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We discuss the response of vacuum fluctuations to a static potential in the context of massive, ghost-free
infinite-derivative scalar field theories in two dimensions. For the special case of a δ-like potential,
V ¼ λδðxÞ, the problem is exactly solvable and we calculate the corresponding Hadamard function for this
quantum field. Using this exact result we determine the renormalized value of the vacuum polarization
〈φ̂2ðxÞ〉ren as a function of the distance x from the position of the potential. This expression depends on the
amplitude of the potential as well as the scale of nonlocality l; for distances x ≫ l the nonlocal and local
results agree, whereas for distances x < l there is a difference.
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I. INTRODUCTION

The existence of zero-point fluctuations distinguishes a
quantum field from a classical field. For a free field in
empty flat spacetime these fluctuations are not observable
and one usually neglects them. In other words, one
considers renormalized quantities in which the contribu-
tion of free vacuum zero-point fluctuations is omitted by
their subtraction. However, in the presence of matter
interacting with the quantum field zero-point fluctuations
might lead to observable effects. A famous example is the
Casimir effect: The presence of conducting metals and
dielectrics changes the propagation of zero-point modes.
Their contribution to the vacuum expectation value of the
energy is modified, and this energy depends on the shape
and position of macroscopic bodies. Thus, as a result of
vacuum fluctuations, there appear forces acting on these
bodies. This effect was described by Casimir in 1948 [1,2].
In 1997 Lamoreaux [3] directly measured the force
between two closely spaced conducting surfaces to within
5% and experimentally confirmed the existence of the
Casimir effect.
There are different ways to calculate the Casimir force

that give the same result [4,5]. Let us consider two parallel
conducting plates. As a result of the fluctuations, there exist
microscopic currents in the plates. The average of the
(retarded) forces between such currents does not vanish and

depends on the distance between the plates, and thereby
gives rise to the Casimir force. In the other way of
calculation, one can focus on the electromagnetic zero-
point fluctuations in the cavity between the plates. Taking
the presence of the plates into account by properly choosing
boundary conditions for the quantum field then yields the
Casimir force. In the second approach one can also
calculate the renormalized quantum average of stress-
energy tensor 〈T̂μν〉.
Quantum vacuum averages of quantities that are quad-

ratic in the field depend on the boundary conditions and on
an external potential or a current. Quite often, these
quantum averages are called vacuum polarization. Using
this terminology, one may say that the Casimir effect is a
result of the vacuum polarization produced by conducting
plates. Certainly, one can characterize the vacuum polari-
zation by considering other quantities instead of the stress-
energy tensor. For example, for a scalar field φ̂ one may
study the properties of 〈φ̂2〉, and one may consider this
object as a “poor man’s version of 〈T̂μν〉.” In the present
paper we use this option. Namely, we consider the field φ̂
obeying the following equation:

½D̂ − VðxÞ�φ̂ ¼ 0: ð1Þ

In order to specify the operator D̂, let us consider an
analytic function DðzÞ of the complex variable z. The
operator D̂ is then obtained by substitution z → □ −m2.
We consider and compare two different cases. In both

cases VðxÞ is an external potential producing the vacuum
polarization. In the first case we putDðzÞ ¼ z, such that the
operator D̂ is just Klein-Gordon operator □ −m2 and
Eq. (1) describes a local massive scalar field.
In the second case let us instead consider the function

DðzÞ ¼ z exp½fðzÞ�, where fðzÞ is an entire function (and
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therefore has no poles in the complex plane). Then, the
inverse of this function

1

DðzÞ≡
exp½−fðzÞ�

z
ð2Þ

has only one pole at z ¼ 0. This implies that the propagator
1=D̂ does not have ghosts at tree level and hence the theory
(1) has the same number of propagating degrees of freedom
as in the first case, which is why these theories are called
ghost-free. Since an exponential of a derivative operator
contains infinitely many derivatives by means of its series
expansion, these ghost-free theories are also called “infin-
ite-derivative theories” or “nonlocal theories.”We use these
terms interchangeably.
Later on, we shall consider a special class of ghost-free

theories specified by a positive integer number N,

fðzÞ ¼ ð−zl2ÞN; ð3Þ

which we call GFN . The parameter l is a critical length (or
time) at which the modifications connected with the non-
locality become important. Technically, this length scale
appears in order to form the dimensionless combination
l2ð□ −m2Þ. Let us introduce the symbol

αðzÞ ¼ exp½−fðzÞ�; ð4Þ

which we call a form factor. These form factors need to
have the proper behavior such that we can reproduce the
local theory in a certain limit. For this purpose let us
consider again the GFN class of theories. In a Fourier basis
one has l2ð□ −m2Þ → l2ðω2 − q2 −m2Þ, where ω and q
denote the temporal and spatial Fourier frequencies,
respectively. The local limit is obtained when ωl ≪ 1,
ql ≪ 1, and ml ≪ 1. Hence, in a more general case, it
corresponds to the behavior of the differential operator
D̂ðzÞ at z ¼ 0. Therefore, in order to obtain the correct
infrared behavior that reproduces the standard local theory
in the limit z → 0, one needs to demand that all physical
form factors satisfy αð0Þ ¼ 1. This is evidently the case for
the class of GFN theories (3), but there are other choices
as well.
Ghost-free field theories, and especially ghost-free grav-

ity, have been discussed in a large number of publications,
starting from the papers [6–9]; see also [10,11] for recent
developments. The main driving force of the study of such
theories is an attempt to improve the ultraviolet behavior of
the theory without introducing unphysical (ghost) degrees
of freedom. For applications of ghost-free gravity for
resolving cosmological as well as black hole singularities,
see e.g., [12–17]; in the context of gravitational waves
see [18,19].
The main goal of the present paper is to study the

properties of zero-point fluctuations in the ghost-free

theory. To probe such fluctuations we consider their
response to a specially chosen potential VðxÞ. We restrict
ourselves to the simplest case when this potential is
static and is of the form of a δ-like barrier. We demonstrate
that for such a potential both problems, local and nonlocal,
are exactly solvable. In the main part of the paper we
assume that the flat spacetime is two dimensional. At the
end we discuss the higher dimensional versions of the
theory, and we also make remarks on the thermal fluctua-
tions in the ghost-free theory in the presence of the
potential VðxÞ.

II. SCALAR GHOST-FREE THEORY

We begin by considering a simple two-dimensional
model of a ghost-free massive scalar field interacting with
a potential V. We denote Cartesian coordinates by
X ¼ ðt; xÞ, such that the Minkowski metric is

ds2 ¼ −dt2 þ dx2: ð5Þ

The action of the theory reads

S ¼ 1

2

Z
d2X½φD̂φ − Vφ2�: ð6Þ

For a quantum field φ̂ this action gives Eq. (1). The operator
D̂ is a function of the Klein-Gordon operator □ −m2. Its
explicit form for the local and nonlocal ghost-free theories
was discussed in the Introduction. In order to study the
vacuum polarization we choose a static potential VðxÞ that
has the form of a simple δ-function

V ¼ λδðxÞ; ð7Þ

where we assume that this potential is repulsive such that
λ > 0. For the calculationswe shall employ the formalism of
Green functions. Since there exists a wide set of different
Green functions related to our problem, let us first discuss
them and introduce notations that will be used throughout
the rest of this paper.

