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The energy loss of a rotationally powered pulsar is primarily carried away as electromagnetic radiation
and a particle wind. Considering that the magnetic field strength of pulsars ranges from about 108 to
1015 G, one could expect quantum electrodynamics (QED) to play a role in their spin-down, especially for
strongly magnetized ones (magnetars). In fact several authors have argued that QED corrections will
dominate the spin-down for slowly rotating stars. They called this effect quantum vacuum friction (QVF).
However, QVF was originally derived using a problematic self-torque technique, which leads to a dramatic
overestimation of this spin-down effect. Here, instead of using QVF, we explicitly calculate the energy loss
from rotating neutron stars using the Poynting vector and a model for a particle wind, and we include the
QED one-loop corrections. We express the excess emission as QED one-loop corrections to the radiative
magnetic moment of a neutron star. We do find a small component of the spin-down luminosity that
originates from the vacuum polarization. However, it never exceeds one percent of the classical magnetic
dipole radiation in neutron stars for all physically interesting field strengths. Therefore, we find that the
radiative corrections of QED are irrelevant in the energetics of neutron-star spin-down.

DOI: 10.1103/PhysRevD.99.083004

I. INTRODUCTION

Neutron stars are the final stage of the evolution of stars
with a mass between ≈ 9 M⊙ and an upper mass still not
determined precisely. These objects have a radius of about
R ≈ 10 km and a mass of about M ≈ 1.4 M⊙. Neutron
stars, like most of astrophysical objects, rotate, and thus
have a rotational energy. This energy reservoir can account
for the energy loss in a neutron star, and the spin-down that
follows. The bulk of the energy extracted from the rotation
of a neutron star is carried away partly as electromagnetic
radiation, and partly as a wind, called a pulsar wind; that
wind is composed of electrons, positrons and likely ions,
pulled off from the surface of a pulsar. For the principal
population of pulsars we get a magnetic field at the pole
centered at around Bp ≈ 1012 G. Another interesting pop-
ulation is the one of magnetars, for which Bp > 1014 G.
Having in mind the critical magnetic field derived in

quantum electrodynamics (QED) is BQED ¼ m2
ec3

eℏ ≈ 4.4×
1013 G, we could expect QED effects to play a role in the
energy loss of neutron stars.

Dupays et al. [1] argue that strongly magnetized neutron
stars (magnetars) lose energy primarily through a process
called quantum vacuum friction (QVF), in which the
magnetized vacuum surrounding a neutron star spins it
down. More recently, Coelho et al. [2], Xiong et al. [3] and
Dupays et al. [4] have continued to argue that QVF
dominates the energy loss of slowly rotating pulsars and
especially magnetars. Quantum vacuum friction is a phe-
nomenon related to the fact that quantum vacuum can be
regarded as a standard medium with its own energy density
and electromagnetic properties. Thus, QVF can be seen as
QED corrections to the radiation reaction torque in electro-
magnetism. We show that the authors have vastly over-
estimated the size of this effect, because they have used an
inappropriate approximation for the structure of the mag-
netic field near to the surface of a neutron star and a
problematic self-torque technique to calculate this effect.
They assume that the dipole field is retarded even near to
the star, but the retardation only develops in the radiation
zone of a dipole. Furthermore, they estimate the torque
exerted on the star by the induced magnetization surround-
ing it. The calculation of self-forces in electrodynamics has
a long and subtle development starting with Abraham [5,6].
In particular one must be careful in choosing which
components of the field to include in the calculation and
even then it often proves difficult to get reasonable results
[7]. Additionally, the electromagnetic angular momentum
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is often wrongly neglected in the conservation of the total
angular momentum [8]; and the expression of the self-
torque is somewhat more complicated, than in [1], in the
presence of charged particles [8,9], i.e., a neutron star
surrounded by a magnetosphere, which is a more realistic
scenario. As in Dupays et al. [1], we first calculate energy
losses by modeling the rotating neutron star as a rotating
magnetic dipole moment; we do not use the problematic
self-torque technique leading to QVF, but rather calculate
the energy flow using the Poynting vector. We then apply
the QED one-loop corrections, in the weak-field approxi-
mation, to find the one-loop corrections to the dipole
energy loss rate. We generalize these results to the magnetic
and electric field calculated by Deutsch [10], for a rotating
neutron star in vacuum. We find the same result in the
weak-field limit as for a rotating magnetic dipole, and
extend the calculation to the strong-field regime. We find
that quantum vacuum renormalizes the magnetic moment
of the star [11] only by a small amount for all reasonable
magnetic field strengths. Although using a different method
and a general relativistic description, the work of Pétri
[12,13] goes along with our results.
Goldreich and Julian [14] argued that rotating neutron

stars have a dense magnetosphere; we therefore cannot
ignore this more realistic model in our study. Thus, we
derive the QED one-loop corrections to the energy loss of a
pulsar, including the effect of the Goldreich and Julian
magnetosphere in our calculations. We find that they are
similar in magnitude to the vacuum case. We come to the
conclusion that QED one-loop corrections remain negli-
gible in the presence of a pulsar magnetosphere.
All of the results are in Gaussian units, unless mentioned

otherwise.

II. MOTIVATIONS AND ASTROPHYSICAL
BACKGROUND

We first study a simple model for a neutron star, by
considering it as a rotating classical magnetic dipole
moment. In the sections that follow, we examine more
realistic models for a neutron star, using the Deutsch [10]
fields and the Goldreich and Julian [14] magnetosphere.

