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We study the DDK system in a coupled channel approach, by including DDsη and DDsπ, and find that
the dynamics involved in the system forms a bound state with isospin 1=2 and mass 4140 MeV when one of
the DK pair is resonating in isospin 0, forming the D�

s0ð2317Þ. The state can be interpreted as a
DD�

s0ð2317Þ molecule like state with exotic quantum numbers: doubly charged, doubly charmed, and with
single strangeness.

DOI: 10.1103/PhysRevD.99.076017

I. INTRODUCTION

The existence of doubly charmed mesons and baryons is
compatible with the present understanding of quantum
chromodynamics and of the hadron structure [1,2]. In this
line, experimental and theoretical efforts, during the past
years, have been dedicated to the study of doubly charmed
baryons, like Ξþ

cc, Ξþþ
cc , Ωþ

cc (see, for example, Refs. [3–
16]), and doubly charmed mesons, like the Tcc family and
others (see, for example, Refs. [17–27]). The existence of
triple charm states has also been claimed [28], and doubly
charmed/bottom three body systems have been studied
[29–32]. However, in spite of all these efforts, the present
available information about these states is still too prelimi-
nary to reach strong conclusions about their properties, and
it still remains in the agenda of high energy physics to
clarify the formation and nature of such states. At the same
time, the situation is expected to improve since studies of
hadrons with multicharm form a part of the present
programs of several experimental facilities.
In this work, we embark on this odyssey and study the

formation of bound states/resonances in a system of double
charm and positive strangeness: the DDK system. The
motivation behind such a study is twofold: (1) The combi-
nation of the charm D meson and the strange K meson is
known to give rise to an attractive interaction in the isospin 0,

generating the D�
s0ð2317Þ state [33–43]. The addition of a

D meson to this system leads to a three-body system with
attractive interactions in two subsystems. The DD inter-
action is not attractive in nature and, thus, the dynamics
involved does not generate a state. Still, the attraction in the
twoDK pairs can dominate and form hadronic bound states/
resonances with aDD�

s0ð2317Þ nature. (2) Such a possibility
was recently studied in Ref. [44], treating the DD�

s0ð2317Þ
as an effective two body system and describing the
D −D�

s0ð2317Þ interaction through a kaon exchange
potential. Indeed, as a consequence, the generation of a
bound state with a binding energy (with respect to the
D −D�

s0ð2317Þ threshold) of 15–50MeV (depending on the
kaon exchange potential considered) was predicted [44].
Encouraged by these findings, in this work, we study the

explicit three-body coupled channels DDK, DDsπ and
DDsη by solving the Faddeev equations [45] within the
approach developed in Refs. [46–54]. For this, the input
two-body t-matrices needed for the Faddeev equations are
obtained by using effective Lagrangians and solving the
Bethe-Salpeter equation in a coupled channel approach. As
we show in this work, the dynamics involved in the three-
body system leads to the formation of a bound state with
spin-parity JP ¼ 0−, total isospin 1=2, with a mass of
4140 MeV, i.e., around 90 MeV below the DDK three-
body threshold. This state is formed precisely when the
coupled channel DK, Dsη subsystems resonate and gen-
erate the D�

s0ð2317Þ.

II. FORMALISM

In the following subsection we first describe the method
used to calculate the three-body scattering matrix for the
coupled channel DDK, DDsπ, DDsη system and, after it,
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in the next subsection, we give details on the approach used
to determine the interaction between the different two-body
subsystems.

A. The three-body problem

The three-body scattering matrix T describing the
dynamics involved in the coupled channels can be written
as a sum of three partitions [45], Ti, i ¼ 1, 2, 3,

T ¼
X3
i¼1

Ti: ð1Þ

Each of the partitions in Eq. (1) represents an infinite series
of contributions to the scattering arising from Feynman
diagrams where the ith particle is, by convention, a
spectator in the right most interaction (see Fig. 1, for the
case of the T1 partition). Within the approach developed in
Refs. [46–54], each of the Ti partitions can be expressed as

Ti ¼ tiδ3ðk⃗0i − k⃗iÞ þ
X3
j≠i¼1

Tij
R ; i ¼ 1; 2; 3; ð2Þ

Tij
R ¼ tigijtj þ ti½GijiTji

R þGijkTjk
R �; ð3Þ

where k⃗i (k⃗
0
i) corresponds to the initial (final) momentum

of the particle i and ti is the two-body t-matrix which
describes the interaction of the jk pair with j≠k≠
i¼1, 2, 3. In Eq. (3), gij represents the three-body Green’s
function of the system and theGijk matrix is a loop function
of three-particles. Their elements are defined as

gijðk⃗0i; k⃗jÞ ¼
�

Nk

2Ekðk⃗0i þ k⃗jÞ

�

×
1ffiffiffi

s
p

− Eiðk⃗0iÞ − Ejðk⃗jÞ − Ekðk⃗0i þ k⃗jÞ þ iϵ
;

ð4Þ
with

ffiffiffi
s

p
being the center of mass energy of the three-body

system, Nk ¼ 1 for mesons, El, l ¼ 1, 2, 3, is the energy of
the particle l, and

Gijk ¼
Z

d3k00

ð2πÞ3 g̃
ij · Fijk: ð5Þ

The elements of g̃ij in Eq. (5) are given by

g̃ijðk⃗00; slmÞ ¼
Nl

2Elðk⃗00Þ
Nm

2Emðk⃗00Þ
×

1ffiffiffiffiffiffiffi
slm

p −Elðk⃗00Þ−Emðk⃗00Þþ iϵ
; i≠ l≠m;

ð6Þ

and the matrix Fijk in Eq. (5), with explicit variable
dependence, is given by

Fijkðk⃗00; k⃗0j; k⃗k; sk00ruÞ ¼ tjðsk00ruÞgjkðk⃗00; k⃗kÞ
× ½gjkðk⃗0j; k⃗kÞ�−1½tjðsruÞ�−1;

j ≠ r ≠ u ¼ 1; 2; 3: ð7Þ

In Eq. (6),
ffiffiffiffiffiffiffi
slm

p
is the invariant mass of the ðlmÞ pair and

can be calculated in terms of the external variables. The
index k00 on the invariant mass sk

00
ru of Eq. (7) indicates its

dependence on the loop variable

sk
00
ru ¼ ðP − k00Þ2; ð8Þ

which, in turn, indicates the off-shell dependence of the
amplitudes present in the loop. For example, the t3-matrix,
in the third diagram in Fig. 1, represents the interaction of
particles 1 and 2 (thus, the index 3 indicates the label of the
spectator particle) in the loop. This amplitude is calculated
as a function of sk

00
12 using Eq. (8) (see Refs. [46–54] for

more details).
The Tij

R partitions obtained from Eq. (3) are functions of
two variables: the total three-body energy of the system,ffiffiffi
s

p
, and the invariant mass of the particles 2 and 3,

ffiffiffiffiffiffi
s23

p
.

