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The effective shock wave singularity at the outgoing leg of the inner horizon of a linearly perturbed fast
spinning black hole is studied numerically for either scalar field or vacuum gravitational perturbations. We
demonstrate the occurrence of the Marolf-Ori singularity - including changes of order unity in the scalar
field ϕ for the scalar field model, and in the Weyl scalars ψ0 and ψ4 (rescaled appropriately by the horizon
function Δ) and the Kretschmann curvature scalar K for the vacuum gravitational perturbations model - for
both null and timelike geodesic observers. We quantify the shock sharpening effect and show that in all
cases its rate agrees with expectations.
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The fate of an astronaut who falls into a black hole
depends not just on the latter’s properties (such as the
intrinsic parameters, i.e., the mass and spin angular
momentum, and the external perturbation fields) but also
on the former’s worldline. Specifically, for geodesic equa-
torial timelike geodesics as mapped on the spacetime of the
corresponding unperturbed Kerr black hole, astronauts with
positive energy and high values of their angular momentum
generally end up at a null, weak singularity at the ingoing
leg of the black hole’s inner horizon, the Cauchy horizon
(CH) singularity (“mass inflation singularity,” “infalling
singularity”) [1]. However, astronauts with positive energy
and low angular momentum (including counterrotating
ones) arrive at the outgoing leg of the black hole’s inner
horizon [“outgoing inner horizon” (OIH)].
The properties of spacetime at the OIH have been

proposed to be those of an effective shock wave singularity
[2]. Specifically, it was proposed in [2] that daughters of a
family of free-falling astronauts whose geodesics intersect
with the OIH, and who are separated only by time trans-
lations [and labeled by the advanced time values at which
they cross the event horizon (EH), veh] experience a change
of order unity in typical metric perturbations, and that these
changes occur over a lapse of proper time that drops like
∼e−κveh with increasing veh, where κ is the surface gravity
of the OIH. Sufficiently late-falling daughters therefore
experience an effective shock wave singularity, the Marolf-
Ori singularity (“outflying singularity”).
The Marolf-Ori singularity evolves because incoming

radiation which travels along an ingoing null ray Σ in the
past of the infalling observers Γ (see Fig. 1) and is scattered
outward by spacetime curvature is observed differently by
late daughters (Γ2) than by earlier daughters (Γ1): as a
function of retarded time u, the radiation pattern between
two outgoing null rays is little changed between different
daughters. But as the proper-time difference along the

daughter’s worldline between these two outgoing null rays
u1 and u2 behaves like ∼e−κveh (or, equivalently, as the
relativistic γ-factor increases exponentially, say with
respect to some natural frame near the OIH), any feature
in the radiation field is sharpened exponentially fast with
veh. Specifically, the order unity changes in a scalar field or
in the Weyl scalars ψ0 and ψ4 become effective shock
waves when the time scale for the change in the fields
becomes too small for a physical observer to measure.
When fully nonlinear evolution of the interior spacetime

is considered, there may be a third class of astronauts, who
intersect the singularity at a spacelike sector, where the
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FIG. 1. Penrose diagram of the simulated spacetime, shown
in compactified Kruskal-like coordinates U, V. The EH is at
U ¼ −1, the CH is at V ¼ 0 and the OIH is at U ¼ 0. Two
timelike geodesics (Γ1, Γ2) are shown, in addition to two
outgoing null rays (u1, u2) and an ingoing null ray (Σ).
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singularity may be of the Belinskii-Khalatnikov-Lifshitz
(BKL) type [3]. Evidence for a spacelike (and strong)
singularity inside perturbed black holes is currently avail-
able only for the spherical charged toy model, but without
the chaotic BKL behavior [4]. We do not consider here the
possible occurrence of a spacelike singularity inside rotat-
ing black holes. We also do not consider the effect of
accretion of baryons or dark matter [5] or that of absorbed
photons from the cosmic background radiation [6], or black
holes that are asymptotically deSitter. The perturbation fields
considered in this paper are those of an asymptotically flat,

isolated Kerr black hole perturbed (linearly) by scalar fields
or gravitational waves that result from the Price tails [7] that
follow the collapse [8].
The evidence beyond the original work [2] for the

occurrence of the Marolf-Ori singularity has focused mostly
on the toymodel of a spherical charged black holewith scalar
fields [9], neutral null fluids [10] or a combination of the two
[10]. The Marolf-Ori singularity was also found for rotating
black holes with fully nonlinear scalar fields, for amodel that
considered initial data posed in the interior of the black hole
[11]. It is as yet unclear how such initial data can arise from
evolutionary processes of generic external or internal per-
turbations. The occurrence of the Marolf-Ori singularity for
the model considered in [11] is strong evidence for the
robustness of the shock wave singularity.
Here, we consider in detail for the first time the