A. A rotating magnetic dipole in vacuum

We use a dipole approximation for a neutron star as an
orthogonal rotator:
(1) Solid rotation with an angular speed Ω
(2) Dipole magnetic field with a dipole magnetic mo-

ment m, such that m̂ · Ω̂ ¼ cosðα ¼ π
2
Þ ¼ 0

(3) Neutron star in vacuum
where, in a Cartesian coordinate system, the magnetic
moment of the star ismðtÞ ¼ hm; im; 0ieiΩt and the angular
velocity vector is Ω ¼ h0; 0;Ωi.
Dupays et al. [1] assume that the magnetic field

surrounding a neutron star takes the following form:

Bðr; tÞ ¼ 3n½mðt − r=cÞ · n� −mðt − r=cÞ
r3

; ð2:1Þ

where n ¼ r=r. They use this assumption that the field is
retarded everywhere to calculate the self-torque on a
neutron star. In fact, the magnetic field of an oscillating
dipole is not retarded in the immediate vicinity of a dipole
and has several components [15]:

Hðr; tÞ ¼ 3n½mðtÞ · n� −mðtÞ
r3

ð1 − ikrÞeikr

þ k2½n ×mðtÞ� × n
eikr

r
; ð2:2Þ

where k ¼ Ω
c , n ¼ r

r and all of the terms vary as eiΩt.
In the near zone, where kr ≪ 1, we have

e−ikr ¼ 1 − ikr −
ðkrÞ2
2

þO½iðkrÞ3�; ð2:3Þ

so

1 − ikr ¼ e−ikr þ ðkrÞ2
2

þO½ðikrÞ3�: ð2:4Þ

Then, if we focus on the first term, we can write Eq. (2.2) as

Hðr; tÞ ¼
kr≪1

3n½mðtÞ · n� −mðtÞ
r3

�
1þ eikr

ðkrÞ2
2

�
: ð2:5Þ

We take the real part of the field1 to allow a direct
comparison with Eq. (2.1), and we can then write
Eq. (2.2) as

Hðr; tÞ ¼
kr≪1

3n½mðtÞ · n� −mðtÞ
r3

þ k2

2

3n½mðt − r=cÞ · n� −mðt − r=cÞ
r

þ k2
½n ×mðt − r=cÞ� × n

r
: ð2:6Þ

Therefore, in the near zone, the first near-field component
(term in 1=r3) is indeed not retarded with respect to the
rotation of a dipole contrary to what Dupays et al. [1]
assumed; the retardation only starts in the radiation zone.

B. Energy flow for a rotating magnetic
dipole in vacuum

Furthermore, an oscillating dipole also has an electric
displacement [15]

1Whereas the interacting fields are sometimes given in com-
plex representation, we always use the real part of the fields (the
fields being derived within linear Maxwell theory), before using
nonlinear Maxwell theory.
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Dðr; tÞ ¼ −k2½n ×mðtÞ� e
ikr

r

�
1 −

1

ikr

�
: ð2:7Þ

The cross product of the fields yields the energy
flow [15,16]

S ¼ c
4π

E ×H; ð2:8Þ

where E ¼ D − P (in Lorentz-Heaviside units), and S is the
Poynting vector. The quantity P denotes the polarization.
In our case this is the vacuum polarization of QED. We
will initially neglect this term to get the classical radiated
electromagnetic power P0,

P0 ¼
I
A
S0 · n dA ¼ 2

3

Ω4m2

c3
; ð2:9Þ

where dA ¼ r2 sin θ dθ dϕ is the infinitesimal element of
surface in spherical coordinates; the surface integral is over
any sphere centered on the location of a dipole.
We now extend this well-known result to include the

effects of vacuum polarization that we can quantify using
the effective Lagrangian of QED to one-loop order [17,18],

LðI; KÞ ¼ L0ðIÞ þ L1ðI; KÞ; ð2:10Þ

where L0 is the linear Lagrangian and L1 is the radiative
corrections to the Lagrangian from QED. Heisenberg and
Euler [17] derived that effective Lagrangian using electron-
hole theory; Schwinger [19] later derived it using QED.
The Lagrangian can be written in terms of the following
Lorentz invariants [17]:

I ¼ 2ðB2 − E2Þ; K ¼ −ð4E · BÞ2; ð2:11Þ

such that

L0ðIÞ ¼ −
1

4
I: ð2:12Þ

Although this Lagrangian LðI; KÞ was initially derived for
an homogeneous field strength, it can also be used for
slowly varying inhomogeneous fields. However, for those
fields, the typical spatial scale of variation of inhomoge-
neities has to be much larger [20] than the Compton
wavelength of the electron, λC ≈ 2.4 × 10−12 m. In our
case the typical spatial scale at stake is of order of the radius
of a neutron star, we can therefore use this Lagrangian.
The polarization P is given by [21]

P ¼ ∂L1

∂E ; ð2:13Þ

in Lorentz-Heaviside units. Specifically, we find that

P ¼ −4E
∂L1

∂I − 32BðE · BÞ ∂L1

∂K : ð2:14Þ

To lowest order in the radiative corrections (i.e., to first
order in the fine-structure constant, αQED ¼ e2

ℏc ≈
1

137
), we

have BkH. Therefore only the first term contributes; let us
define

S1 ¼ −
c
4π

P ×H ¼ 4
∂L1

∂I S0 ð2:15Þ

as the QED part of the Poynting vector, so that S¼S0þS1.
We could also perform this same calculation using the

Minkowski form of the Poynting vector,

S ¼ c
4π

D × B; ð2:16Þ

where B ¼ H þM (in Lorentz-Heaviside units). The
quantity M denotes the magnetization in our case of the
vacuum, given by [21]

M ¼ ∂L1

∂B ; ð2:17Þ

in Lorentz-Heaviside units. We get

S ¼ c
4π

D × ðH þMÞ ¼ c
4π

D ×

�
H þ ∂L1

∂B
�
; ð2:18Þ

where

B ¼ H þ ∂L1

∂B ¼ H þ 4B
∂L1

∂I − 32EðE · BÞ ∂L1

∂K ; ð2:19Þ

and

S1 ¼
c
4π

D ×M ¼ 4
∂L1

∂I S0; ð2:20Þ

as before.
In the weak-field limit, the magnetic field strength

B at the surface of a neutron star is such that
B ≪ BQED ≈ 4.4 × 1013 G. In such a regime, L1 (to first
order in K) is given by [17,18]

L1ðI; KÞ ¼ αQED
2πB2

QED

�
1

180
I2 −

7

720
K

�
: ð2:21Þ

We then find that

∂L1

∂I ¼ αQED
2πB2

QED

I
90

: ð2:22Þ

Using Eqs. (2.15) and (2.8), we get the additional QED
radiated electromagnetic power P1,
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P1 ¼
I
A
S1 · n dA ¼ 8αQED

