðrÞ=rþ 4πGr2pÞ

rð1 − 2GMðrÞ=rÞ ; ð7Þ

FIG. 2. Energy per particle per mX (top) and pressure per
density per mX (bottom) as functions of number density for
C2
ϕ ≡ 4.24 × 104 in the low density regime where nonrelativistic

approximations are valid. In this low density range, the semi-
relativistic and analytic fully relativistic expressions agree, and
the pressure transitions from positive to negative. The pressure
then remains negative for densities up to twelve orders of
magnitude greater, see Fig. 3.

FIG. 3. Energy per particle per mX (top) and pressure per
density per mX (bottom) as functions of number density for
C2
ϕ ≡ 4.24 × 104, in the high density regime, approaching the

saturation density (indicated by the red dot). The (incorrect) semi-
relativistic treatment (dashed) is shown alongside the expressions
obtained using relativistic mean field theory (dotted, solid). The
dotted line shows the analytic EoS in the density range approach-
ing the saturation density, where the matter is unstable to coalesce
via a fusion process. Once the fusion process is complete, the
pressure becomes positive again, indicating that stars made of
self-attractive ADM can be stable even at these high densities and
large self-couplings.
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FIG. 4. Equilibrium sequences for varying mX represented by star mass as a function of radius for spin-1=2 matter with
repulsive (top), no (middle), and attractive (bottom) self-interactions with fixed mediator mass and coupling. See also Table I.
Asterisks mark the stable equilibrium sequence end points corresponding to the global maximum in M as a function of central density.
The gray region corresponds to R < Rs ¼ 2GM and the cyan contour represents maximum compactness, GM=R ¼ 0.354. Compare
Fig. 3 in Ref. [34]; the repulsive case agrees but the attractive case dramatically differs due to differences in the EoS. Right-hand plots
show energy density for a benchmark star (marked with△ in the left-hand plots) as a function of distance from its center. The cutoffs at
finite density in the bottom right-hand plot indicate the discontinuity in energy density at r ¼ R due to self-boundedness. For
comparison, the middle plot also shows the equilibrium sequence for a sample NS matter EoS (magenta) consistent with NS
observations to date—the HB EoS as defined in Ref. [56]. The NS benchmark is a 1.5 M⊙ star, and the shaded magenta region is
digitized from Ref. [57].
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or equivalently

c2s
d ln n
d ln r

¼ −
ðGMðrÞ=rþ 4πGr2pÞ

ð1 − 2GMðrÞ=rÞ ; ð8Þ

where r is the radial coordinate, MðrÞ ¼ 4π
R
r
0 ϵr

02dr0,
c2s ¼ dp

dϵ is squared sound speed that characterizes the
stiffness of matter, and we have used Eq. (6). Given an
EoS relating ϵ and p, this single integro-differential
equation can be solved for any given choice of central
energy density by integrating out from r ¼ 0 to the edge of
the star r ¼ R where pðRÞ ¼ 0. Equations (2) and (3)
represent a parametric EoS, fpðnÞ; ϵðnÞg, which leads to an
integro-differential equation for number density, n, as a

function of r. The number of constituent particles in the star
is given by NX ¼ R

nðrÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GMðrÞ=rp

d3r⃗.
The gravitational stability of ADM stars is calculated from

the equilibrium configurations, which are solutions to the
TOVequations for a given central density.Maxima inmass as
a function of central density indicate a transition from stable
to unstable [55]. Figures 4, 5, and 6 show themass and radius
of solutions to the TOV equations for spin-1=2 ADM with
various self-interaction strengths. Figures 4 and 5 show
similar results to those in Refs. [34,36] for repulsive inter-
actions.However, formX ∼ f10 GeV; 100 GeV; 1 TeVg the
attractive interactions corresponding tomϕ ¼ 10 MeV; αϕ ∈
f10−2; 10−3; 10−4g increase the maximum mass (and maxi-
mum number of constituents, NX) of a stable gravitationally
bound ECO relative to the case of noninteracting fermions of

FIG. 5. Equilibrium sequences for varying α represented by star mass as a function of radius for spin-1=2matter with repulsive (top) or
attractive (bottom) self-interactions with fixed mediator and constituent mass. Compared to Fig. 4 in Ref. [34], the repulsive cases agree
but the attractive cases disagree. See Fig. 4 for further detail.
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the samemass, in contrast to the results inRef. [34],where the
authors examined ADM in a metastable supercooled vapor-
like state, interpreting a transition from positive, increasing
pressure to a zero in pressure at extreme nonrelativistic
densities as an absolute upper limit on theADMdensity. (See
Fig. 2 and surrounding text.) They interpreted cold stars
whose centers reach this density as maximum-mass gravi-
tationally stable stars. Our fully relativistic treatment and
consideration of the microscopic picture—such matter fuses,
forming bound states without the need for extra attraction
provided by gravity—leads to a very different physical
picture. In the star formation process, the matter fuses,
forming ever larger self-bound states. The physically appro-
priate EoS applying to cold ADM has nonzero density at
zero pressure, with pressure increasing up until a true

gravitationally unstable end point. For comparison, the
magenta region in Fig. 4 includes equilibrium configurations
for NS matter that can support a 2 M⊙ star, satisfy the
90% confidence level constraint on tidal deformability from
the NS binary inspiral gravitational wave observation,
GW170817 [58,59], and are consistent with known limits
on the baryonic matter EoS at (low) nuclear densities and at
very high densities [57].
The attractive self-interaction parameters shown in

