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We report our investigation on the doubly virtual transition form factors (TFFs) FPγ� ðQ2
1; Q

2
2Þ for the

P → γ�ðq1Þγ�ðq2ÞðP ¼ π0; η; η0Þ transitions using the light-front quark model (LFQM). Performing a LF
calculation in the exactly solvable manifestly covariant Bethe-Salpeter (BS) model as the first illustration,
we use the qþ1 ¼ 0 frame and find that both LF and manifestly covariant calculations produce exactly the
same results for FPγ� ðQ2

1; Q
2
2Þ. This confirms the absence of the LF zero mode in the doubly virtual TFFs.

We then map this covariant BS model to the standard LFQM using the more phenomenologically
accessible Gaussian wave function provided by the LFQM analysis of meson mass spectra. For the
numerical analyses of FPγ� ðQ2

1; Q
2
2Þ, we compare our LFQM results with the available experimental data

and the perturbative QCD (pQCD) and vector meson dominance (VMD) model predictions. As
ðQ2

1; Q
2
2Þ → ∞, our LFQM result for doubly virtual TFF is consistent with the pQCD prediction, i.e.,

FPγ� ðQ2
1; Q

2
2Þ ∼ 1=ðQ2

1 þQ2
2Þ, while it differs greatly from the result of the VMD model, which behaves

as FVMD
Pγ� ðQ2

1; Q
2
2Þ ∼ 1=ðQ2

1Q
2
2Þ. Our LFQM prediction for Fη0γ� ðQ2

1; Q
2
2Þ shows an agreement with the

very recent experimental data obtained from the BABAR Collaboration for the ranges of
2 < ðQ2

1; Q
2
2Þ < 60 GeV2.

DOI: 10.1103/PhysRevD.99.076012

I. INTRODUCTION

The meson-photon transitions such as P → γð�Þγð�ÞðP ¼
π0; η; η0Þ with one or two virtual photons have been of
interest to both theoretical and experimental physics
communities since they are the simplest possible bound
state processes in quantum chromodynamics (QCD) and
they play a significant role in allowing both the low- and
high-energy precision tests of the standard model.
In particular, both singly virtual and doubly virtual

transition form factors (TFFs) are required to estimate
the hadronic light-by-light (HLbL) scattering contri-
bution to the muon anomalous magnetic moment
ðg − 2Þμ. The HLbL contribution is in principle obtained
by integrating some weighting functions times the product

of a single-virtual and a double-virtual TFF for spacelike
momentum [1–3]. The single-virtual TFFs have been
measured either from the spacelike eþe− → eþe−P process
in the single tag mode [4–6] or from the timelike Dalitz
decays P → l̄lγ [7–12], where ð2mlÞ2 ≤ q2 ≤ m2

P. The
timelike region beyond the single Dalitz decays may be
accessed through the eþe− → Pγ annihilation processes,
and the BABAR Collaboration [13] measured the timelike
Fηð0Þγ TFFs from the reaction eþe− → ηð0Þγ at an average
eþe− center of mass energy of

ffiffiffi
s

p ¼ 10.58 GeV.
Very recently, the BABAR Collaboration [14] measured

for the first time the double-virtual γ�ðq1Þγ�ðq2Þ → η0 TFF
Fη0γ� ðQ1

1; Q
2
2Þ in the spacelike (i.e., Q2

1ð2Þ ¼ −q2
1ð2Þ > 0)

kinematic region of 2 < ðQ2
1; Q

2
2Þ < 60 GeV2 by using the

eþe− → eþe−η0 process in the double-tag mode as shown
in Fig. 1. It is very interesting to note that the measurement
of FPγ�ðQ1

1; Q
2
2Þ at large Q2

1 and Q2
2 distinguishes the

predictions of the model inspired by perturbative QCD
(pQCD) [15,16], FpQCD

Pγ� ðQ2
1;Q

2
2Þ∼1=ðQ2

1þQ2
2Þ, from those

of the vector meson dominance (VMD) model [17–19],
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FVDM
Pγ� ðQ2