75π

m2

r6B2
QED

2

3

Ω4m2

c3
: ð2:23Þ

This result is somehow a factor of 9 bigger than in [22]. An
explanation might be found in the way Denisov et al. [22]
derive the QED one-loop corrections, which might differ
from ours.
If we take r to be the radius of the star (R), we find that

some additional electromagnetic energy is radiated through
the surface to excite the polarization of the vacuum.
Because Eq. (2.23) is valid in the weak-field limit, we
can take r to infinity and see that this additional radiative
power vanishes as r increases. As the vacuum has no
energy sources or sinks, the total energy flux leaving the
star must be conserved. To resolve this apparent paradox,
we can assume that at infinity the total dipole moment of
the star is somewhat larger than at the surface, due to the
polarization of the vacuum (if we use the Abraham form of
the Poynting vector), or the magnetization of the vacuum (if
we use the Minkowski form). To account for this polari-
zation, we use an expansion, to first order in αQED, of the
magnetic moment m,

mðrÞ ¼ m0 þm1ðrÞ; ð2:24Þ

where m0 is the bare magnetic dipole moment at the
surface, and m1ðrÞ is an r-dependent correction to the
magnetic moment, due to QED. m1 accounting for
the conservation of the energy outside of the star and since
we consider the neutron itself as a classical object (internal
and crust effects are not part of our model), we set
m1ðRÞ ¼ 0. We find

mðrÞ¼m0

�
1þαQED

75π

�
2m0

R3BQED

�
2
�
1−

�
R
r

�
6
��

: ð2:25Þ

Thus, the magnetic moment measured at infinity is slightly
larger than at the surface of the star by an amount

m1ð∞Þ ¼ 4αQED
75π

m0

m2
0

R6B2
QED

; ð2:26Þ

where 2m0=R3 ≪ BQED.
Heyl and Hernquist [23] found a very similar expression

for the radiative corrections to a static magnetic dipole of

m1ð∞Þ ¼ 4αQED
135π

m0

m2
0

R6B2
QED

; ð2:27Þ

in the weak-field limit, a factor of 9=5 smaller than our
expression. It is not surprising that we obtain the same
scaling here as in [23] as both results are essentially angular
averages of ∂L=∂I; however, in our case the average is

weighted by a dipole radiation pattern (i.e., S0) and in the
former case the weighting also includes an octopole term.
Rather than treating the strong-field limit in the case of a

simple rotating magnetic dipole, we examine, in the next
sections, a more realistic field configuration for a rotating
neutron star and examine both the weak-field and strong-
field limits.

C. The problematic QVF

1. Radiation reaction torque

For the sake of our argumentation, we derive the
radiation reaction torque (classical self-torque) in the
z direction, using the self-torque technique described in
[1] and using Eq. (2.1). We however highlight erroneous
assumptions made by Dupays et al. [1], and thus derive a
more accurate estimate.
The infinitesimal induced classical vacuum dipole

moment, at a position r is given by

dmðr; tÞ ¼ Bðr; tÞ dV; ð2:28Þ

where dV ¼ r2 sin θ dr dθ dϕ is the infinitesimal element of
volume in spherical coordinates.
The infinitesimal induced classical vacuum dipole

moment produces itself a retarded infinitesimal magnetic
field at the center of the star, given by

dBð0;tÞ¼3r½dmðr;t−r=cÞ ·r�
r5

−
dmðr;t−r=cÞ

r3
: ð2:29Þ

We then get the infinitesimal self-torque from the
following formula [15,24]:

dτself ¼ mðtÞ × dBð0; tÞ: ð2:30Þ

In order to derive the classical self-torque, we integrate
(2.30) over the space outside of the star. However, unlike
Dupays et al. [1] who integrate directly from the surface of
a neutron star, we assume that the field is retarded beyond a
certain radius u0Rlc; we determine the cutoff scale, u0,
below. The radius of the light cylinder of a neutron star, Rlc,
is given by

Rlc ¼
c
Ω

¼ 4.8 × 104
�

P
1 s

�
km; ð2:31Þ

where P is the period of rotation of a neutron star. We get

τself ¼
Z

r¼∞

r¼u0Rlc

Z
θ¼π

θ¼0

Z
ϕ¼2π

ϕ¼0

ðdτself · êzÞ dV: ð2:32Þ

The integration gives
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τself ¼ −
8π

3

m2Ω3sin2α
u30c

3
½4Cið2u0Þu30 þ cosð2u0Þu0

þ ð1 − 2u20Þ sinð2u0Þ�; ð2:33Þ

where Ci is the cosine integral.
It is known [25] that for a uniformly rotating magnetic

dipole, the expression of the radiation reaction torque has to
agree with the one of the dipole torque. The latter is derived
from classical electromagnetism [24], and given by

τdipole ¼ −
2

3c3
m2Ω3sin2ðαÞ: ð2:34Þ

Therefore, equating those two torques sets the cutoff
scale u0; we get

u0 ≈ 1.149: ð2:35Þ

Consequently, the self-torque technique, and a fortiori
QVF, is only valid from around the radius of the light
cylinder and not near the surface of a neutron star, as
predicted by Dupays et al. [1].
Following the reasoning of Dupays et al. [1], u0 would

be small and we would have

τself ¼
u0≪1

− 8π
m2Ω3sin2α

u20c
3

: ð2:36Þ

Consequently at the surface of a neutron star, u0 ¼ ΩR
c , we

would have

τself
τdipole

¼
u0≪1

12π

�
Rlc

R

�
2

: ð2:37Þ

As it will be demonstrated below, this scaling induces an
overestimation of QVF by Dupays et al. [1].