The other invariant masses,
ffiffiffiffiffiffi
s12

p
and

ffiffiffiffiffiffi
s31

p
can be obtained

in terms of
ffiffiffi
s

p
and

ffiffiffiffiffiffi
s23

p
, as shown in Refs. [46,47]. We

study the behavior of the modulus square of the three-body
T-matrix as a function of the total energy and the invariant
mass of a subsystem. We do this by making three-
dimensional plots and a peak appearing in such plots is
interpreted as resonances/bound states linked to the three-
body dynamics involved in the system under study. Since
the first term in Eq. (2) cannot give rise to any three-body
state, we study the properties of the TR matrix defined as

TR ≡X3
i¼1

X3
j≠i¼1

Tij
R : ð9Þ

We work in the charge basis taking into account the
following channels: DþD0Kþ, DþDþK0, DþDþ

s π
0,

DþDþ
s η, D0DþKþ, D0Dþ

s π
þ. To identify the peaks found

in the three-body T-matrix with physical states, an isospin
projection of the amplitudes is required. To do this, we use
a basis in which the states are labeled in terms of the total
isospin I of the three-body system and the isospin of one of
the two-body subsystems, which in the present case is taken

FIG. 1. Some diagrams contributing to the T1 partition. The P
and k00 in the figure represent the four-momenta of the three-body
system and of the indicated particle in the loop, respectively.
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as the isospin of the DK subsystem labeled as particles
2 and 3, I23, and evaluate the transition amplitude
hI; I23jTRjI; I23i. The isospin I23 can be 0 or 1, thus, the
total isospin I can be 1=2 or 3=2.

B. The two-body scattering matrix

In Refs. [35,37,38,55] it was shown that the interaction
of theDK and ηDs coupled channel system in the isospin 0
configuration generates D�

s0ð2317Þ. The starting point in
the latter works consists of using Lagrangians based on
symmetries like chiral and heavy quark [56,57], relevant to
such systems, to obtain the lowest order amplitude, V,
describing the transition between the different coupled
channels and unitarize the amplitudes. The unitarization is
achieved by using V as kernel in the Bethe-Salpeter
equation, obtaining in this way the scattering matrix t
for the coupled channel system. This is done by solving the
Bethe-Salpeter equation in its on-shell factorization form
[58–60],

t ¼ ð1 − VGÞ−1V: ð10Þ
The G in Eq. (10) represents the loop function of two
hadrons, which has to be regularized either with a cutoff or
dimensional regularization.
In case of the DDK system and coupled channels, the

resolution of Eq. (3) requires the two-body t-matrices
related to the DK and DD subsystems, and their respective
coupled channels. To calculate the scattering matrix of
the DK system, which is formed by a heavy meson H (the
D meson) and a light pseudoscalar P (the kaon), we follow
closely the approach developed in Refs. [37,55]. In these
works, the leading order Lagrangian describing the HP
interaction is given by the kinetic and mass term of the
heavy mesons (chiraly coupled to pions, since both chiral
and heavy quark symmetries should be relevant to the
problem),

L ¼ DμHDμH† −M
∘ 2

HHH†; ð11Þ
with H ¼ ðD0Dþ Dþ

s Þ collecting the heavy mesons,

whose mass in the chiral limit is M
∘
H, P is given by

P ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCA; ð12Þ

and Dμ is the covariant derivative [57]

DμH† ¼ ð∂μ þ ΓμÞH†; DμH ¼ Hð∂⃖μ þ Γ†
μÞ;

Γμ ¼
1

2
ðu†∂μuþ u∂μu†Þ; u2 ¼ ei

ffiffi
2

p
P=f: ð13Þ

For the case in which we are interested, i.e., HP → HP,
Eq. (11) reduces to the following Lagrangian

LHP ¼ 1

4f2
f∂μH½P; ∂μP�H† −H½P; ∂μP�∂μH†g; ð14Þ

and the lowest order amplitude obtained from it, in terms of
the Mandelstam variables, reads as

Vij ¼ −
Cij

4f2
ðs − uÞ: ð15Þ

In Eq. (15) the i and j subindices represent the initial and
final channels, respectively, and the Cij coefficients can be
found in Refs. [37,55]. This amplitude Vij is further
projected on s-wave.
As in Refs. [37,55], we considerD0Kþ,DþK0,Dþ

s η and
Dþ

s π
0 as coupled channels and regularize the loop function

of Eq. (10) using dimensional regularization with a scale
μ ¼ 1000 MeV and subtraction constant aðμÞ ¼ −1.846.
The resolution of Eq. (10) for this system generates a pole,
which is below the threshold of the DK channel, with total
isospin 0, at 2318 MeV, and which can be associated
with Ds�0ð2317Þ.
The DD and DDs interactions have not been studied,

so far, but we can obtain the relevant amplitudes by
following the procedure adopted in Ref. [61] to study
the BD system. In Refs. [61–64] the approach based on the
hidden local symmetry [65,66], where the interactions
proceed through vector meson exchange, has been
extended to the sectors of charm and beauty. In such an
approach, which has been shown to be compatible with
heavy quark symmetry [61–64], the vector-pseudoscalar-
pseudoscalar Lagrangian is written as

LVPP ¼ −ighVμ½ϕ; ∂μϕ�i; g ¼ MV

2f
; ð16Þ

where MV is the mass of the exchanged vector meson,
f ¼ fD ¼ 165 MeV and

ϕ ¼

0
BBBBBB@

1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ η0ffiffi
6

p πþ Kþ D̄0

π− − 1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ η0ffiffi
6

p K0 D−

K− K̄0 − 1ffiffi
3

p ηþ
ffiffi
2
3

q
η D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCA
; ð17Þ
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Vμ ¼

