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It is shown that general dilepton angular distribution (with parity violating terms taking into account) in
vector particle decays can be described through a set of five SOð3Þ rotational-invariant observables. These
observables are derived as invariants of the spatial part of the hadronic tensor (density matrix) expressed in
terms of angular coefficients. The restrictions on the invariants following from the positivity of the hadronic
tensor are obtained. Special cases of SOð2Þ rotations are considered. Calculation of invariants for available
data on Z and J=ψ decays is performed.
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I. INTRODUCTION

The Drell-Yan-type processes in which a lepton pair is
produced in hadronic collisions are the sensitive tests of
Standard Model and probes of New Physics. The precision
measurements of dilepton angular coefficients at various
energies were recently presented by CDF [1], CMS [2] and
ATLAS [3] collaborations (for Z decays) and by PHENIX
[4] collaboration (for J=ψ decays). As the values of angular
coefficients depend on the choice of a reference frame, an
adequate comparison between observables measured in
different coordinate systems (and between theory and
experiment) may be performed for frame-independent
quantities. Such quantities provide a powerful tool for the
data analysis and can reveal systematic biases that were not
taken into account.
Great progress was achieved in this direction. Several

invariants for special SOð2Þ rotations were proposed [5–8]
and even a general recipe for constructing SOð3Þ conserv-
ing parameters was recently developed [9].
In this work, we suggest a method which allows to find

frame-independent quantities for vector particle (like virtual
photons or electroweak bosons) decays. We had two main
motivations. First, to construct such a procedure which
would give tools not only to reproduce previous results
but also to constrain them. Second, to simplify known
invariants whenever possible. The key idea of the proposed

method is to express the hadronic tensor corresponding to the
process, which also happens to be the initial state density
matrix, in terms of coefficients of final state dilepton angular
distribution. This procedure was proposed and realized for a
case of parity-conserving angular distribution in [10]. As we
discuss later in the text, in the center ofmass frame the tensor
reduces to a 3 × 3 Hermitian matrix and we can focus on
studying the invariants of this matrix. It is well known that
invariants of a matrix always can be written through
eigenvalues. Once this is done, we apply positivity con-
ditions to bound the invariants.
In what follows we express the hadronic tensor in terms

of observables, consider its irreducible representations and
show that symmetric and antisymmetric parts as well as
various combinations of them provide us with invariants of
the angular distributions. We obtain five SOð3Þ rotational
invariants and relate them to previously proposed invariant
parameters [9]. Then we explicitly write restrictions on
invariants using the positivity of the hadronic tensor and
normalization condition. In the later section, we show that
additional invariants appear when SOð2Þ rotation around a
fixed axis is considered. Finally, we present a calculation of
invariants for data on Z decays released by ATLAS [3] and
data on J=ψ decays by the PHENIX [4] collaboration. For
the later we also consider a geometric model [10,11]
interpretation, which later allowed, by including the addi-
tional concept of noncoplanarity angle, to describe also the
violation of Lam-Tung relations and classify the rotational
invariants [12–14] for Drell-Yan and quarkonium produc-
tion in both collider and fixed-target experiments.

II. GENERAL FORM OF ANGULAR
DISTRIBUTION

In our study, we consider an annihilation process
via the vector particle which in its turn decays into a
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lepton pair. For such a process the hadronic tensor
can be written, following [10] in terms of spin observables
(the coefficients of the angular distribution). To do this
first we should consider the general form of the angular
distribution. Two parametrizations (1) and (2) are widely
used in the literature. The first one usually appears
in theoretical papers (see for instance [5–9]), while the
second one can be found in experimental works
(see [1–3]):

1

σ

dσ
dΩ

¼ 3

4π

1

3þ λθ
ð1þ λθcos2θ þ λθϕ sin 2θ cosϕ

þ λϕsin2θ cos 2ϕþ λ⊥ϕsin2θ sin 2ϕ

þ λ⊥θϕ sin 2θ sinϕþ 2Aθ cos θ

þ 2Aϕ sin θ cosϕþ 2A⊥ϕ sin θ sinϕÞ; ð1Þ

1

σ

dσ
dΩ

¼ 3

16π

��
1þ A0

2

�
þ
�
1 −

3

2
A0

�
cos2θ

þ A1 sin 2θ cosϕþ A2

2
sin2θ cos 2ϕ

þ A3 sin θ cosϕþ A4 cos θ þ A5sin2θ sin 2ϕ

þ A6 sin 2θ sinϕþ A7 sin θ sinϕ

�
: ð2Þ

Before moving to the derivation of the hadronic tensor let
us first discuss the relation between two parametrizations.
Both of them are chosen in the way which ensures that the
total cross section

σtotal ¼
Z

dσ
dΩ

dΩ ð3Þ

is a constant (there is no parameter dependence). In (1)
this is guaranteed by the common factor 1=ð3þ λθÞ. Yet
parametrization (2) is more convenient because with it
angular coefficients do not occur in the total cross section
even without a common factor with one of the coefficients in
the denominator. Because of this the hadronic tensor takes a
simpler form when written in terms of these parameters.
Numerical factors 3=4π in (1) and 3=16π in (2) are

often omitted in the literature, however, if one wants
to find the relation between two sets of parameters,
factors are important since they ensure the equality of
two angular distributions (1) and (2) and corresponding
total cross sections (3). Comparing the coefficients one can
express parameters in (1) through parameters in (2) and
vice versa:

λθ ¼
2 − 3A0

2þ A0

; A0 ¼
2ð1 − λθÞ
3þ λθ

λϕ ¼ A2

2þ A0

; A2 ¼
8λϕ

3þ λθ

λθϕ ¼ 2A1

2þ A0

; A1 ¼
4λθϕ
3þ λθ

λ⊥ϕ ¼ 2A5

2þ A0

; A5 ¼
4λ⊥ϕ

3þ λθ

λ⊥θϕ ¼ 2A6

2þ A0

; A6 ¼
4λ⊥θϕ

3þ λθ

Aθ ¼
A4

2þ A0

; A4 ¼
8Aθ

3þ λθ

Aϕ ¼ A3

2þ A0

; A3 ¼
8Aϕ

3þ λθ

A⊥ϕ ¼ A7

2þ A0

; A7 ¼
8A⊥ϕ

3þ λθ
: ð4Þ

Once the relation between parameters is found the numeri-
cal factors in (1) and (2) are not important provided that
only one of the parametrizations is used. We consider
parametrization (1) in our analysis and omit the corre-
sponding factor everywhere. One can easily switch to
another parametrization at any stage using relations (4).

III. HADRONIC TENSOR IN TERMS
OF OBSERVABLES

Now after the above opening remarks we can move to
derivation of the hadronic tensor through observables. To
do this at first we should recall that the cross section is
proportional to the contraction of hadronic Wμν and
leptonic Lμν tensors:

1

σ

dσ
dΩ

∝ WμνLμν: ð5Þ

Let us work in the dilepton rest frame. Due to conservation
of quark currents, the hadronic tensor satisfies the trans-
versity condition qνWμν ¼ 0, where qν is 4-momenta of the
intermediate vector particle [15]. In the reference frame
under consideration

qν ¼ ðq0; 0; 0; 0Þ ð6Þ
and thus only a spatial part of the tensor can be nonzero.
Therefore, the hadronic tensor reduces to Hermitian 3 × 3
matrix:

Wij ¼

0
BB@

d1 a1 þ ia2 b1 þ ib2
a1 − ia2 d2 c1 þ ic2
b1 − ib2 c1 − ic2 d3

1
CCA; ð7Þ

where a1;2, b1;2, c1;2 and d1;2;3 are real parameters.
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If negligibly small lepton masses are assumed, the spatial
part of the leptonic tensor takes the following form [15]:

Lij ∝ δij − ninj þ igϵijknk ð8Þ
where ni is a vector parallel to the momentum of the final
state positively charged lepton

n ¼ ðcos θ; sin θ cosϕ; sin θ sinϕÞ ð9Þ
and g is a numerical constant.
Note that symmetric δij − ninj and antisymmetric part

iϵijknk enter Lij with different prefactors in the general
case. For example, explicit calculation for Z-decay into a
lepton pair gives factors ðc2a þ c2vÞ and 2cacv respectively:

g ¼ 2cacv
c2a þ c2v

; ð10Þ

where ca and cv are axial and vector constants. However, it
occurs that g does not affect the invariance of relations we
are aimed to find. It only enters invariants as a common
factor, which is not important. One would be able to see this
later from the form of invariants. Thus we can safely
choose g ¼ 1.
Contracting the leptonic tensor (8) with the hadronic

tensor in the form of (7) and setting g ¼ 1 we obtain the
angular distribution, but with angular coefficients written in
terms of a, b, c and d:

1

σ

dσ
dΩ

∝
�
d1þ

1

2
d2þ

1

2
d3

�
þ
�
−d1þ

1

2
d2þ

1

2
d3

�
cos2θ

−a1 sin2θcosϕþ1

2
ðd3−d2Þsin2θcos2ϕ

−b1 sin2θ sinϕ−c1sin2θ sin2ϕ

−2a2 sinθ sinϕþ2b2 sinθcosϕ−2c2 cosθ: ð11Þ

Expressing those parameters through the coefficients intro-
duced in (1) we get the hadronic tensor Wij:

2

3þλθ

0
BB@

1−λθ
2

−λθϕ− iA⊥ϕ −λ⊥θϕþ iAϕ

−λθϕþ iA⊥ϕ
1þλθ−2λϕ

2
−λ⊥ϕ− iAθ

−λ⊥θϕ− iAϕ −λ⊥ϕþ iAθ
1þλθþ2λϕ

2

1
CCA: ð12Þ

Here the normalization condition TrW ¼ 1 is imposed.
This is the first important result—we are left with a
hadronic tensor expressed in terms of spin observables.
The hadronic tensor written in the form of (12) is a
generalization of the previous result which appeared in
[10] to the case of the most general angular distribution
when antisymmetric terms are also taken into account. This
matrix contains all the information about the angular
distribution. Therefore, in this formalism the problem of
searching for the frame independent invariants is equivalent
to the search for the invariants of the matrix (12).

IV. INVARIANTS

According to [9] one should expect the presence of
8 − 3 ¼ 5 independent rotational invariants, where 8 is a
number of parameters in the distribution and 3 corresponds to
three Euler angles used to parametrize an arbitrary SOð3Þ
rotation. This counting can be understood by the following
geometric picture. Let us consider the eight-dimensional
parameter space. Particular angular distribution in the fixed
coordinate frame can be identified with a point in this space.
Different coordinate frames are related by rotation described
by three parameters, thus the set of points corresponding to
the particular distribution, but written in all the possible
coordinates will correspond to a three-dimensional hyper-
surface. To describe a d-dimensional hypersurface in D-
dimensional space one needs D − d independent equations,
for example, in a form fiðA0;…Þ¼0;wherei¼1;…;D−d.
Functions fi then provide a full set of independent invariants.
In addition, a simple example of photon density matrix

illustrates this reasoning. The photon density matrix can be
expanded in terms of Pauli matrices with coefficients being
three Stokes parameters S3, S1, S2. Since the photon is
massless, its polarization vector can be subjected to
rotations only in the plane perpendicular to the photon’s
momentum, which is why one expects to have two
rotational invariants, which are well-known quantities
corresponding to the separation of the symmetric and
asymmetric parts: S21 þ S23 and S22. It is interesting to note
that this is not the case for spin–1