Figs. 4 and 5 all correspond to C2
ϕ ¼ 4αϕ

3π
m2

X
m2

ϕ
> 100 and thus

to the case of strong self-binding; the growth of radius with
mass until near the gravitational stability end point (here
marked with asterisks) is characteristic of compact objects
made of self-bound matter such as those of hypothetical

FIG. 6. Top: Squared sound speed, c2s ¼ dp
dϵ, as a function of ðkF=mXÞ3 for spin-1=2 dark matter with attractive (red), repulsive (blue),

both attractive and repulsive (purple), and no (thick black) self-interactions. The strength of attractive and repulsive self-interactions
is characterized by C2

ϕ and C2
V , respectively, as defined in Eq. (4). Here kF is Fermi momentum and X number density is n ¼ k3F=3π

2.
The dotted section of the red c2s curve corresponds to the dotted region in Fig. 1, where matter is unstable to condensation into large
self-bound states with density marked by the dot. Bottom: Mass and radius of static, spherically symmetric stars composed of such
matter, representing the equilibrium sequence. The curves cut off at the maximum-mass gravitationally stable stars, denoted with
asterisks. Gray regions correspond to (R < Rs ¼ 2GM). The cyan boundary marks GM

R ¼ 0.354, corresponding to the theoretically most
compact non-black-hole objects [60,61].
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self-bound strange quark matter stars [62]. The increased
gravitational stability of these objects relative to their non-
interacting counterparts stems from their effectively stiffer
EoS due to enhanced Fermi degeneracy pressure all the way
out to the edge of the star. For self-interactions satisfying
C2
ϕ ≫ 1 and negligible scalar potential, we have identified

universal formulas for Nmax, Mmax and ðGMR Þmax. We report
these in Table I alongside analogous relations for the
cases of no interactions, purely repulsive interactions, and
attractive-repulsive interactions with C2

V ¼ C2
ϕ.

5 The for-
mulas work well when C2

i ≳ 10. In the attractive case, the
asymptotic values may alternatively be written Nattractive

max ¼
0.34M3

Pl=m̄
3
X, M

attractive
max ¼ 0.28M3

Pl=m̄
2
X, where m̄X is the

zero-pressure chemical potential, equivalent to the average
mass per constituent of large nuggets. For C2

ϕ ≫ 1,

m̄X → ð2=C2
ϕÞ1=4 [15,19]. An alternative explanation of

the enhanced gravitational stability of matter with large
attractive self-interactions is that these interactions decrease
the effective constituent mass scale: m̄X < mX. The Landau
limit Mmax ∼M3

Pl=m
2 still applies but with m to be inter-

preted as m̄X.
A scalar potential term of the form λϕ4 with λ > 0 tends

to limit m̄X from below [15,19], reducing the possibility of
substantially raising Mmax for fixed mX. In general, such a
term tends to push c2s closer to its form with no interactions,
indicating that scalar potentials tend to push the maximum
mass and other equilibrium sequence characteristics closer
to that for no interactions.
Figure 6 shows equilibrium sequences for matter with

more moderate (C2
ϕ; C

2
V ≲ 10) attractive, repulsive, or both

attractive and repulsive self-interactions side by side with
squared sound speed, c2s ¼ dp

dϵ, characterizing the stiffness
of the matter. The figure demonstrates that softer equations
of state lead to smaller maximum masses and vice versa:
the larger the density range where c2s lies below the no-
interactions curve, the smaller the maximum mass relative

to the no-interactions case and vice versa. In the top left
plot, we see that any softening of the EoS relative to the no-
interactions EoS accelerates the approach to the high
density limit, c2s ∼ 1=3. And in the top right figure,
comparing purple to blue, we again see that attractive
interactions soften the EoS at low densities but stiffen it at
larger densities, accelerating the approach to the high
density limit when a vector is present, c2s ∼ 1. In all
examples, the more extreme the softening at lower den-
sities, the more extreme the stiffening at higher densities.
This can also be seen analytically as follows.
The chemical potential for the model Eq. (1) is given by

μ ¼ C2
V
k3F
m2

X
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2�ðkFÞ

q
; ð9Þ

with m�ðkFÞ determined through Eq. (5). With a scalar
potential guaranteeing positive energy density and there-
fore microscopic stability, one can show that m�
approaches zero in the large-density limit; and larger C2

ϕ

drives m� to zero faster while a quartic potential term
moderates the decrease. For spin-1=2 matter in general,
c2s ¼ dp

dϵ ¼ 1
3

d ln μ
d ln kF

by Eq. (6) and n ¼ k3F=3π
2. In the large

density limit, vector repulsion dominates pressure and μ ∼
k3F=m

2
X if a vector is present, or fermi pressure dominates

and μ ∼ kF if the vector is absent; thus c2s → 1 or 1=3 with
or without vector repulsion, respectively. Furthermore since
attractive interactions cause m� to decrease, though this
initially drives c2s below its value absent the attractive
interactions, it also accelerates the approach to the asymp-
totic limit. This explains the tendency of attractive inter-
actions to soften the matter at lower densities and stiffen it
at higher densities.
The left plots in Fig. 6 represent matter with attractive

self-interactions, including examples of non-self-bound
matter (C2

ϕ ¼ 0.5) and self-bound matter (C2
ϕ ¼ 10). The

equilibrium sequence for C2
ϕ ¼ 0.5 begins at low central

density and large radius following the no-interactions
sequence, but ends at lower maximum mass and smaller

TABLE I. Mass,M, number of constituents, N, and compactness, GMR , for the static spherically symmetric maximum-mass stars made
of spin-1=2 matter with large attractive, repulsive, both attractive and repulsive, and no interactions. The dimensionless constants

C2
i ¼ 4αi

3π
m2

X
m2

i
characterize interaction strength. In the attractive case, the matter is strongly self-bound with the chemical potential at zero

pressure equal to μjp¼0 ¼ m̄X ¼ mXð2=C2
ϕÞ1=4. In all other cases shown the matter is not self-bound so μjp¼0 ¼ mX. For quick reference,

note: M3
Pl ¼ 1.63 M⊙ GeV2.