0
BBBBB@

ωffiffi
2

p þ ρ0ffiffi
2

p ρþ K�þ D̄�0

ρ− ωffiffi
2

p − ρ0ffiffi
2

p K�0 D�−

K�− K̄�0 ϕ K�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCA
: ð18Þ

Using Eq. (16), the processD1D2 → D0
1D

0
2, whereDi (D0

i),
i ¼ 1, 2, represent an initial (final) D meson, gets con-
tributions from the exchange of vector mesons in the t- and
u-channels. These contributions are given by

Vt-ch
ij ¼ −g2½ð2sþ t −m2

1i −m2
2i −m2

1j −m2
2jÞCt-ch

1

− ðm2
1i −m2

1jÞðm2
2j −m2

2iÞCt-ch
2 �;

Vu-ch
ij ¼ −g2½ð2sþ u −m2

1i −m2
2i −m2

1j −m2
2jÞCu-ch

1

− ðm2
1i −m2

2jÞðm2
1j −m2

2iÞCu-ch
2 �; ð19Þ

where

Ct-ch
1 ¼

X
k

At-ch
k

t −m2
Vk þ iϵ

;

Ct-ch
2 ¼

X
k

At-ch
k

m2
Vkðt −m2

Vk þ iϵÞ ;

Cu-ch
1 ¼

X
k

Bu-ch
k

u −m2
Vk þ iϵ

;

Cu-ch
2 ¼

X
k

Bu-ch
k

m2
Vkðu −m2

Vk þ iϵÞ ; ð20Þ

with the index k indicating the exchanged vector meson
(ρ, ω, J=ψ) of mass mVk. In the energy region studied for
the three-body system, the invariant mass of theDD system
is near the DD threshold, thus, when exchanging vector
mesons in the t- and u-channels, we can write 1=ðt −
m2

Vk þ iϵÞ and 1=ðu −m2
Vk þ iϵÞ ∼ −1=m2

Vk. The coeffi-
cients At-ch

k (Bu-ch
k ) of Eq. (20) are related to the two vertices

involved in the t-channel (u-channel) exchange of vector
mesons and are obtained from the Lagrangian in Eq. (16)
(see the Tables I and II in the Appendix A for their specific
values). The potentials in Eq. (19) are summed and
projected on s-wave. The result found is used to solve
Eq. (10) with the loop function G regularized within the
dimensional regularization scheme (in this case, we con-
sider the regularization scale μ ¼ 1500 MeV and the
subtraction constant aðμÞ ¼ −1.3 as in Refs. [38,67]).
As we shall discuss in the next section, we vary this
parameter to study the stability of the results.

C. Off-shell contributions and three-body forces

It is interesting to notice that Eq. (3) is a set of six
coupled matrix equations which are solved by using the on-
shell part of the two-body t-matrices. It was shown in

Refs. [46–48,54] that this is due to the finding of a
cancellation between the contribution of the off-shell parts
of the two-body t-matrices to the three-body Faddeev
amplitudes and a contact term with same topology whose
origin is in the same Lagrangian which is used to describe
the two-body interactions. For the case of a system formed
by two pseudoscalar mesons and a baryon or two pseu-
doscalar mesons and a vector meson with S-wave inter-
actions it was found that this cancellation was exact in the
flavor SU(3) limit. In case of a system of three light
pseudoscalar mesons in S-wave, such cancellation was
found to be exact in the chiral limit (in this case, two more
diagrams were taken into account, involving one and five
meson intermediate states [54]). In a realistic case, off such
limits, in all these systems, the sum of the contributions
related to the off-shell parts and the three-body contact term
has always been estimated to be smaller than 5%–7% of the
total on-shell contribution. Thus, only the on-shell part of
the two-body t matrices has been found to be significant
and, for the purpose of investigating the formation of a
three-body state and its properties, the contribution coming
from the off-shell parts of the two-body tmatrices used, and
the one related to the three-body contact term obtained
from the Lagrangian (and the one from the diagrams with
one and five meson intermediate states in case of a three
light pseudoscalar system), have together been neglected.
In the present system, formed by two heavy pseudoscalars
and a light one interacting in S-wave, the situation is
slightly different: the Lagrangian used in Eq. (11) to
determine the two-body amplitudes does not generate a
three-body contact term since it can not be expanded up to
any desired number of heavy hadron fields. In such a case,
and having in mind the findings of Refs. [46–48,54], we
might expect a cancellation between the contributions
obtained from the off-shell part of the two-body amplitudes
to the Faddeev equations under some limit and, when being
off such limit, such contributions should be much smaller
than those obtained from the on-shell part of the two-body
amplitudes as in Refs. [46–48,54]. We show in Appendix B
that this is precisely the situation here: similarly to the case
of a three light pseudoscalar system, an exact cancellation
occurs between the off-shell contributions of the two-body
amplitudes to the different three-body diagrams in the
chiral limit. In a realistic situation the contribution arising
from the off-shell parts is found to be about 1% of the total
on-shell contribution and we, thus, neglect it.
One might also wonder what would happen with such a

cancellation if a different model, not based on heavy quark
symmetry, and which could generate a three-body contact
term, is used to determine the two-body amplitudes
required to solve the Faddeev equations. To answer such
a question, we have also considered the model of Ref. [38],
which is based on the SUð4Þ symmetry and which
describes well the properties of the D�

s0ð2317Þ state as a
DK bound state. As shown in Appendix B, in such a model,
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there exits an explicit three-body contact term as in case of
Refs. [46–48,54]. We find that, in this case too, an exact
cancellation exists in the chiral limit and away from the
limit the total contribution of the different sources of three-
body contact terms remains small. It is also interesting to
mention that, numerically, the contributions arising from
the off-shell as well as the on-shell parts of the two-body
amplitudes, to the three-body diagrams, when calculated
with the heavy quark model of Refs. [37,55] are almost
identical to those coming from the two-body amplitudes
and the three-body contact term determined with the model
of Ref. [38], which is based on SU(4).