2
particles, where one

considers three-dimensional rotations instead of two-
dimensional ones and cannot explicitly separate symmetric
and antisymmetric parts.
To find all five invariants of the angular distribution in the

hadronic tensor formalism we decompose the Hermitian
matrix (12) into a sum of unit trace-1 matrix, traceless
symmetricmatrixWs and traceless antisymmetricmatrixWa:

W ¼ 1

3
· 1þWs þ iWa; ð13Þ

where 1 denotes 3 × 3 unity matrix. The spacial part of the
hadronic tensor transforms under an arbitrary frame rotation
as follows:

W0 ¼ STWS; ð14Þ
where W0 is a hadronic tensor written in a new coordinate
frame, S is a real orthogonal 3 × 3 matrix belonging to the
SOð3Þ group. After applying transformation (14) to decom-
position (13) we obtain

W0 ¼ 1

3
·1þSTðWsþ iWaÞS¼

1

3
·1þSTWsSþ iSTWaS:

ð15Þ

MatricesWs andWa transform independently, because of the
reality of S. Expression (15) shows that invariants of matrices
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Ws, Wa, Ws þ iWa and various combinations of them are
also invariants of the total matrix W. Since eigenvalues are
preservedbySOð3Þ rotations andall invariants of amatrix can
be written in terms of them, we are interested in finding five
independent eigenvalues or combinations of eigenvalues for
thesematrices. They canbe found as roots of the characteristic
equation which for arbitrary matrix F with eigenvalues f
takes the form

det ½F − f · 1� ¼ 0: ð16Þ

Below in (17) we list characteristic equations obtained
for matrices Wa, Ws, Ws þ iWa and WaWs (which is the
same as forWsWa) with eigenvalues denoted aswðaÞ,wðsÞ,w
and wðasÞ respectively. Expressions for coefficients of
characteristic equations in terms of angular parameters are
given in (18):

wðaÞðwðaÞ2 þ 4U1Þ ¼ 0 ð17aÞ

wðsÞ3 −
4

3
U2wðsÞ −

8

27
T ¼ 0 ð17bÞ

w3 −
�
4U1 þ

4

3
U2

�
w −

8

27
ðT þ RÞ ¼ 0 ð17cÞ

wðasÞ
�
wðasÞ2 þ 16

9
M

�
¼ 0 ð17dÞ

U1 ¼
A2
θ þ A2

ϕ þ A2⊥θϕ

ð3þ λθÞ2
;

U2 ¼
λ2θ þ 3ðλ2ϕ þ λ2θϕ þ λ2⊥ϕ þ λ2⊥θϕÞ

ð3þ λθÞ2
ð18aÞ

T ¼ ðλθ þ 3λϕÞð2λ2θ − 6λθλϕ þ 9λ2θϕÞ þ 9ðλθλ2⊥θϕ − 2λθλ
2⊥ϕ þ 6λθϕλ⊥θϕλ⊥ϕ − 3λϕλ

2⊥θϕÞ
ð3þ λθÞ3

ð18bÞ

R ¼ 1

ðλθ þ 3Þ3 ð54ðAθAϕλθϕ þ AθA⊥ϕλ⊥θϕ þ A⊥ϕAϕλ⊥ϕÞ þ 9λθð2A2
θ − A2⊥ϕ − A2

ϕÞ þ 27λϕðA2
ϕ − A2⊥ϕÞÞ ð18cÞ

M ¼ 1

ð3þ λθÞ4
fA2

θðλ2θ − 9λ2ϕ − 9λ2⊥ϕÞ − A2
ϕð2λθðλθ þ 3λϕÞ þ 9λ2⊥θϕÞ þ A2⊥ϕð6λθλϕ − 2λ2θ − 9λ2θϕÞ

þ 6AθA⊥ϕðλ⊥θϕðλθ − 3λϕÞ þ 3λθϕλ⊥ϕÞ þ 6Aϕ½Aθðλθϕðλθ þ 3λϕÞ þ 3λ⊥θϕλ⊥ϕÞ þ A⊥ϕð3λθϕλ⊥θϕ − 2λθλ⊥ϕÞ�g: ð18dÞ

Parameters U1, U2, T, R and M are all rotational
invariants. Vieta’s theorem [16] relates them to eigenvalues
of matrices Wa, Ws, Ws þ iWa and WaWs by the expres-
sions listed in (19), where indexes 1,2,3 enumerate eigen-
values:

wðaÞ
1 wðaÞ

2 þ wðaÞ
1 wðaÞ

3 þ wðaÞ
2 wðaÞ

3 ¼ wðaÞ
2 wðaÞ

3 ¼ 4U1 ð19aÞ

wðsÞ
1 wðsÞ

2 þ wðsÞ
1 wðsÞ

3 þ wðsÞ
2 wðsÞ

3 ¼ −
4

3
U2 ð19bÞ

wðsÞ
1 wðsÞ

2 wðsÞ
3 ¼ 8

27
T ð19cÞ

w1w2 þ w1w3 þ w2w3 ¼ −4U1 −
4

3
U2 ð19dÞ

w1w2w3 ¼
8

27
ðT þ RÞ ð19eÞ

wðasÞ
1 wðasÞ

2 þ wðasÞ
1 wðasÞ

3 þ wðasÞ
2 wðasÞ

3 ¼ wðasÞ
2 wðasÞ

3

¼ 4M: ð19fÞ

The explicit expressions for eigenvalues are somewhat
cumbersome (see the Appendix) and for practical purposes
it is more convenient to use combinations of them listed in
(18) and (19).
In (20) we express SOð3Þ invariants derived in the

work [9] in terms of parameters that we introduced in
(18). To avoid possible confusion, we use the tilda sign to
denote parameters from [9]. Note that U1 and U2 are
equal to the same-name invariants derived in [9] up to
unimportant numerical factors. It is also worth mentioning
that parameter U1 comes from the antisymmetric part
of the hadronic tensor, which can be written as
Wa ¼ 2ϵijkAk, where Ā ¼ 1