occurrence and properties of the Marolf-Ori singularity
for vacuum gravitational perturbations (we also consider
scalar fields) inside fast spinning black holes for astro-
physically realistic initial data, within the linear approxi-
mation. This approximation allows us to find the behavior
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FIG. 2. The scalar field ϕ as a function of s for a family of
ingoing null geodesics. Upper panel (a): the real part, ℜðϕÞ.
Lower panel (b): the imaginary part, ℑðϕÞ. In each case the field
is shown for five geodesics, the earliest of which is at v=M ¼ 496
in increments of Δv ¼ M.
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FIG. 3. The (natural logarithm of the) difference Δs as a
function of κv for the real (upper panel, a) and imaginary (lower
panel, b) parts of the scalar field ϕ for the null case. The slope of
each curve is denoted by α.

TABLE I. The parameter α for null geodesics intersecting with
the OIH. The horizon function Δ ¼ ðrþ − rÞðr − r−Þ, where r�
are the values of the r coordinate at the outer and inner horizons,
correspondingly.

Quantity α for real part α for imaginary part

Δ2ψ0 −1.0011� 0.0007 −1.0033� 0.0016
Δ−2ψ4 −0.994� 0.021 −1.028� 0.040
K −0.963� 0.046 —
ϕ −0.989� 0.058 −1.008� 0.004

FIG. 4. The Weyl scalar ψ0 (multiplied byΔ2) as a function of s
for a family of ingoing null geodesics. Upper panel (a): the real
part, ℜðΔ2ϕÞ. Lower panel (b): the imaginary part, ℑðΔ2ϕÞ.
In each case the field is shown for five geodesics, the earliest of
which is at v=M ¼ 496 in increments of Δv ¼ M.
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of the ψ0 and ψ4 Weyl scalars and the behavior of the
Kretschmann curvature scalar K (or the scalar field ϕ
itself). It does not allow us, however, to find inherently
nonlinear effects such as the behavior of metric functions.
We present numerical results from the solution of the

2þ 1-dimensional Teukolsky equation for a Kerr black
hole with mass M ¼ 1 and spin angular momentum
a ¼ 0.8M, using the methods described in [12]. Initial
data for any of the fields we show are chosen to be
truncated Gaussians centered at ρ ¼ 5.0 with a width of 0.2
and vanishing outside the domain 3 < ρ < 7, where ρ is the
compactified coordinate defined in [12].
First, we consider ingoing null observers, parametrized

by their value of advanced time (“Eddington coordinate”)
v. The real and imaginary parts of the scalar field ϕ are

shown in Fig. 2 as functions of s ¼ −e−κðuþvÞ. Near the
OIH, s is a good approximation for the affine parameter.
Figure 2 shows the order unity change in ϕ, which does not
change appreciably for later null geodesics.
The shock sharpening effect is evident using the quali-

tative argument used in [9]: as the width of each curve in
Fig. 2, Δðln jsjÞ, is roughly the same for all of these
geodesics, the smaller the values of ln jsj are, the narrower
the width. The shock sharpening effect can be demonstrated
quantitatively by finding the width of the change in ϕ. For
ℜðϕÞ we determine the width by finding the difference in s
between the values of s at which ϕ equals 75% of its peak
value above its minimum. For ℑðϕÞwe determine the width
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FIG. 7. Upper panel: Same as Fig. 4 for the curvature scalar K.
Lower panel: Same as Fig. 3 for the curvature scalar K.
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FIG. 6. Same as Fig. 3 for the real and imaginary parts of ψ0

(multiplied by Δ2, upper panels a and b, respectively) and of ψ4

(multiplied by Δ−2, lower panels c and d, respectively).

FIG. 5. Same as Fig. 4 for the Weyl scalar ψ4 (multiplied
by Δ−2).
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FIG. 8. Upper three panels (a,c,e): the real parts of ϕ (panel a),
Δ2ψ0 (panel c), and Δ−2ψ4 (panel e) as functions of proper
time τ (expressed in units of the black hole massM) for ZAMOs.
Lower three panels (b,d,f): The changes Δτ as functions
of κveh corresponding to ϕ (panel b), Δ2ψ0 (panel d), and
Δ−2ψ4 (panel f).
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by finding Δs between 25% and 75% of the change in ϕ.
We then plot in Fig. 3 lnΔs for each null geodesic as a
function of κv for the real and imaginary cases. We denote
the slope of each curve by the parameter α. Based on the
analysis of [2,9] we expect α ¼ −1. The values we measure
appear in Table I. For both the real and the imaginary parts
of ϕ we find agreement between the predicted value of α
and its measured value.
Next, we consider gravitational perturbations. Figures 4