A. Green functions “zoo”

In general, we denote a Green function as GðX;X0Þ with
a different choice of the fonts. For the Green functions in
the local theory, in the presence of the potential, we use the
bold font

G•ðX;X0Þ; ð8Þ

where • ¼ ðþ;−; ð1Þ; F;R;AÞ denotes the type of the
Green function:
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G•¼

8>>>>>>>>>><>>>>>>>>>>:

Gþ positivefrequencyWightmanfunction

G− negativefrequencyWightmanfunction

Gð1Þ Hadamardfunction

GF Feynmanpropagator

GR retardedGreenfunction

GA advancedGreenfunction

: ð9Þ

The first three objects satisfy the homogeneous equation

½D̂ − VðxÞ�Gþ;−;ð1ÞðX;X0Þ ¼ 0; ð10Þ

while the last three objects are solutions of the inhomo-
geneous equation

½D̂ − VðxÞ�GF;R;AðX;X0Þ ¼ −δðX − X0Þ; ð11Þ

where D̂ ¼ □ −m2 in this local case.
Similarly, in the nonlocal ghost-free theory the corre-

sponding Green functions (in the presence of the potential)
are denoted by the bold font version of the calligraphic
letters

G•ðX;X0Þ: ð12Þ

These Green functions obey the equations

½D̂ − VðxÞ�Gþ;−;ð1ÞðX;X0Þ ¼ 0; ð13Þ

½D̂ − VðxÞ�GF;R;AðX;X0Þ ¼ −δðX − X0Þ: ð14Þ

In the absence of the potential, that is, when VðxÞ ¼ 0, we
shall use for the Green functions the same notations, but
without boldface. The expressions

G•ðX − X0Þ; G•ðX − X0Þ ð15Þ

denote free Green functions in the local and ghost-free
theories, respectively.
It should be noted that not every method of quantization

of local theories is applicable to the case of nonlocal
theories. There are different approaches toward adapting
traditional methods of quantization to nonlocal ghost-free
theories.
For example, the definition of a quantization procedure

using Wick rotation from the Euclidean signature to the
Lorentz signature may not work for ghost-free theories.
However, one may postulate that quantum field theory is
well defined only in the Euclidean setup [20,21] and then
try to extract information about observables in a physical
domain. This approach is attractive from a mathematical
point of view because in the Euclidean geometry and in the
local case the propagator is unique and well-defined. In the
nonlocal case, however, the propagator picks up essential

singularities in several asymptotic directions in the complex
momentum plane, rendering the evaluation of correlators
and contour integrals impossible.
An alternative approach consists of defining the nonlocal

quantum theory in the physical domain with the Lorentz
signature without ever resorting to Wick rotation. In the
present paper we accept the second approach, which is
technically more involved but conceptually clearer: The
quantization employed in the present paper makes use of
Green functions as well as their asymptotic boundary
conditions which are well known in local field theory.
As we will show, in this particular setting (a static, δ-shaped
potential) these methods are sufficient to construct a unique
nonlocal quantum theory.
Of course nonlocality requires us to reassess some

concepts such as local causality and time ordering. In
particular, time ordering is no longer applicable in the
nonlocal theory in the traditional way. Also, the notions of
retarded and advanced propagators are to be properly
generalized because local causality in ghost-free theories
is not respected. Usually, theories without local causality
are prone to instabilities and hence are undesirable from a
physical point of view. But this generally accepted belief is
not necessarily applicable to the entire class of nonlocal
theories: there are some ghost-free theories that are free
from any instabilities.
In local theories the retarded (advanced) propagator

GRðAÞðx; yÞ vanishes provided x lies everywhere outside
the future (past) null cone of the point y. As it has been
formulated by DeWitt [22], in nonlocal theories this
boundary condition is to be replaced by an asymptotic
condition that causal propagators vanish only in the
“remote past” (“remote future”). Similarly, the boundary
conditions for the Feynman propagator have to be replaced
by the asymptotic conditions. This approach is well defined
and adequate for the computation of various scattering
amplitudes in the presence of external potentials, in spite of
the fact that there appear some acausal effects in the vicinity
of the potential. We shall comment on these conceptual
issues in more detail elsewhere [23].
The presence of the potential VðxÞ breaks the Poincaré

invariance of the free theory in two ways: first, it violates
translational invariance, and second, it selects a reference
frame in which the potential is at rest. However, since the
potential is static, the model preserves the translation
invariance in time. This means that all Green functions
depend only on the time difference t − t0 of their arguments.
This makes it possible and convenient to use the temporal
Fourier transformation. For a function φðt; xÞ we denote

φωðxÞ ¼
Z

∞

−∞
dteiωtφðt; xÞ; ð16Þ

φðt; xÞ ¼
Z

∞

−∞

dω
2π

e−iωtφωðxÞ: ð17Þ
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The Fourier transform of the operator D̂ is

D̂ω ¼ Dð∂2
x þϖ2Þ; ϖ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
: ð18Þ

The temporal Fourier transforms of the above Green
functions are marked by the subscript ω:

G•
ωðx;x0Þ; G•

ωðx;x0Þ; G•
ωðx−x0Þ; G•

ωðx−x0Þ: ð19Þ

In the presence of the δ-potential the model also has the
discrete reflection symmetry x → −x. This implies that

G•
ωðx; x0Þ ¼ G•

ωð−x;−x0Þ; ð20Þ

G•
ωðx; x0Þ ¼ G•

ωð−x;−x0Þ: ð21Þ

B. Free local and ghost-free Green functions

Nonlocal equations are well known in condensed matter
theory. For example, the propagation of perturbations in a
homogeneous dispersive medium can be described by (1)
with D̂ ¼ −∂2

t − fð△Þ, where △ is the Laplace operator.
Quasiparticles associated with such a theory have the
dispersion relation ω2 ¼ fð−k2Þ, where ω is the energy,
and k is a momentum of the quasiparticle. A property which
distinguishes the ghost-free theory from other nonlocal
theories is that its action is locally Lorentz invariant. The
corresponding dispersion relation is Dð−ω2 þ k2Þ ¼ 0.
This means that any solution of the homogeneous equa-
tion (1) in the local theory is automatically a solution of the
homogeneous ghost-free equation. In other words, the on-
shell solutions in the local and ghost-free case are the same.
Let us present now useful expressions for the temporal

Fourier transforms of some Green functions which will be
used later. We use the following notations:

ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

p
for jωj ≥ m; ð22Þ

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
for jωj < m: ð23Þ

For this definition both quantities are real non-negative
quantities. Let us also notice that in the absence of the
potential V the Green functions (for both the local and the
nonlocal cases) depend only on the difference x − x0 of
their arguments. In what follows we denote this difference
simply by x.
In the local theory the Hadamard function reads

Gð1Þ
ω ðxÞ ¼ θðjωj −mÞ cosðϖxÞ

ϖ
; ð24Þ

while the Feynman propagator and the retarded Green
function are

GF
ωðxÞ ¼

8>><>>:
i

2ϖ
eiϖjxj; for jωj ≥ m;

1

2κ
e−κjxj; for jωj < m;

ð25Þ

GR
ωðxÞ ¼

8>><>>:
iεω
2ϖ

eiεωϖjxj; for jωj ≥ m;

1

2κ
e−κjxj; for jωj < m:

ð26Þ

Here and in what follows we denote εω ¼ sgnðωÞ. As
mentioned previously, all these functions are invariant
under the change x → −x. If ω ≥ −m, one has that
GR

ωðxÞ coincides with GF
ωðxÞ. For ω ≥ 0 the following

relation is valid:

Gð1Þ
ω ðxÞ ¼ 2ℑ½GR

ωðxÞ�: ð27Þ

The last equality is nothing but the fluctuation-dissipation
theorem for the vacuum (zero temperature) case, and we
shall comment on this in the Conclusion.
Let us now discuss the free Green functions for a generic

nonlocal ghost-free theory.1 Note that the discussion which
follows is valid for any nonlocal theory that can be
formulated in terms of one form factor α. To begin with,
in the absence of the potential one has

Gð1Þ
ω ðxÞ ¼ Gð1Þ

ω ðxÞ: ð28Þ

In the local quantum field theory the free Hadamard
function is defined as the symmetric expectation value

Gð1ÞðX;X0Þ≡ 〈φ̂ðXÞφ̂ðX0Þ þ φ̂ðX0Þφ̂ðXÞ〉; ð29Þ

where the expectation value is performed in the vacuum
state and readily reproduces Eq. (24). As seen in Eq. (28),
in the nonlocal free theory one obtains the same Hadamard
function as in the local case. The Feynman propagators and
the retarded Green functions in the nonlocal theory differ
from their local versions by a universal term ΔGωðxÞ as
follows:

GF;R
ω ðxÞ ¼ GF;R

ω ðxÞ þ ΔGωðxÞ: ð30Þ

This additional term is given by the integral

ΔGωðxÞ ¼
Z

∞

−∞

dq
2π

cosðqxÞ 1 − αðϖ2 − q2Þ
ϖ2 − q2

: ð31Þ

Since the form factor α has the property αð0Þ ¼ 1, the
integrand is a regular function at q2 ¼ ϖ2. Let us also

1A comprehensive discussion of the Green functions in the
ghost-free theory can also be found in [20].
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notice that ΔGωðxÞ is a real function which is invariant
under the transformation x → −x. Last, in the local case
when α ¼ 1 one has ΔGωðxÞ ¼ 0.
In what follows, we will recast all our results in terms of

this modification term ΔGωðxÞ since it captures the impact
of the nonlocal modification on the local theory.

III. GREEN FUNCTIONS IN THE PRESENCE
OF THE POTENTIAL

In this part we will derive exact expressions for the
Hadamard function as well as the causal propagators
(retarded and Feynman) for the ghost-free theory in the
presence of the δ-potential.