3þλθ
ðAθ; Aϕ; A⊥ϕÞ. From this

point of view U1 is equal to Ā2, the squared length of the
vector corresponding to the vector part of the density
matrix:

U
∼
1 ¼

3

π
U1 ð20aÞ

U
∼
2 ¼

1

5π
U2 ð20bÞ

W
∼
3 ¼

1

70π2
ðT þ 7RÞ ð20cÞ
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W
∼
4 ¼

9

20π
U
∼ 2

1 þ
15

28π
U
∼ 2

2 þ
27

14π
U
∼
1U
∼
2

−
9

35π3
1

144
ð45U1 þ 10Rþ 36MÞ ð20dÞ

W
∼
5 ¼

5

2π

�
3

7
U
∼
1þ

5

11
U
∼
2

�
W
∼
3

þ 3

539π4

�
U1

�
−
143

4
þ429U2−297T

�
þ7

3
U2R

�
:

ð20eÞ

Note that with the help of (19) all of the above invariants
can be expressed in terms of eigenvalues of matrices Wa,
Ws, Ws þ iWa and WaWs. Expressions (20) show that
our approach allows to reduce the maximum power of
angular coefficients entering invariants from the fifth to
the fourth.

V. POSITIVITY CONSTRAINTS
FOR INVARIANTS

In order to constrain the invariants we may consider the
total matrix W. The characteristic equation on its eigen-
values takes the following form:

w3 − w2 þ
�
1

3
ð1 − 4U2Þ − 4U1

�
w

−
1

27
ð8ðRþ TÞ − 12ð3U1 þU2Þ þ 1Þ ¼ 0 ð21Þ

with

w1w2 þ w1w3 þ w2w3 ¼
1

3
ð1 − 4U2Þ − 4U1; ð22aÞ

w1w2w3 ¼
1

27
ð8ðRþ TÞ − 12ð3U1 þ U2Þ þ 1Þ: ð22bÞ

The hadronic tensor being a product of quark currents is
a semipositive quadratic form [17]. This means that
eigenvalues are restricted to be greater or equal to zero.
In addition, using the normalization condition

TrW ¼ w1 þ w2 þ w3 ¼ 1; ð23Þ

we can set an upper bound on eigenvalues. Positivity and
normalization together give us the following inequalities:

0 ≤ w1;2;3 ≤ 1 ð24Þ

from which it follows that

0 ≤ w1w2 þ w1w3 þ w2w3 ≤
1

3
;

0 ≤ w1w2w3 ≤
1

27
: ð25Þ

Applying (25) to (22) and using the fact that U1 and U2 are
non-negative according to definitions (18a) we end up with
the following restrictions on introduced invariants:

0 ≤
1

3
− 4U1 −

4

3
U2 ≤ 1 ð26aÞ

U1 þ
1

3
U2 ≤

1

12
; U1 ≤

1

12
; U2 ≤

1

4
ð26bÞ

0 ≤ 8ðRþ TÞ − 12ð3U1 þ U2Þ þ 1 ≤ 1 ð27aÞ

−
1

8
≤ Rþ T ≤

3

8
ð27bÞ

VI. INVARIANTS FOR SPECIAL ROTATIONS

In the above sections we have introduced the method
which allows to find SOð3Þ rotational invariants. One can
also be interested in finding SOð2Þ invariant quantities for
rotations around a fixed axis (see e.g. [13]). This might be
importantwhen onewants to comparemeasurements done in
different coordinate frames, related by special rotations. For
example, three widely used in polarization experiments
frames, the helicity frame, Collins-Soper and Gottfried-
Jackson frame, are related by rotation around the y-axis [18].
Indeed, if we consider rotations around a fixed axis all

the SOð3Þ invariants we discussed before are still relevant,
however additional conserving parameters appear.
Let us consider an arbitrary vector x̄ and a corresponding

scalar X of the form

X ¼ xTWx: ð28Þ

Now, if one performs a rotation given by an arbitrary
orthogonal matrix S,

W0 ¼ STWS; x0 ¼ STx; x0T ¼ xTS; ð29Þ

the corresponding parameter X0 in the primed coordinate
frame must be equal to X in the unprimed one:

X0 ¼ x0TW0x0 ¼ xTSSTWSSTx ¼ X; ð30Þ

which is satisfied, since S is an orthogonal matrix and
ST ¼ S−1. It might seem that (30) gives a recipe for
construction of an infinite number of parameters preserved
by any rotation S, but it is not the case. Even though X and

ROTATION-INVARIANT OBSERVABLES AS DENSITY … PHYS. REV. D 99, 076013 (2019)

076013-5



X0 are equal to each other they do not necessarily have the
same form in terms of primed and unprimed parameters of
angular distribution in two different coordinate frames.
For instance, consider a basis vector ex ¼ ð0; 1; 0ÞT, then
corresponding scalar (28) looks as follows:

Ix ¼ eTxWex ¼
1þ λθ − 2λϕ

3þ λθ
: ð31Þ

To write (31) we used the explicit form of the hadronic
tensor (12). If now we consider rotation Sy around unity
vector ey ¼ ð0; 0; 1ÞT, the vector ex transforms to
e0x ¼ ð− sin ξ; cos ξ; 0ÞT , where ξ is the rotational angle.
I0x takes then the following form in the new frame:

I0x ¼
1þ λ0θ cos 2ξþ 2λ0θϕ sin 2ξ − λ0ϕ − λ0ϕ cos 2ξ

3þ λ0θ
: ð32Þ

It is straightforward to check that Ix ¼ I0x, by expressing
primed parameters in terms of unprimed or vice versa. This
example clearly shows that Ix might have a different form
in different coordinate systems and thus scalars in a form
(30) are not the invariants we are looking for. However, one
still can apply (30) to construct useful invariants. To do so
let us consider a special type of rotations around the x̄ axis
itself:

W0 ¼ STxWSx; x0 ¼ x; x0T ¼ xT: ð33Þ

For rotations of this type vector x is preserved and

X0 ¼ xTW0x ¼ xTWx ¼ X; ð34Þ

which ensures the same form of scalar X in all coordinate
frames related by rotation Sx.
It is practically important to study special rotations

around coordinate axes. In our notation (9) coordinate
vectors look as follows:

ez ¼

0
B@

1

0

0

1
CA; ex ¼

0
B@

0

1

0

1
CA; ey ¼

0
B@

0

0

1

1
CA: ð35Þ

Contracting coordinate vectors (35) with hadronic tensor
(12) we obtain diagonal elements of the matrix. This gives
us invariant for rotations around the z-axis in a form of

Iz ¼ eizWije
j
z ¼ 1 − λθ

3þ λθ
ð36aÞ

for rotations around the x-axis

Ix ¼ eixWije
j
x ¼ 1þ λθ − 2λϕ

3þ λθ
ð36bÞ

and, finally, for rotations around the y-axis

Iy ¼ eiyWije
j
y ¼ 1þ λθ þ 2λϕ

3þ λθ
: ð36cÞ

One can notice that invariance of (36a) is equivalent to
invariance of λθ. This result and also the invariance of (36b)
were previously derived in [8]. Invariant Iy is a well-known
parameter F introduced in [5] which is also related as F ¼
ð1þ λ0Þ=ð3þ λ0Þ to the λ0 coefficient in the privileged
frame [11] where only polar angular distribution is present.
Note, this method also can be applied to find invariants

of rotations around an arbitrary fixed direction. Let us
consider rotational axis

e ¼

0
B@

a

b

c

1
CA ð37Þ

then the invariant would be

eiWijej ¼ a2Iz þ b2Ix þ c2Iy

−
4

3þ λθ
ðabλθϕ þ acλ⊥θϕ þ bcλ⊥ϕÞ: ð38Þ

Another group of invariants which naturally appear when
rotation around a coordinate axis is studied is a minor
corresponding to this axis. For example, if we consider
rotations around z-axis given with the matrix

Sez ¼

0
B@

1 0 0

0 cos ξ − sin ξ

0 sin ξ cos ξ

1
CA; ð39Þ

where ξ is a rotational angle in the xy-plane, the invariant
would be Izz, which is equal to the determinant of the
submatrix Wzz of the matrix W obtained by removing the
first row and the first column:

Izz ¼
1

4
ðIz − 1Þ2 − 4A2

θ

ð3þ λθÞ2
−
4ðλ2⊥ϕ þ λ2ϕÞ
ð3þ λθÞ2

: ð40aÞ

The first term in (40a) is invariant due to invariance of Iz.
From the form of the considered transformation (39) it
follows that submatrixWzz transforms without mixing with
the rest of W. The antisymmetric part of Wzz has only one
element Aθ

3þλθ
and also transforms independently. That is

why this combination is preserved by rotation and as a
consequence the second and the third terms of (40a) are
both invariant under SOð2Þ rotation around the z-axis:

IðaÞzz ¼ A2
θ

ð3þ λθÞ2
; IðsÞzz ¼ λ2⊥ϕ þ λ2ϕ

ð3þ λθÞ2
; ð40bÞ

where we neglect unimportant numerical factors.
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Using similar reasoning we write the determinant of
matrix Wxx, which is invariant under rotation around the
x-axis:

Ixx ¼
1

4
ðIx − 1Þ2 − 4IðaÞxx − IðsÞxx ; ð41aÞ

where

IðaÞxx ¼ A2
ϕ

ð3þ λθÞ2
; IðsÞxx ¼ 4λ2⊥θϕ þ ðλθ þ λϕÞ2

ð3þ λθÞ2
ð41bÞ

are also SOð2Þ invariants.
For rotations around the y-axis we obtain invariant minor

Iyy ¼
1

4
ðIy − 1Þ2 − 4IðaÞyy − IðsÞyy ; ð42aÞ

with invariants

IðaÞyy ¼ A2⊥ϕ

ð3þ λθÞ2
; IðsÞyy ¼ 4λ2θϕ þ ðλθ − λϕÞ2

ð3þ λθÞ2
: ð42bÞ

Invariant IðsÞyy was previously derived in [7] and then
rederived in [9].
Note that because of the positivity and normalization

conditions invariants (36), (40a), (41a) and (42a) can be
restricted:

0 ≤ Iz; Ix; Iy ≤ 1; ð43aÞ

0 ≤ Izz; Ixx; Iyy ≤
1

4
: ð43bÞ

The last inequality is relevant because Izz, Ixx, Iyy are
minors and thus are equal to the product of two corre-
sponding eigenvalues, which are bound by normalization
condition and positivity as we discussed above.