No interactions Attractive Both Repulsive

C2
V ¼ C2

ϕ ¼ 0 C2
V ¼ 0; C2

ϕ ≫ 1 C2
V ¼ C2

ϕ ≫ 1 C2
V ≫ 1; C2

ϕ ¼ 0

Nmax 0.399M3
Pl=m

3
X 0.34ðC2

ϕ=2Þ3=4M3
Pl=m

3
X 0.61

ffiffiffiffiffiffi
C2
V

p
M3

Pl=m
3
X 0.69

ffiffiffiffiffiffi
C2
V

p
M3

Pl=m
3
X

Mmax 0.384M3
Pl=m

2
X 0.28ðC2

ϕ=2Þ2=4M3
Pl=m

2
X 0.47

ffiffiffiffiffiffi
C2
V

p
M3

Pl=m
2
X 0.63

ffiffiffiffiffiffi
C2
V

p
M3

Pl=m
2
X

ðGMR Þmax
0.115 0.27 0.35 0.21

5Our formula for Mmax in the purely repulsive case matches
that reported in Ref. [36].
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radius. By contrast, since self-bound matter fuses before
reaching a cool state, the C2

ϕ ¼ 10 equilibrium sequence
begins at relatively large densities and small radii, and
never meets up with the no-interactions sequence. For
C2
ϕ < 0.516 and C2

ϕ > 1.09, the first maximum in M as a
function of central density is the global maximum.
In the purely attractive, VðϕÞ ¼ 0 case, the equilibrium

solutions for 0.516 < C2
ϕ < 1.09 hug the no-interactions

sequence at low central density and large radius, and then
develop a local maximum at low compactness before
reaching the global maximum at larger compactness,
indicating the existence of two separate sequences analo-
gous to the white dwarf and NS sequences (see e.g.,
Refs. [35,63]). We further discuss this range in
Appendix A 2, but note that the first local maximum occurs
in the range 0.04M3

Pl=m
2
X ≲Mlocal

max ≲ 0.15M3
Pl=m

2
X—less

than a factor of 10 lower than the no-interactions global
maximum of 0.38M3

Pl=m
2
X—except in the narrow

range 1.05 < C2
ϕ < 1.09.

For purely attractive interactions and fixedmX, the global
maxima in the entireC2

ϕ range satisfyMmax > 0.23M3
Pl=m

2
X,

Nmax > 0.24M3
Pl=m

3
X, and ðGM=RÞmax > 0.092 with the

bounds saturated when C2
ϕ ¼ 0.45, C2

ϕ ¼ 0.42, and
C2
ϕ ¼ 0.26, respectively. In each case, the parameter

decreases from the no-interactions value to the value at
the minimum, and then increases monotonically toward the
asymptotic value in Table I.
In the case of equal strength attractive and repulsive

interactions, as the interactions become more extreme with
C2
ϕ ¼ C2

V ≫ 1, the speed of sound curve approaches a step
function, c2s ∼ θðn − ncritÞ. Matter with such behavior is
thought to produce the theoretically most compact stars,
and indeed we find that ðGMR Þmax ∼ 0.354, the posited
maximum in the literature assuming subluminal sound
speed [60,61], for C2

ϕ ¼ C2
V ⋙ 1. (See also Table I.)

We now consider self-interacting fermionic ADM more
generally. If the cost of softening matter at a given density
through attractive interactions is accelerating the approach
to the asymptotic limit, generally, then the softness of
microscopically stable fermionic matter is limited, and
therefore the amount that self-interactions can reduce the
maximum stablemass below that for free fermionicmatter is
limited.On this basis, and based on theminima forMmax and
Nmax in the attractive interactions case described above, we
conjecture that Mmax ≳ 0.1M3

Pl=m
2
X, Nmax ≳ 0.1M3

Pl=m
3
X

holds true for spin-1=2 ADM, generally.

IV. IMPLICATIONS FOR NEUTRON
STAR COLLAPSE

So far we have focused on ADM-only stars, including
pinpointing the maximum mass of gravitationally stable
self-attractive ADM stars. Based on a semi-relativistic

calculation, Refs. [29–33] have claimed that ADM with
an attractive force, captured inside of NSs, can destabilize
and destroy them. Here we argue that relativistic effects
stabilize the NS over most of the parameter space, and
destabilization can occur only for very large ADM mass of
order PeV.

A. ADM capture

The amount of ADM captured in a NS in a time t is at
most the amount that impacts the NS [20],

mXNXcap ≲
Z

hπb2maxρDMvDMidt; ð10Þ

where bmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=R

1−2GM=R

q
R

vDM
is the impact parameter cor-

responding to DM that just scrapes the surface of the NS at
closest approach.6 Here the energy density ρDM and
velocity scale vDM are to be taken asymptotically far away
from the NS. For typical NSs, GM=R ∼ 0.2 and R ∼ 10 km
leading to

mXNXcap ≲ ð3 × 10−14 M⊙Þ
ρDM

GeV=cm3

200 km=s
vDM

t
1010 yrs

:

ð11Þ

The upper bound is realized only when on average 100% of
the DM passing through the NS deposits enough energy to
be captured. For DM with mass of order GeV to PeV, the
minimum required baryon-DM cross section for this to
occur is order 2 × 10−45 cm2 [20]. For mX ≲ GeV, Fermi
blocking suppresses the scattering [27], and for mX ≳ PeV,
multiple scatters are required for gravitational capture [64]
and therefore greater cross sections are required to realize
the upper bound in Eq. (11). If the ADM is bound in large
composite states at the time of capture, additional consid-
erations apply [65]. In general since the density and
velocity scales entering Eq. (11) are not vastly different
from the fiducial values, the amount of ADM captured is a
tiny fraction of the total mass of a NS (order 1.5 M⊙). One
can speculate about other ways to realize ADM-admixed
NSs stars with a much larger fraction of ADM than can be
collected gradually through capture over the NS lifetime.
One interesting possibility is copious production and
capture of dark matter in the core-collapse supernova of
the NS’s progenitor [46].