III. RESULTS

In Fig. 2 we show the modulus squared three-body
amplitude, jTRj2, for the process DDK → DDK for total
isospin I ¼ 1=2 and I23 ¼ 0, as a function of the energy of
the three-body system,

ffiffiffi
s

p
, and the invariant mass

ffiffiffiffiffiffi
s23

p
of

one of the DK subsystems. As can be seen, a peak at
ffiffiffi
s

p ¼
4140 MeV is found when the invariant mass of the DK
subsystem in isospin 0 is ∼2318 MeV, which corresponds
to the mass of theD�

s0ð2317Þ formed in the subsystem. This
result is in line with the one found in Ref. [44], in which the
two body D −D�

s0ð2317Þ system was studied without
explicitly considering the three-body dynamics involved.
Note that in Ref. [44] two descriptions were taken into
account for D�

s0ð2317Þ: as a compact cs̄ state and as a DK
bound state. In both cases, predictions for the existence of a
D −D�

s0 state were made. However, as mentioned by the
authors, the uncertainty involved in the former description
is larger than in the latter case. In the present work, we have

considered that the properties of D�
s0ð2317Þ are predomi-

nantly understood in terms of theDK and Dsη interactions,
as indicated from recent lattice studies and theoretical
calculations [43,68–70].
The result shown in Fig. 2 implies that a state with charm

2, strangeness þ1, and isospin 1=2 is formed as a
consequence of the dynamics involved in the system. It
is interesting to notice that the DD pair alone do not form a
bound state, but adding a kaon to the system binds it and
produces an exotic meson with double charm, nonzero
strangeness. If we denote the state found here as Rþþ, by
the isospin symmetry, its charge þ1 partner, Rþ, with the
third component of isospin −1=2, should also exist in
nature.
It should be mentioned that even though the state found

here is a bound state, the incorporation of two-body
channels, open for decay, when coupled to the three-body
channels considered, could lead to a width of a few MeV.
A small width is expected even if there is a phase space
available for decay to two-body channels, like, Dþ

s D�þ,
DþD�þ

s , since this dynamics is not crucial for the
generation of the three-body state found and, for this
reason, its coupling to two-body channels should be
very small.
Before discussing further properties of this state, we

study how solid our findings are. For this, we investigate
the sensitivity of the results to the parameters of the model,
which are basically the subtraction constants used to
regularize the loop functions when solving the Bethe-
Salpeter equation to get the two-body t-matrices of the
subsystems. While the subtraction constant used to regu-
larize the DK, Dsπ and Dsη loops has been fixed to
reproduce the properties of the D�

s0ð2317Þ, the situation is
different for the DD and DDs interactions. The dynamics
involved in such double charm systems does not give rise to
any state and the value of the subtraction constants is taken
to be same as those used to reproduce data and properties of
states found in other charm sectors (such as Xð3700Þ,
arising from the DD̄ interaction [38,71,72], or Xð3872Þ,
generated from theDD̄� dynamics). In that sense, we could
vary the subtraction constant used to regularize theDD and
DDs loops and check the dependence of the peak found in
the three-body system. Varying this subtraction constant in
a reasonable range, from −1.3 to −1.5, produces small
changes in the magnitude of the three-body T-matrix, while
the peak position remains basically unaltered. On the other
hand, the formation of the D�

s0ð2317Þ in the DK subsystem
and coupled channels is found to be essential to guarantee
the formation of the three-body state. For example, a
reduction in the strength of the interaction which leads
to the generation of D�

s0ð2317Þ by about 10% is enough to
weaken the attraction in the DK subsystem and coupled
channels and to break open the three-body state.
Let us now discuss some properties, other than the

quantum numbers, of the three-body bound state found in
FIG. 2. Modulus squared of the TR-matrix related to the process
DDK → DDK in the ðI; I23Þ ¼ ð1=2; 0Þ configuration.
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this work. One relevant property is the size of such an
exotic state. It is important to know if the state is compact,
since the interaction in two subsystems is attractive. Or,
knowing that adding a charm meson to a kaon produces
D�

s0ð2317Þ, which is a molecule like state, does adding a D
to such a system leads to an extended object. One way to
answer this question would be to solve the Faddeev
equations in the configuration space, as done in
Refs. [54,73,74], which, however, is out of the scope of
this work. Alternatively, we could treat the state found here
as a D −D�

s0ð2317Þ state of mass MR to estimate the mean
square distance among the constituent hadrons. For this,
following Refs. [75–77], on one hand, we can write the
wave function hx⃗jψi of the state generated as a conse-
quence of the DD�

s0 dynamics, as

hx⃗jψi¼α

ffiffiffi
2

π

r
1

r
Im

�Z
Λ

0

dpp
eipr

MR−MD−MD�
s0
−p2

2μ

�
; ð21Þ

with μ being the reduced mass of the system. On the other
hand, we can write the DD�

s0 T-matrix in the Breit-Wigner
form as

TDDsðsÞ ¼
g2

s −M2
R þ iΓRMR

; ð22Þ

with ΓR being the width of the state and here s corresponds
to the center of mass energy of the DD�

s0 system. The
quantum mechanical coupling α in Eq. (21) and the field
theoretical coupling g in Eq. (22) are related through

g2 ¼ −
�
dG
ds

����
s¼M2

R

�
−1

¼ 64π3μB2α2; ð23Þ

where GðsÞ and B are, respectively, the loop function and
binding energy [with respect to the D −D�

s0ð2317Þ thresh-
old] of the DD�

s0ð2317Þ system,

GðsÞ¼
Z

Λ

0

dp
ð2πÞ2p

2
EDþED�

s0

EDED�
s0
½s−ðEDþED�

s0
Þ2þ iϵ� ; ð24Þ

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q
: ð25Þ

In Eq. (24), Λ ∼ 700–1000 MeV corresponds to the cutoff
used to regularize the DD�

s0ð2317Þ loop GðsÞ of Eq. (24)
when solving the scattering problem DD�

s0ð2317Þ →
DD�

s0ð2317Þ. As discussed in Ref. [75], the value of α
obtained from Eq. (23) has a very smooth dependence on
the cutoff Λ, so it is mostly determined by the binding
energy.