1; Q
2
2Þ ∼ 1=ðQ2

1Q
2
2Þ, while both models predict

the same asymptotic dependence Fasy
Pγ ðQ2; 0Þ ∼ 1=Q2 as

Q2 → ∞.
The low-energy behavior of the TFF for the doubly

virtual π0 → γ�γ� transition was recently investigated
within a Dyson-Schwinger and Bethe-Salpeter (BS) frame-
work [20]. In our previous analysis [21], we explored the
TFF FPγðQ2; 0Þ for the single-virtual P→ γ�γðP¼π0;η;η0Þ
transition both in the spacelike and timelike region using
the light-front quark model (LFQM) [22–26]. In particular,
we presented the new direct method to explore the timelike
region without resorting to mere analytic continuation from
a spacelike to a timelike region. Our direct calculation in
the timelike region has shown complete agreement with not
only the analytic continuation result from the spacelike
region but also the result from the dispersion relation
between the real and imaginary parts of the form factor.
The purpose of this work is to extend our previous

analysis [21] to compute the TFF for the doubly virtual
η0 → γ�γ� transition and compare with the recent BABAR
data for FPγ� ðQ2

1; Q
2
2Þ [14]. We also present the TFFs

for ðη; π0Þ → γ�γ� as well to complete the analysis of
doubly virtual photon-pseudoscalar meson transitions in
our LFQM.
The paper is organized as follows. In Sec. II, we discuss

the TFFs for the doubly virtual P → γ�γ� transitions in an
exactly solvable model first based on the covariant BS
model of (3þ 1)-dimensional fermion field theory to check
the existence (or absence) of the LF zero mode [27–30] as
one can pin down the zero mode exactly in the manifestly
covariant BS model [31–35]. Performing both the mani-
festly covariant calculation and the LF calculation, we
explicitly show the equivalence between the two results
and the absence of the zero-mode contribution to the TFF.
The η − η0 mixing scheme for the calculations of the
ðη; η0Þ → γ�γ� TFFs is also introduced in this section. In
Sec. III, we apply the self-consistent correspondence
relations [see, e.g., Eq. (35) in [34] ] between the covariant
BS model and the LFQM and we present the standard
LFQM calculation with the more phenomenologically
accessible model wave functions provided by the LFQM
analysis of meson mass spectra [22,25]. In Sec. IV, we
present our numerical results for the ðπ0; η; η0Þ → γ�γ�

TFFs and compare them with the available experimental
data. Summary and discussion follow in Sec. V.

II. MANIFESTLY COVARIANT MODEL

The TFF FPγ� for the doubly virtual PðPÞ→ γ�ðq1Þγ�ðq2Þ
(P ¼ π0; η; η0) transition is defined via the amplitude T as
follows:

T ¼ ie2FPγ�ðq21; q22Þεμνρσε1με2νq1ρq2σ; ð1Þ

where P is the four-momenta of the pseudoscalar meson,
and q1ð2Þ and ε1ð2Þ are the momenta and polarization vectors
of two virtual photons 1 and 2, respectively. This process is
illustrated by the one-loop Feynman diagrams in Figs. 2(a)
and 2(b), which represent the amplitudes of the virtual
photon with momenta q1 being attached to the quark and
antiquark lines, respectively. While we shall only discuss
the amplitude shown in Fig. 2(a), the total amplitude
should of course include the contribution from the process
in Fig. 2(b) as well.
In the exactly solvable manifestly covariant BS model,

the covariant amplitude T in Fig. 2(a) is obtained with the
following momentum integral:

T ¼ ieQeQ̄Nc

Z
d4k
ð2πÞ4

H0

Np1
NkNp2

S; ð2Þ

where Nc is the number of colors and eQ (eQ̄) is the quark
(antiquark) electric charge. The denominators Npj

ð¼ p2
j −

m2
Q þ iεÞðj ¼ 1; 2Þ and Nkð¼ k2 −m2

Q̄ þ iεÞ come from
the intermediate quark and antiquark propagators of mass
mQ ¼ mQ̄ carrying the internal four-momenta p1 ¼ P − k,
p2 ¼ P − q − k, and k, respectively. The trace term S in
Eq. (2) is obtained as

S ¼ Tr½γ5ð=p1 þmQÞ=ε1ð=p2 þmQÞ=ε2ð−=kþmQÞ�
¼ 4imQε

μνρσε1με2νq1ρq2σ: ð3Þ

For the q̄q bound-state vertex function H0 ¼ H0ðp2
1; k

2Þ of
the meson, we simply take the constant parameter g in our
model calculation. The covariant loop is regularized prop-
erly with this constant vertex.
Using the Feynman parametrization for the three propa-

gators 1=ðNp1
NkNp2

Þ, we obtain the manifestly covariant

FIG. 1. The diagram for the eþe− → eþe−P process.