B. ADM-admixed neutron stars

For ADM captured by a NS over its lifetime to induce its
collapse, a self-gravitating ADM star of the same mass as
the captured ADM must itself be unstable to collapse.

6If the ADM is already bound as nuggets at the time of capture,
then replace mX with m̄X in Eqs. (10) and (11).
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Based on this observation, we argue that capture of
spin-1=2 ADM—self-interacting or not—with constituent
masses smaller than order 106 GeV by NSs cannot in any
circumstances induce collapse.
As detailed in Appendix B, we solved the general

relativistic equilibrium equations for NS matter admixed
with cold ADM as modeled in Sec. II. In general, the
maximum number of ADM constituents, ðNXjNb≠0Þmax,
possible in a stable ADM-admixed NS with fixed baryon
number can be smaller than the maximum number of ADM
constituents in an ADM-only star ðNXjNb¼0Þmax made of
the same kind of ADM. However, we find that any
appreciable differences between ðNXjNb≠0Þmax and
ðNXjNb¼0Þmax occur only if mXðNXjNb¼0Þmax is comparable
to a solar mass. Including baryon-ADM interactions does
not affect this conclusion. And including thermal effects
only increases stability.
Now assume the amount of captured ADM is a small

fraction,

f ≡ ðmXNXcapÞ=MNS ≪ 1; ð12Þ
of the NS mass, as predicted by Eq. (11), and that the NS is
not already teetering at its stability bound with mass greater
than 2 M⊙. Then as long as an ADM-only star of size
NX ¼ NXcap does not collapse, neither will an ADM-
admixed NS with the same amount and type of ADM.
From our treatment of fermionic ADM-only stars, since

mXNX
ADM-only
max ≳ 0.1M3

Pl=m
2
X; ð13Þ

taking MNS ∼ 1.5 M⊙ we find

mX;collapse ≳ ð10fÞ−1=2 GeV: ð14Þ
Assuming maximally efficient ADM capture over 10 billion
years and galactic ADM densities ρDM ∼ 1–100 GeV=cm3

and the velocity scale vDM ∼ 200 km=s, we find

mX;collapse ≳ 2 × 105–2 × 106 GeV: ð15Þ
We have not yet argued that ADM can collapse NSs,
but rather only that ADM with spin-1=2 constituent mass
mX < ð10fÞ−1=2 GeV cannot collapse NSs if f ≪ 1.
Now we consider whether ADM can collapse NSs in

certain cases when mX > ð10fÞ−1=2 GeV. More specifi-
cally, if an ADM-only star with constituents NX ¼ NXcap is
unstable to gravitational collapse, then is an ADM-admixed
NS with NX ¼ NXcap also unstable? If there is a process to
cool the ADM sufficiently that it self-gravitates, the answer
is yes. Let us briefly consider the ADM cooling process
after capture. Reference [66] estimates the cross section
needed to maximize ADM capture, saturating Eq. (11), and
the time required for the ADM to deposit most of its kinetic
energy in the NS. When mX ≳ 106 GeV and Eq. (11) is
saturated, for example, a captured ADM particle deposits

most of its kinetic energy in less than a day. The ADM heats
the NS, which will be detectable by the next generation of
infrared telescopes [66]. Again if the ADM-baryon cross
section is anywhere near the level required to maximize
ADM capture, then according to the estimates in Ref. [23],
thermalization of the ADM with baryonic matter happens
quickly. Accounting for NS heating through ADM capture,
the maximum blackbody temperature of NSs near Earth is
expected to be 1750 K (0.15 eV) [66], which is a minuscule
fraction of the Fermi momentum of near-collapse ADM
with mX ≳ 106 GeV. The ADM indeed cools to effectively
zero temperature and for ADM with MADM-only

max ≪ M⊙,
once the amount of captured ADM approaches this
maximum, the ADM core density within the NS far
exceeds the baryon density. The ADM core self-gravitates
and its structure is unaffected by the baryonic matter. When
NXcap > NADM-only

max , the ADM core is unstable to collapse.