Using the wave function in Eq. (21), and varying
Λ ∼ 700–1000 MeV, we can determine the mean square
distance hr2i for the system, and we get

ffiffiffiffiffiffiffiffi
hr2i

q
∼ 1.0–1.4 fm: ð26Þ

This result when compared with the mean square distance
for theDK bound stateD�

s0ð2317Þ,
ffiffiffiffiffiffiffiffi
hr2i

p
∼ 0.7 fm [78], is

about 1.4–2 times larger. We can also compare Eq. (26)
with the corresponding value obtained in Ref. [44],
∼1.0–1.6 fm, and conclude that both results are
compatible.
A question might arise about the possibility of exper-

imental investigations of the state found in the present work
and how its three-body nature can be confirmed in experi-
ments. The recent detection of a charm þ2 baryon by the
LHCb collaboration [10], and the search of the double
charm tetraquark Tcc state in heavy ion collisions [79],
indicate that the detection of the Rþþ state can be
accomplished. A signal for the state Rþþ should be looked
for in systems like Dþ

s D�þ, DþD�þ
s , since it can decay to

such channels, as shown in Fig. 3, or in three-body
channels like DDsγ, DDsπ, where the invariant mass of
Dsγ and Dsπ should be compatible with the formation of
the D�

s0ð2317Þ. These decay widths depend on the under-
lying structure of the decaying particle through the cou-
pling constants of Rþþ toD�

s0ð2317ÞD and ofD�
s0ð2317Þ to

DK, Dsη, Dγ, etc., thus, the values obtained for the widths
will be a clear projection of the underlying three-body
dynamics considered in the present work. A theoretical
calculation of such processes is currently in progress and
should be reported shortly. Similarly, the three-body nature
of the Rþþ state has its implications on the size of the state,
and as we have shown in this work, the mean square
distance can be around a factor 1.4–2 bigger than that of
D�

s0ð2317Þ. The size of Rþþ can be investigated by
determining the value of the production yield of the state
in heavy ion collisions, where molecular states have bigger
production yields as compared to compact bound quark
states [79]. A precise determination of the production yield
of Rþþ in heavy ion collisions should also be obtained in
future works.
Finally, we must mention that we have also calculated

the total isospin 3=2 three-body T-matrix and we find no
states formed.

FIG. 3. A decay mechanism for the state found in this work.
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IV. CONCLUSIONS

We have studied the DDK system and coupled channels
by solving the Faddeev equations and calculating the
three-body scattering matrix. We have found that an isospin
1=2 state is formed at 4140 MeV when the D�

s0ð2317Þ
is generated in the DK subsystems. Such a result is
compatible with the one found in Ref. [44] where the
system D −D�

s0ð2317Þ was studied without considering
explicit three-body dynamics. A state with these quantum
numbers (spin-parity 0−, isospin 1=2, charm þ2, strange-
ness þ1) has not been observed so far. We hope that our
results motivate its search in experimental investigations.
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APPENDIX A: COEFFICIENTS FOR
THE DD AMPLITUDES

In this Appendix we give the coefficients appearing
in Eq. (20).

APPENDIX B: OFF-SHELL CONTRIBUTION AND
THREE-BODY CONTACT TERMS

In this Appendix we investigate if diagrams other than
the kind shown in Fig. 1 can contribute to the three-body
interactions being studied here, such as three-body contact
interactions. As was shown in Refs. [46–48,54], three-body
contact interactions can arise from the Lagrangians used to
determine the two-body amplitudes needed to solve the
Faddeev equations. It was further discussed that there are
yet other sources of such contact terms, which arise from
the off-shell parts of the input two-body amplitudes, which
analytically cancel the propagator in the three-body dia-
grams at the tree level, leading to diagrams which are
topologically equivalent to a three-body contact term (see
Fig. 4). An exact analytical cancellation was found in the
SU(3) limit in Refs. [46,48] for systems made of two
pseudoscalar mesons and an octet baryon or of two
pseudoscalars and a vector meson. While in the case of
a study of three pseudoscalars, such a cancellation was
found in the chiral limit [54]. The cancellation among such
contributions, in realistic cases, is not exactly null but the
sum of all of them has been found to be negligible, when
compared with the results obtained by calculations done by
considering the on-shell parts of the two-body t-matrices.
Thus, it has been shown that one can neglect such sources
of three-body contact interactions and work just with the
on-shell part of the two-body t-matrices.
In the present case, we study a system made of two

heavy and a light meson and the scattering amplitudes for

TABLE I. Ak coefficients for different processes. The ex-
changed vector meson is indicated next to the coefficient.

DþD0 D0Dþ

1=2ðωÞ
DþD0 −1=2ðρ0Þ 1ðρþÞ

1ðJ=ψÞ
1=2ðωÞ

D0Dþ 1ðρ−Þ −1=2ðρ0Þ
1ðJ=ψÞ

DþDþ

1=2ðωÞ
DþDþ 1=2ðρ0Þ

1ðJ=ψÞ

Dþ
s D0 D0Dþ

s

Dþ
s D0 1ðJ=ψÞ 1ðK�þÞ

D0Dþ
s 1ðK�−Þ 1ðJ=ψÞ

Dþ
s Dþ DþDþ

s

Dþ
s Dþ 1ðJ=ψÞ 1ðK�0Þ

DþDþ
s 1ðK̄�0Þ 1ðJ=ψÞ

TABLE II. Bk coefficients for different reactions. We indicate
the exchanged vector meson next to the coefficient.

DþD0 D0Dþ

1=2ðωÞ
DþD0 1ðρþÞ −1=2ðρ0Þ

1ðJ=ψÞ
1=2ðωÞ

D0Dþ −1=2ðρ0Þ 1ðρ−Þ
1ðJ=ψÞ

DþDþ

1=2ðωÞ
DþDþ 1=2ðρ0Þ

1ðJ=ψÞ

Dþ
s D0 D0Dþ

s

Dþ
s D0 1ðK�þÞ 1ðJ=ψÞ

D0Dþ
s 1ðJ=ψÞ 1ðK�−Þ

Dþ
s Dþ DþDþ

s

Dþ
s Dþ 1ðK�0Þ 1ðJ=ψÞ

DþDþ
s 1ðJ=ψÞ 1ðK̄�0Þ
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the two-body subsystems have been obtained by solving
Bethe-Salpeter equations with the kernels derived from
Lagrangians based on the chiral and the heavy quark
symmetries. Such a Lagrangian does not provide us with
a three-body contact term at the same order. Nevertheless,
as mentioned above, contact terms can arise from other
sources and we can analyze them. It is also possible to
make such an analysis by obtaining amplitudes from the
SU(4) Lagrangian, which does provide a contact interaction
term with six fields. Lagrangians based on both sym-
metries, SU(4) and the heavy quark, have been used to
study different meson-meson interactions and similar
results have been found. For instance, the properties of
Dsð2317Þ have been successfully described in Refs. [38] by
working with the SU(4) symmetry and in Refs. [37,55] by
using the heavy quark symmetry. In the present work we
present an analysis of three-body contact interactions
coming from both type of Lagrangians.