and 5 show (the real and imaginary parts of) theWeyl scalars
ψ0 and ψ4 in the Hartle-Hawking tetrad [13], respectively.
The width for each case is determined as for ℑðϕÞ. Figure 6
shows the shock sharpening effect for ψ0 and ψ4. Notice that
both Δ2ψ0 and Δ−2ψ4 experience an order unity change in
magnitude and approach finite values as s → 0. Therefore,
ψ0 → ∞ andψ4 → 0 as s → 0. However, as theWeyl scalars
transform under tetrad rotation, the latter conclusion is not
tetrad independent. A quantity which is tetrad independent

is the Kretschmann scalar K ∼ 8ψ0ψ4 þ c:c: (Note that the
Hartle-Hawking tetrad is a transverse frame, i.e., ψ1 ¼
0 ¼ ψ3, and that ψ2 is that of the background Kerr space-
time.) Figure 7 shows the behavior of K and the respective
shock sharpening effect. For all three cases of ψ0, ψ4, andK
we find the parameter α to be in agreement with the expected
value (see Table I).
Timelike geodesics are chosen to be a family of geodesic

observerswith energyE=μ ¼ 1 and zero angularmomentum
(ZAMOs)L=μ ¼ 0M, which are separated only byveh. Here,
μ is the mass of the freely falling observer. These geodesics
intersect with the OIH. (For E > 0, the condition that a
timelike geodesic intersects with the CH and not with the
OIH is that L > 2EMr−=a.) Figures 8 and 9 show the real
and imaginary parts, respectively, of ϕ,Δ2ψ0, andΔ−2ψ4 as
functions of proper time τ, and the behavior of Δτ for each
geodesic as a function of κveh.Here, τ ¼ 0when thegeodesic
intersects with the OIH. Figure 10 shows the same for the
Kretschmann scalar K. The widths of the changes in the
fields’values are determined as above. In all caseswe find the
values for parameter α, appearing in Table II to be in
agreement with the expected value.
The effective shock wave singularity is related to the

transverse direction [i.e., the direction of ∂=∂s (∂=∂τ) for
the null (timelike) case]. In the direction along the OIH
(∂=∂v) the fields behave as along any other outgoing null
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FIG. 10. Same as Fig. 7 for ZAMOs. Here, proper time τ is used
instead of s.

TABLE II. The parameter α for ZAMOs intersecting with the
OIH.

Quantity α for real part α for imaginary part

Δ2ψ0 −1.0010� 0.00013 −0.999� 0.0025
Δ−2ψ4 −1.035� 0.019 −1.047� 0.010
K −1.036� 0.009 —
ϕ −1.000� 0.015 −0.999� 0.0025
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FIG. 9. Same as Fig. 8 for the imaginary parts of ϕ, Δ2ψ0, and
Δ−2ψ4 for ZAMOs.
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FIG. 11. The real and imaginary parts of fields along the OIH as
functions of v=M. Top panel (a): The scalar field ψ ; Middle panel
(b): Δ2ψ0; Lower panel (c): Δ−2ψ4.
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geodesic that intersects with the CH [12]. Figure 11 shows
the real and imaginary parts of the scalar field, Δ2ψ0 and
Δ−2ψ4, as functions of v along the OIH.
We have shown evidence for the evolution of a Marolf-

Ori singularity for vacuum perturbations, and for its
evolution inside rotating black holes that are perturbed
by external perturbations. It is as yet an open question
whether the OIH survives (even as a Marolf-Ori singular-
ity) when the black hole is formed in a fully nonlinear
dynamical collapse process. Even if it does, the question of
the fate of an astronaut whose worldline intersects with the
OIH awaits further consideration. It is conceivable that the
deformation of a physical object may be approximated by
a step response, which suggests that it would oscillate
about some deformed state, and the magnitude of the new
equilibrium deformation may be comparable to the object’s
original dimensions. It is yet to be assessed how the internal
structure of a physical object would respond to such strains.
Lastly, we emphasize that the shock wave is effective, in

the sense that for any finite value of veh the focusing effect
of any radiation feature on an earlier Σ is finite. Consider
two observers, Γ1 and Γ2, separated only by a large enough
time translation Δveh (see Fig. 1). Then, consider some

finite proper-time interval Δτ1 along Γ1 for u1 < u < u2.
Because of outgoing scattering and the resultant exponen-
tial blueshift effect of a radiation field on Σ, there is some
later ΣPl which intersects with Γ2 such that the time interval
Δτ2 along Γ2 for u1 < u < u2 becomes Planckian, say (or
alternatively, shorter than what Γ2 can resolve and is
therefore an effective shock). At early retarded times Γ2

still does not see a shock (the differential proper time Δτ2
is still super-Planckian) but after some critical value of
retarded time Γ2 will be seeing a shock. If one wants to see
the shock at earlier retarded times one only needs to make
Δveh larger.
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