2. QVF in the weak-field limit

We now consider the QED one-loop corrections to the
magnetic field and we derive the additional self-torque
from a QED-induced vacuum magnetization of the dipole
field, following [1].
Using Eqs. (2.1), (2.17) and (2.22), the infinitesimal

induced quantum vacuum dipole moment, at a position r is
given by

dmQVFðr; tÞ ¼
2αQED
45π

Bðr; tÞ2
B2
QED

Bðr; tÞ dV: ð2:38Þ

The infinitesimal induced quantum vacuum dipole
moment produces itself a retarded infinitesimal magnetic
field at the center of the star, given by

dBQVFð0;tÞ¼
3r½dmQVFðr;t−r=cÞ ·r�

r5
−
dmQVFðr;t−r=cÞ

r3
:

ð2:39Þ

We then get the infinitesimal self-torque,

dτself;QVF ¼ mðtÞ × dBQVFð0; tÞ; ð2:40Þ

which leads to

τself;QVF ¼
64

212625

αQED
B2
QED

m4Ω9sin2ðαÞ
u90c

9

��
−2u80 þ u60

− 3u40 þ
45

2
u20 − 315

�
sinð2u0Þ þ

��
u60 −

3

2
u40

þ 15

2
u20 −

315

4

�
cosð2u0Þ þ 4Cið2u0Þu80

�
u0

�
:

ð2:41Þ

Then, using the value of u0 from Eq. (2.35), we can
evaluate (2.41),

τself;QVF ¼ −0.01397948990
αQEDm4Ω9sin2ðαÞ

c9B2
QED

: ð2:42Þ

We note the dependence, here, on Ω9, which reduces the
contribution of the magnetic field to the torque.
We then derive the following ratio:

τself;QVF
τdipole

¼ 0.02096923485
αQEDm2Ω6

c6B2
QED

; ð2:43Þ

and we get the following order of magnitude:

τself;QVF
τdipole

¼ 1.7 × 10−30
�

B0

1012 G

�
2
�

R
10 km

�
6
�

P
1 s

�
−6
:

ð2:44Þ

We find, in the weak-field limit, that QVF is small
compared to a classical dipole radiation. Consequently,
QVF is negligible for neutron-star spin-down.
Again, following the reasoning of Dupays et al. [1],

u0 would be small and we would have

τself;QVF ¼
u0≪1

−
16

75

αQEDm4Ω9sin2ðαÞ
c9B2

QEDu
8
0

; ð2:45Þ

which would give the following ratio:

τself;QVF
τdipole

¼
u0≪1

8αQED
25B2

QED

m2c2

Ω2R8
; ð2:46Þ

which explicitly depends on the radius of the star (not just
the magnetic moment). Dupays et al. [1] find the following
value:
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τself;QVF
τdipole

¼
Dupays

9αQED
128πB2

QED

m2c2

R8Ω2
; ð2:47Þ

and Coelho et al. [2] get

τself;QVF
τdipole

¼
Coelho

2αQED
25πB2

QED

m2c2

R8Ω2
: ð2:48Þ

Although the three results have different numerical coef-
ficients, they have the same dependence on the dipole
moment, spin frequency and stellar radius.
One can note the dependence on Ω−2 which supports the

contribution of the field, hence the following overestimated
order of magnitude:

τself;QVF
τdipole

¼
u0≪1

6.9

�
Bp

1012 G

�
2
�

R
10 km

�
−2
�

P
1 s

�
2

: ð2:49Þ

3. Discussion

The contribution of QVF, as also estimated by Dupays
et al. [1], seems to become even more important for more
slowly rotating neutron stars; consequently, a realistic
estimate of the near field and of the strong-field regime
is crucial. Furthermore, QVF being only valid at around the
radius of the light cylinder, a method taking into account
the near field is needed to estimate the effects of QED on
neutron-star spin-down.
Thus, in the next section, we derive the QED one-loop

corrections to the Poynting vector of a neutron star, using
the Deutsch fields [10], instead of considering an additional
spin-down effect such as QVF.

D. The Deutsch fields

In his paper, Deutsch [10] idealizes a star as a sharply
bounded, perfectly conducting sphere that rotates rigidly in
vacuum.
Let η ¼ Ωr

c and δ ¼ ΩR
c , h1 and h2 be spherical Bessel

functions of the third kind (also known as spherical Hankel
functions of the first kind) with argument η. Furthermore,
primes will be used to denote derivatives with respect to the
argument h01 ¼ dh1

dη and h
0
2 ¼ dh2

dη . The expression ðÞδ denotes
that the expression should be evaluated at the surface, i.e.,
η → δ. The general solution, for the external fields, derived
by Deutsch [10] and corrected by Michel and Li [26], is
given here in Gaussian units, and with r, θ and ϕ the usual
spherical coordinates.
Deutsch magnetic field:

Hr ¼
2m
R3

�
R3

r3
cos α cos θ þ h1=η

ðh1=ηÞδ
sin α sin θeiðϕ−ΩtÞ

�
ð2:50Þ

Hθ ¼
m
R3

�
R3

r3
cos α sin θ þ

��
η2

ηh02 þ h2

�
δ

h2

þ
�
η

h1

�
δ

�
h01 þ

h1
η

��
sin α cos θeiðϕ−ΩtÞ

�
ð2:51Þ

Hϕ ¼ m
R3

��
η2

ηh02 þ h2

�
δ

h2 cos 2θ

þ
�
η

h1

�
δ

�
h01 þ

h1
η

��
i sin αeiðϕ−ΩtÞ: ð2:52Þ

Deutsch electric field:

Er ¼
ΩR
c

m
R3

�
−
1

2

R4

r4
cos αð3 cos 2θ þ 1Þ

þ 3

�
η

ηh02 þ h2

�
δ

h2
η
sin α sin 2θeiðϕ−ΩtÞ

�
ð2:53Þ

Eθ ¼
ΩR
c

m
R3

�
−
R4

r4
cos α sin 2θ þ

��
η

ηh02 þ h2

�
δ

×
ηh02 þ h2

η
cos 2θ −

h1
ðh1Þδ

�
sin αeiðϕ−ΩtÞ

�
ð2:54Þ

Eϕ ¼ ΩR
c

m
R3

��
η

ηh02 þ h2

�
δ

ηh02 þ h2
η

−
h1

ðh1Þδ

�
i sin α cos θeiðϕ−ΩtÞ: ð2:55Þ

Because R ≈ 10 km, a useful approximation is to use the
expressions for the fields when R=Rlc ≪ 1.
Using MAPLE and some final calculations by hand, we

derive the vectorial expression of the Deutsch magnetic
field when R ≪ Rlc,

HDðr; tþ r=cÞ ¼
ΩR
c →0

3rðmðtÞ · rÞ
r5

−
mðtÞ
r3

−
3r½ðmðtÞ ×ΩÞ · r�

cr4

þmðtÞ ×Ω
cr2

þ rðmðtÞ ·ΩÞðr ·ΩÞ
c2r3

−
Ω2rðmðtÞ · rÞ

c2r3
−
ðmðtÞ ×ΩÞ ×Ω

c2r
;