A. Lippmann-Schwinger equation and its solution

For the calculation of the response of zero-point fluc-
tuations to an external potential one needs to find the
corresponding Hadamard Green function. For our choice of
the potential it is possible to obtain it in an explicit form.
Consider the equation

D̂ωφωðxÞ − VðxÞφωðxÞ ¼ 0: ð32Þ

Denote by φ0
ωðxÞ a solution of the equation for V ¼ 0. Then

one can write a solution of (32) for the mode function
φωðxÞ as

φωðxÞ ¼ φ0
ωðxÞ −

Z
∞

−∞
dx0GR

ωðx; x0ÞVðx0Þφωðx0Þ: ð33Þ

This is a so-called Lippmann-Schwinger equation [24].
For VðxÞ ¼ λδðxÞ the integral can be taken explicitly,

and one obtains

φωðxÞ ¼ φ0
ωðxÞ − λGR

ωðxÞφωð0Þ: ð34Þ

Here we used that the free Green function GR
ωðx; x0Þ

depends only on the difference of the coordinates x − x0;
we denote such a function of one variable for x0 ¼ 0 as
GR
ωðxÞ. Provided 1þ λGR

ωð0Þ ≠ 0 this algebraic equation
can be easily solved, and one obtains

φωðxÞ ¼ φ0
ωðxÞ − Λωφ

0
ωð0ÞGR

ωðxÞ;

Λω ¼ λ

1þ λGR
ωð0Þ

: ð35Þ

Formally one can employ the free advanced Green function
GA
ωðxÞ as well, and it will also solve Eq. (32). Expanding a

physical wave packet with “advanced modes” instead of
“retarded modes” will correspond to different boundary
conditions. However, we will prove below that both modes
give rise to the same Hadamard function.

B. Hadamard function

The Hadamard function in the X-representation is
defined as the symmetric expression

Gð1ÞðX;X0Þ≡ 〈φ̂ðXÞφ̂ðX0Þ þ φ̂ðX0Þφ̂ðXÞ〉; ð36Þ

such that Gð1ÞðX;X0Þ ¼ Gð1ÞðX0; XÞ. Applying a temporal
Fourier transform results in the expression

Gð1Þ
ω ðx; x0Þ ¼ 〈φ̂ωðxÞφ̂−ωðx0Þ þ φ̂−ωðx0Þφ̂ωðxÞ〉; ð37Þ

and the symmetry of X ↔ X0 implies that

Gð1Þ
−ωðx; x0Þ ¼ Gð1Þ

ω ðx0; xÞ: ð38Þ

These are formal expressions, but due to Eq. (28) we can
relate them to local expressions in a unique way: Using
Eq. (35) for the field operator φ̂ωðxÞ and the property (28)
one obtains

Gð1Þ
ω ðx; x0Þ≡ Gð1Þ

ω ðx − x0Þ
− ΛωGR

ωðxÞGð1Þ
−ωðx0Þ − Λ−ωGR

−ωðx0ÞGð1Þ
ω ðxÞ

þGð1Þ
ω ð0ÞΛωGR

ωðxÞΛ−ωGR
−ωðx0Þ: ð39Þ

We take this as a unique prescription for obtaining the
nonlocal, interacting Hadamard function. In the case of
vanishing potential, λ ¼ 0, or in the case of vanishing
nonlocality, ΔG ¼ 0, we recover the local results.
Let us now discuss the properties of relation (39). By

construction, this expression satisfies (38). Second, by
means of Eq. (24), it is proportional to θðjωj −mÞ and

Gð1Þ
ω ðx; x0Þ ¼ 0 for jωj < m: ð40Þ

Last, let us notice that

Gð1Þ
−ωðx; x0Þ ¼ Gð1Þ

ω ðx; x0Þ: ð41Þ

This, combined with (38), finally implies

Gð1Þ
ω ðx; x0Þ ¼ Gð1Þ

jωj ðx; x0Þ ¼ Gð1Þ
jωjðx0; xÞ: ð42Þ

Again, one might substitute the free advanced Green
function GA

ωðxÞ in the above relations. It is related to the
free retarded Green function via

ΛA
ω ¼ Λ−ω; GA

ωðxÞ ¼ GR
−ωðxÞ; ð43Þ

where we defined the analogous quantity

ΛA ≔
λ

1þ λGA
ωð0Þ

: ð44Þ
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Then one may define

Gð1Þ
ω ðx; x0ÞA ¼ Gð1Þ

ω ðx − x0Þ
− ΛA

ωGA
ωðxÞGð1Þ

−ωðx0Þ − ΛA
−ωGA

−ωðx0ÞGð1Þ
ω ðxÞ

þ Gð1Þ
ω ð0ÞΛA

ωGA
ωðxÞΛA

−ωGA
−ωðx0Þ; ð45Þ

but using the relations (43) as well as (41) one sees that

Gð1Þ
ω ðx; x0ÞA ¼ Gð1Þ

ω ðx; x0Þ: ð46Þ

Hence, for the calculation of the vacuum polarization in the
static case considered here, the retarded and advanced free
Green functions can be used interchangeably.

C. Causal propagators

In this part, let us denote the causal propagators
(Feynman and retarded) by the superscript “C.” Let us
write the causal propagator in the form

GC
ωðx; x0Þ ¼ GC

ωðx − x0Þ þAωðx; x0Þ; ð47Þ

where Aωðx; x0Þ satisfies the equation

½D̂ − VðxÞ�Aωðx; x0Þ ¼ VðxÞGC
ωðx − x0Þ: ð48Þ

The solution is given by

Aωðx; x0Þ ¼ −
Z

∞

−∞
dx00GC

ωðx; x00ÞVðx00ÞGC
ωðx00 − x0Þ: ð49Þ

One may think of this relation as the version of the
Lippmann-Schwinger equation for the causal propagators.
Again, for VðxÞ ¼ λδðxÞ the above integral can be taken
and one finds

Aωðx; x0Þ ¼ −λGC
ωðx; 0ÞGC

ωðx0Þ: ð50Þ

Combining this relation with (47) one gets

GC
ωðx; x0Þ ¼ GC

ωðx − x0Þ − λGC
ωðx; 0ÞGC

ωðx0Þ: ð51Þ

For x0 ¼ 0 it reduces to the consistency relation

GC
ωðx; 0Þ ¼ GC

ωðxÞ − λGC
ωðx; 0ÞGC

ωð0Þ: ð52Þ

Provided that 1þ λGC
ωð0Þ ≠ 0, we obtain from this alge-

braic equation the condition

GC
ωðx; 0Þ ¼

GC
ωðxÞ

1þ λGC
ωð0Þ

: ð53Þ

Therefore one finally obtains for the causal propagators

GC
ωðx; x0Þ ¼ GC

ωðx − x0Þ − λ
GC
ωðxÞGC

ωðx0Þ
1þ λGC

ωð0Þ
; ð54Þ

where C ¼ F or C ¼ R for the Feynman or the retarded
propagator, respectively. By construction [see Eq. (25)], the
Feynman propagator satisfies

GF
ωðx; x0Þ ¼ GF

ωðx0; xÞ; ð55Þ

GF
−ωðx; x0Þ ¼ GF

ωðx; x0Þ ¼ GF
jωjðx; x0Þ; ð56Þ

as well as

ℑ½GF
ωðx; x0Þ� ¼ 0 for jωj < m: ð57Þ

The retarded propagator, however, satisfies

GR
ωðx; x0Þ ¼ GR

ωðx0; xÞ; ð58Þ

GR
−ωðx; x0Þ ¼ GR

ωðx0; xÞ; ð59Þ

where the bar denotes complex conjugation.

D. Interrelation between Hadamard function and
causal propagators in the static case

Having the exact expressions for the Hadamard function
(39) as well as the causal propagators (54) at our disposal, it
is straightforward to show that they are related via

GF
ωðx; x0Þ ¼

1

2
ðGR

ωðx; x0Þ þ GA
ωðx; x0Þ þ iGð1Þ

ω ðx; x0ÞÞ: ð60Þ

Here, GA
ωðx; x0Þ denotes the advanced propagator which can

be defined as

GA
ωðx; x0Þ≡ GR

−ωðx; x0Þ: ð61Þ
This implies that also in the X-representation one has

GFðX;X0Þ ¼ 1

2
ðGRðX;X0Þ þ GAðX;X0Þ þ iGð1ÞðX;X0ÞÞ:

ð62Þ

In particular, one can also show that the Hadamard function
Gð1ÞðX;X0Þ and the Feynman propagator GFðX;X0Þ are
related via

Gð1ÞðX;X0Þ ¼ 2ℑ½GFðX;X0Þ�; ð63Þ
which again is due to the Fourier space relation

Gð1Þ
ω ðx; x0Þ ¼ 2ℑ½GF

ωðx; x0Þ�: ð64Þ

Evidently, similar relations hold for V ¼ 0 as well as in the
local theories. We prove these relations in Appendix A. It is
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important to stress that these interrelations are valid for any
nonlocal modification ΔGωðxÞ.
Ultimately, we are interested in calculating the vacuum

polarization which is defined in terms of the Hadamard
function. The above relations show that it is also possible to
perform the computations using the Feynman propagator
and take the imaginary part only at the end. We will make
this more precise in the next section.