1. Interactions taken from the SU(4) Lagrangian

We take the general Lagrangian from Ref. [54]

L ¼ f2

4
Tr½∂μU†∂μU þMðU þU†Þ�; ðB1Þ

where

U ¼ ei
ffiffi
2

p
ϕ=f; ðB2Þ

with the ϕ-matrix being as defined by Eq. (17) of the
manuscript and

M ¼

0
BBB@

m2
π 0 0 0

0 m2
π 0 0

0 0 2m2
K −m2

π

0 0 0 2m2
D −m2

π

1
CCCA: ðB3Þ

The 3ϕ → 3ϕ contact term is obtained as

V3ϕ→3ϕ ¼ −
1

180f4
h6∂μϕϕ2∂μϕϕ

2 þ 2∂μϕϕ4∂μϕ

− 8∂μϕϕ3∂μϕϕ −Mϕ6i: ðB4Þ

To analyze different three-body contact interactions, let
us consider the DþD0Kþ channel, as an example.
Assigning four momenta to particles in the process as:
DþðK1ÞD0ðK2ÞKþðK3Þ → DþðK0

1ÞD0ðK0
2ÞKþðK0

3Þ, the
amplitude is obtained from Eq. (B4) as

V1;contact
DþD0Kþ ¼ −

1

180f4
½12ðK2K0

2 − K1K3 − K0
1K

0
3Þ þ 2ð−K0

2K
0
3 − K2K3 þ K1K0

1

þ K3K0
3 þ K0

1K2 þ K0
2K1Þ − 8ðK0

2K3 þ K0
1K3 − K0

1K
0
2 þ K2K0

3

− K1K2 þ K1K0
3Þ − 2ð2m2

D þm2
KÞ�; ðB5Þ

where the superscript indicates the first kind of contact term considered. We shall now discuss the three-body contact terms
arising from the situation described in Fig. 4. The diagrams contributing to the three-body interactions, at the lowest order,
are shown in Fig. 5, for DþD0Kþ → DþD0Kþ. To evaluate these diagrams we need the following amplitudes (taken from
Ref. [38])

VDþD0→DþD0 ¼ −
1

6f2

�
−
3

2
ð1þ ψ5ÞsDD þ 2ð2þ ψ5Þm2

D

þ
�
1 − ψ5

2

�
ðtDD − uDDÞ þ

1þ ψ5

2

X
i

ðP2
i −m2

i Þ
�
; ðB6Þ

~

(a) (b) (c)

FIG. 4. (a) A lowest order diagram contributing to Faddeev equations. (b) The same diagram, when considering the off-shell parts of the
two-body amplitudes, which cancel a propagator in the three-body diagram and leads to a three-body contact interaction shown in (c).
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VDþK0→DþK0 ¼ −
1

6f2

�
−
3

2
sDK þ

�
γ þ 1

2

�
ðtDK − uDKÞ −

1

2

X
i

ðK2
i −m2

i Þ
�
; ðB7Þ

VDþKþ→DþKþ ¼ 0; ðB8Þ

where sij, tij, uij represent the Mandelstam variables for the ij system, Pi (Ki) is the four momentum of the ith particle in
the DþD0 → DþD0 (DþK0 → DþK0) process and ψ5, γ are defined, in Ref. [38], as

ψ5 ¼ −
1

3
þ 4

3

�
mL

mJ=Ψ

�
2

; γ ¼
�
mL

mH

�
2

; ðB9Þ

withmL (mH) being the mass of light (heavy) vector meson. These variables were introduced in Ref. [38] to incorporate the
breaking of the SU(4) symmetry for the scattering of two mesons. However, to be consistent with the contact term obtained
from Eq. (B4), we will eventually use the SU(4) limit for their values.
It can be seen that the off-shell parts of the two-body amplitudes in Eqs. (B6), (B7) go as ðq2i −m2

i Þ, which precisely
cancel a propagator in the three-body diagrams shown in Fig. 5, and give rise to a three-body contact term. Using the
amplitudes in Eqs. (B6), (B7), we obtain such contact terms as:

V2i;contact ¼ V2iii;contact ¼ V2iv;contact ¼ V2vi;contact ¼ 0;

V2ii;contact
DþD0Kþ ¼ 1

72f4

��
1þ ψ5

2

��
3ðK2 þ K3Þ2 þ 2

�
γ þ 1

2

�
× ððK3 − K0

3Þ2 − ðK2 − K0
3Þ2Þ

�
−
�
−
3

2
ð1þ ψ5ÞðK0

1 þ K0
2Þ2

þ 2ð2þ ψ5Þm2
D þ

�
1 − ψ5

2

�
ððK1 − K0

1Þ2 − ðK1 − K0
2Þ2Þ þ

�
1þ ψ5

2

�
ððK0

1 þ K0
2 − K1Þ2 −m2

DÞ
�	

; ðB10Þ

V2v;contact
DþD0Kþ ¼ 1

72f4

��
1þ ψ5

2

��
3ðK0

2 þ K0
3Þ2 þ 2

�
γ þ 1

2

�
× ððK3 − K0

3Þ2 − ðK3 − K0
2Þ2Þ − ðK0

2 þ K0
3 − K3Þ2 þm2

D

�

−
�
−
3

2
ð1þ ψ5ÞðK1 þ K2Þ2 þ 2ð2þ ψ5Þm2

D þ
�
1 − ψ5

2

�
ððK1 − K0

1Þ2 − ðK2 − K0
1Þ2Þ

�	
: ðB11Þ

Before proceeding further, as noticed in Ref. [54], we recall that more diagrams may exist which can contribute to three-
body contact interactions. An additional diagram exists in the present case, as shown in Fig. 6. In this case too, the off-shell
parts of the input two body interactions possess the feature which kills a propagator in the three-body diagram, leading to
yet another three-body contact term. Since the purpose is to sum all kinds of three-body contact interactions, we take into
account this latter term too. The on-shell contribution of the two-body amplitude to this diagram is much smaller than those
shown in Fig. 5, since a larger momentum transfer is involved in this case, and we neglect it. We obtain the contribution of
the off-shell part of the two-body amplitudes to the diagram in Fig. 6 as

(i) (ii) (iii)

(iv) (v) (vi)

D+

0

+ + + + +

+ + + +

0

+ + +

+ ++

D

+

+

++

+ + + + + + + +

D

K

D

K

D

K

D

D

K

D

K

D

D

D

D

D

K K K

D

D D

D D

K K

D D

D

K

D

K

D

K

D D

D

D

K

D

0 0 000 0

00000 0

FIG. 5. Three-body interaction diagrams contributing to the Faddeev equations at the lowest order.
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V3;contact
DþD0Kþ ¼ −

1

72f4

�
3

2
ðK0

2 þ K0
3Þ2 þ

�
γ þ 1

2

�
½ðK1 − K0

2Þ2 − ðK1 − K0
3Þ2�

þ 3

2
ðK2 þ K3Þ2 þ

�
γ þ 1

2

�
½ðK2 − K0

1Þ2 − ðK3 − K0
1Þ2� −

t −m2
K

2

	
; ðB12Þ

where t ¼ ðK2 þ K3 − K0
1Þ2.