VII. CALCULATION OF
ROTATIONAL-INVARIANT PARAMETERS

FOR Z-DECAYS

In this section we apply the derived invariants in the form
of (18) to the analysis of experimental results presented by
the ATLAS collaboration [3]. The paper presents a meas-
urement of the full set of eight coefficients using charged
lepton pairs (electrons or muons). The measurement is
performed in the Z-boson mass peak. The data is presented
as a function of Z-boson transverse momentum pZ

T for
integrated rapidity of Z-boson yZ and for three bins of yZ:
0 < jyZj < 1, 1 < jyZj < 2, 2 < jyZj < 3.5. Measurement
is performed in the Collins-Soper reference frame.
ATLAS uses parametrization (2). Applying substitution

(4) to invariants (18) and also omitting unimportant common
factors which appear as a result of parametrization change,

U1 → 64U1; U2 → 64U2; T → 256T;

R →
512

9
R; M → 4096M; ð44Þ

we obtain the following form of invariants:

U1 ¼ A2
3 þ A2

4 þ A2
7 ð45aÞ

U2 ¼ 9A2
0 − 12A0 þ 12A2

1 þ 3A2
2 þ 12A2

5 þ 12A2
6 þ 4

ð45bÞ

T ¼ 27A3
0 − 54A2

0 þ 9ð6A2
1 − 3A2

2 − 12A2
5 þ 6A2

6 þ 4ÞA0

þ 18A2
2 þ 72A2

5 þ 54A2A2
6 − 36A2

6

− 18A2
1ð3A2 þ 2Þ − 216A1A5A6 − 8 ð45cÞ

R ¼ ð3A0 þ 3A2 − 2ÞA2
3 þ 12ðA1A4 þ A5A7ÞA3

þ ð4 − 6A0ÞA2
4 þ ð3A0 − 3A2 − 2ÞA2

7

þ 12A4A6A7 ð45dÞ

M ¼ −2ð9A2
0 − 3ð3A2 þ 4ÞA0 þ 18A2

6 þ 6A2 þ 4ÞA2
3

− 12ðA1ðð3A0 − 3A2 − 2ÞA4 − 6A6A7Þ
− 2A5ð3A4A6 þ ð3A0 − 2ÞA7ÞÞA3

− 2ð9A2
0 þ 3ð3A2 − 4ÞA0 þ 18A2

1 − 6A2 þ 4ÞA2
7

þ A2
4ð9A2

0 − 12A0 − 9A2
2 − 36A2

5 þ 4Þ
þ 12A4ð6A1A5 þ ð−3A0 − 3A2 þ 2ÞA6ÞA7: ð45eÞ

One can also suggest to get rid of constant terms which
appear in U2 and T, but we prefer to preserve them, since
this form of invariants ensures that they are all going to zero
in case of isotropic distribution. This is not an essential
requirement, but just a nice way to normalize introduced
parameters.
Tables I–IV present the values of invariantsU1,U2, T, R,

M calculated from the angular coefficients measured by
ATLAS. One can note that despite the fact that invariants
are polynomials of angular coefficients and thus error
should add up, the results are still quite precise. This is
because the data shows significant dominance of some
coefficients over other and large coefficients which con-
tribute the most to the invariants are measured with great
accuracy.
We rewrite inequalities (26) and (27) obtained earlier

taking into account the change (44):

U1 þ
1

3
U2 ≤

16

3
; U1 ≤

16

3
; U2 ≤ 16 ð46aÞ

− 64 ≤ 9Rþ 2T − 12ð3U1 þ U2Þ ≤ 0;

− 64 ≤ 9Rþ 2T ≤ 192 ð46bÞ
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As one can see they are satisfied for all the invariants
represented in Tables I–IV.

VIII. CALCULATION OF
ROTATIONAL-INVARIANT PARAMETERS

FOR J=ψ DECAYS

The PHENIX collaboration [4] reports the measurement
of the angular distribution for J=ψ → μ−μ− decays in pp-
collisions. Data are available for transverse momenta 2 <
pT < 10 GeV and rapidity 1.2 < y < 2.2. This particular
paper is especially interesting because measurements were
performed in four different reference frames: the helicity
frame (HX), Collins-Soper (CS), Gottfried-Jackson back-
ward (GJB) and Gottfried-Jackson forward (GJF).
PHENIX uses the angular distribution in the form of (1),
but the collaboration reports the measurement of only three

coefficients λθ, λϕ and λθϕ. One can do the following:
assume the remaining coefficients to be equal to zero,
calculate invariants for different coordinate frames and then
if there is inconsistency between the results which cannot
be explained by statistical and systematic errors make
predictions about values of the coefficients which were not
measured in the experiment.
Let us work with the set of invariants (18). We are left

with only two nonzero parameters U2 and T if zero values
of λ⊥ϕ, λ⊥θϕ, Aϕ, Aθ and A⊥ϕ are assumed. U2 and T can
potentially give us information about two not measured
coefficients λ⊥ϕ and λ⊥θϕ. Table V shows the values of
invariants for angular coefficients in J=ψ → μ−μ− decays
measured by the PHENIX collaboration. As one can see
data is consistent with the assumption of zero values of
coefficients λ⊥ϕ and λ⊥θϕ.