IV. VACUUM FLUCTUATIONS

A. General expression for 〈φ2(x)〉ren
We are interested in the quantity

〈φ2ðxÞ〉ren ≔ ½〈φðXÞφðX0Þ〉V≠0 − 〈φðXÞφðX0Þ〉V¼0�jX¼X0

¼ 1

2
ðGð1ÞðX;X0Þ − Gð1ÞðX − X0ÞÞjX¼X0

¼ 1

2
½Gð1ÞðX;X0Þ − Gð1ÞðX − X0Þ�jX¼X0 : ð65Þ

Inserting (39) into (65) and using (42) one obtains

〈φ2ðxÞ〉ren ¼ −
Z

∞

m

dω
2π

½2ΛωGR
ωðxÞGð1Þ

−ωðxÞ

−Gð1Þ
ω ð0ÞjΛωGR

ωðxÞj2�: ð66Þ

Alternatively, inserting (54) into (65) as well as making use
of the interrelation (64) yields

〈φ2ðxÞ〉ren ¼ −ℑ
�Z

∞

m

dω
2π

λ
½GF

ωðxÞ�2
1þ λGF

ωð0Þ
�
: ð67Þ

The integration limits follow directly from Eqs. (40) and
(57), respectively. At first glance these two expressions
look quite different, but they are, in fact, identical. This
can be shown by using the relations detailed in the
previous section, as well as in Appendix A. Using
expression (66) it is easy to see that in the absence of
the potential barrier, that is, when λ ¼ 0, 〈φ2ðxÞ〉ren ¼ 0
as it should be.
Using Eq. (30) we can isolate the terms encoding the

nonlocality and obtain (after changing the integration
variable from ω to ϖ) the following expression:

〈φ2ðxÞ〉ren ¼
Z∞
0

dϖ
4π

ΦωðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 þm2

p ;

ΦωðxÞ ¼
B2 − cos2ðϖxÞ − 2 cosðϖxÞBC

1þ C2
;

B ¼ 2gωðxÞ − sinðϖjxjÞ;
C ¼ 2gωð0Þ þ 2ϖ=λ;

gωðxÞ ¼ ϖΔGωðxÞ: ð68Þ

This is a general expression for the renormalized vacuum
polarization for any nonlocal theory specified by ΔGωðxÞ
which enters via the dimensionless quantity gωðxÞ.2
In what follows, it is our goal to evaluate this expression

in the local case, as well as for various nonlocal cases.

B. Vacuum polarization in the local theory

Let us first consider the vacuum fluctuations in the local
theory which was studied earlier; see [4,26] and references
therein. In terms of calculational techniques our approach is
quite similar to the one employed in [27]. In what follows
we shall use the results of the local theory for the
comparison with the results in the ghost-free models.
This will allow us to better understand the effects of the
nonlocality.
In the local case one has ΔGωðxÞ ¼ 0, and hence

B ¼ − sinðϖjxjÞ; C ¼ 2ϖ

λ
: ð69Þ

The integral (68) then takes the form

〈φ2ðxÞ〉loc:ren ¼ λ

Z
∞

0

dϖ
4π

2ϖ sinð2ϖjxjÞ−λcosð2ϖxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2þm2

p
ð4ϖ2þλ2Þ : ð70Þ

Provided m > 0 this integral converges, but it is difficult to
evaluate this integral analytically.
For x ¼ 0 we can calculate (70) analytically and obtain

〈φ2ð0Þ〉loc:ren ¼ −
Z

∞

0

dϖ
4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 þ μ2

p 1

1þ 4ϖ2

¼

8>>>>>>>><>>>>>>>>:

−
arcoshð 1

2μÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4μ2

p for μ < 1
2
;

−
1

4π
for μ ¼ 1

2
;

−
arccosð 1

2μÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 − 1

p for μ > 1
2
;

ð71Þ

where μ ≔ m=λ. Note that 〈φ2ð0Þ〉loc:ren: is always negative,
and asymptotically one has

〈φ2ð0Þ〉loc:ren → −∞ for μ → 0; ð72Þ

〈φ2ð0Þ〉loc:ren → 0 for μ → ∞: ð73Þ

The divergence for μ → 0 corresponds to the well-known
IR divergence for a massless scalar field theory in two
dimensions.

2The scattering of a scalar field on a δ-like potential in a ghost-
free theory was studied in [25]. By comparing (68) with the
results of this paper one can conclude that the factor 1=ð1þ C2Þ
which enters the integral (68) coincides with the transmission
probability R.
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In the case of x ≠ 0 the vacuum polarization (70) can be
evaluated numerically. In Fig. 1 we plot the local vacuum
polarization 〈φ2ðxÞ〉loc:ren: as a function of x for different
values of the mass m.
For the remainder of this paper we shall focus on GFN

nonlocal theories for which the nonlocal modification takes
the explicit form

ΔGωðxÞ ¼
Z

∞

−∞

dq
2π

cosðqxÞ 1 − e−½l2ðq2−ϖ2Þ�N

ϖ2 − q2
: ð74Þ

Note that the integrand is manifestly regular at q ¼ ϖ for
all values of N. It is also clear that for even N the
asymptotic behavior in ϖ → ∞ is regular, whereas for
odd N the asymptotic behavior in ϖ is divergent. This
feature will become important in the following discussion.

C. Vacuum polarization in GF1 theory

The nonlocal GF1 theory is defined by the form factor

αðzÞ ¼ expðl2zÞ; ð75Þ

which is obtained by setting N ¼ 1 in Eqs. (3) and (4). In
this case the integral (31) can be calculated analytically. For
jωj ≥ m (that is, ϖ > 0) the result is

ΔGωðxÞ ¼
1

2ϖ
fsinðϖjxjÞ − ℑ½eiϖjxjerfðxþÞ�g; ð76Þ

where we defined

x� ¼ jxj
2l

� iωl; ð77Þ

and erfðzÞ denotes the error function. In what follows we
shall use the fact that the asymptotic of this function for
ℜðzÞ ¼ fixed and ℑðzÞ → �∞ is

erfðzÞ ∼ −
e−z

2ffiffiffi
π

p
z
: ð78Þ

From expression (76) we can read off

B ¼ −ℑ½eiϖjxjerfðxþÞ�; ð79Þ

C ¼ 2ϖ

λ
− erfiðϖlÞ; ð80Þ

where erfiðzÞ ¼ −ierfðizÞ denotes the imaginary error
function [28]. Its asymptotic for real z → ∞ is

erfiðzÞ ∼ ez
2ffiffiffi
π

p
z
: ð81Þ

Asymptotically, for finite λ > 0 and ω → ∞, one has

B ∼ −
1ffiffiffi
π

p
ϖl

eϖ
2l2−x2=ð4l2Þ; C ∼

1ffiffiffi
π

p
ϖl

eϖ
2l2 : ð82Þ

Both of these quantities are exponentially divergent for
large frequenciesϖ. However, the ratio B=C remains finite
in this limit,

B
C
∼ −e−x2=ð4l2Þ; ð83Þ

and one has

ΦωðxÞ ∼ e−x
2=ð2l2Þ − 2 cosðϖxÞe−x2=ð4l2Þ: ð84Þ

The first term in the right-hand side of this expression does
not depend on the frequency, and hence the corresponding
contribution to 〈φ2ðxÞ〉ren is logarithmically divergent. By
introducing a UV cutoff Ω one obtains the following
expression for the regularized divergent integral:

Z0 ¼
Z

Ω

0

dϖ
4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2þm2

p ¼ 1

4π
ln
�
Ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2þm2

p

m

�
: ð85Þ

One also has

Z1 ¼ −
Z

∞

0

dϖ
4π

2 cosðϖxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 þm2

p ¼ −
1

2π
K0ðmjxjÞ; ð86Þ

where K0ðxÞ is the modified Bessel function. Using these
results one can write the expression for 〈φ2ðxÞ〉ren in the
GF1 theory as follows:

〈φ2ðxÞ〉GF1ren ¼ e−x
2=ð2l2ÞZ0 þ e−x

2=ð4l2ÞZ1 þ ΨðxÞ; ð87Þ

ΨðxÞ ¼
Z∞
0

dϖ
4π

Φ̃ωðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 þm2

p ; ð88Þ

FIG. 1. The local vacuum polarization 〈φ2ðxÞ〉ren as a function
of the dimensionless distance x=l for a fixed potential parameter
(λl ¼ 0.5) and for various values of the dimensionless mass
parameter ml.
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Φ̃ωðxÞ¼ΦωðxÞ−e−x
2=ð2l2Þ þ2cosðϖxÞe−x2=ð4l2Þ: ð89Þ

The integral for ΨðxÞ is convergent. When adding the
Bessel function contribution Z1 to ΨðxÞ we arrive at some
“renormalized vacuum polarization” that we can compare
to the local expression for 〈φ2ðxÞ〉ren. See a graphical
comparison of these quantities in Fig. 2.
Our main insights regarding the vacuum polarization in

the GF1 theory are the following: The Gaussian form of the
form factor αðzÞ in this model makes it possible to obtain
the Fourier transform of the nonlocal part of the Green
functions (76) in an explicit form. This is a very attractive
property of this class of ghost-free theories. Namely for this
reason, GF1 theory has been widely used in the study of
solutions for static sources. In particular, they effectively
regularize the field of a pointlike source in four and higher
spacetime dimensions (see e.g., [29] and references
therein). However, the propagator in this model behaves
poorly in the high-frequency regime, resulting in the
peculiar behavior of the field created by a time-dependent
source in its near zone (see e.g., [30]). In the above
calculations of 〈φ2ðxÞ〉ren we found that the frequency
integral for this quantity is logarithmically divergent at high
frequencies. The origin of this divergence can easily be
traced since the integrand in expression (74) exponentially
grows when ϖ → ∞. The same property is valid for any
GF2nþ1 theory, wherein the factor in the numerator grows
as exp½ðϖlÞ2ð2nþ1Þ�.
The situation is quite different in the case of GF2n

theories: the corresponding form factor αðzÞ decreases for
both spacelike and timelike momenta when their absolute
values tend to infinity. In particular, the integrand in the
expression (74) exponentially decreases when ϖ → ∞ and

is of the order of exp½−ðϖlÞ4n�. Thus nonlocal contribu-
tions of GF2n theories are well defined and divergence-free.
However, the analytic calculations in these theories are
more involved. In the next section we calculate 〈φ2ðxÞ〉ren
for the GF2 theory and show that our expectations regard-
ing the finiteness of the vacuum polarization are correct.

D. Vacuum polarization in GF2 theory

The nonlocal GF2 theory is defined by the form factor

αðzÞ ¼ expð−l4z2Þ; ð90Þ

which is obtained from setting N ¼ 2 in Eqs. (3) and (4).
The nonlocal modification gωðxÞ then takes the form

gωðxÞ ¼
Z

∞

0

dξ
π
cosðξx̃ÞfωðξÞ; ð91Þ

fωðξÞ ¼
1 − e−ðϖlÞ4ð1−ξ2Þ2

1 − ξ2
; ð92Þ

where we introduced the dimensionless quantity x̃ ¼ ϖx.
We are not aware of any analytic expression for this integral.
This property distinguishes this theory fromGF1 theory and
necessitates more involved numerical calculations.
It is quite remarkable that for the point at the position of

the potential the quantity gωð0Þ can be found analytically.
One can use the following representation:

gωð0Þ ¼
1

2ðϖlÞ2π3=2
Z

∞

−∞
dye

− y2

4ðϖlÞ4
Z

y

0

dzPðzÞ; ð93Þ

where

PðzÞ ¼
Z

∞

0

dξ sin ½ð1 − ξ2Þz� ¼
ffiffiffiffiffiffi
2π

p

4
ffiffiffi
z

p ðsin z − cos zÞ: ð94Þ

The integration over the parameter z and then over y leads
to the result

gωð0Þ ¼
ffiffiffi
2

p ðϖlÞ3
6Γð3

4
Þ 2F2

�
3

4
;
5

4
;
3

2
;
7

4
;−ðϖlÞ4

�
− Γ

�
3

4

�
ϖl
π 2F2

�
1

4
;
3

4
;
1

2
;
5

4
;−ðϖlÞ4

�
: ð95Þ

Let us now consider the case when x ≠ 0. The integrand
in (91) contains the function fωðξÞ; for small values of ϖl
it is quite smooth, but for the large value of this parameter it
has rather sharp features (see Fig. 3). To work numerically,
we shall employ a hybrid approach: we approximate
the main features of the nonlocal modification (91) ana-
lytically and use numerics only for the residual difference
between our approximation and the exact expressions (see
Appendix B for a detailed explanation of our methods).

FIG. 2. We plot the 〈φ2ðxÞ〉ren in the local case as well as in the
GF1 case (where we subtracted the logarithmically divergent term
Z0) as a function of the dimensionless distance x=l for a fixed set
of potential parameter (λl ¼ 0.5) as well as mass parameter
(ml ¼ 0.01). At large distance scales, remarkably, the “renor-
malized vacuum polarization” agrees with the local result. Its
shape for small values of x=l is drastically different from the
local theory.
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We find the following large-ϖ asymptotics:

gωð0Þ ¼ −
1

4
ffiffiffi
π

p
ϖ2l2

þOðϖ−6Þ;

gωðxÞ ¼
sinðϖjxjÞ

2
−
a2
3π

ð2þ e−4a
2
2Þ x sinðϖxÞ

ϖl2

−
a2
2π

ð3 − e−4a
2
2Þ cosðϖxÞ

ϖ2l2
þOðϖ−4Þ: ð96Þ

Here a2 is a special parameter which we use in our
approximation,

a2 ≈ 0.5604532115…: ð97Þ

For more details see Appendix B. Thus one obtains the
following asymptotic formulas for the parameters B and C
which enter (68) valid in the limit of large values ϖ:

B ∼ −
2a2
3π

ð2þ e−4a
2
2Þ x sinðϖxÞ

ϖl2
; ð98Þ

C ∼
2ϖ

λ
−

1

4
ffiffiffi
π

p
ϖ2l2

: ð99Þ

The asymptotics for C can readily be reproduced
using an alternative analytical approximation scheme;
see Appendix C. As a result we obtain the following
asymptotic expression for ΦωðxÞ in the limit of large ϖ:

ΦωðxÞ ∼ −
λ2cos2ðϖxÞ
4ϖ2 þ λ2

þ 8a2λ
3πl2

ð1 − e−4a
2
2Þ x cosðϖxÞ sinðϖxÞ

4ϖ2 þ λ2
: ð100Þ

We see that ΦωðxÞ is a decreasing function of ϖ.
Together with the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 þm2

p
factor in (68) the behavior

is improved even more. These considerations imply that—
unlike in GF1 theory—the vacuum polarization for GF2
theory is well defined and finite for any value of x.
Having a numerical evaluation of gωðxÞ at our disposal,

we can now numerically evaluate 〈φ2ðxÞ〉GF2ren . The plot of
this function (and the comparison to the local theory) can
be found in Fig. 4.
There are a few observations: (i) Asymptotics.—For large

distances x ≫ l the vacuum polarization in GF2 theory
approaches that of the local theory, as expected. As this
feature is built into all ghost-free theories considered in
this paper, this result confirms that our numerical methods
work well. (ii) Smoothing.—At small distance scales x ∼ l,
however, there is a difference between the local theory
and GF2 theory: the vacuum polarization is smoothed out at
the origin x ¼ 0 as compared to the local case. This implies
that all quantities related to the derivative of the vacuum
polarization (∼∂xφ

2) are now regular at the presence of the
δ-potential, whereas in the local theory they are not
necessarily continuous. (iii) Overshoot.—Across a wide
range of masses and potential parameters (quite possible for
all possible values) the vacuum polarization at the location
of the δ-potential is numerically larger than in the local
case. We call this an “overshoot,” and this feature is plotted
in Fig. 5. (iv) Crossing.—Last, at the intermediate location

FIG. 3. The shape of the function fωðξÞ which enters the
integral (91) changes drastically for different values of the
dimensionless quantity ϖl: For small values it is a numerically
small smooth function (the solid line in the above plot; to increase
visibility we scaled the function by a factor of 5). For larger
values of ϖl that surpass the critical value of

ffiffiffiffiffiffiffi
2a2

p
≈ 1.058…,

however, the function begins to vary sharply around ξ ¼ 1 which
fundamentally influences its Fourier transform.