(a) (b)

FIG. 2. One-loop Feynman diagrams that contribute to
P → γ�γ�. (a) and (b) represent the amplitudes of the virtual
photon attached to the quark and antiquark lines.
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result by defining the amplitude in Fig. 1(a) as TðaÞ ¼
ieQeQ̄½ImQ

ðaÞ �Covðq21; q22Þεμνρσε1με2νq1ρq2σ, where

½ImQ

ðaÞ �Cov ¼
Ncg
4π2

Z
1

0

dx
Z

1−x

0

dy

×
mQ

ðxþ y − 1ÞðxM2 − yQ2
2Þ þ xyQ2

1 þm2
Q
;

ð4Þ

with the physical meson mass M.
For the LF calculation in parallel with the manifestly

covariant one, we use the qþ1 ¼ 0 frame, where we take
P ¼ ðPþ;M2=Pþ; 0Þ; q1 ¼ ð0; q−1 ;q1⊥Þ; and q2 ¼
ðPþ; ðq22 þ q2

1⊥Þ=Pþ;−q1⊥Þ so that q21 ¼ −q2
1⊥ ≡ −Q2

1

and q22 ¼ −Q2
2.

In this frame, the Cauchy integration of Eq. (2) over k− in
Fig. 2(a) yields

½ImQ

ðaÞ �LF ¼
Nc

4π3

Z
1

0

dx
xð1 − xÞ

Z
d2k⊥

mQ

Q2
2 þM02

0

χðx;k⊥Þ;

ð5Þ

where x is the LF longitudinal momentum fraction defined
by kþ ¼ ð1 − xÞPþ and the LF ðPqq̄Þ-vertex function

χðx;k⊥Þ ¼
g

xðM2 −M2
0Þ

ð6Þ

is the ordinary LF valence wave function withM2
0 ¼

k2⊥þm2
Q

xð1−xÞ
being the invariant mass. Note here that the pole of
Nk ¼ 0 is taken for the Cauchy integration to get
Eq. (6). The primed momentum variables are defined by
M0

0 ¼ M0ðk⊥ → k0⊥Þ with k0⊥ ¼ k⊥ þ ð1 − xÞq1⊥. We
confirmed numerically that Eq. (5) exactly coincides with
the manifestly covariant result given by Eq. (4). This
verifies that the LF result obtained from the qþ1 ¼ 0 frame
is immune to the LF zero-mode contribution, which could
have been the additional contribution right at pþ

1 ¼ pþ
2 ¼ 0

if it exists. The LF zero mode involves the nonvalence wave
function vertex discussed in our previous works [21,34].
The Lorentz invariance of the TFF is complete in this work
without any issue from the LF zero mode.
Since the amplitude of Fig. 2(b) gives the same numeri-

cal values as that of Fig. 2(a), we obtain the total result
as I

mQ
tot ¼ 2½ImQ

ðaÞ �Cov ¼ 2½ImQ

ðaÞ �LF.

III. APPLICATION OF THE LIGHT-FRONT
QUARK MODEL

In the standard LFQM [22–26,36–38] approach, the
wave function of a ground state pseudoscalar meson as a qq̄
bound state is given by

Ψλλ̄ðx;k⊥Þ ¼ ϕRðx;k⊥ÞRλλ̄ðx;k⊥Þ; ð7Þ
where ϕR is the radial wave function and Rλλ̄ is the spin-
orbit wave function with the helicity λðλ̄Þ of a quark
(antiquark).
For the equal quark and antiquark mass mQ ¼ mQ̄, the

Gaussian wave function ϕR is given by

ϕRðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0

4xð1 − xÞ

s
em

2
Q=2β

2

e−M
2
0
=8β2 ; ð8Þ

where ∂kz=∂x ¼ M0=4xð1 − xÞ is the Jacobian of the
variable transformation fx;k⊥g → k⃗ ¼ ðk⊥; kzÞ and β is
the variational parameter fixed by our previous analysis of
meson mass spectra [22,25,26]. The covariant form of the
spin-orbit wave function Rλλ̄ is given by