For the sake of an analytical evaluation of all these amplitudes, we consider the three-momenta of the external particles to
be negligible as compared to their energies for a total energy near the resonance mass, and we use

K0
1 ¼

s − s23 þm2
1

2
ffiffiffi
s

p ; K0
2 ¼

s − s13 þm2
2

2
ffiffiffi
s

p ; K0
3 ¼

s − s12 þm2
3

2
ffiffiffi
s

p : ðB13Þ

Further, as found in the present work, around the three-body resonance, the invariant masses of bothDK pairs have a value
of M2R ≃MDsð2317Þ. Thus, we can write

s23 ≃ s13 ¼ M2
2R ≃ ðmD þmK − ΔEÞ2; ðB14Þ

where ΔE is the modulus of the DK binding energy ∼50 MeV, and

s12 ¼ sþ 2m2
D þm2

K − s13 − s23; ðB15Þ

with s representing the Mandelstam variable for the DDK system. We take
ffiffiffi
s

p
to be the mass of the resonance,

M3R ¼ M2R þmK − ΔE0, where ΔE0 ∼ 50 MeV is the binding energy of the DD�
s0 system. Further, as mentioned earlier,

we consider the SU(4) limit

ψ5 → 1; γ → 1: ðB16Þ

As a result, we obtain

V1;contact
DþD0Kþ þ V2ii;contact

DþD0Kþ þ V2v;contact
DþD0Kþ þ V3;contact

DþD0Kþ ¼ mDmK

2f4

�
1 −

ð37m2
D þ 37mKmD þ 154m2

KÞΔE0

90ð2mD þmKÞmDmK
þO

�
ΔE02

mDmK

��

þmDmKΔE
90f4

�
32mK − 45mD

mDmK
þ ð37m2

D þ 616mKmD þ 154m2
KÞΔE0

2mDmKð2mD þmKÞ2

þO

�
ΔE02

mDmK

��
þO

�
ΔE2

mDmK

�
; ðB17Þ

which is, approximately,

V1;contact
DþD0Kþ þ V2ii;contact

DþD0Kþ þ V2v;contact
DþD0Kþ þ V3i;contact

DþD0Kþ þ V3ii;contact
DþD0Kþ ∼

mDmK

2f4
: ðB18Þ

This contribution becomes null in the limit of massless light quarksmu,md,ms ¼ 0, which is the chiral limit. This finding is
similar to the one found in Ref. [54] for a system of three light pseudoscalars.

D

D

K

D

K

D
+

+

+

0
+

0

FIG. 6. Another source of a three-body contact interaction.
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For a more realistic case, we can compare the result in Eq. (B17) with the on-shell contribution of the two-body t-matrices
to the diagrams shown in Fig. 5, which give the three-body amplitudes as

V2i;on
DþD0Kþ ¼ V2iii;on

DþD0Kþ ¼ V2iv;on
DþD0Kþ ¼ V2vi;on

DþD0Kþ ¼ 0;

V2ii;on
DþD0Kþ ¼ 1

36f4
1

ðK2 þ K3 − K0
3Þ2 −m2

D

�
−
9ð1þ ψ5Þ

4
ðK0

1 þ K0
2Þ2

× ðK2 þ K3Þ2 −
3ð1þ ψ5Þ

2

�
γ þ 1

2

�
ðK0

1 þ K0
2Þ2½ðK3 − K0

3Þ2 − ðK2 − K0
3Þ2�

þ 3ð2þ ψ5Þm2
DðK2 þ K3Þ2 þ 2ð2þ ψ5Þ

�
γ þ 1

2

�
m2

D½ðK3 − K0
3Þ2 − ðK2 − K0

3Þ2�

þ 3

2

�
1 − ψ5

2

�
ðK2 þ K3Þ2½ðK1 − K0

1Þ2 − ðK1 − K0
2Þ2� þ

�
1 − ψ5

2

��
γ þ 1

2

�

× ½ðK1 − K0
1Þ2 − ðK1 − K0

2Þ2�½ðK3 − K0
3Þ2 − ðK2 − K0

3Þ2�
	
; ðB19Þ

and

V2v;on
DþD0Kþ ¼ 1

36f4
1

ðK0
2 þ K0

3 − K3Þ2 −m2
D

�
−
9ð1þ ψ5Þ

4
ðK1 þ K2Þ2

× ðK0
2 þ K0

3Þ2 −
3ð1þ ψ5Þ

2

�
γ þ 1

2

�
ðK1 þ K2Þ2½ðK3 − K0

3Þ2 − ðK3 − K0
2Þ2�

þ 3ð2þ ψ5Þm2
DðK0

2 þ K0
3Þ2 þ 2ð2þ ψ5Þ

�
γ þ 1

2

�
m2

D½ðK3 − K0
3Þ2 − ðK3 − K0

2Þ2�

þ 3

2

�
1 − ψ5

2

�
ðK0

2 þ K0
3Þ2½ðK1 − K0

1Þ2 − ðK2 − K0
1Þ2� þ

�
1 − ψ5

2

��
γ þ 1

2

�

× ½ðK1 − K0
1Þ2 − ðK2 − K0

1Þ2�½ðK3 − K0
3Þ2 − ðK3 − K0

2Þ2�
	
: ðB20Þ

To make a consistent comparison, we use Eqs. (B13)–(B16) and deduce the above amplitudes up to the first order in ΔE,
ΔE0. In this way, we get

V2ii;on
DþD0Kþ þ V2v;on

DþD0Kþ ¼ ð2mD þmKÞ
4mKf4ð−mKΔE0 þmKΔEþ 2mDΔEÞ

×
�
2ΔEm3

D − 2ΔEm2
DmK þ 4ΔE0m3

DmK

2mD þmK
− 2m3

DmK þ 8ΔE0m2
Dm

2
K

2mD þmK

�
ðB21Þ

Using ΔE ∼ ΔE0 ¼ 50 MeV, and an average mass for kaon of 496 MeV, Eqs. (B17) and (B21) give, at the three-body
resonance mass,