ð2:56Þ

where, in a Cartesian coordinate system, we have
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r ¼

0
B@

r sinðθÞ cosðϕÞ
r sinðθÞ sinðϕÞ

r cosðθÞ

1
CA; mðtÞ ¼

0
B@

m sinðαÞ cosðΩtÞ
m sinðαÞ sinðΩtÞ

m cosðαÞ

1
CA; Ω ¼

0
B@

0

0

Ω

1
CA:

One important thing to notice is that the Deutsch
magnetic field intrinsically contains a retardation t − r=c,
in the expression of the magnetic moment, no matter where
the field is located in the space r ≥ R. This retardation
becomes explicit in Eq. (2.56), but it is already present in
the spherical field components, only made implicit by the
complex notation. Thus, we find here, in the first two terms
of Eq. (2.56), the magnetic field of a classical magnetic
dipole, but this time retarded, even near the surface of a
neutron star. However, the two subsequent terms cancel the
retardation for small values of r as in the case of the rotating
dipole in Sec. II A.
We also derived the full vectorial expression of the

Deutsch magnetic field, using the decomposition in
Eq. (A1) (see the Appendix). One can note, in the full
vectorial expression, that the intrinsic retardation of the
field is now tþ R=c − r=c. That comes from the continuity
of the field at the surface of a neutron star, between the
internal field and the external one. Therefore, the retarda-
tion is diminished further by the surface boundary con-
ditions, by a factor of R=c, in comparison to the case of an
usual rotating magnetic dipole.

III. ENERGY FLOW IN THE DEUTSCH FIELDS

In the Deutsch [10] model, a neutron star essentially
loses its energy in the form of electromagnetic radiation,
so the Poynting vector quantifies the losses through the
surface of the star. We first calculate the Poynting vector
in a classical way, and then we study the QED one-loop
corrections that can be applied to the macroscopic fields,
and thus derive an additional Poynting vector from QED-
induced vacuum polarization of the dipole field. We will
go even further, using the conservation of the energy as a
motivation to derive QED one-loop corrections to the
magnetic dipole moment of a neutron star, to first order
in αQED.
All of the results using the Deutsch fields are indexed

with a D in this chapter.

A. Classical approach

As with the rotating dipole we calculate the Poynting
vector,

S0;D ¼ c
4π

ED × BD; ð3:1Þ

and we integrate over a sphere centered on the star to get

P0;D ¼
I
A
S0;D · n dA: ð3:2Þ

We are therefore only interested here in the radial
component Sr;0;D of the Poynting vector, with r, θ and
ϕ the usual spherical coordinates,

Sr;0;D ¼ c
4π

ðEθ;DBϕ;D − Eϕ;DBθ;DÞ: ð3:3Þ

We get the radiated electromagnetic power by integrating
over a surface dA,

P0;D ¼ 2

3

m2Ω4sin2α
cðc2 þΩ2R2Þ

180c6 − 12Ω4R4c2 þ 8Ω6R6

180c6 − 15Ω4R4c2 þ 5Ω6R6
;

ð3:4Þ

which reduces to, assuming R ≪ Rlc,

P0;D ¼
R≪Rlc

2

3c3
m2Ω4sin2α: ð3:5Þ

We find back in Eq. (3.5) the radiated power derived in
Eq. (2.9) for an orthogonal magnetic dipole moment
(α ¼ π=2), and the value calculated by Deutsch [10].
Equation (3.4) is also important since it shows the depend-
ence of the radiated power on the radius R of the star as a
correction to the dipole formula. Furthermore, as in
Eq. (2.9), the radiated power does not depend on the
distance from the star (r).

B. QED one-loop corrections in the weak-field limit

We now work with a neutron star surrounded by
quantum vacuum. As described in Sec. II A, nonlinearities
in the equations of the electromagnetic fields are introduced
by the one-loop corrections of quantum electrodynamics.
From Eq. (2.15), we get

S1;D ¼ 4
∂L1

∂I S0;D; ð3:6Þ

where we are only interested in the radial component as
given by Eq. (3.3). We again use the weak-field limit
from Eq. (2.22), and integrate over a sphere of radius r
surrounding the star to get
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P1;DðrÞ ¼
2

4725

�
168 − 4sin2α

Ω6R4r2

c6
− 20

Ω4R4

c4
sin2α

− ð48þ 12cos2αÞΩ
2R4

r2c2

�
αQED
πB2

QED

Ω4m4sin2α
c3r6

:

ð3:7Þ

We find that the radiated power depends on the distance r as
with the rotating dipole. If we examine the limit where
R ≪ Rlc, we obtain

P1;DðrÞ ¼
R≪Rlc

8αQED
75π

m2

r6B2
QED

2

3

m2Ω4sin2α
c3

: ð3:8Þ

As in Sec. II A, we can then derive the one-loop
corrections to the magnetic dipole moment of the
Deutsch field,

m1;Dð∞Þ ¼
R≪Rlc

4αQED
75π

m0

m2
0

R6B2
QED

; ð3:9Þ

which in the limit of R ≪ Rlc is identical to the results for
the rotating dipole, Eq. (2.26).
Since Eq. (3.8) is true for each value of r ≥ R, we can

get an estimation of the energy loss rate at the surface
of the star,

P1;DðRÞ
P0;D

¼
R≪Rlc

2αQED
75π

�
Bp

BQED

�
2

; ð3:10Þ

where

Bp ¼ 2m0

R3
ð3:11Þ

is the magnetic field strength at the magnetic pole of a
neutron star (θ ¼ 0, ϕ ¼ 0, r ¼ R, and α ¼ 0).
We can now evaluate the ratio of the additional spin-

down power from vacuum polarization to the classical
spin-down power to find

P1;DðRÞ
P0;D

¼
R≪Rlc

3.2 × 10−8
�

Bp

1012 G

�
2

: ð3:12Þ

We find for stars in the weak-field limit that the vacuum
polarization contribution to the spin-down is negligible.
However, it appears to increase as the square of the surface
magnetic field, so perhaps it could be important for
magnetars, therefore we must repeat the calculation in
the strong-field limit.