Rλλ̄ ¼
ūλðpQÞγ5vλ̄ðpQ̄Þffiffiffi

2
p

M0

; ð9Þ

and it satisfies
P

λλ̄R
†
λλ̄
Rλλ̄ ¼ 1. Thus, the normalization of

our wave function is given by

Z
1

0

dx
Z

d2k⊥
16π3

jϕRðx;k⊥Þj2 ¼ 1: ð10Þ

In our previous analysis of the twist-2 and twist-3 DAs
of pseudoscalar and vector mesons [33–35] and the pion
electromagnetic form factor [34], we have shown that
standard LF (SLF) results of the LFQM are obtained by
the replacement of the LF vertex function χ in the BS model
with the Gaussian wave function ϕR as follows [see, e.g.,
Eq. (35) in [34] ]:

ffiffiffiffiffiffiffiffi
2Nc

p χðx;k⊥Þ
1 − x

→
ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q ; M → M0; ð11Þ

where M → M0 implies that the physical mass M included
in the integrand of the BS amplitude (exceptM in the vertex
function χ) has to be replaced with the invariant mass M0

since the SLF results of the LFQM are obtained from the
requirement of all constituents being on their respective
mass shell. The correspondence in Eq. (11) is valid again in
this analysis of a P → γ�γ� transition.
Applying the correspondence given by Eq. (11) to

½ImQ

ðaÞ �LF in Eq. (5) and including the contribution from

Fig. 2(b) as well, we obtain the full result of ½ImQ
tot �LFQM ≡

I
mQ

QM in our LFQM as follows:

I
mQ

QM ¼
ffiffiffiffiffiffiffiffi
2Nc

p
4π3

Z
1

0

dx
x

Z
d2k⊥

mQ

ðQ2
2 þM02

0 Þ
ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q :

ð12Þ
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For ðη; η0Þ → γ�γ� transitions, making use of the η − η0
mixing scheme, the flavor assignment of η and η0 mesons in
the quark-flavor basis ηq ¼ ðuūþ dd̄Þ= ffiffiffi

2
p

and ηs ¼ ss̄ is
given by [39]

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
: ð13Þ

Using this mixing scheme and including the electric
charge factors, we obtain the transition form factors
FPγ� ðQ2

1; Q
2
2Þ for P → γ�γ�ðP ¼ π0; η; η0Þ transitions as

follows:

Fπγ� ðQ2
1;Q

2
2Þ¼

ðe2u−e2dÞffiffiffi
2

p I
muðdÞ
QM ;

Fηγ� ðQ2
1;Q

2
2Þ¼ cosϕ

ðe2uþe2dÞffiffiffi
2

p I
muðdÞ
QM −sinϕe2sI

ms
QM;

Fη0γ� ðQ2
1;Q

2
2Þ¼ sinϕ

ðe2uþe2dÞffiffiffi
2

p I
muðdÞ
QM þcosϕe2sI

ms
QM: ð14Þ

While the quadratic (linear) Gell-Mann–Okubo mass for-
mula prefers ϕ ≃ 44.7° (ϕ ≃ 31.7°) [40], the KLOE
Collaboration [41] extracted the pseudoscalar mixing angle
ϕ by measuring the ratio BRðϕ → η0γÞ=BRðϕ → ηγÞ.
The measured values are ϕ ¼ ð39.7� 0.7Þ° and ð41.5�
0.3stat � 0.7syst � 0.6thÞ° with and without the gluonium
content for η0, respectively. In this work, however, we use
ϕ ¼ 37°� 5° to check the sensitivity of our LFQM.
For a sufficiently high spacelike momentum transfer

ðQ2
1; Q

2
2Þ region, our LFQM result for Fπγ� ðQ2

1; Q
2
2Þ can be

approximated in the leading order (LO) as follows:

FLO
πγ� ðQ2

1; Q
2
2Þ ≃ Cπ

Z
1

0

dx
ϕ2;πðxÞ

ð1 − xÞQ2
1 þ xQ2

2

; ð15Þ

where Cπ ¼ ð ffiffiffi
2

p
=3Þfπ , with fπ the pseudoscalar meson

decay constant, and ϕ2;πðxÞ is the twist-2 pion distribution
amplitude (DA) in our LFQM given by [33–35]