V1;contact
DþD0Kþ þ V2ii;contact

DþD0Kþ þ V2v;contact
DþD0Kþ þ V3;contact

DþD0Kþ ∼
0.12m2

D

f4
ðB22Þ

V2ii;on
DþD0Kþ þ V2v;on

DþD0Kþ ∼ −
19m2

D

f4
ðB23Þ

It can be seen that the total amplitude coming from the three-body contact interactions is about 0.6% of the amplitudes
coming from the three-body interaction diagrams calculated with the on-shell two-body amplitudes, and it can, thus, be
neglected.
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2. Interactions based on the chiral and heavy quark symmetries

In this case the contact interactions arise due to the cancellation of a propagator in the diagrams shown in Figs. 5 and 6, as
a consequence of the structure of the off-shell part of two-body amplitudes. The relevant two-body interactions, here,
obtained from Eq. (14), are

ṼDþD0→DþD0 ¼ 1

8f2

�
3sDD − ðtDD − uDDÞ − 4m2

D þ
X
i

ðP2
i −m2

i Þ
�
; ðB24Þ

ṼDþK0→DþK0 ¼ −
1

8f2

�
3sDK þ ðtDK − uDKÞ − 2m2

D − 2m2
K −

X
i

ðK2
i −m2

i Þ
�
; ðB25Þ

ṼDþKþ→DþKþ ¼ 0: ðB26Þ

The contribution of the off-shell parts of these amplitudes to the diagrams in Figs. 5 and 6 leads to the following amplitudes:

Ṽ2i;contact
DþD0Kþ ¼ Ṽ2iii;contact

DþD0Kþ ¼ Ṽ2iv;contact
DþD0Kþ ¼ Ṽ2vi;contact

DþD0Kþ ¼ 0;

Ṽ2ii;contact
DþD0Kþ ¼ 1

64f4
f2m2

D þ 6K1K2 þ 2K0
1K1 − 2K0

1K2 − 4K0
2K

0
3 − 4K0

2K3g; ðB27Þ

Ṽ2v;contact
DþD0Kþ ¼ 1

64f4
f4m2

D − 2m2
K − 6K2K3 þ 2K0

3ðK3 − K2Þ þ 8K0
1K

0
2 − 4K0

2K1g; ðB28Þ

Ṽ3;contact
DþD0Kþ ¼ −

1

64f4
f2m2

D þ 6K0
2K

0
3 − 2K1K0

2 þ 2K1K0
3 þ 4K2K3 þ 4K0

1K3g: ðB29Þ

As in the previous subsection, we use Eqs. (B13)–(B16) and deduce the sum of the amplitudes in Eqs. (B27)–(B29) up to
the first order in ΔE, ΔE0, to get:

Ṽ2ii;contact
DþD0Kþ þ Ṽ2v;contact

DþD0Kþ þ Ṽ3;contact
DþD0Kþ ¼ mDðmD − 2mKÞ

4f4
þ ΔE

ð8mD −mKÞ
16f4

− 3ΔE0 ð2m2
D þ 2mDmK − 3m2

KÞ
16f4ð2mD þmKÞ

; ðB30Þ

which can be further approximated as

Ṽ2ii;contact
DþD0Kþ þ Ṽ2v;contact

DþD0Kþ þ Ṽ3;contact
DþD0Kþ ≃

mD

f4

�
mD

4
−
mK

2

�
; ðB31Þ

and considering the mass of the D-meson as nearly four times the mass of kaon, becomes

Ṽ2ii;contact
DþD0Kþ þ Ṽ2v;contact

DþD0Kþ þ Ṽ3;contact
DþD0Kþ ≃

mDmK

2f4
: ðB32Þ

It is interesting to see that this result is same as the one obtained in the previous subsection [see Eq. (B18)], where different
three-body contact interactions are obtained from the Lagrangian based on the SU(4) symmetry, and there is a three-body
contact interaction coming directly from the Lagrangian.
Once again, we can compare the sum of the three-body interactions with the contribution of the on-shell two-body

t-matrices to the three-body diagrams, which is

Ṽ2ii;on
DþD0Kþ þ Ṽ2v;on

DþD0Kþ ¼ 1

64f4

�
1

ðK0
2þK0

3 −K1Þ2 −m2
K

�
× ½4ðm2

K þK0
3ðK2 −K3Þþ 3K2K3Þðm2

D þK1ðK0
2 −K0

1Þþ 3K0
1K

0
2Þ

þ 4ðm2
K þK3ðK0

2 −K0
3Þþ 3K0

2K
0
3Þðm2

DþK0
1ðK2 −K1Þþ 3K1K2Þ�: ðB33Þ

Following the same procedure, as done in the previous subsection, we use Eqs. (B13)–(B16) and deduce Eq. (B33), up to
the first order in ΔE, ΔE0, to get
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Ṽ2ii;on
DþD0Kþ þ Ṽ2v;on

DþD0Kþ ¼ 1

f4
ð2mD þmKÞ

4m2
KΔEþ 8mKmDΔE − 4m2

KΔE0

×
�
−2m3

DmK þ ΔE0m2
DmKð3mD þ 2mKÞ
ð2mD þmKÞ

þ ΔEm2
Dð2mD −mKÞ

�
: ðB34Þ

Using the same values for the variables ΔE, ΔE0 and the mass of the kaon, we obtain

Ṽ2ii;on
DþD0Kþ þ Ṽ2v;on

DþD0Kþ ≃ −
18.9m2

D

f4
; ðB35Þ

whereas Eq. (B30) gives

Ṽ2ii;contact
DþD0Kþ þ Ṽ2v;contact

DþD0Kþ þ Ṽ3;contact
DþD0Kþ ≃

0.12m2
D

f4
: ðB36Þ

It is interesting to notice that the results obtained in Eqs. (B23), (B22) and Eqs. (B35), (B36) are strikingly similar. We can,
thus, conclude that the three-body contact interactions arising from different sources, such as those from the off-shell parts
of the two-body t-matrices and those coming directly from the Lagrangian, cancel each other in the limit of massless light
quarks. In a realistic case, they lead to a small contribution, implying that the results obtained by taking the on-shell parts of
the t-matrices to calculate three-body interactions should be reliable.
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