V. CONCLUSIONS AND OUTLOOK

We have argued that the capture of spin-1=2 ADM by
neutron stars cannot lead to their implosion unless the mass
of the spin-1=2 ADM constituents exceeds approximately
1 PeV. This includes ADM with attractive or other varieties
of self-interactions. Thus the existence of old NSs can only
set limits on ADM-baryon cross sections for spin-1=2
ADM constituent masses larger than about 1 PeV. Once the
next generation of infrared telescopes comes on-line, limits
from dark kinetic heating of NSs in this mass range may
compete with any such limits [66,67]. If there is a positive
detection of dark kinetic heating of NSs, the existence of
old neutron stars will provide complementary information
on possible models of ADM with mX ≳ PeV.
After deriving and interpreting the equation of state for

cold spin-1=2 ADM self-interacting through scalar and/or
vector mediators, we found solutions to the general
relativistic gravitational equilibrium equations for cold
static spherically symmetric ADM stars and identified
the maximum size of gravitationally stable ADM stars.
We found formulas for this maximum stable size in the case
of strong self-interactions (see Table I). We also found that
the maximum size at fixed mX generically does not drop
below Mstar

max ¼ 0.1M2
Pl=m

2
X, and we conjectured that a

similar limit holds for spin-1=2 ADM with arbitrary self-
interactions.
If fermionic ADM stars are realized in our Universe, they

might be detectable by gravitational wave observatories
[68,69] in the event of mergers with other compact objects
[44]. The masses and radii of these objects can be
drastically different from those of NSs, though not neces-
sarily so. As compared to a NS binary merger, we expect
the electromagnetic signature of a merger involving at least
one ADM star to be a smoking gun signal of the difference
even if the gravitational wave form does not reveal the
presence of the ECO. As compared to a black hole binary
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merger, the waveform will be modified due to the ADM
star’s spatial structure and tidal deformability. We leave the
prospects of gravitational wave detection of ADM stars for
future work.
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APPENDIX A: PHASE CHANGE AND
SECONDARY EQUILIBRIUM SEQUENCES

Purely self-attractive ADM with C2
ϕ > 1.09 is self-

bound, not relying on gravity for its boundedness. Here
we focus on ADM that is not quite self-bound.
Zero temperature matter with purely attractive inter-

actions of strength 0.840 < C2
ϕ < 1.09 and VðϕÞ ¼ 0, as

modeled in Sec. II, undergoes a phase change at positive
pressure and number density. Further, when
0.516 < C2

ϕ < 1.09, the equilibrium sequence obtained
by solving the TOV equations has an additional unstable

FIG. 7. EoS as represented by energy per constituent per mass, ϵ=ðmXnÞ (top left), and sound speed squared, c2s ¼ dp
dϵ (top right) as

functions of density, alongside solutions to the TOV equations as represented by star mass versus star radius (bottom left) or versus
central number density, nð0Þ (bottom right) for matter with attractive interaction strengths C2

ϕ ¼ 0.52, 0.75, 1. Blue dots on the C2
ϕ ¼ 1

curve mark the matching points for Maxwell’s construction; the matter is in its liquid phase at densities n > nB, in its gas phase at
densities n < nA, and coexisting in both phases in between. The dotted red lines in the top panels represent the unphysical analytic EoS
in the coexistence density range. In a star, the phases do not coexist but rather density abruptly jumps from nA to nB at a given radius, and
equilibrium solutions with central density nA < nð0Þ < nB do not exist; this region is marked with a dotted red line in the bottom right
panel, which maps onto the cusp in the bottom left panel. The asterisks mark the maximum mass stable star in the higher-density NS-like
sequence while diamonds mark that of the lower-density white dwarflike sequence. Dashed gray lines indicate gravitationally unstable
equilibrium solutions between the two sequences. See the text for further detail.
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region as compared to the sequences described in the main
text. Rest energy per constituent, sound speed, and gravi-
tational equilibrium mass and density configurations are
shown for this range of couplings in Fig. 7. The dotted
regions show unphysical solutions to Eqs. (2)–(5), signaled
by a local minimum in energy per constituent as a function
of number density and a negative squared sound speed,
c2s ¼ dp

dϵ. The dashed regions in the bottom plots represent
unphysical solutions to the TOV equations, separating two
separate gravitationally stable equilibrium sequences that
emerge due to a temporary stall in the growth of sound
speed with density. In the next two subsections we discuss
how the physical solutions are constructed, first examining
the equation of state, and then considering the equilibrium
sequence obtained from the TOV equations.

1. Phase change and Maxwell’s construction
for the equation of state

We first consider the rest energy per constituent and
speed of sound, shown in the upper two panels of Fig. 7.
The local minimum in the analytic ϵ=n, C2

ϕ ¼ 1 curve at
nonzero density indicates a phase change. Matter lying near
the local maximum in ϵ=n can lower its energy per
constituent (and pressure) by condensing, and matter
between the local maximum and minimum has negative
pressure. As seen in the upper right panel of Fig. 7, sound
speed also becomes imaginary near the local maximum.
These features all signal the unphysical nature of the
analytic EoS in this density domain. The physical EoS
is obtained by choosing end points nA and nB that lie at
equal pressure on either side of the density region with
∂p=∂n < 0 such that ð∂ϵ∂nÞA ¼ ð∂ϵ∂nÞB ¼ ϵB−ϵA

nB−nA
. This construc-

tion is equivalent to Maxwell’s construction in standard
thermodynamics [55], and is shown by the solid red line
labeled “physical” in Fig. 7. Matter at densities less than nA
exists in a stable gaslike state and matter at densities greater
than nB exists in a stable liquidlike state. When there is a
phase change, we use “liquid” and “gas” to refer to the
high-density and low-density phases, respectively. Matter
in the density region between nA and nB coexists in two
different density states (liquid and gas). The phase change
occurs at nonzero pressure; to realize this nonzero pressure,
some other force must be applied—for example, gravity.
The liquid state can exist in the cores of gravitationally
bound stars; in static spherically symmetric stars an abrupt
transition from liquid core to gas crust occurs at a given
radius.