ϕ2;πðxÞ ¼
ffiffiffiffiffiffiffiffi
2Nc

p
fπ8π3

Z
d2k⊥

ϕRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

Q

q mQ: ð16Þ

Our result for ϕ2;πðxÞ can be found in Ref. [23]. As one can
see from Eq. (15), while the singly virtual TFF Fπγ� ðQ2; 0Þ
above some intermediate values of momentum transfer is
known to be quite sensitive to the shape of DA, the doubly
virtual TFF is not sensitive to the shape of DA since the
amplitude TH ¼ 1=ðð1 − xÞQ2

1 þ xQ2
2Þ is finite at the end

points of x, i.e., x ¼ 0, 1.
We note that the pQCD LO result for Fπγ� ðQ2

1; Q
2
2Þ can

be obtained from replacing ϕ2;πðxÞ in Eq. (15) with the
asymptotic form ϕasy

2;π ðxÞ ¼ 6xð1 − xÞ [15]. Taking the

same asymptotic form 6xð1 − xÞ for the quark DAs,
the pQCD LO results for ðη; η0Þ TFFs can also be obtained
by replacing the factor Cπ in Eq. (15) with
Cη ¼ ð5 ffiffiffi

2
p

=9Þfηq cosϕ − ð2=9Þfηs sinϕ for Fηγ� ðQ2
1; Q

2
2Þ

and with Cη0 ¼ ð5 ffiffiffi
2

p
=9Þfηq sinϕþ ð2=9Þfηs cosϕ for

Fη0γ� ðQ2
1; Q

2
2Þ, where fηq and fηs are the weak decay

constants for the jηqi and jηsi states, respectively. For this
transition to two highly off-shell photons, the pQCD
expression for the next-to-leading order (NLO) component
can be found in Ref. [16].

TABLE I. The constituent quark masses mQðQ ¼ uðdÞ; sÞ (in
GeV) and the Gaussian parameters βQQ̄ (in GeV) for the linear
confining potentials obtained from the variational principle in our
LFQM [22,23,25].

muðdÞ ms βQQ̄ βss̄

0.22 0.45 0.3659 0.4128

FIG. 3. The three-dimensional plots for ðQ2
1 þQ2

2ÞFπγ�

ðQ2
1; Q

2
2Þ obtained from Eq. (14) (upper panel) compared with

the VMD result (lower panel) for the range of 0 < ðQ2
1; Q

2
2Þ <

10 GeV2.
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IV. NUMERICAL RESULTS

In our numerical calculations within the standard LFQM,
we use the model parameters (i.e., constituent quark masses
mQ and Gaussian parameters βQQ̄Þ for the linear confining
potentials given in Table I, which were obtained from the
calculation of meson mass spectra using the variational
principle in our LFQM [22,23,25]. The analysis for singly
virtual TFFs FPγðQ2; 0Þ can be found in our previous
work [21].
In Fig. 3, we show the three-dimensional plots for

ðQ2
1 þQ2

2ÞFπγ� ðQ2
1; Q

2
2Þ for the 0 < ðQ2

1; Q
2
2Þ < 10 GeV2

range obtained from Eq. (14) and compare our LFQM
result (upper panel) with the result from the VMD model
(lower panel), which is given by [14]

FVMD
Pγ� ðQ2

1; Q
2
2Þ ¼

FPγð0; 0Þ
ð1þQ2

1=Λ2
PÞð1þQ2

2=Λ2
PÞ
; ð17Þ

where we take ΛP ¼ 775 MeV corresponding to the ρ-pole
and the central value of the experimental data [40],
FExp:
πγ ð0; 0Þ ¼ 0.272ð3Þ GeV−1 for Fπγð0; 0Þ. As we dis-

cussed before, while our LFQM result for doubly
virtual TFF behaves as Fπγ� ðQ2

1;Q
2
2Þ∼1=ðQ2

1þQ2
2Þ as

FIG. 4. The two-dimensional plot for 2Q2Fπγ� ðQ2; Q2Þ in the
symmetric limit (Q2 ¼ Q2

1 ¼ Q2
2Þ for the 0 < Q2 < 50 GeV2

region compared with the pQCD LO and the VMD model
predictions.