TABLE I. The values of invariants calculated for angular coefficients measured by the ATLAS collaboration [3] in the Z=γ� → eþe−

and Z=γ� → μþμ− yZ-integrated channel at low (5–8 GeV), mid (22–25.5 GeV) and high (132–173 GeV) pZ
T . The uncertainties include

both statistical and systematic errors.

pT [GeV=c] U1 U2 T R M

5.0–8.0 0.0067� 0.0004 3.82� 0.09 −7.48� 0.25 0.026� 0.001 0.0064� 0.0004
22.0–25.5 0.0043� 0.0004 2.37� 0.07 −3.45� 0.16 0.013� 0.001 0.0024� 0.0002
132–173 0.0037� 0.0009 1.88� 0.13 −2.50� 0.25 0.008� 0.002 0.0010� 0.0005

TABLE II. The values of invariants calculated for angular coefficients measured by the ATLAS collaboration [3] in the Z=γ� → eþe−

and Z=γ� → μþμ− channels for 0 < jyZj < 1 at low (5–8 GeV), mid (22–25.5 GeV) and high (132–173 GeV) pZ
T . The uncertainties

include both statistical and systematic errors.

pT [GeV=c] U1 U2 T R M

5.0–8.0 0.0010� 0.0001 3.74� 0.06 −7.23� 0.17 0.0039� 0.0006 0.0009� 0.0001
22.0–25.5 0.0003� 0.0001 2.38� 0.05 −3.46� 0.12 0.0008� 0.0003 0.00013� 0.00006
132–173 0.0006� 0.0005 1.70� 0.15 −2.13� 0.27 0.0008� 0.0011 −0.00002� 0.00025

TABLE III. The values of invariants calculated for angular coefficients measured by the ATLAS collaboration [3] in the Z=γ� → eþe−

and Z=γ� → μþμ− channels for 1 < jyZj < 2 at low (5–8 GeV), mid (22–25.5 GeV) and high (132–173 GeV) pZ
T . The uncertainties

include both statistical and systematic errors.

pT [GeV=c] U1 U2 T R M

5.0–8.0 0.0043� 0.0003 3.80� 0.09 −7.41� 0.28 0.016� 0.001 0.004� 0.0003
22.0–25.5 0.0033� 0.0004 2.48� 0.07 −3.71� 0.17 0.010� 0.001 0.0019� 0.0003
132–173 0.0067� 0.0021 1.58� 0.21 −0.90� 0.19 0.015� 0.005 0.0007� 0.0007

TABLE IV. The values of invariants calculated for angular coefficients measured by the ATLAS collaboration [3] in the Z=γ� → eþe−

channel for 2 < jyZj < 3.5 at low (5–8 GeV), mid ð22–25.5 GeVÞpZ
T . The uncertainties include both statistical and systematic errors.

pT [GeV=c] U1 U2 T R M

5.0–8.0 0.020� 0.003 3.2� 0.4 −5.6� 1.1 0.07� 0.01 0.016� 0.003
22.0–25.5 0.014� 0.004 2.7� 0.4 −3.8� 1.0 0.04� 0.01 0.006� 0.003
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The PHENIX collaboration also presents the calculation
of the y-rotation invariant angular parameter,

λ̃ ¼ λθ þ 3λϕ
1 − λϕ

: ð47Þ

This parameter despite being sensitive to the maximum
angular asymmetry [18] also has another interpretation. Let
us assume that there exists a frame where angular distri-
bution takes the following form with respect to some axis:

1

σ

dσ
dΩ

¼ 3

4π

1

3þ λθ
ð1þ λ0cos2θÞ: ð48Þ

One can perform a rotation around teh y-axis with rota-
tional angle ξ. This lead to distribution in the form used by
PHENIX:

1

σ

dσ
dΩ

¼ 3

4π

1

3þ λ0
ð1þ λθcos2θ

þ λθϕ sin 2θ cosϕþ λϕsin2θ cos 2ϕÞ: ð49Þ

As it was shown in [10,11] then parameters λ0 and sin2 ξ can
be written through angular coefficients of distribution (49):

λ0 ¼
λθ þ 3λϕ
1 − λϕ

ð50aÞ

sin2 ξ ¼ 2λϕ
λθ þ 3λϕ

: ð50bÞ

Comparing (47) and (50a) we see that invariant param-
eter λ̃ receives a new interpretation as an angular coefficient
in front of cos2 θ in the reference frame where distribution
has azimuthally symmetric form (48), while (50b) gives
sine squared of the angle which relates the frame
with angular distribution (49) and the frame with
distribution (48).
However, in general, such a frame does not necessarily

exist. First, positivity conditions restrict λ0 to take its values
between −1 and 1. Second, sin2 ξ can vary only between 0
and 1. Thus from (50) we obtain restrictions on angular
parameters λθ and λϕ:

−1 ≤
λθ þ 3λϕ
1 − λϕ

≤ 1 ð51aÞ

0 ≤
2λϕ

λθ þ 3λϕ
≤ 1: ð51bÞ

If these inequalities are satisfied for the angular distri-
bution in a form of (49), there exists a frame where
distribution is azimuthally symmetric with parameter λ0
given by (50a). This frame is related to the frame under
consideration by rotation around the y-axis by the angle
given in (50b). Note that positivity conditions written for
parameters λθ and λϕ allow to violate (51). Figure 1 shows
two regions in parameter plane ðλθ; λϕÞ. The bigger
shadowed triangle with vertexes ð−1; 0Þ, (1,1), ð1;−1Þ
corresponds to allowed values of parameters according to
positivity conditions:

jλθj ≤ 1; j2λϕj ≤ 1þ λθ: ð52Þ

Two smaller dark triangles are regions truncated by
inequalities (51). For those values of parameters λθ and
λϕ, which belong to truncated triangles, one can find a

TABLE V. The values of invariants U2 and T calculated for angular coefficients measured by the PHENIX collaboration [4] in
J=ψ → μ−μ− decays for 1.2 < y < 2.2 in four reference frames at different values of pT : (2–3 GeV), (3–4 GeV) and (4–10 GeV). Only
statistical errors are taken into account.