2. Two equilibrium sequences when 0.516 < C2
ϕ < 1.09

Next we consider solutions to the TOV equations. For
purely attractive interactions and 0.516 < C2

ϕ < 1.09, the
sequence of solutions to the TOVequations contains a local
maximum in M as a function of central density before
hitting a global maximum, as shown in the bottom right

panel of Fig. 7. The local maximum at lower density occurs
at larger radius and lower compactness, as shown in the
bottom left panel. This same behavior occurs for cold
catalyzed matter due to a relative softening of the EoS near
the neutron drip density; near this density the speed of
sound temporarily decreases (softening) before increasing
again (stiffening) as a function of density (see e.g.,
Refs. [35,55,63]). Correspondingly, a local maximum
and minimum in star mass as a function of central density
develops near the neutron drip density, matching onto the
stability end point of the white dwarf sequence and the
beginning of the NS sequence, respectively. In Fig. 7,
analogs of the white dwarf sequence are represented by
solid lines stretching from low central density and larger
radius up to the local maxima marked by diamonds.
Analogs of the NS sequence are represented by solid lines
that stretch from the local minima in mass to the global
maxima at higher central densities and smaller radii,
marked by asterisks.
Another way of characterizing the feature of cold

catalyzed matter that leads to the separate white dwarf
and NS sequences is that its sound speed growth (or
stiffening) temporarily stalls near the neutron drip density.
This is similar to what we see in the top right panel of the
figure. For C2

ϕ ¼ 0.52, the stall is moderate, with c2s
continuing to increase but at a lower rate near densities

n ∼ 0.2 m3
X

3π2
. Correspondingly, as seen in the bottom right

panel, the growth of gravitational mass with central density

near nð0Þ ∼ 0.2 m3
X

3π2
stalls so much that a local maximum

develops, signaling an instability to contraction. The
dashed gray region lying between local maximum and
minimum represents gravitationally unstable solutions to
the TOV equations. In this case, the instability is relatively
mild, with stability taking hold again at only slightly higher
central densities. For C2

ϕ ¼ 0.75, the stall in sound speed
growth is more severe. Correspondingly, the minimum in
star mass as a function of central density is deeper, and the
density gap between equilibrium sequences is larger. The
stall grows more severe with increasing C2

ϕ.
As demonstrated by the C2

ϕ ¼ 1 curve of the bottom left
panel, for matter with a phase change, a cusp develops near
the local maximum in the TOV solutions for MðRÞ and is
associated with the discontinuity in density because of the
phase change. Solutions to the TOV equations with central
densities corresponding to the coexistence density range do
not exist; there is a gap in the mass versus central density
curve where nA < nð0Þ < nB, marked by the dotted red line
in the lower right panel. This entire gap is mapped onto the
cusp in the lower left panel. Such behavior also occurs in
models of compact stars that include QCD phase changes,
see e.g., Refs. [70,71].
Understanding the final states of stars or ADM cores

within NSs that reach the white dwarflike stability end
point—be theyNS-like or black holes—is beyond the scope
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of this work. But we remark that the white dwarflike mass
end points lie within a factor of 10 below the no-interactions
global stability end point except in the range very near the
transition to self-bound matter, 1.05 < C2

ϕ < 1.09.

APPENDIX B: ADM-ADMIXED NEUTRON STARS
AND BARYON-ADM INTERACTIONS

In the bulk of the paper we focused on ADM-only stars.
Here we lay out the equations for baryon-ADM admixed
stars. Then based on our solutions to these equations, we
argue that, unless the mass of the ADM and baryons in
the star is of the same order, the amount of ADM that
destabilizes a NS is little modified from the amount that
destabilizes an ADM-only star.

1. Gravitational equilibrium equations

To investigate ADM-admixed NSs, we need the analog
of the TOV equations for two interacting but separately
conserved matter species. The TOV equations are equiv-
alent to extremizing mass,

M ¼
Z

ϵðrÞ4πr2dr; ðB1Þ

with baryon number,

Nb ¼
Z

nbðrÞ
4πr2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2GMðrÞ=rp ; ðB2Þ

held fixed [55]. To generalize to multiple conserved
species, we extremize M with each conserved species
number separately held fixed through the method of
Lagrange multipliers. That is, for ADM-baryon stars,
extremize the functional F ¼ M − μbNb − μXNX, treating
baryon density, nb, and ADM density, nX, as independent
functions. The Lagrange multipliers μi are gravity-inclusive
chemical potentials. The derivation is worked out for N
such species in detail in Ref. [72]. One finds,

μi ¼ eνðrÞ
∂ϵ
∂ni ¼ constant; ðB3Þ

with

dν
dr

¼ GMðrÞ=rþ 4πGr2p
rð1 − 2GMðrÞ=rÞ ; ðB4Þ

where μi is the gravity-inclusive chemical potential of
species i, ϵ is the total energy density of ADM and baryonic
matter, p ¼ P

i
∂ϵ
∂ni ni − ϵ is total pressure, and ν is a

metric function defined by jgttj ¼ e2ν. The TOV equation,
Eq. (8), is equivalent to

P
ini

d
dr μi ¼ 0, with ν eliminated

through Eq. (B4).
The total mass M, constituent numbers NX, Nb, and

radius R, are determined by the equilibrium equations,
Eqs. (B3)–(B4), along with the equations defining M and

Ni, Eqs. (B1)–(B2), for given central baryon and ADM
number densities, fnbð0Þ; nXð0Þg.7 We interpret the largest
stable star at fixed baryon number,Nb0, to correspond to the
first local maximum in M as a function of fnbð0Þ; nXð0Þg,
subject to the constraint Nb ¼ Nb0. Since equilibrium
configurations satisfy dM ¼ μbdNb þ μXdNX ¼ 0, and
since μi are finite for any equilibrium configuration, with
fixed Nb ¼ Nb0,M and NX attain their maxima at the same
fnbð0Þ; nXð0Þg.8 When the ADM constitutes a tiny fraction
of the star by mass, it is numerically easier to identify the
maximum in NX.
Absent DM-baryon interactions, the total energy density

is given by ϵ ¼ ϵXðnXÞ þ ϵbðnbÞ and the number density of
a given species affects the other only through the total
gravitational mass and pressure. In this case, Eqs. (B3)
and (B4) are equivalent to

dpi

dr
¼ −

ðpi þ ϵiÞðGMðrÞ=rþ 4πr2GpÞ
rð1 − 2GMðrÞ=rÞ ; ðB5Þ

where pi ¼ ni
∂ϵi∂ni − ϵi.