FIG. 4. Local and nonlocal vacuum polarization 〈φ2ðxÞ〉ren
plotted against the dimensionless distance parameter x=l for two
different potential parameters (λl ¼ 0.5 and λl ¼ 2). For large
distances the local and nonlocal polarizations approach each
other, but for small distance scales x=l ∼ 1

2
there is a crossover

between the local and nonlocal vacuum polarization which we
previously discussed elsewhere [31] on a heuristic level. The
effect of the nonlocality is a smoothing of the polarization around
x ¼ 0.
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x ∼ l, there is a crossing of the local and GF2 vacuum
polarization. This implies that the difference of the local
and nonlocal vacuum polarization can be both positive and
negative. In the GF1 theory this feature is even more
pronounced with multiple crossings; see Fig. 2. We
previously discussed these features in the effective energy
density in linearized classical nonlocal gravity [31], and it
seems that these crossings or oscillations are a generic
feature of ghost-free theories.
In the regularized vacuum polarization obtained in

the context of GF1 theory many of these features appear
as well, with the notable exception of point no. 3: the
vacuum polarization at the location of the potential is more
negative than that of the local theory, which we may call
“undershoot.”

V. DISCUSSION

In this paper we discussed a nonlocal two-dimensional
massive scalar quantum field. For the calculations of the
vacuum fluctuations of such a field in the presence of a
δ-like potential we employed Green function techniques.
The calculation of 〈φ2ðxÞ〉 in the usual local quantum field

theory is rather simple. It is greatly simplified by employing
a Wick rotation and using the standard methods of the
Euclidean theory. In the class of nonlocal theories which we
consider in this paper, however, thismethod usually does not
work: the corresponding form factor αðzÞ [see (4)] can
infinitely growwhen its complex argument z reaches infinity
along some directions in the complex plane. As a result, one
cannot perform a Wick rotation and all the required
calculations are to be done in the “physical domain” of
the momentum variables. This makes the calculations of the
vacuum fluctuations in ghost-free theories much more
complicated. In this paper we developed the tools required
for these calculations, and this is one of its results.

In order to find 〈φ2ðxÞ〉 it is sufficient to obtain the
Hadamard Green function. We demonstrated that in the
absence of the potential the corresponding Hadamard
Green function in the ghost-free theory coincides with a
similar function in the local theory. We defined 〈φ2ðxÞ〉ren
as the coincidence limit x0 → x of the difference of the
Hadamard Green function of our model and the free local
one. This means that 〈φ2ðxÞ〉ren vanishes in the absence of
the potential. However, in the presence of the potential,
〈φ2ðxÞ〉ren does not vanish in both nonlocal and local cases,
and the corresponding functions depend on the choice of
the theory. The second objective of this paper was to study
this effect.
In order to simplify calculations we chose the simple

model of a repulsive δ-potential. For such a potential one
can find the required Green function in an explicit form by
solving the field equations by means of the Lippmann-
Schwinger method. The expressions for the Hadamard
Green function for a general type of the ghost-free theory as
well as integral representations for 〈φ2ðxÞ〉ren have been
obtained in this paper explicitly.
We focused on the calculations of 〈φ2ðxÞ〉ren for two

ghost-free theories (GF1 and GF2) and demonstrated that
the properties of 〈φ2ðxÞ〉ren in these models are quite
different. In the GF1 theory the quantity 〈φ2ðxÞ〉ren is
logarithmically divergent, whereas in the GF2 the quantity
〈φ2ðxÞ〉ren is a finite smooth function of x for any choice of
the mass parameters m and the scale of nonlocality l. The
logarithmic divergence of 〈φ2ðxÞ〉ren in the GF1 theory is an
ultraviolet problem connected with the behavior of the GF1
form factor in the high-frequency domain. In the GF2
theory (as well as for any GF2n theory) this problem does
not exist. For GF2 theory we also managed to find an exact
analytic expression for 〈φ2ð0Þ〉ren at the position of the
potential. This provided us with a good test of our
numerical computations.
We showed that nonlocal contributions arise from the

universal nonlocal correction term ΔGωðxÞ [see Eq. (31)],
which is added to the local causal propagators (retarded,
advanced, and Feynman). This correction is real valued and
well defined in the physical Minkowski space for all GFN
theories.
Our numerical computations demonstrated (see Figs. 2

and 4), as we expected, that nonlocality smooths the vacuum
polarization in the narrow vicinity of the potential and then
asymptotically approaches the corresponding value of the
local theory. Moreover, at some distance x < l, there is a
crossover between the local and the nonlocal vacuum
polarization. At the location of the potential the “renormal-
ized” vacuum polarization of GF1 is more negative than the
local polarization, whereas in the completely regular GF2
vacuum polarization is larger than the local polarization
at x ¼ 0.
One might think that the model of a two-dimensional

massive scalar field, which we consider in this paper, is

FIG. 5. We plot the difference of the vacuum polarization at the
location of the potential at x ¼ 0 as a function of the potential
strength λl. We see that the difference is a function of the
dimensionless mass parameter ml: for larger masses m at fixed
nonlocality l the difference decreases. In the limiting case λ → 0
the renormalized vacuum polarization vanishes as expected.
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oversimplified. However, the methods developed here can
easily be generalized and adapted to a more realistic case.
Suppose that there exist more than one spatial dimension
and denote the coordinates in this space as ðx; y⃗⊥Þ. If the
potential barrier still has the form λδðxÞ, one can perform
the Fourier transform not only with respect to time t but
also with respect to transverse coordinates y⃗⊥. This is
possible since the translational invariance into the
perpendicular directions is unbroken by the presence of
the potential. Denote by k⃗⊥ the momenta conjugated to y⃗⊥.
Then one can use the same expression (18) for the operator
D̂ω where now the quantity ϖ takes the form

ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2 − k⃗2⊥

q
: ð101Þ

Last, an additional factor depending on ω appears in the
formula (67) for 〈φ2ðxÞ〉ren, which is connected to the phase
volume in momentum space. We hope to address the
higher-dimensional problem in a future work.
As a final remark, it would be interesting as well to study

the vacuum fluctuations beyond the vacuum state in a
thermal bath of finite temperature T. An important con-
nected problem lies in studying under which conditions the
fluctuation-dissipation theorem is valid in the class of
nonlocal ghost-free theories.
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APPENDIX A: PROOF OF EQUATION (60)

Let us prove the main relation

GF
ωðx; x0Þ ¼

1

2
ðGR

ωðx; x0Þ þ GA
ωðx; x0Þ þ iGð1Þ

ω ðx; x0ÞÞ; ð60Þ

from which all other relations that we made use of can be
derived. Since GF

ωðx; x0Þ ¼ GF
−ωðx; x0Þ, we can restrict the

proof, without loss of generality, to the case of ω > 0. Then
one has

GR
ωðxÞ ¼ GF

ωðxÞ ¼ GF
ωðxÞ þ ΔGωðxÞ;

GA
ωðxÞ ¼ GR

−ωðxÞ ¼ GF
ωðxÞ þ ΔGωðxÞ;

Gð1Þ
ω ðxÞ ¼ Gð1Þ

ω ðxÞ ¼ −i½GF
ωðxÞ − GF

ωðxÞ�: ðA1Þ

Note that ΔGωðxÞ ∈ R as well as ΔG−ωðxÞ ¼ ΔGωðxÞ. Let
us also define (for ω > 0)

Λω≔
λ

1þλGF
ωð0ÞþλΔGF

ωð0Þ
; ΛR

ω¼Λω; ΛR
−ω¼ Λ̄ω:

ðA2Þ

Now we can express all interacting nonlocal expressions in
terms of the free, local Feynman propagator GF

ωðxÞ as well
as the real-valued modification ΔGωðxÞ and the complex
function Λω:

GF
ωðx;x0Þ ¼GF

ωðx−x0ÞþΔGωðx−x0Þ
−Λω½GF

ωðxÞþΔGωðxÞ�½GF
ωðx0ÞþΔGωðx0Þ�;

ðA3Þ

GR
ωðx; x0Þ ¼ GF

ωðx − x0Þ þ ΔGωðx − x0Þ
− Λω½GF

ωðxÞ þ ΔGωðxÞ�½GF
ωðx0Þ þ ΔGωðx0Þ�;