C. QED one-loop corrections in the strong-field limit

We now consider the case of magnetars, that is to say we
use the QED one-loop corrections to the Deutsch field in
the strong-field limit (Bp ≫ BQED). Heyl and Hernquist

[18], as well as Ritus [27] and Dittrich [28], found the
effective Lagrangian in the limit where K is small (this is
equivalent to RBp ≪ RlcBQED) which is generally true for
the observed magnetars. We have, to the leading order,

L1ðI;0Þ¼
αQED
4π

I

�
1

6
ln

�
2I

B2
QED

�
−
1

3
þ4ζð1Þð−1Þ

�
; ð3:13Þ

where ζð1Þð−1Þ ¼ −0.1654211437 is the first derivative of
the Riemann Zeta function evaluated in −1.
We then find

∂L1

∂I ðI;0Þ¼αQED
4π

�
1

6
ln

�
2I

B2
QED

�
−
1

6
þ4ζð1Þð−1Þ

�
: ð3:14Þ

This expression is nearly constant over the surface of the star,
since the strong-field regime is only valid until a radius rs,
not much bigger than R; further than that radius, the field
switches to the weak-field regime. Consequently, within rs,
we take the field to vary slowly from the surface as

I ¼ 2

�
Bp

R3

r3

�
2

: ð3:15Þ

Proceeding as for the weak-field limit, we get the
following radiated power:

P1;DðrÞ ¼
R≪Rlc

2αQED
9π

m2Ω4sin2α
c3

�
ln

�
BpR3

BQEDr3

�

þ lnð2Þ − 1

2
þ 12ζð1Þð−1Þ

�
: ð3:16Þ

We can now derive the expression of rs, given by
P1;DðrÞ ¼ 0,

rs¼R

�
Bp

BQED

�1
3

exp

�
−lnð2Þþ1

2
−12ζð1Þð−1Þ

�
−1
3

; ð3:17Þ

for example, for Bp ¼ 100BQED, we get rs ≈ 2.6R.
Furthermore, the QED corrections, within this radius,

to the magnetic moment of a neutron star are purely
geometric,

m1;Dðr ≤ rsÞ ¼
1

2π
ln

r
R
: ð3:18Þ

Then, at the surface of a neutron star, we have

P1;DðRÞ
P0;D

¼ αQED
3π

�
ln

�
Bp

BQED

�
þ lnð2Þ − 1

2
þ 12ζð1Þð−1Þ

�
:

ð3:19Þ

We can now evaluate the ratio of the additional
spin-down power from vacuum polarization to the classical
spin-down power to find, in the strong-field limit,
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P1;DðRÞ
P0;D

¼ 7.7 × 10−4 ln

�
Bp

2.6 × 1014 G

�
: ð3:20Þ

Again we will consider that the magnetic moment
measured at infinity is slightly larger than at the surface
of the star. However, since we consider distances further
than rs, we use the weak-field limit results, to yield

m1;Dðr > rsÞ ¼
αQED
6π

m0

�
ln

�
2m0

R3BQED

�
þ lnð2Þ

−
1

2
þ 12ζð1Þð−1Þ − 8

25

m2
0

r6B2
QED

�
; ð3:21Þ

where 2m0=R3 ≫ BQED. At infinity, we have

m1;Dð∞Þ ¼ αQED
6π

m0

�
ln

�
2m0

R3BQED

�

þ lnð2Þ − 1

2
þ 12ζð1Þð−1Þ

�
: ð3:22Þ

Heyl and Hernquist [23] also found a similar logarithmic
dependence for the radiative corrections to a static magnetic
dipole

m1ð∞Þ¼αQEDm0

"
1

3π
−
4

ffiffiffi
3

p

243

#�
ln

�
m0

R3BQED

�
−2

�
: ð3:23Þ

However, the corrections in the case of a rotating dipole are
a factor of about 2 smaller than found in [23].
Given the similarity both physically and mathematically

of the two results, we can use the results from [23] to

provide an interpolation of the effect between the weak and
strong-field regimes (see Fig. 1). We achieve this by scaling
the earlier results both in the magnitude of the effect and the
strength of the field to yield the magenta dotted curve
depicted in Fig. 1.

D. Discussion

In order to support our result, we can determine the
theoretical strength of the magnetic field at the surface of a
magnetar which would lead to

P1;DðRÞ
P0;D

≈
R≪Rlc

1: ð3:24Þ

We find

Bp ≈ BQEDe
3π

αQED ≈ 101291BQED: ð3:25Þ

Consequently, for all physically interesting field strengths
(Bp ≲ 4.4 × 101304 G) the QED radiative corrections to the
spin-down are small.
Finally, given the known functional dependence on the

magnetic field, in both the weak-field and strong-field
limits, of the two-loop corrections, one could wonder
whether using the effective Lagrangian of QED to two-
loop order would affect our results. According to Gies and
Karbstein [29], in the weak-field limit, the two-loop
Lagrangian is a factor of about αQED smaller than the
one-loop Lagrangian, therefore these two-loop corrections
do not affect our results in that regime. In the strong-field
limit, however, we have [29]

L2-loop
1

L1-loop
1

∼ αQED lnð
ffiffi
I

p
Þ: ð3:26Þ

Thus, in order for the two-loop corrections to dominate
over the one-loop corrections, exponentially large magnetic
fields would be needed; such fields are not realized in
physically realistic neutron stars. Consequently, we do not
expect two-loop corrections to change our conclusions on
the importance of QED effects on neutron-star spin-down.