TABLE II. The transition form factors Fðπ;η;η0Þγ� ðQ2
1; Q

2
2Þ (in units of 103 GeV−1) for some (Q2

1; Q
2
2) values (in

units of GeV2) compared with the experimental data [14] for FExp:
η0γ� .

ðQ2
1; Q

2
2Þ Fπγ� Fηγ� Fη0γ� FExp:

η0γ�

(6.48, 6.48) 9.08 8.48þ1.18
−1.24 13.91þ0.69

−0.79 14.32þ1.95
−1.89 � 0.83� 0.14

(16.85, 16.85) 3.58 3.29þ0.47
−0.50 5.55þ0.27

−0.31 5.35þ1.71
−2.15 � 0.31� 0.42

(14.83, 4.27) 6.76 6.33þ0.87
−0.92 10.32þ0.51

−0.59 8.24þ1.16
−1.13 � 0.48� 0.65

(38.11, 14.95) 2.40 2.21þ0.32
−0.33 3.71þ0.18

−0.21 6.07þ1.09
−1.07 � 0.35� 1.21

(45.63, 45.63) 1.33 1.22þ0.18
−0.19 2.08þ0.10

−0.11 8.71þ3.96
−4.02 � 0.50� 1.04

FIG. 5. The three-dimensional plots for ðQ2
1þQ2

2ÞFηγ� ðQ2
1;Q

2
2Þ

(upper panel) and ðQ2
1 þQ2

2ÞFη0γ� ðQ2
1; Q

2
2Þ (lower panel) ob-

tained from Eq. (14) with ϕ ¼ 37° for the range of
0 < ðQ2

1; Q
2
2Þ < 10 GeV2.
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ðQ2
1;Q

2
2Þ→∞, which is consistent with the pQCD pre-

diction, the result of the VMD model behaves as
FVMD
πγ� ðQ2

1; Q
2
2Þ ∼ 1=ðQ2

1Q
2
2Þ. On the other hand, for the

singly virtual TFF such as Fπγ� ðQ2
1 ¼ Q2; 0Þ or

Fπγ� ð0; Q2
2 ¼ Q2Þ, the two models show the same scaling

behavior Q2Fπγ� ðQ2; 0Þ → constant. One can also see from
Fig. 3 that our LFQM result for the TFF is in general larger
in the asymmetric limit (e.g.,Q2

1 ¼ Q2; Q2
2 ¼ 0) than in the

symmetric limit (i.e., Q2
1 ¼ Q2

2), which persists up to an
asymptotically large momentum transfer region. The same
observation was made in Ref. [20].
In Fig. 4, we show the two-dimensional plot for

2Q2Fπγ� ðQ2;Q2Þ in the symmetric limit (Q2¼Q2
1¼Q2

2Þ
for the 0 < Q2 < 50 GeV2 region compared with the
pQCD LO and the VMD model predictions. In this
symmetric limit case, the different behavior of Q2Fπγ�

ðQ2; Q2Þ between our LFQM result (solid line) Q2Fπγ�

ðQ2; Q2Þ → constant and the VMD result (dotted-dashed
line) Q2Fπγ� ðQ2; Q2Þ → 1=Q2 can be clearly seen as
Q2 → ∞. Comparing our LFQM result and the pQCD
LO (dashed line) prediction, while the NLO contribution

is still greater than 10% for the Q2 ≤ 2 GeV2 region,
the NLO contribution becomes less than 5% for the
Q2 ≥ 6 GeV2 region.
In Fig. 5, we show the three-dimensional plots for

ðQ2
1 þQ2

2ÞFηγ�ðQ2
1; Q

2
2Þ (upper panel) and ðQ2

1 þQ2
2ÞFη0γ�

ðQ2
1; Q

2
2Þ (lower panel) obtained from Eq. (14) with ϕ ¼

37° for the range of 0 < ðQ2
1; Q

2
2Þ < 10 GeV2. As one can

see from Figs. 3 and 4, all three TFFs Fðπ;η;η0Þγ� ðQ2
1; Q

2
2Þ

obtained from our LFQM show the same scaling behavior
as the pQCD predicted.
In Table II, we summarize our LFQM results for the

transition form factors Fðπ;η;η0Þγ� ðQ2
1; Q

2
2Þ (in units of

103 GeV−1) for some (Q2
1; Q

2
2) values (in units of GeV2)

compared with the experimental data [14] for FExp
η0γ� with the

statistical, systematic, and model uncertainties. We note
that the error estimates for Fðη;η0Þγ� ðQ2

1; Q
2
2Þ in our LFQM

results come from the choice of η − η0 mixing angle
ϕ ¼ ð37� 5Þ°. We note for Fη0γ� ðQ2

1; Q
2
2Þ that our

LFQM result and the experimental data are compatible
with each other and the agreement between the two appears
fairly reasonable within a rather large uncertainty of data.