ðA4Þ

GA
ωðx; x0Þ ¼ GF

ωðx − x0Þ þ ΔGωðx − x0Þ
− Λω½GF

ωðxÞ þ ΔGωðxÞ�½GF
ωðx0Þ þ ΔGωðx0Þ�;

ðA5Þ

iGð1Þ
ω ðx;x0Þ ¼GF

ωðx−x0Þ−GF
ωðx−x0Þ

−Λω½GF
ωðxÞþΔGωðxÞ�½GF

ωðx0Þ−GF
ωðx0Þ�

−Λω½GF
ωðx0ÞþΔGωðx0Þ�½GF

ωðxÞ−GF
ωðxÞ�

þΛω½GF
ωðxÞþΔGωðxÞ�Λω½GF

ωðx0ÞþΔGωðx0Þ�
× ½GF

ωð0Þ−GF
ωð0Þ�: ðA6Þ

In the last line we can recast the term proportional to ΛωΛω

as follows:

ΛωΛω½GF
ωð0Þ −GF

ωð0Þ� ¼ Λω − Λω: ðA7Þ

Then, we can insert the above expressions into (60).
Comparing the terms independent of Λω as well as linear
terms inΛω thenyields the identity. Realizing thatGR

ωðx; x0Þþ
GA
ωðx; x0Þ is real valued, one can take the imaginary part of

(60) and obtain the relation

Gð1Þ
ω ðx; x0Þ ¼ 2ℑ½GF

ωðx; x0Þ�: ð63Þ

Using the above expressions (A3)–(A6) it can nowbeverified
explicitly. The above results hold true for any choice of
the form factor; thekey assumptions lie in the properties of the
local propagators as well as the real-valuedness of the
nonlocal correction ΔGωðx; x0Þ.
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APPENDIX B: ΔGωðxÞ IN GF2 THEORY

The dimensionless nonlocal modification gωðxÞ ¼
ϖΔGωðxÞ for GF2 is given by the integral

gωðxÞ¼
Z

∞

0

dξ
π
cosðξx̃ÞfbðξÞ; fbðξÞ≔

1−e−b
2ð1−ξ2Þ2

1−ξ2
;

x̃≔ϖx; b≔ ðϖlÞ2: ðB1Þ

This integral is well defined, but we are not aware of any
analytic solution. For x ¼ 0, however, there exists a
solution. Note that in this section, for numerical conven-
ience, we denote fωðxÞ as defined in Eq. (91) of the main
body of the paper as fbðxÞ instead, where b≡ ðϖlÞ2.

1. Exact form of ΔGωð0Þ
The function fbðξÞ as taken from Eq. (B1) can be

represented as the integral

fbðξÞ ¼
1

2b
ffiffiffi
π

p
Z

∞

−∞
dye−

y2

4b2
1 − cos½ð1 − ξ2Þy�

1 − ξ2

¼ 1

2b
ffiffiffi
π

p
Z

∞

−∞
dye−

y2

4b2

Z
y

0

dz sin½ð1 − ξ2Þz�: ðB2Þ

Hence

πgωðx̃Þ ¼
Z

∞

0

dξ cosðξx̃ÞfbðξÞ

¼ 1

2b
ffiffiffi
π

p
Z

∞

−∞
dye−

y2

4b2

Z
y

0

dzPðz; x̃Þ; ðB3Þ

where

Pðz; x̃Þ ¼
Z

∞

0

dξ cosðξx̃Þ sin½ð1 − ξ2Þz�

¼ −
ffiffiffi
π

p
2

ffiffiffi
z

p cos

�
x̃2

4z
þ zþ π

4

�
: ðB4Þ

For x̃ ¼ 0 one can take the integrals exactly using the
relationZ

y

0

dzPðz; 0Þ ¼ −
π

2

�
C

� ffiffiffiffiffi
2y
π

r �
− S

� ffiffiffiffiffi
2y
π

r ��
: ðB5Þ

Here C and S are the Fresnel integrals. Then

πgωð0Þ ¼
ffiffiffi
b

p � ffiffiffi
2

p
πb

6Γð3
4
Þ 2F2

�
3

4
;
5

4
;
3

2
;
7

4
;−b2

�
− Γ

�
3

4

�
2F2

�
1

4
;
3

4
;
1

2
;
5

4
;−b2

��
: ðB6Þ

We find the asymptotics

gωð0Þ ∼
8<:− Γð3

4
Þ

π

ffiffiffi
b

p þOðb3=2Þ for b ≪ 1;

− 1
4
ffiffi
π

p
b þOðb−3Þ for b ≫ 1:

ðB7Þ

See a plot of this function in Fig. 7.

2. Semianalytic approach of calculating ΔGωðxÞ
We are not aware of any analytic solution of (B1) for

x ≠ 0. In what follows, we will describe our method for
(i) evaluating this integral numerically and (ii) extracting
the asymptotic behavior for large ϖ.
Depending on the value of the dimensionless parameter

b, the function fbðξÞ takes rather different shapes; see
Fig 3. Calculating the extrema of fbðξÞ we find a local
maximum at ξ ¼ 0 and a minimum at ξ ¼ ξþ. Moreover,
provided b is large enough, there is another local maximum
at ξ ¼ ξ−,

ξ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2a2

b

r
≈1�a2

b
;

a2¼
1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1−2W−1

�
−

1

2
ffiffiffi
e

p
�s
¼ 0.5604532115…;

ðB8Þ

where WkðxÞ denotes the Lambert W function. It is clear
that the maximum ξ− appears only if b > 2a2. For this
reason we shall distinguish the two regimes of fbðξÞ at the
intermediate value b0 ¼ 3a2. For the regime b < b0 we can
improve numerical convergence by subtracting the tail of
fbðξÞ analytically,

b<b0∶g≈−
e−jx̃j

2
þ
Z

ξ∞

0

dξ
π
cosðξx̃Þ

�
1−e−b

2ð1−ξ2Þ2

1−ξ2
þ 1

1þξ2

�
þE<

b0;ξ∞
ðx̃Þ; ðB9Þ

E<
b0;ξ∞

ðx̃Þ ¼
Z

∞

ξ∞

dξ
π
cosðξx̃Þ

�
1 − e−b

2ð1−ξ2Þ2

1 − ξ2
þ 1

1þ ξ2

�
;

ðB10Þ

where E<
b0;ξ∞

ðx̃Þ denotes the error of this approximation.
On the other hand, for the regime b > b0 it is useful to

approximate the peak around ξ ¼ 1 analytically. The
following approximation works well:

fbðξÞ≈f≈b ðξÞ¼

8>>><>>>:
f1bðξÞ¼ 1−c1e−b

2ð1−ξÞ

1−ξ2 for ξ≤ ξ−;

f2bðξÞ¼mξþn for ξ−< ξ< ξþ;

f3bðξÞ¼ 1−c3e−b
2ðξ−1Þ

1−ξ2 for ξ> ξþ:

ðB11Þ
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This linear interpolation between the maximum and mini-
mum captures the sharp variation of fbðξÞ around ξ ¼ 1
quite effectively. The values of the parameters c1;3 as well
as m and n are chosen such that the jump between linear
piece (ξ− ≤ ξ ≤ ξþ) and the left and right sides is of order
Oðb−2Þ:

c1;3¼ exp

�
−4a22∓ b2

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2a2

b

r ��
;

m¼ 1

2
ð1−e−4a

2
2Þ
�
1

2
−
b2

a22

�
; n¼ 1

2
ð1−e−4a

2
2Þ
�
b2

a22
−1

�
:

ðB12Þ

The integral over the approximation (B11) can be taken
exactly. The linear integral is elementary, and for the others
one obtains for the indefinite integrals (x̃ ¼ 0)Z

dξ
π
f1;3b ðξÞ ¼ 1

2π
ln

�
1þ ξ

1 − ξ

�
þ c1;3

2π
fEi½∓ b2ð1 − ξÞ�

− e∓2b2Ei½�b2ð1þ ξÞ�g; ðB13Þ

as well as (x̃ ≠ 0)Z
dξ
π
cosðξx̃Þf1;3b ðξÞ¼ cos x̃

2π
fCi½x̃ð1þξÞ�−Ci½x̃ð1−ξÞ�g

þ sin x̃
2π

fSi½x̃ð1þξÞ�−Si½x̃ð1−ξÞ�g

þc1;3
2π

ℜfe�ix̃Ei½∓ ðb2þ ix̃Þð1−ξÞ�
−e∓2b2e−ix̃Ei½�ðb2þ ix̃Þð1þξÞ�g:

ðB14Þ

In the above Si, Ci, and Ei denote the sine integral, cosine
integral, and exponential integral, respectively,

SiðxÞ≔
Z

x

0

dt
sin t
t

; CiðxÞ≔ γþ lnxþ
Z

x

0

dt
cos t−1

t
;

EiðxÞ≔ γþ lnxþ
Z

0

−x
dt
1−e−t

t
: ðB15Þ

For the numerical integration we can now write

b > b0∶ g ≈
Z

∞

0

dξ
π
cosðξx̃Þf≈b ðξÞ

þ
Z

ξ∞

0

dξ
π
cosðξx̃Þ

�
1 − e−b

2ð1−ξ2Þ2

1 − ξ2
− f≈b ðξÞ

�
þ E>

b0;ξ∞
ðx̃Þ; ðB16Þ

E>
b0;ξ∞

ðx̃Þ ¼
Z

∞

ξ∞

dξ
π
cosðξx̃Þ

�
1 − e−b

2ð1−ξ2Þ2

1 − ξ2
− f≈b ðξÞ

�
;

ðB17Þ

where again E>
b0;ξ∞

ðx̃Þ denotes the error of the approxima-
tion. See Fig. 6 for a visualization of this numerical
integration scheme. There is a subtlety connected with
the analytic integral in the case b > b0 because it involves
various properties of the cosine integral as well as the
exponential integral. Explicitly one obtains (x̃ ¼ 0)

FIG. 6. Numerical integration scheme: the subtraction of the approximative function f≈b ðξÞ (dashed line) from the exact expression
(solid line) improves the falloff behavior of the integrand drastically, such that again the numerical integration can be performed in a
finite range of ξ. In the above, the contributions to the numerical integrals are visualized as the shaded area, and it is clear that the range
of nonzero contributions to the numerics is finite for x̃ ¼ 0 as well as for x̃ ≠ 0.
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Z
∞

0

dξ
π
f≈b ðξÞ ¼

Z
ξ−

0

dξ
π
f1bðξÞ þ

Z
ξþ

ξ−

dξ
π
f2bðξÞ þ

Z
∞

ξþ

dξ
π
f3bðξÞ

¼ 1

π

�
m
2
ðξ2þ − ξ2−Þ þ nðξþ − ξ−Þ

�
−

1

2π

�
ln

�
ξþ − 1

ξþ þ 1

�
− ln

�
1 − ξ−
1þ ξ−

��
þ c1

π
fEi½−b2ð1 − ξ−Þ� − e−2b

2

Ei½b2ð1þ ξ−Þ� − Eið−b2Þ þ e−2b
2

Eiðb2Þg

−
c3
π
fEi½b2ð1 − ξþÞ� − e2b

2

Ei½−b2ð1þ ξþÞ�g; ðB18Þ

as well as (x̃ ≠ 0)Z
∞

0

dξ
π
cosðξx̃Þf≈b ðξÞ ¼

Z
ξ−

0

dξ
π
cosðξx̃Þf1bðξÞ þ

Z
ξþ

ξ−

dξ
π
cosðξx̃Þf2bðξÞ þ

Z
∞

ξþ

dξ
π
cosðξx̃Þf3bðξÞ

¼ cos x̃
2π

fCi½x̃ð1þ ξ−Þ� − Ci½x̃ð1 − ξ−Þ� − Ci½x̃ð1þ ξþÞ� þ Ci½x̃ðξþ − 1Þ�g

þ sin x̃
2π

fπ þ Si½x̃ð1þ ξ−Þ� − Si½x̃ð1 − ξ−Þ� − Si½x̃ð1þ ξþÞ� þ Si½x̃ð1 − ξþÞ�g

þ 1

πx̃2
fm½cos ðx̃ξþÞ − cos ðx̃ξ−Þ� þ ðmξþ þ nÞx̃ sin ðx̃ξþÞ − ðmξ− þ nÞx̃ sin ðx̃ξ−Þg

þ c1
2π

ℜfeix̃Ei½ð−b2 − ix̃Þð1 − ξ−Þ� − e−ix̃−2b
2

Ei½ðb2 þ ix̃Þð1þ ξ−Þ�g

−
c1
2π

ℜfeix̃Eið−b2 − ix̃Þ − e−ix̃−2b
2

Eiðb2 þ ix̃Þg

−
c3
2π

ℜfe−ix̃ eEi½ðb2 þ ix̃Þð1 − ξþÞ� − e−ix̃þ2b2 eEi½−ðb2 þ ix̃Þð1þ ξþÞ�g; ðB19Þ

where we defined

eEiðzÞ ≔ �
EiðzÞ for ℜðzÞ ≥ 0;

EiðzÞ þ iπ for ℜðzÞ < 0;
ðB20Þ

which implements the branch cut of the exponential
integral for arguments with a negative real part.

3. Asymptotics x ≠ 0

Using the approximation presented in Eq. (B11) we can
extract the behavior of (B1) for large values of b and find
(for fixed x̃) the rather crude approximation

gωðxÞ ≈
sin x̃
2

−
a

2πb
ð3 − e−4a

2
2Þ cosðx̃Þ

−
a

3πb
ð2þ e−4a

2
2Þx̃ sinðx̃Þ þOðb−2Þ: ðB21Þ

FIG. 7. The nonlocal modification gωðxÞ for GF2 theory for various values of x. Left: Analytic result for x ¼ 0. Right: Numerical
results for various values of x, where we subtracted the leading-order oscillating terms sinðϖxÞ. It is visible that the remainder is a
decreasing function of ϖ.
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The above implies that gωðxÞ behaves as an oscillatory term
of magnitude 1

2
for large values ofϖ. In the above, we made

use of the relations

Siðx→ 0Þ≈x; Siðx� ϵÞ≈SiðxÞ� sinx
x

ϵ;

Ciðx� ϵÞ≈CiðxÞþ cosx
x

ϵ;

Siðx→∞Þ≈π

2
−
cosx
x

; Eiðx→�∞Þ≈�e�x

x
: ðB22Þ

See Fig. 7 for a graphic confirmation of these asymptotics.

APPENDIX C: REMARKS ON 〈φ2ðxÞ〉ren
IN GF2n FOR LARGER n

As it turns out, it is possible to analyze the large-ϖ
asymptotics of gωð0Þ in the case of GF2n theories for any n,
which we will describe in the following. Consider again the
expression (B1) in the case of GF2n theory for x ¼ 0:

gωð0Þ¼
Z

∞

−∞

dξ
2π

fβðξÞ¼
1

2π
gðβÞ;

fβðξÞ≔
1−e−βð1−ξ2Þ2n

1−ξ2
; β≔ ðϖlÞ4n: ðC1Þ

Now we can calculate

∂βgðβÞ ¼
Z

∞

−∞
dξð1 − ξ2Þ2n−1e−βð1−ξ2Þ2n ≈ h− þ hþ; ðC2Þ

where the approximation stems from expanding the expo-
nential around its maxima at ξ� ¼ �1 for large values of β.
We introduce new variables y� ≔ ξ ∓ 1 and find

h� ¼
Z

∞

−∞
dy�ð−y2� ∓ 2y�Þ2n−1 exp ½−βð−y2� ∓ 2y�Þ2n�

ðC3Þ

¼
Z

∞

−∞
dz�ð1þ z�Þð2z�Þ2n−1e−βð2z�Þ2n ðC4Þ

≈
Z

∞

−∞
dz�z�ð2z�Þ2n−1e−βð2z�Þ2n ¼

22n−1

α
2nþ1
2n

Γð2nþ1
2n Þ
n

;

α ≔ 22nβ ¼ ½2ðϖlÞ2�2n; ðC5Þ

where z� ≔∓ y� − 1
2
y2�. This implies, by integrating over

β, that one has

gωð0Þ ≈
1

4πn
Γ
�
2nþ 1

2n

��
c −

2n
ϖ2l2

�
: ðC6Þ

In the case n ¼ 1 we arrive at GF2 theory, and we can
compare the above to Eq. (B7). Inserting n ¼ 1 into the
above one has in the limit ϖl ≫ 1

gωð0Þ≈
1

4πn
Γ
�
2nþ1

2n

��
c−

2n
ϖ2l2

�
¼ 1

8
ffiffiffi
π

p
�
c−

2

ϖ2l2

�
:

ðC7Þ

In the above considerations, c is an undetermined constant
of integration. Setting c ¼ 0, however, the above exactly
reproduces the analytic GF2 asymptotics of Eq. (B7), which
we consider a somewhat nontrivial consistency check of
our approximation schemes.
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