IV. ENERGY FLOW IN GJ MAGNETOSPHERE

Goldreich and Julian [14] demonstrated that neutron
stars must have a dense corotating magnetosphere within
the light cylinder, associated with a wind zone outside the
light cylinder. According to the authors, the field has two
components, a poloidal one which dominates within the
light cylinder, and a toroidal one which dominates within
the wind zone. They used an aligned-dipole model for their
demonstration. Although an aligned dipole in vacuum does
not radiate, the toroidal structure of the magnetic field, in
the wind zone, is associated with a non-null Poynting flow,

FIG. 1. The additional radiated power induced by QED for the
Deutsch field, (P1;D=P0;DÞ, as a function of the surface magnetic
field (Bp), in the weak-field limit (green dashed curve), strong-
field limit (blue dot-dashed curve) and a global interpolation
(magenta dotted curve) using the results of [23].
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hence a radiated electromagnetic power P0;GJ. In their
model, the authors have disregarded both inertia and
gravity; thus, the particles in the magnetosphere behave
like a perfect conductor, which implies

E · B ¼ 0: ð4:1Þ

Consequently, the entire flow of angular momentum is
carried away by the magnetic field and the total spin-down
power over both hemispheres is given by

P0;GJ ¼
2Ω2

c

Z
π=2

0

sin3θ½ΨðθÞ�2 dθ; ð4:2Þ

where ΨðθÞ=r2 is the strength of the approximately radial
poloidal magnetic field in the wind zone at an angle of θ
relative to the rotation axis.
According to Goldreich and Julian [14], the magnetic

flux in the asymptotic wind zone can be approximated by
the one leaving the polar cap of a neutron star (respectively
for each hemisphere). All the field lines emitted inside the
polar cap go through the light cylinder and are open. The
bounding field line of the corotating magnetosphere is such
that [14,30]

sin θp ¼
�
ΩR
c

�1
2

; ð4:3Þ

where θp is the polar cap half-angle. The magnetic flux in
the asymptotic wind zone is equal to the magnetic flux that
leaves the polar cap of the star (θ < θp) [14],

IA ¼
Z

π=2

0

sin θΨðθÞ dθ ¼
Z

θp

0

BpR2 sin θ dθ: ð4:4Þ

Yet, for observed pulsars, we generally have θp ≪ 1,
so [14]

IA ¼
θp≪1

1

2
BpR2θ2p ¼ 1

2

ΩR3

c
Bp: ð4:5Þ

We now may write the energy loss in the asymptotic wind
zone as follows [14]:

P0;GJ ¼
Ω2

c
I2AIB ¼ 1

4

Ω4R6

c3
B2
pIB; ð4:6Þ

where

IB ¼ 2

I2A

Z
π=2

0

sin3θ½ΨðθÞ�2 dθ: ð4:7Þ

Since IB takes account of the dispersion of the magnetic
flux far away from the light cylinder and relies on
geometrical considerations, we do not expect QED to

affect this quantity. Goldreich and Julian [14] assume IB
to be of order unity. On the other hand, IA is directly related
to the magnetic flux at the polar cap, where the magnetic
field is at its strongest; therefore QED should modify this
quantity, by increasing the polar magnetic field.

A. QED one-loop corrections

We now consider the QED one-loop corrections to the
magnetic field at the polar cap. We treat the general case for
the magnetic field strength (the weak-field limit is dis-
cussed in the next section). According to Eqs. (2.19) and
(4.1), the correction to the magnetic flux leaving the polar
cap is the following:

IQEDA ¼
θp≪1

1

2
Bp4

∂L1

∂I R2θ2p: ð4:8Þ

Heyl and Hernquist [23], as well as Ritus [27] and
Dittrich [28], derived ∂L1=∂I as follows:

∂L1

∂I ¼ αQED
8π

�
2X0

�
BQED

Bp

�
−
BQED

Bp
Xð1Þ
0

�
BQED

Bp

��
; ð4:9Þ

where X0ðxÞ is given by Eq. (22) of [23], and

Xð1Þ
0 ðxÞ ¼ dX0ðxÞ=dx.
Therefore, the additional QED radiated power is given,

to first order in αQED, by

P1;GJ ¼ 2
Ω2

c
IAI

QED
A : ð4:10Þ

Thus, the amount of energy loss due to QED is the
following:

P1;GJ

P0;GJ
¼ 2αQED

3π

�
12

Z BQED
2Bp

−1

0

ln½Γðxþ 1Þ�dx

þ ln

�
Bp

BQED

�
þ 6 ln π þ 7 ln 2þ 12ζð1Þð−1Þ − 1

2

�

þ 2αQED
3π

BQED

Bp

�
−3 ln

�
Γ
�
BQED

2Bp

��

−
3

2
ln

�
2πBp

BQED

�
− 3

�
þ αQEDB2

QED

2πB2
p

; ð4:11Þ

where Γ is the Gamma function.
We plot this ratio as a function of the polar magnetic field

(see the golden curve depicted in Fig. 2). Although the
energy loss due to QED is about 3 times as big as the one
found for an ideal solution in vacuum (the Deutsch fields),
the QED corrections to the flow of angular momentum are
still small.
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B. QED one-loop corrections in the weak-field limit

The expression of X0ðxÞ that we used becomes difficult
to calculate numerically in the weak-field limit. We use
instead the expansion given by Eq. (20) of [18]. This yields
an expression for the energy loss to lowest order in the field
strength of

P1;GJ

P0;GJ
¼ 4αQED

45π

�
Bp

BQED

�
2

: ð4:12Þ

This result is around 3 times as big as the one found in
Eq. (3.10), for the Deutsch fields. We depict the full weak-
field expansion for the energy loss as a function of the polar
magnetic field by the green dashed curve in Fig. 2.

C. Discussion

We included in our calculation a magnetosphere for
neutron stars, following the model derived by Goldreich
and Julian [14]. We find that the plasma loading of the
magnetosphere of neutron stars yields an energy flow of
about the same order as the vacuum result that we obtained
with the Deutsch fields. We find that QED effects are also
negligible for a pulsar surrounded by a dense magneto-
sphere (see Fig. 2).
We employed a dipole field structure as a first approxi-

mation in the Goldreich and Julian model, whereas the
plasma influences the field morphology. One could then
use a field structure generated by magnetohydrodynamics
simulations for an oblique pulsar magnetosphere [31].
After measuring the integrated Poynting flux, Spitkovsky
[31] finds the following oblique spin-down luminosity:

Lpulsar ¼
Ω4m2

c3
ð1þ sin2αÞ: ð4:13Þ

This luminosity is at the minimum 1.5 times as big as
the vacuum formula [see Eq. (3.5)]. Again for this more

complicated magnetosphere we expect the same geometric
arguments that we use for the aligned rotator to apply;
therefore, we expect QED to be negligible, even if we use
such a field structure.