A DM-baryon interaction leads to additional contribu-
tions to the total energy density, ϵ, dependent on a mixture
of the number densities of both species, invalidating
Eq. (B5). Given a large hierarchy between the densities
of the two species, as we will detail below, even a weak
DM-baryon interaction can dramatically affect the density
profile of the subdominant species where the two species
overlap; in this case it is important to use Eqs. (B3)–(B4)
rather than Eq. (B5). Furthermore, in such cases, we find
there can be multiple distinct equilibrium configurations
corresponding to zero central density of the component
with lighter constituents. In the next section we describe
how to include baryon-ADM interactions before discussing
our numerical solutions to the gravitational equilibrium
equations with and without ADM-baryon interactions in
Sec. B 3.

2. Modeling baryon-ADM interactions

Using relativistic mean field theory and the same
techniques used in the context of the σ-ω model of nuclear
physics (see e.g., Ref. [35,54]), we find that a vector-
mediated baryon-ADM interaction gives rise to an inter-
action energy density and pressure

ϵI ¼ pI ¼
gbgX
m2

A0
nbnX; ðB6Þ

where gb and gX are the vector-nucleon and vector-ADM
coupling constants, respectively, and mA0 is the vector

7We will discuss a caveat when significant baryon-ADM
interactions are present.

8We have generalized from the observation of Landau. See
Ref. [55].
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mediator mass. The low energy elastic nucleon-X scattering

section is given by σbX ¼ μ2bX
π ðgbgXm2

A0
Þ2 with μbX the reduced

mass, so Eq. (B6) is alternatively written,

ϵI ¼ pI ¼ ffiffiffiffiffiffiffiffiffiffi
πσbX

p �
mX þmb

mXmb

�
nbnX; ðB7Þ

where mb ≈ GeV is the nucleon mass scale. The total
energy density in an admixed star is ϵ ¼ ϵb þ ϵX þ ϵI
with ϵb independent of nX, and ϵX independent of nb,
and similarly for pressure.9

Consider mX ≫ GeV. Current direct detection con-
straints on σbX in this range are σbX ≲ 10−46ð mX

100 GeVÞ cm2 ≈
10−19ð mX

100 GeVÞ GeV−2 [73–75]. Baryon number densities

(energy densities) toward the centers of NSs are order
10−2 GeV3ðGeV4Þ. Thus given interaction strengths near
current direct detection limits, interaction energy density
is comparable to baryon energy density when

ffiffiffiffiffiffiffimX
GeV

p
nX≳

1010 GeV3. The number density of free fermionic ADM
reaches order m3

X in the cores of near-collapse stars,
implying the bound can be satisfied for mX ≳ TeV dark
matter.
The hierarchy ϵI, ϵb ≪ ϵX with ϵI ≳ ϵb naturally occurs

for mX ≳ TeV when ADM-baryon interactions are near
current direct detection limits. In this case, both the
gravitational and nongravitational ADM-baryon inter-
actions affect the baryon density profile in the small
admixed core, while the dark matter density profile is
unaffected by the baryonic matter.
Conversely, direct detection bounds on sub-GeV dark

matter become weak, and furthermore for ADM masses
much smaller than a GeV, we expect X number (energy)

FIG. 8. Contours of constant mass M in units of M⊙ (multicolor shading), ADM number NX as a fraction of NADM-only
Xmax ¼

0.399ðMPl=mXÞ3 (black), and baryon number Nb as a fraction of Nbaryons-only
bmax ¼ 1.37ðMPl=mbÞ3 (magenta) for solutions to the

gravitational equilibrium equations, as functions of central ADM and baryon number densities, with mX ¼ 100mb (left) or mX ¼ mb
(right) and mb ¼ 939.5 MeV (both). These plots demonstrate that, unless the amount of ADM is of the same order or larger than the
baryonic matter by mass (mXNX ≳mbNb), the amount of ADM that destabilizes a NS is little modified from the amount that destabilizes
an ADM-only star. Configurations lying below the maximum in Nb (at fixed NX) and to the left of the maximum in NX (at fixed Nb) are
stable. Other configurations are gravitationally unstable. The ADM is modeled as a free Fermi gas and the baryonic matter through a
spliced polytrope, HB as in Fig. 4. Note that the maximum mass of a baryons-only star for the same model is 2.12 M⊙ (for reference the
dotted black line is the M ¼ 2.115 M⊙ contour). For free spin-1=2 ADM-only stars, the maximum mass is 0.627ðGeV=mXÞ2 M⊙ [for
reference by the dotted white line is theM ¼ 0.626ðGeV=mXÞ2 M⊙ contour]. FormX > 100mb, the plot is unchanged relative to that for
mX ¼ 100mb. In the entire region of the left-hand plot,mXNX ⋘ mbNb. Stable equilibrium configurations for any choice ofNX andNb
exist as long as they are smaller than the maximum value for the corresponding single-component stars. By contrast, mXNX ∼
mbNb ∼M⊙ toward the middle of the right-hand plot, where we see that stable equilibrium configurations with both NX and Nb near
their maxima for single-component stars do not exist. However, when mXNX ≪ mbNb ∼M⊙ (toward the top left of the plot) the
maximum mass of 2.12 M⊙ is unaffected. In either case, configurations with any mXNX ⋘ mbNb < mbNb

baryons-only
max exist as long as

NX < NX
ADM-only
max .