U2 T

pT [GeV=c] 2–3 3–4 4–10 2–3 3–4 4–10
HX 3.0� 2.5 2.8� 1.7 1.2� 0.8 4.8� 6.5 1.7� 3.7 1.3� 1.4
CS > ð6.2� 0.4Þ 1.0� 0.8 0.5� 0.8 > ð15.2� 1.5Þ −0.1� 1.6 −0.3� 0.8
GJB 5.0� 3.6 3.8� 3.6 1.0� 0.6 10.5� 12.1 0.7� 6.9 0.9� 0.8
GJF 8.7� 4.4 3.0� 1.7 4.3� 2.2 24.3� 20.1 3.3� 3.5 7.4� 7.1

FIG. 1. Allowed domains for parameters λθ and λϕ. The greater
triangle with vertexes ð−1; 0Þ, (1,1), ð1;−1Þ corresponds to
the region allowed by positivity conditions (51b). Smaller
shadowed triangles correspond to points in parameter space for
which there exists a frame where distribution takes azimuthally
symmetric form.
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coordinate system where angular distribution is azimu-
thally symmetric with parameters (50).
Figure 2 shows angular coefficients measured in J=ψ

decays plotted on the ðλθ; λϕÞ plane. As one can see all the
data points belong to regions where parameters (50) exist.

IX. CONCLUSIONS

Experimental studies of vector decays into fermion pairs
are usually conducted by measuring the coefficients of the
angular distribution of final state particles. In this work, we
have shown that all the information about distribution can
be expressed in a form of a single matrix (12). However,
according to (14) its elements depend on the choice of a
coordinate system. That is why rotational-invariant combi-
nations of angular coefficients are expected to be better
observables. A bunch of such invariants for special cases
was introduced in literature [5–8], also a general method for
their derivation was recently proposed [9].
In our work we developed formalism which allowed us

to find a set of five SOð3Þ rotational invariants (18) and
relate them to SOð3Þ invariant parameters obtained earlier
(20) in the work [9]. The significant feature of the set of
invariants that we propose is their more compact form and,
in particular, the reduced maximum power of the angular
coefficients entering invariants. We have also shown how
the developed formalism can be used for derivation of
invariants for special rotations around fixed axes and

reproduced previous results (36) and (42b). Additionally,
we have found two pairs of special invariants (40b) and
(41b) which for our best knowledge were not presented in
literature before. Moreover, the hadronic tensor formalism
allowed as to constrain some of the SOð3Þ frame inde-
pendent parameters (26) and (27) and also invariants for
special rotations (43).
In two later sections we have calculated invariants for

experimental data. Tables I–IV show results for Z decays,
Table V and Fig. 2 summarize results for J=ψ decays.
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Note added.—Recently, we became aware of the very
similar recent interesting work on the topic [19]. The
two works are using basically the same density matrix
(hadronic tensor) approach to the dilepton angular distri-
bution studies, but they also have some differences. First,
we explicitly present the expression for the density matrix
in terms of angular coefficients. Second, we use different
sets of invariants. Authors of the work [19] suggest to use
eigenvalues of matrices Ws, Wa and scalar products of the
vector part of the density matrix and eigenvectors of the
symmetric part as invariant parameters. In our analysis we
considered eigenvalues of Ws and Wa as well as eigen-
values of matrices Ws þ iWa and WaWs. We have explic-
itly written the expressions for eigenvalues (Appendix) and
suggested to use the corresponding invariants listed in (18).
The more detailed comparison of approaches is still of
interest.

APPENDIX: EIGENVALUES

The eigenvalies of the relevant matrices take the form:

wðaÞ
1 ¼ 0; wðaÞ

2;3 ¼ �2
ffiffiffiffiffiffiffiffiffi
−U1

p
ðA1aÞ

wðsÞ
1 ¼ 22=3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − 4U3

2

p
þ TÞ2=3 þ 24=3U2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − 4U3

2

p
þ T3

q ðA1bÞ

wðsÞ
2;3 ¼ −

ffiffiffi
23

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − 4U3

2

p
þ TÞ2=3 þ 2U2

3 · 22=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − 4U3

2

p
þ T3

q

� ið22=3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − 4U3

2

p
þ TÞ2=3 − 24=3U2Þ

2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − 4U3

2

p
þ T3

q ðA1cÞ

(a) (b)

(c) (d)

FIG. 2. Angular coefficients λθ and λϕ measured by PHENIX
[4]: (a) HX frame, (b) CS frame, (c) GJB frame, (d) GJF frame.
Different points correspond to different values of transverse
momentum. Only statistical errors are shown.
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w1 ¼
ffiffiffi
23

p ð ffiffiffi
23

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ TÞ2 − 4ð3U1 þ U2Þ3

p
þ Rþ TÞ2=3 þ 6U1 þ 2U2Þ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ TÞ2 − 4ð3U1 þU2Þ3

p
þ Rþ T3

q ðA1dÞ

w2;3 ¼ −
ffiffiffi
23

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ TÞ2 − 4ð3U1 þ U2Þ3

p
þ Rþ TÞ2=3 þ 6U1 þ 2U2

3 · 22=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ TÞ2 − 4ð3U1 þ U2Þ3

p
þ Rþ T3

q

−
ið ffiffiffi

23
p ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ TÞ2 − 4ð3U1 þ U2Þ3

p
þ Rþ TÞ2=3 − 6U1 − 2U2Þ

22=3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ TÞ2 − 4ð3U1 þU2Þ3

p
þ Rþ T3

q ðA1eÞ

wðasÞ
1 ¼ 0; wðasÞ

2;3 ¼ � 4

3

ffiffiffiffiffiffiffiffi
−M

p
ðA1fÞ
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