V. CONCLUSIONS

Neutron stars are astrophysical objects with strong
magnetic fields, especially magnetars for which they can
be of order of Bp ≈ 1015 G. Because these objects rotate,
they have a rotational energy which serves for the activity
of a pulsar. Therefore, a neutron star loses energy and spins
down. In the simplest model of a neutron star, a rotating
magnetic dipole in rotation in vacuum, the radiated power is
given by the classical dipole formula.
Considering the magnitude of the fields in a neutron star,

one could expect quantum electrodynamics to play a role in
the energy loss, by a process coined as quantum vacuum
friction by Dupays et al. [1]. They claimed that a self-
torque between a neutron star and the induced magnetiza-
tion surrounding it will bring its rotation to rest much more
quickly that the classical dipole formula would suggest. We
demonstrated that the energy loss through QVF is small
compared to the power radiated by a rotating magnetic
dipole. Then, we calculated the QED one-loop corrections
to the Poynting vector, using the local external Deutsch
fields of a neutron star. These QED corrections depend on
the strength of the magnetic field, so we had to consider two
limits, the weak-field limit and the strong-field limit. We
obtained, for both of these limits, the ratio of QED radiated
power over classical radiated power. In addition, we
derived, again in both limits, the one-loop QED corrections
to the magnetic moment of a neutron star in vacuum
described by the Deutsch fields. We came to the conclusion
that, in the weak-field limit as in the strong-field limit
(magnetars), the additional radiated power due to QED is
small compared to the classical radiated power.
These conclusions do not change for a neutron star

surrounded by a dense magnetosphere. Although one could
push that study further by using a field structure from
magnetohydrodynamics simulations, we expect that this
would only introduce additional geometric considerations
and therefore we would reach in this most general case the
identical conclusion: QED effects on the spin-down lumi-
nosity of a neutron star are negligible.
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FIG. 2. The energy loss induced by QED for a Goldreich and
Julian pulsar magnetosphere (P1;GJ=P0;GJ) as a function of the
polar magnetic field (Bp).
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APPENDIX: VECTORIAL EXPRESSION OF THE DEUTSCH MAGNETIC FIELD

Michel and Li [26] gave the following decomposition of the Deutsch fields:

HD ¼ HDðalignedÞ þHDðdipoleÞ þHDðquadrupoleÞ
ED ¼ EDðalignedÞ þ EDðdipoleÞ þ EDðquadrupoleÞ: ðA1Þ

According to that decomposition, we have derived the vectorial expression of the Deutsch magnetic field given, in terms of
spherical coordinates, by Eqs. (2.50), (2.51) and (2.52) [10,26].

1. Aligned part of the Deutsch magnetic field

We have derived here the vectorial expression of the aligned part of the Deutsch magnetic field:

Haligned
D ðr; t − R=cþ r=cÞ ¼ 3

Ω2r5
rðmðtÞ ·ΩÞðr ·ΩÞ − 1

Ω2r3
ΩðmðtÞ ·ΩÞ: ðA2Þ

2. Dipole part of the Deutsch magnetic field

We have derived here the vectorial expression of the dipole part of the Deutsch magnetic field:

Hdipole
D ðr; t − R=cþ r=cÞ ¼ 1

Ω2R2 þ c2

��
1

r3
−
3R
r4

−
3c2

Ω2r5

�
rðmðtÞ ·ΩÞðr ·ΩÞ

þ
�
Ω2R
cr

þ c
r2

−
Rc
r3

�
mðtÞ ×Ωþ

�
−
Ω2R
cr3

−
3c
r4

þ 3Rc
r5

�
r½ðmðtÞ ×ΩÞ · r�

þ
�
−
1

r
þ R
r2

þ c2

Ω2r3

�
ðmðtÞ ×ΩÞ ×Ωþ

�
−
Ω2

r3
þ 3Ω2R

r4
þ 3c2

r5

�
rðmðtÞ · rÞ

�
: ðA3Þ

3. Quadrupole part of the Deutsch magnetic field

We have derived here the vectorial expression of the quadrupole part of the Deutsch magnetic field:

Hquadrupole
D ðr; t − R=cþ r=cÞ

¼ 1

ðΩ6R6 − 3Ω4R4c2 þ 36c2Þcr3

×

��
−3Ω4R4cþ 6Ω2R2c3 þ 3Ω4R5c − 18Ω2R3c3

r
þ 9Ω2R4c3 − 18R2c5

r2

�
rðmðtÞ ·ΩÞðr ·ΩÞ

þ ½ð−Ω6R5 þ 6Ω4R3c2Þr2 þ ð−9Ω4R4c2 þ 18Ω2R2c4Þrþ 3Ω4R5c2 − 18Ω2R3c4�mðtÞ ×Ω

þ
�
Ω6R5 − 6Ω4R3c2 þ 9Ω4R4c2 − 18Ω2R2c4

r
þ −3Ω4R5c2 þ 18Ω2R3c4

r2

�
r½ðmðtÞ ×ΩÞ · r�

þ ½ð3Ω4R4c − 6Ω2R2c3Þr2 þ ð−3Ω4R5cþ 18Ω2R3c3Þr − 9Ω2R4c3 þ 18R2c5�ðmðtÞ ×ΩÞ ×Ω

þ
�
3R4Ω6c − 6R2Ω4c3 þ −3Ω6R5cþ 18Ω4R3c3

r
þ −9Ω4R4c3 þ 18Ω2R2c5

r2

�
rðmðtÞ · rÞ

þ
�
−2R5Ω4 þ 12Ω2R3c2 þ 18Ω2R4c2 þ 36R2c4

r
þ 6Ω2R5c2 − 36R3c4

r2

�
ðr ×ΩÞðmðtÞ ·ΩÞðr ·ΩÞ

þ
�
−6Ω4R4cþ 12Ω2R2c3 þ 6Ω4R5c − 36Ω2R3c3

r
þ 18Ω2R4c3 − 36R2c5

r2

�
ðr ×ΩÞ½ðmðtÞ ×ΩÞ · r�

þ
�
2Ω6R5 − 12Ω4R3c2 þ 18Ω4R4c2 − 36Ω2R2c4

r
þ −6Ω4R5c2 þ 36Ω2R3c4

r2

�
ðr ×ΩÞðmðtÞ · rÞ

�
: ðA4Þ
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