FIG. 6. Our LFQM results for Fðπ;η;η0Þγ� ðQ2
1; Q

2
2Þ (black circles) compared with the pQCD LO (open squares) and NLO (filled squares)

predictions; the VMD predictions (blue circles); and the experimental data [14] (triangles, with error bars including the statistical,
systematic, and model uncertainties).
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In Fig. 6, we show our LFQM results for Fðπ;η;η0Þγ�
ðQ2

1; Q
2
2Þ (black circles) compared with the pQCD LO

(open squares) and NLO (filled squares) predictions [16],
VMD predictions (blue circles), and the experimental data
[14] (triangles) for Fη0γ� ðQ2

1; Q
2
2Þ. We note that the error

bars for FExp:
η0γ� ðQ2

1; Q
2
2Þ include the statistical, systematic,

and model uncertainties. As one can see from Fig. 5, our
LFQM results for Fðπ;η;η0Þγ� ðQ2

1; Q
2
2Þ show the same behav-

ior as the pQCD predictions. However, our LFQM pre-
dictions are quite different from the VMD model
predictions since the two models have different power
behaviors of ðQ2

1; Q
2
2Þ as we discussed before. While the

data for Fη0γ� ðQ2
1; Q

2
2Þ measured from BABAR [14] agree

with the pQCD and our LFQM predictions, they show a
clear disagreement with the VMD model predictions.

V. SUMMARY AND DISCUSSION

We presented the doubly virtual TFFs FPγ�ðQ2
1; Q

2
2Þ for

the P → γ�γ�ðP ¼ π0; η; η0Þ transitions in the standard LF
(SLF) approach within the phenomenologically accessible
realistic LFQM [22–26]. Performing a LF calculation in the
covariant BS model as the first illustration, we used the
qþ1 ¼ 0 frame with q21 ¼ −q2

1⊥ ¼ −Q2
1, and we found that

both LF and manifestly covariant calculations produced
exactly the same results for FPγ� ðQ2

1; Q
2
2Þ. This assured the

absence of the LF zero mode in the doubly virtual TFFs as
expected [21].
We then mapped the exactly solvable manifestly covar-

iant BS model to the standard LFQM following the same
correspondence relation given by Eq. (11) between the two

models that we found in our previous analysis of two-point
and three-point functions for the pseudoscalar and vector
mesons [33,34]. This allowed us to apply the more
phenomenologically accessible Gaussian wave function
provided by the LFQM analysis of meson mass spectra
[22–26] to the analysis of the doubly virtual FPγ� ðQ2

1; Q
2
2Þ.

For the ðη; η0Þ → γ�γ� transitions, we used the η − η0
mixing angle ϕ in the quark-flavor basis, varying the ϕ
values in the range of ϕ ¼ ð37� 5Þ° to check the sensi-
tivity of our LFQM.
For the numerical analyses of FPγ�ðQ2

1; Q
2
2Þ, we com-

pared our LFQM results with the available experimental
data and the other theoretical model predictions such as
the pQCD [16] and VMD results. While our LFQM result
for the doubly virtual TFF behaves as FPγ� ðQ2

1; Q
2
2Þ ∼

1=ðQ2
1 þQ2

2Þ as ðQ2
1; Q

2
2Þ → ∞, which is consistent with

the pQCD prediction, the result of the VMDmodel behaves
as FVMD

Pγ� ðQ2
1; Q

2
2Þ ∼ 1=ðQ2

1Q
2
2Þ. Our LFQM prediction for

Fη0γ� ðQ2
1; Q

2
2Þ showed a reasonable agreement with the

very recent experimental data obtained from the BABAR
Collaboration for the ranges of 2 < ðQ2

1; Q
2
2Þ < 60 GeV2.
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