9This clean decomposition of energy density and pressure does
not occur for scalar mediators of ADM-baryon interactions.
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densities to be much smaller than order GeV3 (GeV4). In
this case ADM-baryon interactions can be important in
determining density profiles of sub-GeV dark matter within
ADM-admixed NSs.

3. Results: Numerical solutions
to the equilibrium equations

The left-hand plot in Fig. 8 shows contours of constant
NX, Nb, and M as functions of central (r ¼ 0) ADM and
baryon number densities for solutions to the admixed star
equations, Eqs. (B3) and (B4), with noninteracting zero-
temperature, mX ¼ 100mb ADM, where mb ≡ 939.5 MeV
is the nucleon mass scale. The baryonic matter was
modeled with the HB EoS as described in Ref. [76] and
shown in Fig. 4, though this detail is unimportant. The
important points are

(i) The constant NX contours are independent of central
baryon density, and NXmax at fixed baryon number is
the same as for an ADM-only star, demonstrating
that baryonic matter affects neither the structure of
the ADM core nor its stability end point.

(ii) The maximum M and Nb at any fixed value of NX
are the same as a baryons-only star up to negligible
fractions, demonstrating that the NS matter stability
end point is unaffected by the ADM. This is because
the ADM’s contribution to the total mass of the NS is
small: mXNX ⋘ M⊙. The curvature of the M, Nb
contours indicates that the ADM affects the baryon
density profile at the center of the star, cf. Fig. 9.

(iii) The X number density and Fermi momentum for
solutions near the stability end points, where
NX ¼ ðNXjNb

Þmax, are order 10−2m3
X and mX, re-

spectively—much greater than the baryon density,
and also relativistic so that even if the NS is
relatively warm, the zero-temperature approxima-
tion used for the ADM EoS is still valid.

We checked that these features also hold for self-interacting
ADMwhenMADM-only star

max ≪ M⊙. Thus for f ≪ 1, Eq. (14)
is accurate.
By contrast, the right-hand plot of Fig. 8 shows similar

contours when mX ¼ mb. The shape and overlap ofM, Nb,
and NX contours along the diagonal from near the bottom
left to top right are highly interdependent because here
the ADM and baryonic matter densities are similar and
both components contribute similarly to the total star mass.
For Nb fixed at its value corresponding to a 1.5 M⊙
nonadmixed NS (Nb ¼ 0.66 Nbmax), the maximum-mass
stable admixed star corresponds to M ∼ 1.7 M⊙ and
NX ∼ 0.4 NXmax. The amount of mX ¼ mb ADM that
destabilizes the NS is smaller than the amount that
destabilizes an ADM-only star. But the amount by mass
is a sizable fraction of the remainder of baryonic matter that
would destabilize a baryons-only NS, and by Eq. (11) far
exceeds the amount that can be captured.
The main message conveyed by Fig. 8 is: small amounts

of fermionic ADM by mass (mXNX ≪ M⊙) cannot induce
collapse of a NS unless the ADM is concentrated in a
very dense (ϵX ≫ GeV4) core. Due to Fermi degeneracy

FIG. 9. Baryon number density (orange), ADM number density (blue), and compactness, GMðrÞ=r (green), as functions of star radius
for fermionic ADM with negligible self-interactions and mX ¼ 1 TeV admixed with baryonic matter. Since the number densities are
normalized by m3

i and mb ∼ GeV, the ADM number density in most of the core at small radius is more than 109 times greater than
typical baryon number densities. The total star mass is 1.5 M⊙ and NX ¼ 0.396ðMPl=mXÞ3. The left-hand plots assume no ADM-
baryon interactions while the middle and right-hand plots assume a repulsive ADM-baryon interaction as described in Sec. B 2 such that
σbX ¼ 4 × 10−49 cm2 and 4 × 10−47 cm2, respectively. The EoS used for baryonic matter is as in Fig. 8.
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pressure, this can occur only whenmX ≫ GeV. And in this
case, the amount of ADM that destabilizes the NS is
negligibly modified from the amount that destabilizes an
ADM-only star.
We find that dense ADM cores can dramatically affect

the density profile of baryonic matter overlapping the
core, even though as noted above the maximum mass,
radius, and baryon number at fixed ADM number is
affected by negligible fractions. This is shown in Fig. 9,
with baryon-ADM interactions as modeled in Sec. B 2
present or not. With even moderate σbX well below direct
detection constraints on large mX ADM, there are classes
of solutions with vanishing nb at r ¼ 0—because of the
high ADM densities, the repulsive interaction between
ADM and baryonic matter wins over gravitational

attraction and expels the baryonic matter from most of
the core. In these cases we scan solutions by setting the
ADM density at r ¼ 0 and the baryon density at the edge
of the ADM core. We checked that including the baryon-
ADM interaction at levels allowed by direct detection
does not affect the conclusions described in the previous
paragraphs.
Finally we note that it could be interesting to examine the

structure of NSs admixed with sub-GeV constituent mass
ADM given repulsive ADM-baryon interactions—the
ADM could be concentrated at the outer edge of the NS
and beyond, which could lead to larger-than-naively-
expected effects on the tidal deformability and/or moment
of inertia of the NS for a given total amount of col-
lected ADM.
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